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ABSTRACT 

 

Earthquake damage scenarios are required to support design and analysis of spatially distributed 

infrastructure systems. In this paper we develop a computationally efficient set of damage 

scenarios for the Los Angeles water transmission system that considers ground motion and 

liquefaction. Each damage scenario describes one possible realization of damage to the pipe 

network and includes the corresponding multihazard scenario and an associated adjusted annual 

occurrence probability. Each damage scenario, which specifies the damage state of each pipe in 

the network, is defined to be physically realistic and consistent with the associated multihazard 

scenario. Together, when probabilistically combined, the set of damage scenarios with their 

occurrence probabilities matches the probabilistic hazard and component damage distributions. 

The scenarios are selected to be small in number so that subsequent analysis is efficient. We 

combine ideas from recently developed methods to generate sets of multihazard scenarios and 

damage scenarios for analysis of spatially distributed infrastructure systems. The method applied 

in this paper involves simulating multihazard, and a number of respective damage scenarios, and 

using an optimization to select a subset of damage scenarios and assign adjusted occurrence 

probabilities.  

 

INTRODUCTION 

 

The seismic performance of a lifeline network depends on the joint damage state of all its 

components, which in turn is dependent on their spatial correlation. As a result, lifeline networks 

are typically analyzed using a scenario-based approach. In the most common method, 

conventional Monte Carlo simulation (MCS), a rupture, ground motion, component damage, and 

system performance are simulated in turn; the process is repeated many times; and the results are 

combined (Han and Davidson 2012). While MCS is effective and conceptually straightforward, 

it is computationally inefficient, if not infeasible, because it requires so many expensive 

simulations to capture the full probabilistic distribution of performance. Recent methods have 

been developed to instead identify a relatively small, computationally efficient set of ground 

motion hazard scenarios, each with an associated adjusted annual occurrence probability, so that 



when probabilistically combined they represent the hazard accurately and efficiently (e.g., 

Jayaram and Baker 2010, Han and Davidson 2012, Zolfaghari and Peyghaleh 2015, Manzour et 

al., 2016). Similarly, Brown et al. (2011, 2013), Gearhart et al. (2011, 2014), and Miller and 

Baker (2015) describe methods to develop a computationally efficient set of damage scenarios, 

each with an associated adjusted occurrence probability.  

In this paper, we apply the Brown et al. (2013) method to develop a computationally 

efficient set of damage scenarios for the Los Angeles water transmission system. We chose this 

method because it has the benefit of including, within each damage scenario, all the information 

necessary to evaluate every possible combination of component retrofit or replacement 

strategies. Each damage scenario describes, for each pipe segment (or other component) in the 

network, both its damage state assuming it is in its current condition and its damage state if it 

were to be replaced with a pipe of a different resistance level. That makes it easy to use the 

results in a subsequent optimization to determine what pipes to retrofit/replace and how so as to 

meet some system-level objectives. Damage scenarios can be used for subsequent flow modeling 

and to improve the decisiveness for reducing consequences resulting from the infrastructure 

hazard exposure. The damage scenario also includes the corresponding multihazard scenario and 

an associated adjusted annual occurrence probability. Each multihazard scenario includes effects 

of multiple earthquake-related hazards, specifically ground motion, liquefaction and surface 

rupture. Having a set of multihazard scenarios as well allows use of that same set of multihazard 

scenarios for analyses of different infrastructure systems within the same geographic region so 

they are consistent. Unlike Brown et al. (2013), we apply the method for a water transmission 

system (not a highway network), consider ground motion and liquefaction (not just ground 

motion), and conduct the analysis for a full, computationally efficient set of multihazard 

scenarios developed using the Manzour et al. (2016) method.  

 

DAMAGE SCENARIO DEVELOPMENT METHOD 

 

Goal and assumptions. The goal of the damage scenario selection method is to compute a 

relatively small set of Q damage scenarios to be used for subsequent system-level risk analysis. 

