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Prognostics With Variational Autoencoder by
Generative Adversarial Learning

Yu Huang , Student Member, IEEE, Yufei Tang , Member, IEEE, and James VanZwieten

Abstract—Prognostics predicts the future performance
progression and remaining useful life (RUL) of in-service
systems based on historical and contemporary data. One of
the challenges in prognostics is the development of meth-
ods that are capable of handling real-world uncertainties
that typically lead to inaccurate predictions. To alleviate the
impacts of uncertainties and to achieve accurate degrada-
tion trajectory and RUL predictions, a novel sequence-to-
sequence predictive model is proposed based on a vari-
ational autoencoder that is trained with generative adver-
sarial networks. A long short-term memory network and
a Gaussian mixture model are utilized as building blocks
so that the model is capable of providing probabilistic pre-
dictions. Correlative and monotonic metrics are applied to
identify sensitive features in the degradation progress, in
order to reduce the uncertainty induced from raw data.
Then, the selected features are concatenated with one-hot
health state indicators as training data for the model to
learn end of life without the need for prior knowledge of fail-
ure thresholds. Performance of the proposed model is val-
idated by health monitoring data collected from real-world
aeroengines, wind turbines, and lithium-ion batteries. The
results demonstrate that significant performance improve-
ment can be achieved in long-term degradation progress
and RUL prediction tasks.

Index Terms—Gaussian mixture model (GMM), genera-
tive adversarial learning, long short-term memory (LSTM),
prognostics and health management (PHM), remaining use-
ful life (RUL), variational autoencoder (VAE).

NOMENCLATURE

Acronyms

EoL End of life.
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GAN Generative adversarial networks.
GMM Gaussian mixture model.
LSTM Long short-term memory.
MCM Machine condition monitoring.
PHM Prognostics and health management.
RNN Recurrent neural networks.
RUL Remaining useful life.
VAE Variational autoencoder.

I. INTRODUCTION

PROCESS safety, system reliability, and product quality are
becoming increasingly essential in themodern industry [1].

Machine condition monitoring (MCM), a maintenance strategy
that involves the repair and replacement of damaged parts to
reduce the total life cycle costs, is a vital part of many indus-
tries, such as aerospace, energy, automotive, and heavy indus-
try. Traditional strategies, such as corrective (breakdown) and
preventive (scheduled) maintenance, are becoming less capable
of meeting the increasing industrial demand for efficiency and
reliability [2]. Prognostics and health management (PHM) is a
novel paradigm that enables real-time health assessment and fu-
ture condition prediction. PHM incorporates various disciplines
(e.g., sensing technologies, signal processing, machine learn-
ing, and reliability analysis) and provides an intelligent MCM
strategy to maintain a system’s originally intended functions [3]
or even distinguish whether a local malfunction will affect the
key-performance-indicators of the whole system [1].
Prognostics of in-service systems is a pillar of PHM that

can be sorted into two types: 1) remaining useful life (RUL)
evaluation (i.e., event prediction); and 2) future degradation
estimation (i.e., event progression prediction). Data-driven ap-
proaches, which use the information of current and previous us-
age conditions to identify the characteristics of the contemporary
degradation state and to predict the future trajectory, have been
regarded as a powerful solution for prognostics [4] and achieve
success in cyber-physical systems [5], [6]. Machine learning, as
themost common data-driven technique, is able to act as a bridge
connecting big machinery data and intelligent prognostics [5].
For example, Elforjani et al. [7] employed three supervised
machine learning techniques: support vector machine, Gaussian
process regression, and multilayer neural network to estimate
RUL for slow-speed naturally degrading bearings using acoustic
technology. Furthermore, a deep convolutional neural network
has been proposed to map monitored feature data to machine
health status [8]. The combination of neural networks and
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fuzzy systems has been employed successfully to capture more
information for PHM [9]. Recently, a so-called “vanilla” long
short-term memory (LSTM) network has been utilized in [10]
to improve the accuracy of RUL prediction for complicated
industrial processes.
However, the above-stated data-driven-based prognostic sys-

tems have the following potential concerns.
1) Feature representation: The data for prognostics are usu-

ally formulated sequentially, where hidden features be-
hind these sequences are vital for representing a system’s
health condition. However, handcrafted features may not
perfectly represent degradation throughout the lifetime.

