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ABSTRACT: Heterostructures of optical cavities and quantum
emitters have been highlighted for enhanced light-matter
interactions. A silicon nanosphere, core, and MoS2, shell, structure
is one such heterostructure referred to as the core@shell
architecture. However, the complexity of the synthesis and
inherent difficulties to locally probe this architecture have resulted
in a lack of information about its localized features limiting its
advances. Here, we utilize valence electron energy loss spectros-
copy (VEELS) to extract spatially resolved dielectric functions of
Si@MoS2 with nanoscale spatial resolution corroborated with
simulations. A hybrid electronic critical point is identified ∼3.8 eV
for Si@MoS2. The dielectric functions at the Si/MoS2 interface is further probed with a cross-sectioned core−shell to assess the
contribution of each component. Various optical parameters can be defined via the dielectric function. Hence, the methodology and
evolution of the dielectric function herein reported provide a platform for exploring other complex photonic nanostructures.
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Semiconductor transition metal dichalcogenides (TMDs) of
the formula MX2 (M = transition metal; X = chalcogen) in

the two-dimensional materials family have earned significant
interest in the past decade. One outstanding feature of TMDs
is their large exciton binding energy and exciton transition
dipole moment, making them strong candidates as quantum
emitters for next-generation photonics even at room temper-
ature.1 Reports have been made on improving the functionality
of the TMDs by encapsulating a nanosphere core material,
such as Au,2,3 Ag,3,4 and Si.5,6 In such core−shell architectures,
light−matter interactions are enhanced by the surface
interaction between the core and the shell.1 This is promising
for optoelectronic applications such as exciton−polariton
lasers, light-emitting devices, and all-optical switches.7 For
example, plasmonic core materials such as Au and Ag that have
been encapsulated with TMDs are reported to show improved
TMD photoluminescence (PL) intensity.8−10 However,
plasmonic core materials are prone to Ohmic losses,11 which
has led to replacing these cores with high refractive index
dielectric materials such as Si.5 Electric field penetrates
dielectric materials, unlike their metallic counterparts. There-
fore, dielectric materials with a high refractive index can
support multiple optical modes, which offer tunable energy
coupling upon overlap with the exciton transition of the TMD.
With rising interests in these hybrid core−shell architectures

for photonic applications, it has become increasingly important
to understand the precise structure−property relationship of

this system. In this work, we begin with a macroscale
observation of the aforementioned improved light−matter
interaction in Si@MoS2 in the form of enhanced PL relative to
planar MoS2. We then evaluate the dielectric function at
different localized parts of the core−shell architecture in the
nanoscale. In a dielectric function, ε = ε1 + iε2, the real part
(ε1) underscores the material’s ability to store electrical energy
(electronic polarizability) and its refractive index while the
imaginary part (ε2) incorporates the material’s energy loss or
light absorption.12 By conducting a comparative study on the
core−shells against the unencapsulated Si nanosphere and
planar MoS2, we probe how both the electronic structure and
optical properties can be tuned in complex hybrid
architectures. The extended connection to macroscopic
properties, such as PL, will ultimately assist to improve
property−performance relationships.
To study the dielectric functions of this system, valence

electron energy loss spectroscopy (VEELS) is adopted. VEELS
yields high spatial resolution in the nanometer scale, which
enables an investigation of localized features. The low energy
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loss region captures electronic structure information such as
valence electron excitation, plasmonic excitations, and intra/
interband transitions based on the band structure, which
govern the optical properties of a material.13 Therefore, VEELS
can be used to extract the complete complex dielectric
function, which can unlock information on optical properties,
such as absorption coefficient, reflectance, and transmissivity
using the Kramers−Kronig analysis (KKA).14,15

The silicon nanospheres we use range from 100 to 200 nm
in diameter, and the MoS2 shell encapsulating the nanosphere
ranges between 5- and 15-layers, where each layer is ∼0.63 nm
thick (see Figure S1).16 The encapsulation is achieved via
chemical vapor deposition (CVD). The spherical core−shell
architecture is expected to have an increased PL intensity as
the electric field in the near-field region around the core is
enhanced and the light interaction with MoS2 is improved.3,8 A
magnetic dipole (MD) mode is formed inside the Si core and
the electric field is concentrated outside the core (MoS2 shell
region) region. The MD mode is coupled to the exciton modes
of MoS2. Hence, this system effectively acts as a cavity and
enhances PL (see Figure S2). This enhancement is observed in
a 23 × 10 μm2 scan of a region on the Si@MoS2 growth
substrate as shown in the optical image of Figure 1a. The