Each damage scenario q defines the damage state d of each system component i for each possible 

resistance level r it might have. Each damage scenario also includes an associated adjusted 

occurrence probability Pq|j such that for multihazard scenario j, ∑ 𝑃𝑞|𝑗𝑞 = 1. When 

probabilistically combined with the adjusted occurrence probabilities, the damage distributions 

for each component conditional on the hazard, computed using the set of Q damage scenarios 

(which we will call the “reduced set” of scenarios) should match the “true” damage distributions. 

The annual occurrence probability of the damage scenario q is PjPq|j, the product of the 

annual occurrence probability of the multihazard scenario j and the conditional probability of 

damage scenario q given multihazard scenario j. Each damage scenario also includes the 

associated multihazard scenario j that generated the damage. Finally, the method computes the 

errors between the “true” and reduced set marginal damage distributions for each component i 

and resistance level r, so the tradeoff between reduced error relative to the “true” damage 

probabilities and increased computational efficiency for subsequent analyses (lower Q) can be 

examined explicitly. Figure 1 provides a schematic summary of the type of output provided by 

the damage scenario development method for a set of J multihazard scenarios each of which has 

Qj damage scenarios associated with it such that ∑ 𝑄𝑗𝑗 ≤ 𝑄. Note that ‘no earthquake’ at bottom 



of Figure 1 is one damage scenario, and there may be slightly fewer than Q damage scenarios 

total due to rounding. 

 

 

Figure 1. Schematic summary of output of damage scenario development method. 

 

Overview. The method involves three main steps: (1) generating a set of J multihazard 

scenarios, (2) determining Qj, the number of damage scenarios q for each multihazard scenario j; 

and (3) using the damage scenario optimization to generate the set of damage scenarios q and 

determine the adjusted occurrence probability of each, Pq|j so as to match the marginal damage 

function for each system component (e.g., pipe) i. 

 

Step 1. The first step is to generate a relatively small, computationally efficient set of J 

multihazard scenarios, such that when combined with their associated adjusted annual 

occurrence probabilities, Pj, the hazard curves they produce match the “true” hazard curves as 

defined by probabilistic seismic hazard analysis or a conventional MCS. We used the method 

described in Soleimani et al. (2020) although another could be used. 

 

Step 2. The next step is to determine how many damage scenarios Qj to generate for each 

multihazard scenario j. The simplest approach is to simulate the same number of damage 

scenarios for each multihazard scenario. Assuming a desire to end up with a total of Q damage 

scenarios, that means Q/J damage scenarios for each multihazard scenario. Alternatively, to be as 

efficient as possible, we can vary the number of damage scenarios Qj to generate for each 

multihazard scenario j so as to minimize the variance in the estimated system-wide damage 

exceedance probabilities. For multihazard scenarios with very high (or very low) intensities, the 

probability of exceeding a specified level of system damage does not vary as much across 

damage scenarios, so there is no need to sample many of them. Using a method analogous to the 

one used to determine the number of ground motion scenarios for every earthquake scenario 

derived in Han and Davidson (2012, Section 4.3.3), we use Eq. 1 to determine the number of 

damage scenarios, Qj, to generate for each multihazard scenario j so as to end up approximately a 

user-specified total of Q damage scenarios across all multihazard scenarios. To ensure each 

multihazard scenario includes at least one associated damage scenario, we required 𝑄𝑗 ≥ 1 after 

rounding. 
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 𝑄𝑗 =
𝑄

𝑁
∑ [

𝑃𝑗√𝑃(𝑑𝑗≥𝐷𝑛)∗[1−𝑃(𝑑𝑗≥𝐷𝑛)]

∑ 𝑃𝑗√𝑃(𝑑𝑗≥𝐷𝑛)∗[1−𝑃(𝑑𝑗≥𝐷𝑛)]𝑗

]𝑛  (1) 

 

In Eq. 1, Pj is the probability of multihazard scenario j, Dn is the number of damaged 

components in the network associated with return period n in multihazard scenario j, P(𝑑𝑗 ≥ 𝐷𝑛) 

is the probability of exceeding Dn in multihazard scenario j, and N is the number of return 

periods n at which the damage exceedance probabilities are computed (four in the case study).  