2) Prior domain knowledge: RUL is calculated by subtract-
ing end of life (EoL) from a system’s current cycle.
Generally, EoL is predicted: a) by mapping features to
piecewise linear RUL curves [11] or using the linear rela-
tion between features and EoLs (e.g., Max.E-EoL [12]);
b) when the degradation level reaches single or multiple
predefined thresholds [13] (e.g., E-trend [12]).Bothmeth-
ods require sufficient expert knowledge either to build
linear relations or to define thresholds that differ between
scenarios, consequently hindering their flexibility.

3) Multimode degradation: In reality, a system can degrade
in different manners (i.e., varied degradation mecha-
nisms) even though it undergoes the same operation.Most
prior or current prognostic models have been conducted
on simple, naturally degenerated data with fixed initial
parameters. Therefore, it is critical to make the predictive
model adaptive to different degradation modes.

Various machine-learning algorithms have been applied in
prognostics; however, it was demonstrated in [14] that fea-
ture representation determines the upper-bound performance of
models. In many cases, degradation data cannot be collected
directly, with system feedback used as an alternative. For in-
stance, bearing vibration signals [15], [16] are commonly used
for gearboxRULprediction. It is difficult to extract effective fea-
tures enriched with degradation characteristics from measure-
ments directly, and conventional signal processing and feature
extraction techniques often limit the ability to identify intricate
correlations [17]. Therefore, the instrumentation and feature
extraction scheme should be carefully developed. A complete
data-driven method has been proposed in [18] to automatically
produce system health indicators, without a priori knowledge of
system monitoring or signal processing. A local feature-based
gated recurrent unit network has been proposed in [19] to
generate feature sequences without requiring high-level expert
knowledge.
RUL prediction is achieved by subtracting the current cycle

from the predicted EoL. The most commonly used method for
predicting EoL includes labeling the training data auxiliary,
where each sample is required to associate with its RUL label
as a target. In this case, the piecewise linear method [11] is
usually adopted. This requires extra work and is generally very
time-consuming. Moreover, if the available label information is
limited, the advantage of machine learning could be minimal.

To overcome this, generative adversarial networks (GANs)-
based models were proposed in [20] and [21] to cope with the
insufficiency of health data for asset reliability prediction. An-
other method to predict EoL requires defining a failure thresh-
old in advance. EoL is, therefore, assumed to occur when a
health indicator exceeds that threshold. For example, an appro-
priate threshold is required to separate the hyperplane of the
high-dimensional features in support-vector machines. How-
ever, sufficient expert knowledge of critical components’ failure
thresholds is not always readily available and human factors
introduce much uncertainty, which is difficult to model and
brings complexity to the analysis and synthesis procedures [5].
Furthermore, it is not appropriate to use a single threshold to
summarize all failure modes.
The degradation progressions for the samemechanical system

are variant. It may undergo multimode degradation triggered
by many inducements, including enclosure problems, excessive
operation, lack of maintenance, and corrosive environments.
Mogren [22] suggests that GANs [23] are a viable way of
modeling a distribution over different types of sequential data.
Ha et al. [24] demonstrate that Gaussianmixturemodel (GMM)-
recurrent neural networks (RNNs) can learn to forecast using an
immense amount of observations from multiscenarios.
Inspired by previous work, this article proposes a novel

data-driven approach based on GAN, focusing on enhancing
the predictions of long-term degradation and RUL without pre-
defining specific component failure thresholds. The generator in
GAN is a novel adaptation of sequence-to-sequence variational
autoencoder (VAE) derived from the combination of LSTM
and GMM and the discriminator is a bidirectional LSTM. The
contribution and intellectual merit of this research are twofold.