growth substrate is a Si/SiO2 (300 nm thick oxide layer) wafer,
on which clusters of Si nanoparticles are dispersed and MoS2 is
grown throughout the substrate. Therefore, the growth
substrate has Si@MoS2 as well as planar MoS2 on regions
where there are no nanoparticles. This enables PL intensity
comparison of planar MoS2 and Si@MoS2 under identical

parameters, eliminating possible errors from differing CVD
growth conditions.
Figure 1a is an out-of-focus optical image of the growth

substrate at 150× magnification on which Si@MoS2 clusters
appear as black specks. Figure 1b is an in-focus optical image of
the region of interest for PL mapping. Clusters of Si
nanoparticles are marked in white arrows to guide the eye.
Also presented is the PL map of the same region. Brighter
colors correspond to higher PL intensity at 670 nm, the
expected A-exciton peak for MoS2.

17−19 From Figure 1c, the
representative PL spectra extracted along the line profile, it is
evident that Si@MoS2 clusters yield higher PL intensity than
the adjacent regions of planar MoS2.
This macroscopic photonic phenomenon suggests a trans-

formation not only at the micron scale but also at the
nanoscale as the silicon and MoS2 are superposed in a core−
shell geometry. Therefore, VEELS is employed as a technique
to investigate the system with high spatial resolution and
acceptable energy resolution. As can be seen from the full
width at half-maximum (fwhm) of the zero-loss peak (ZLP) in
Figure S3, the energy resolution of our spectroscopy system is
approximately 0.6 eV. As the tail of the ZLP is overlapped with
the peaks corresponding to the band gaps of Si and MoS2,
further discussion focuses on peaks beyond the band gap
energy range.
As an experimental control, planar MoS2 flakes and

unencapsulated Si nanoparticles are separately transferred
from the growth substrate to lacey carbon Cu transmission
electron microscope (TEM) grids. Scanning TEM (STEM)
annular dark-field (ADF) images are shown in Figure 2a and b
for MoS2 and Si nanoparticles, respectively. VEELS is used to
corroborate the robustness of the chemical composition after
the transfer process. As shown in Figure S4, the spectra show a
Si plasmon peak at 16.7 eV, in good agreement with the
literature value.20 The plasmon peaks of MoS2 appear at 8 eV
(π plasmon) as a small bump attributed to six π-electrons four
of which are attributed to the sulfur at the van der Waals layer,
and at 23 eV (π + σ plasmon), from the collective oscillations
of all valence electrons. Both experimental peaks are again in
good agreement with what is reported in literature,21,22

although hydrocarbon contamination during spectra acquis-
ition also contributes to the peak at 23 eV.
From these VEELS spectra, the dielectric functions are

extracted as shown in Figure 2b and e (refer to the Supporting
Information for details). Although the precision of the spectra
gives confidence in the dielectric function extractions, it is
expected that experimental artifacts occur upon performing
KKA. For example, the surface contamination of hydrocarbons
or oxidation, as well as interactions from Cherenkov radiation
or surfaces losses may be present.14,23 Defects in the structure,
such as incomplete encapsulation, line defects and strain, can
also alter ε2 from band gap changing.13 Defined in units of
local inelastic mean free path of electrons, sample thickness
effects may also carry over in KKA if the value is significantly
larger than 1. Calculated by sample thickness over inelastic
mean free path (t/λ), this value is extracted using the relative
log-ratio method. For the silicon nanosphere and planar MoS2
in Figure 2, these are 1.38 and 0.65, respectively. Hence,
thickness effects in the nanosphere can contribute to peak
broadening in addition to the energy resolution as in Figure 2e.
Therefore, simulations are conducted (described in Supporting
Information) to more robustly compare against potential
experimental artifact features. The results are shown in Figure