To compute the Dn values, a conventional MCS is used to simulate a large number of 

hazard scenarios and a damage scenario for each. A probability of exceedance vs. number of 

damaged components in the system curve is generated, and the values of Dn read from it (Note 

that the hazard portion of the MCS may have been done as part of Step 1, as in the case study). 

To compute P(𝑑𝑗 ≥ 𝐷𝑛), for each multihazard scenario j, a large  number of damage scenarios 

are simulated and then P(𝑑𝑗 ≥ 𝐷𝑛) is computed as the proportion for which the number of 

damaged components is at least 𝐷𝑛. If Eq. 1 is used (rather than assuming the same number of 

damage scenarios for each multihazard scenario), a damage model is required to compute 𝐷𝑛 and 

P(𝑑𝑗 ≥ 𝐷𝑛). There are many available, including, for example, Lanzano et al. (2014), Toprak et 

al. (2017), and Bagriacik et al. (2018). The same damage model should be used in Step 2 and 

Step 3. The choice depends on what form of system damage is required for the application and 

available data. 

 

Step 3. For each multihazard scenario j, use the damage scenario optimization (see Damage 

scenario optimization section below) to generate the set of damage scenarios q and determine the 

adjusted occurrence probability of each, Pq|j, so as to match the component damage functions. 

Keep track of which multihazard scenario j goes with each damage scenario q. Results include 

(a) a set of approximately Q damage scenarios, each of which identifies the damage state d of 

each component i for each possible resistance level r it might have, its annual occurrence 

probability (PjPq|j), and the multihazard scenario that generated the damage (Fig. 1); (b) errors 

between the “true” and reduced set marginal damage distributions for each component i and 

resistance level r. 
 

Damage scenario optimization. Equations 2-7 describe the optimization formulation applied in 

Step 3. It is almost the same as that in Brown et al. (2013), except that we omit the constraint that 

requires the reduced set damage correlation to equal the “true” damage correlation. In our 

application, because we (1) incorporate spatial correlation in developing multihazard scenarios, 

and (2) assume there is no correlation in the component damage conditional on hazard, we do not 

need to retain the constraint. The spatial correlation in multihazard scenarios is considered 

through ground motion and liquefaction (using soil type) intensities calculation. Note that it is 

possible that the latter assumption is not true due to similarities in the design and construction 

between pipe segments, but there is little data on what those correlations should be and it is 

likely less important than correlations due to hazard.  

 

 

 

 

 



 
min  ∑ (𝑒𝑖𝑟𝑑

+ + 𝑒𝑖𝑟𝑑
−

𝑖𝑟𝑑 ) (2) 

s.t. ∑ 𝑃𝑞|𝑗𝑤𝑖𝑟𝑑𝑞𝑞 − 𝑒𝑖𝑟𝑑
+ + 𝑒𝑖𝑟𝑑

− = 𝑚𝑖𝑟𝑑      ∀𝑖, 𝑟, 𝑑 (3) 

 ∑ 𝑤𝑖𝑟𝑑𝑞𝑑 = 1                                            ∀𝑖, 𝑟, 𝑞 (4) 

 ∑ 𝑃𝑞|𝑗𝑞 = 1 (5) 

 𝑒𝑖𝑟𝑑
+ , 𝑒𝑖𝑟𝑑

− ≥ 0                                       ∀𝑖, 𝑟, 𝑑 (6) 

 𝑤𝑖𝑟𝑑𝑞 = {0,1}                                           ∀𝑖, 𝑟, 𝑑, 𝑞    (7) 

             𝛼 ≤ 𝑃𝑞|𝑗 ≤ 1                                            ∀ 𝑗, 𝑞    (8) 

 