1) An LSTM-GMM-based VAE as a generative model is
proposed, which is fed with time-series data and com-
bined with a one-hot health indicator to bypass low-
accuracy prediction generated from an imprecise prede-
fined failure threshold. In this model, the concatenation
of GMM with LSTM networks allows modeling and
predicting of different modes of degradation scenarios in
a single neural network conditioned on previous records.

2) The proposed VAE model is trained through an adver-
sarial learning approach, i.e., GAN, to enhance the accu-
racy and robustness of long-term degradation and RUL
prediction. The model’s effectiveness is quantified by
health data collected from various real-world engineer-
ing systems, including aeroengines, wind turbines, and
lithium-ion batteries.

The remainder of this article is arranged as follows. Section II
formulates the problem. Section III presents the methodology
in detail. Section IV presents the experimental results. Finally,
Section V concludes this article.

II. PROBLEM STATEMENT

Let x(i) denote a vector of multivariate sensor measurements
such that x(i) = [x(i;1), . . . , x(i;m)], where m is the number of
sensors. Formally, a sensor measurement sequence is described
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Fig. 1. Schematic diagram of the VAE-GAN. The generator is a sequence-to-sequence VAE, consisting of a “bidirectional” LSTM-based encoder,
and an autoregressive LSTM-based decoder. The discriminator is a bidirectional LSTM.

byX = {x(0), . . . ,x(n−1)}, wherex(i) ⊆ Rm andn is the total
time steps of observations. The ground-truth of prediction at
the next time step is denoted by Y = {y(1), . . . ,y(n)}, where
y(i) = x(i), i = 1, . . . , n. The dataset D is defined by D =
{(x(i−1),y(i))}i=1,...,n. In general, the data-driven prognostics
approach is to learn the best predictor of run-to-failure degra-
dation from the previously observed data, i.e., a training dataset
DT . Then, based on the prediction from the trained model, RUL
can be estimated at each time step. This problem can be for-
mulated by finding a nonlinear mapping function F : x′ → z,
with a latent variable z ⊆ RNz andNz < m. Subsequently, the
optimal predictor can be formulated as the function of z shown
as follows:

fγ (z) = argmax
γ

p (y |z,γ ) (1)

where γ is the parameter of the nonlinear mapping function
that needs to be optimized through training fγ(z). The primary
goal of this article is to develop a data-driven approach to learn
the nonlinear mapping function fγ for degradation progress
modeling and stable RUL prediction.

III. METHODOLOGY

A. Feature Extraction and Selection

As shown in Fig. 1, feature extraction and selection is an
essential first-phase preparation of prognostics. In this process,
critical features that contain sufficient degradation signatures
will be identified to increase the efficiency and reliability of
prognostics by 1) reducing the cost of feature measurement and
2) minimizing the dimensions of data required to describe the
degradation progress [17], [25].
The majority of mechanical systems normally undergo grad-

ual degradation rather than breaking down unexpectedly. In
consideration of the reality that the ideal features for prognosis
should practically indicate the system degradation trajectory
throughout the lifetime, i.e., should be monotonous, Pearson’s
correlation [26] and monotonic metrics [27] are implemented
to evaluate the degradation-sensitivity of measurements x from
the initially sampled raw data X . Specifically, the monotonic

metric in (2) evaluates the ascending/descending trend of fea-
tures, and the Pearson’s correlation metric in (3) assesses the
correspondence between features and time, shown in the fol-
lowing:

mono =

∣∣∣∣dxm
t > 0

T − 1
− dxm

t < 0

T − 1

∣∣∣∣ (2)

cor =

∣∣∣∑T
t=1 (x

m
t − xm)

(
t− t

)∣∣∣√∑T
t=1 (x

m
t − xm)2

∑T
t=1

(
t− t

)2 (3)

where x could be sensor measurements (e.g., vibration) or
statistics (e.g., amplitude in frequency spectrum), xm

t is themth
sensor/statistic at time step t of sequence length T , (·) and d(·)
denotes the mean and differential operation, respectively.
Feature selection is accomplished based on a linear combina-

tion of correlative and monotonic performance, i.e., δ ·mono+
(1− δ) · cor, where δ is a tradeoff hyperparameter set to 0.5
here. A sensor/statistic with the k highest criteria value will be
selected as the most degradation-sensitive features f ⊆ Rk to
discard irrelevant or redundant ones.