Figure 1. (a) Out-of-focus optical image of growth substrate at 150×
magnification (100× objective followed by 1.5× ocular) depicting
clusters of Si@MoS2 in black spherical specks. The region of interest
for PL mapping is boxed. (b) In-focus optical image at 150×
magnification of a Si@MoS2 growth substrate. The dimensions are 23
× 10 μm2, and a few Si@MoS2 clusters are marked with white arrows.
Corresponding PL map of the same region of interest below. Each
pixel is 1 μm scale. (c) Representative PL spectra down the line
profile in green arrow marked in panel b.
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2c and f. Simulations of dielectric functions of MoS2 assume a
planar monolayer measured in the xy-orientation, while that of
Si assumes a planar bulk structure.
Peaks in ε2 indicate critical points in the electronic

transitions, representative of the nature of the material, and
both simulations are in good agreement with the experimental
dielectric functions. The prominent peaks in MoS2 ε2 appear
∼2.5, 3.2, and 3.9 eV, with broader peaks trailing at energies
greater than 4.3 eV. The parallel lowest conduction band and
highest valence band between the M and Γ points in the
Brillouin zone yields a strong optical critical point ∼2.5
eV.24−26 The next peak ∼3.0 eV is attributed to the electron−
hole pairs at the transition between the K and Γ Brillouin
zones, where the conduction and valence band minima are
parallel.24,27 The parallel bands yield maximum joint density of
states. Above this is the critical point ∼3.9 eV, whose origin is
uncertain and seldom reported in literature. Considering the
sizable energy, it likely corresponds to a combination of
multiple higher critical points as do higher energy peaks, which
is common for semiconductors.24,26

The prominent peaks in the Si ε2 function appear ∼2.8, 3.2,
and 3.7 eV with smaller, broader peaks ∼4.6, and 5.4 eV. The
peak ∼2.8 eV is attributed to the silicon direct band gap, while
the rest are attributed to higher transitions.28 The peak ∼3.2

eV aligns with the Γ25′ → Γ15 transition, while the peak ∼3.7
eV aligns with L3′ → L1 transition in the silicon band structure.
Higher energy peaks ∼4.6 and 5.4 eV correspond to X4 → X1

and L3′ → L3 transitions, respectively (Figure S5).28,29

Next, Si@MoS2 are transferred to TEM grids in a similar
manner. The STEM-ADF image of a core−shell is shown in
Figure 3a. The compositional integrity is confirmed by the
chemical composition map derived using a least-squares
function to fit Lorentzian curves to VEELS Si and MoS2
peaks as shown in Figure S6. The dielectric function of the
core−shell architecture is extracted where t/λ is 0.75 as shown
in Figure 3b. The dielectric function of the core−shell is
similar to those of the individual core and shell components at
first glance. However, there are fewer dispersed peaks overall,
and one narrow peak ∼3.8 eV in ε2 is prominent. This peak is
possibly from a critical point in the hybridized electronic
structure of the core−shell. The narrow width of this peak also
suggests that other critical transitions identified in the
individual Si and MoS2 components are relatively suppressed.
Spatial redistribution of charge carriers and modifications in
their interactions upon heterostructuring semiconductors with
different band gaps is a well-known phenomenon that justifies
this transformation.30

Figure 2. (a) STEM-ADF image of planar MoS2. (b) Experimental dielectric function of planar MoS2 flake extracted from the region boxed in
panel a. (c) Simulated dielectric function of a monolayer MoS2. (d) STEM-ADF image of unencapsulated Si nanospheres. (e) Experimental
dielectric function of the unencapsulated Si nanoparticle extracted from the region boxed in panel d. (f) Simulated dielectric function of bulk Si.
The exchange-correlation energy is calculated within the G0W0 approximation in simulations (see Supporting Information for details).

Figure 3. (a) STEM-ADF image of a core−shell with an elemental map corresponding to the boxed region. (b) Dielectric function of the boxed
region in (a). c) Simulated dielectric function of monolayer MoS2-bulk Si planar heterostructure. The exchange-correlation energy is calculated
within the G0W0 approximation in the simulation (see Supporting Information for details).
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A planar heterostructure of two atomic layers thick Si and
monolayer MoS2 is adopted in the core−shell simulation due
to several challenges with accurately representing the
experimental model. These challenges include (1) the diameter
of the core−shell spanning hundreds of nanometers, (2)
uncertainty regarding lattice mismatch and surface reconstruc-
tion at the silicon−MoS2 interface, (3) defects in the MoS2,
such as buckling, and (4) curvature of the core resulting in
lattice strain build up. All of these factors will alter the band
gap relative to experimental conditions contributing to the
∼2.5 eV red-shift of the simulated dielectric function from
experimental results as shown in Figure 3c.
Moreover, the band gap of the calculated heterostructure of