In the formulation, Constraint (3) defines the errors terms as the difference between 𝑚𝑖𝑟𝑑, 

the “true” probability that component i in resistance level r is in damage state d and the estimated 

probability component i in resistance level r is in damage state d based on the reduced set of Q 

damage scenarios. If the reduced set probability overestimates the “true” probability, 𝑒𝑖𝑟𝑑
+  will be 

positive and 𝑒𝑖𝑟𝑑
−  will be zero; if it underestimates, 𝑒𝑖𝑟𝑑

−  will be positive and 𝑒𝑖𝑟𝑑
+  will be zero. The 

objective function (Expression 2) minimizes the sum of those errors. Note that if desired, one 

could include weights in the objective function to ensure especially small errors for particular 

pipes, damage states, or resistance levels. Constraint (4) requires that for each damage scenario 

q, each component i in resistance level r must be in exactly one damage state. Constraint (5) 

represents the assumption that exactly one damage scenario ultimately occurs for each 

multihazard scenario, so the sum of the conditional damage scenario probabilities is one. By 

providing lower bound 𝛼 for 𝑃𝑞|𝑗 in constraint (8), we aim to have more common damage scenarios. 

The optimization is a nonlinear mixed integer program since Equation 3 includes the 

product of two decision variables, 𝑃𝑞|𝑗 and 𝑤𝑖𝑟𝑑𝑞. We solve it using the iterative heuristic 

algorithm described in Gearhart et al. (2014). Briefly, it includes the following four steps: (a) 

Assume that the values of all the variables 𝑃𝑞 are 1 ∑ 𝑄𝑗𝑗⁄  and solve the resultant linear mixed-

integer program for the variables 𝑤𝑖𝑟𝑑𝑞 using a local search algorithm where initially pipes are 

randomly assigned to damage states under each damage scenario; (b) Fix the values for 𝑤𝑖𝑟𝑑𝑞 

using the solution identified in Step a and solve the resultant linear program for the variables 

𝑃𝑞|𝑗; (c) Fix the variables 𝑃𝑞|𝑗 and again solve the mixed-integer linear program for the variables 

𝑤𝑖𝑟𝑑𝑞 for each pipe using the local search algorithm; and (d) Iterate between Steps b and c 

(where Step b uses the values for the variables 𝑤𝑖𝑟𝑑𝑞 identified in Step c until the solution 

converges. The local search algorithm used in Steps a and c is as follows. We define a 

neighboring solution to an existing solution as one for which all 𝑤𝑖𝑟𝑑𝑞 are the same except two 

and those two are the result of moving a single pipe from one damage state to another under a 

single damage scenario. To compute the value of a neighboring solution requires only 

computation of the errors in the marginal distribution for the single pipe under this swap. The 

algorithm stops when there are no moves of this nature that improve the objective function. The 

method is implemented in Python 3.5 and the optimizations are solved by Gurobi 6.0, a 

commercial solver (www.gurobi.com), with all multihazard scenarios solved in parallel.  

 

 

 

LOS ANGELES CASE STUDY RESULTS 



 

Inputs. The damage scenario development method was applied to the Los Angeles Department of 

Water and Power (LADWP) water transmission network, as it existed in 2007. The LADWP 

system in this analysis includes approximately 2,200 km of pipe serving 680,000 customers 

representing 4 million people in a service area of approximately 1,200 sq. km. 

In applying the method to the LADWP system, we considered damage only to pipes in 

the transmission network for multihazard scenarios including ground motion and liquefaction. 

There are 57,581 pipe segments of 50m or less. One could consider pump stations or other 

network components if desired. We used Bagriacik et al. (2018, Table 8) damage model to 

compute the probability of damage to each pipe segment as a function of peak ground velocity 

(PGV), liquefaction resistance index (LRI) (Cubrinovski et al. 2011), pipe length, diameter, and 

pipe material (e.g., steel, cast iron). Since we have very large diameter pipes in our data set, we 

refitted the data like R4 model (considered PGV, LRI, pipe length, pipe diameter and pipe 

material variables) by considering diameter a binary rather than continuous variable, equal to one 

when pipe diameter is greater than or equal to 300 mm and zero otherwise. Consistent with the 

formulation of the damage model, two damage states d were considered, damaged or not. In Step 

2, we assumed four values of return period n—72, 475, 975, 2475 years. The value of Dn, the 

number of damaged components in the network associated with return period n, was obtained by 

a conventional MCS over 100,000 years. To compute the exceedance probability 𝑃(𝑑𝑗 ≥ 𝐷𝑛) in 

Equation 1, 10,000 damage scenarios were simulated for each multihazard scenario. The analysis 

was run assuming J=351 and Q=750. Also, the lower bound 𝛼  for 𝑃𝑞|𝑗 in constraint (8) is 

assumed to be 0.01. 