B. Feature Transformation

Predominantly, to solve the nonlinear equation ythold =
F(tEoL; θ̂) for RUL prediction, it is necessary to find the time
cycle (tEoL) when the degradation reaches a certain level ythold.
Therefore, the RUL can be determined from RUL = tEoL −
tcurrent. Defining ythold requires sufficient expert knowledge of
the system. When the system is intricate and the failure modes
are various, it is unmanageable to define a certain threshold to
represent all failures.
With the intention of enabling the model learning of tEoL,

the selected feature is concatenated with an additional health
indicator (HI) to represent the machinery degradation process
instead of using it directly as follows:

St = (f t,HI) (4)

where f t ⊆ Rk, k is the dimension of selected features. Unlike
the prognostic method in [28] that maps HIs with RULs, here
HI = (h1, h2) is generated by one-hot encoding with only
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two values. Specifically, (1,0) suggests that the equipment is
healthy and currently in operation, whereas (0,1) suggests that
the equipment has undergone failure and requires maintenance.
The initial value is set as S0 = (0, 1, 0).
To develop a simple, robust approach that works well for

a broad class of degradation series, the method first reformats
each series to a fixed length of Tmax, where Tmax is the longest
sequence in the training dataset indicating the slowest degrada-
tion mode. In principle, Tmax can be considered as a variable
reading from the training data directly. For those sequence S
whose length Ts is shorter than Tmax, St is set as (0, 0, 1) for
Ts ≤ t < Tmax to make all series of the same length Tmax. In
addition, min–max normalization and mean filtering are imple-
mented in advance to reduce the influence of noise. The model
training will be discussed in detail in the next section.

C. LSTM-GMM-Based VAE With Adversarial Training

The LSTM neural network is a significant branch of RNNs
that are often used to model sequences of data [29]. However,
a standard LSTM generates sequences with one data point at a
time, which does not work for an explicit global sequence rep-
resentation. Considering our problem scenario is similar to that
in [20] and [30], VAE is a good option since it has been verified
to be an efficient stochastic variational inference and learning
algorithm that scales to large datasets. Moreover, VAE even
works in the intractable case under some mild differentiability
conditions [30]. Here, an LSTM- and GMM-based sequence-
to-sequence VAE with adversarial training is proposed, referred
to as VAE-GAN, seeking to incorporate distributed latent rep-
resentations of the entire sequences (life-long degradation) with
various degradation modes. The adversaries, a generator G and
a discriminator D, are two different deep RNNs.

Generator: As shown in Fig. 1, the encoder in G consists of
two LSTMs, taking the input in both directions to obtain two
hidden states. Specifically, at each time step t, the encoder in
the generator takes all available observations SF

Ts
as well as the

same observations in opposite order SB
Ts

as inputs, and outputs
two hidden states hF

Ts
and hB

Ts
as

hF
Ts

= LST M
(
SF

Ts

)
, hB

Ts
= LST M

(
SB

Ts

)
. (5)

Then, a fully connected layer is employed to map the con-
catenated hidden state [hF

Ts
;hB

Ts
] into μ and σ. In addition, due

to the nonnegativity of standard deviation, the exp operation is
applied to σ as

μ = Wμ[h
F
Ts
;hB

Ts
] + bμ (6)

σ = Wσ[h
F
Ts
;hB

Ts
] + bσ, σ̂ = exp

(σ
2

)
(7)

and then, the latent vector z is set up as follows [30]:

z = μ+ σ̂ � ε (8)

where ε ∼ N (0, I) and � signifies the elementwise product.
Therefore, the latent vectorz, illustrated in Fig. 2, as an example,
is a learned vector of dimension Nz constrained on the input
sequence instead of a deterministic yield given certain input.