Si−MoS2 is rather small (0.15 eV), which is much smaller than
the 5-layer MoS2 (1.4 eV), contributing to the red-shift of the
calculated spectrum. The small band gap is due to the
hybridization of Si 3p state and Mo 4d state as shown in the
density of states lowest peak in the conduction band (Figure
S5). Unlike band structure calculations of the individual
components core and shell, that of the spherical core−shell
heterostructure is hence much more sophisticated. This
upholds the importance of experimentally acquiring the
dielectric function to provide a survey of the electronic
structure of complex geometries. VEELS is a powerful
technique to assist such information acquisition with nanoscale
spatial resolution.
Investigation of a cross-sectional core−shell is seldom

reported because of the long-standing difficulties involved in
slicing a nanosized sphere. Here, we present a cross-sectional
sample prepared by focused ion beam (FIB) as shown in the
schematic and STEM-ADF image in Figure 4a and b, offering
insights distinct from the traditional holistic analysis of this
nanostructure. Moreover, the cross-sectional sample retains the
clustered nature of core−shells on the growth substrate,
replicating factors that better resemble application conditions
of these systems.

VEELS spectra taken at three different points along a line
profile in the cross-sectional sample is shown in Figure 4c. The
line crosses the shaved core of Si@MoS2 to the intact core−
shell interface, enabling a localized study of the system at each
pixel corresponding to 2 nm. The deconvoluted spectra are
shown for clarity in Figure S7. The expected Si plasmon peak
dominates at the core at 16.7 eV.20 The MoS2 peak is absent at
the core, ensuring the removal of the shell slice in the cross-
section. The MoS2 plasmon peak intensifies closer to the edge
of the system, at the expected energy of 23 eV, where the shell
structure is still intact.21,22 As the spectra at the three points
are in agreement with literature values, we have confidence in
extracting the dielectric functions at these points.
To gain further insights into the transformations induced

upon forming the heterostructure, the dielectric function is also
extracted from the three different features of the core−shell
architecture: the core, near the interface, and at the core−shell
interface (Figure 4d−f). The increased noise in the functions is
due to a smaller pixel area coverage in the line profile. As
expected, the dielectric function at the core in Figure 4d aligns
well with that of the unencapsulated Si nanoparticle (Figure
2f) in terms of peak energies. Moving toward the core−shell
interface in Figure 4f, the peak width in ε2 narrows and there is
a greater overlap between ε1 and ε2, resembling the dielectric
function of holistic Si@MoS2 (Figure 3b), particularly the peak
∼3.1 eV. A significant contribution from the dielectric function
of MoS2 is also observed since the interface has a relatively
greater contribution from the MoS2 shell than does the holistic
coverage of Si@MoS2. The dielectric function at the interface
can also be treated as a slight red-shift from that of the planar
MoS2 flake, which may be caused by curvature strain induced
band shifting.31

In conclusion, while the sufficient coverage of the core−shell
architecture in Figure 3 gives the monolithic electronic
structure from its dielectric function, regions along the line
profile can give more localized information with higher spatial
accuracy. The merit of VEELS is that the electronic structure

Figure 4. (a) Schematic of a cross-sectional core−shell. (b) STEM-ADF image of a cross-sectional sample capturing multiple Si@MoS2 on Si/SiO2
growth substrate and covered by an amorphous carbon capping layer. (c) VEELS spectra extracted along a line profile at the Si core, near the core−
shell interface, and at the core−shell interface as marked with corresponding colored stars in panel b. Curves are offset by 0.5 units. (d) Dielectric
function extracted at the core (black star), (e) near the core−shell interface (red star), and (f) core−shell interface (blue star) along the line profile
in panel b.
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transformation can be directly isolated and traced along local
features of the heterostructure in this manner. Further work
with improved energy resolution may better reveal finer states
such as vibrational low energy states. However, the main
challenge is that responses from complex heterostructures are
inherently difficult to deconvolve into contributions from each
component. This study presents the first steps to isolating
features of complex heterostructures to probe the localized
dielectric function by nanoscale sample preparation and
experimental methods, namely cross-sectioning and VEELS.
Our work opens avenues to explore regions of a complex
geometry, including potential defects, with high spatial
resolution for optimized performance of a specific material
property. Therefore, the ability to investigate the core−shell
architectures, an excellent next generation photonic device,
utilizing spectroscopic information in this manner lays the
ground for work in other advanced optical nanomaterials.
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