In this application, we define each pipe resistance level r as a P(damage|hazard) vs. 

hazard curve, with hazard expressed in terms of return period of PGV. Specifically, we consider 

four resistance levels r—low, moderate, high, and current state (table 1). The low, moderate, and 

high resistance levels are defined by assuming a set of specified damage probabilities for each of 

four return periods (72, 475, 975, 2475 years). We assume, for example, that if designed to 

moderate resistance, a pipe segment should have a probability of damage of 0.00075, 0.001, 

0.005, and 0.01 if it experiences the PGV with a 72-, 475-, 975-, or 2475-year return period, 

respectively. For the current state, the curve is different for each pipe, as determined by 

application of the damage model. To compute the 𝑚𝑖𝑟𝑑 values for a specified multihazard 

scenario j, i.e., the “true” probability that component i in resistance level r is in damage state d 

when subjected to multihazard scenario j, we found the PGV for pipe i in multihazard scenario j, 

determined the return period it corresponds to, then used the curve for the appropriate resistance 

r to determine the probability of damage, 𝑚𝑖𝑟𝑑. This format for defining resistance levels is 

consistent with the performance-based design thinking as described in Davis (2019a, 2019b).  

 

Table 1. Resistance levels low, moderate, high. 

 

Return period High Moderate Low 

2475 0.005 0.01 0.05 

975 0.001 0.005 0.01 

475 0.00075 0.001 0.005 

72 0.0005 0.00075 0.001 



 

Results. For Step 1 in the case study, we used the 351 multihazard scenarios developed in 

Soleimani et al. (2020). The ground motion hazard was based on the 2014 National Seismic 

Hazard Map, in turn based on the Uniform California Earthquake Rupture Forecast v3 

(UCERF3) (Petersen et al. 2011, Field et al. 2014, Powers 2015) and the liquefaction hazard was 

based on the LPI3 liquefaction model in Kongar et al. (2017) and liquefaction susceptibility 

maps from Southern California Gas (SCG 2001-2003). The final reduced set included 710 

damage scenarios derived from those 351 multihazard scenarios (less than Q=750 due to 

rounding of the Qj values). Among these 351 scenarios, 285 multihazard scenarios (81%) have 

one or two damage scenarios, 60 multihazard scenarios (17%) have three to ten damage 

scenarios, and 2% have more than 10 damage scenarios (up to 29).  

The total number of damaged pipes varies across damage scenarios. Figure 2 shows the 

distribution for the current resistance level. With 57,581 pipes in the system, 82% of damage 

scenarios include fewer than 2,500 damaged pipes; and only less than 1% have more than 12,000 

damaged pipes. The adjusted annual occurrence probabilities, Pj, for the multihazard scenarios 

range from 6.07(10-8) and 2.50(10-3). The adjusted annual occurrence probabilities, Pq|j, for the 

damage scenarios conditional on the multihazard scenarios are 0.01 to 1.0; and the adjusted 

annual occurrence probabilities, Pq, for the damage scenarios range from 3.9(10-8) and 1.4(10-3). 

Figure 3 indicates the probability of exceedance for the damaged pipes over all damage 

scenarios, assuming current resistance level. 

 

Figure 2. Histogram of the number of damaged pipes, assuming current resistance levels. 



 

Figure 3. Exceedance probability of damaged pipes, assuming current resistance levels. 

 

As an example, Figure 4 shows maps associated with one example damage scenario 

associated with a M6.38 earthquake on the Mission Hill fault. This particular damage scenario 

has an adjusted annual occurrence probability of 𝑃𝑞 = 1.28(10−5), based on the product of the 

adjusted annual occurrence rate of the associated multihazard scenario is 𝑃𝑗 = 2.24(10−4), and 

the probability of the damage scenario given the multihazard scenario is 𝑃𝑞|𝑗 = 0.057. Figures 

4a and 4b show maps of the rupture trace and ground motion (PGV), and liquefaction potential 

index (LPI), respectively. Figure 4c shows which pipes are damaged assuming the current 

resistance levels and Figure 4d those damaged assuming that all are replaced with pipes having a 

moderate resistance level. The damage scenario also includes information about which pipes 

would be damaged if they were replaced with pipes designed to low resistance level or high 

resistance level. That information is not shown due to space limitations. Comparing Figures 4c 

and 4d shows the different damage patterns resulting from the different resistance levels. In 

particular, while many pipes are damaged in the northern part of the city when assuming the 

current resistance levels, they are not when we assume they are replaced by pipes with moderate 

resistance level (as defined in table 1). Note that while these two maps show damage patterns 

assuming all pipes have their current resistance levels or all pipes have moderate resistance level, 

the information for each pipe can be mixed and matched. That is, if, for example, one wanted to 

do an analysis to see how the system would perform if only the pipes in the northern part of the 

city were replaced with pipes with moderate resistance, but the rest of the pipes remained in their 

current resistance level, you would simply use a damage scenario created by selecting the 

damage state associated with r=moderate for the pipes in the northern part and selecting the 

damage state associated with r=current for the remaining pipes. 



 

 

Figure 4. For one example damage scenario, maps of (a) ground motion (PGV), (b) 

liquefaction potential index (LPI), (c) damaged pipes for current resistance level, (d) 

damaged pipes assuming moderate resistance level.  



To assess how well the set of 710 damage scenarios match the marginal damage 

distributions associated with each pipe for each resistance level, we can examine the error terms, 

𝑒𝑖𝑟𝑑
+  and 𝑒𝑖𝑟𝑑

− . The mean of the error terms across all damage scenarios q, pipes i, resistance 

levels r, and damage states d equals 1.39(10-10), which is close to zero and suggesting no notable 

bias. To get a sense for the magnitude of the errors, 97% of the absolute values of the error terms 

are within 1% of the “true” value of 𝑚𝑖𝑟𝑑 and 99.84% are within 5% of the “true value of 𝑚𝑖𝑟𝑑, 

which should be sufficiently small for most practical purposes. For a particular application, the 

analyst can always conduct a sensitivity analysis by varying the maximum allowable number of 

multihazard scenarios J and the maximum allowable number of damage scenarios Q in the 

reduced set, and examining how the errors change, and select the appropriate computation-error 

tradeoff for the application. The optimization requires less than 5 minutes to reveal the optimal 

solution for each damage scenario.   

 

CONCLUSIONS 

 

This paper describes development of a computationally efficient set of damage scenarios for the 

Los Angeles water transmission system that considers multiple earthquake hazards. Each damage 

scenario describes, for each pipe segment (or other component) in the network, both its damage 

state assuming it is in its current condition and its damage state if it were to be replaced with a 

pipe of a different resistance level. The damage scenario also includes the corresponding 

multihazard scenario and an adjusted annual occurrence probability so that when 

probabilistically combined the set of damage scenarios with their probabilities matches the 

probabilistic hazard and system functioning (e.g., percentage of demand satisfied) exceedance 

curves.  

Once developed, one can then simulate system functioning for each damage scenario in 

the reduced set to obtain a fully probabilistic analysis of system functioning that is 

computationally efficient enough to allow sophisticated hydraulic analysis rather than a more 

computationally efficient but less accurate connectivity-based system functioning analysis. Since 

each damage scenario includes for every pipe, both its damage state assuming it is in its current 

condition and its damage state if it were to be replaced with a pipe of a different resistance level, 

the resulting set of damage scenarios can be used in a subsequent optimization to determine what 

pipes to retrofit/replace and how so as to meet some system-level objectives. Otherwise it would 

be extremely computationally intensive to do so. Possible future work includes incorporating the 

effects of surface fault ruptures in the damage modeling; doing sensitivity analysis to understand 

the tradeoff between including more multihazard scenarios, J, and more damage scenarios per 

multihazard scenario Q; and including damage to water system components other than pipes 

(e.g., pump stations).  
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