Fig. 2. Illustration of the encoded z of two random series of MAPSS
dataset.

Such an encoding scheme enables modeling of the case under
mild different conditions [30].
The decoder inG is a unidirectional LSTM network. At each

time step t, the decoder takes in the previous data St−1 and
the latent vector z as a concatenated input xt−1. This input
format implies that the generated consequent hidden state is
conditioned on the latent z sampled from the encoder that is
trained end-to-end along the decoder. The computation of the
decoder can be described as follows:

ht = LST M (xt−1,ht−1) (9)

where the inputs of the model are xt−1 and ht−1, and the initial
hidden statesh0 of the decoder are the yield of a connected layer,
that is, h0 = tanh(Wzz + bz). The outputs at each time step are
the hidden states ht, which are the parameters for a probability
distribution of the consequent data St.
A fully connected layer is used to project the hidden state

ht into the output yt, yt ⊆ R3M+2, which can be split into M
mixed Gaussian distributions to describe ft and one categorical
(p1, p2) distribution to describe health indicator HI

yt = W yht + by

= [(π̂1, μ1, σ̂1), . . . , (π̂M , μM , σ̂M ), (p̂1, p̂2)] . (10)

The feature ft in St described by the GMM with M normal
distributions at each time step is given as

p(ft) =

M∑
i=1

πiN (ft|μi, σi) (11)

where μi and σi are the mean and standard deviation of the ith
univariate normal distribution, respectively; π is a categorical
distribution of length M with

∑M
i=1 πi = 1, representing the

mixture weights of the GMM.
Due to the probability constraint and the nonnegativity of

standard deviations, exp and softmax operations are employed.
The probabilities for the categorical distributions are calculated
using the outputs as logit values

σi = exp(σ̂i) (12)

πk =
exp(π̂k)∑M
i=1 exp(π̂i)

, k = 1, 2, . . . ,M (13)

pk =
exp(p̂k)∑2
i=1 exp(p̂i)

, k = 1, 2. (14)
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Discriminator: The discriminatorD is a bidirectional LSTM
network that allows us to take into account the input time series
in both directions [22]. The outputs of each LSTM cell inD are
fed into a fully connected layer with weights shared across time
steps. One sigmoid output per cell is then averaged to the final
decision for the sequence.
Loss and Training: The model is trained by simultaneously

updating the discriminative distribution so that it discriminates
between samples from the data generating distribution pdata(S)
and from those of the generative distribution pg(Ŝ)[23]. First,
the optimization of the discriminatorD given generatorG is de-
scribed as follows. Similar to the training of Sigmoid-function-
based classifiers, it involves minimizing the cross entropy. The
discriminator loss function LD is formulated as follows:

LD(θd,θg) = LD
GAN(θd,θg) + αLD

2 (θd) (15)

where LD
GAN(θd,θg) is the standard GAN loss and LD

2 (θd) is
the standard L2 regularization defined as follows:

LD
GAN =

1

Tmax

Tmax∑
t=1

[
logD(St) + log (1−D(Ŝt))

]
(16)

LD
2 = ‖θd‖2 (17)

whereSt is sampled from the ground truth degradation data and
G(xt) = Ŝt is the corresponding generated samples.
Then, fix D and optimize G to minimize the discrimination

accuracy of D. The reconstructed loss function (18) is the sum
of four terms: the standard GAN loss in (19) of generatorLG

GAN,
the log loss in (20) of feature variation LG

f , the log loss in (21)
of health state terms HI, and the Kullback–Leibler divergence
loss LG

k in (22) that representing the difference between the
distribution of latent vector z with a Gaussian distribution with
zero mean and unit variance

LG = LG
GAN + LG

f + LG
h + LG

k (18)

LG
GAN(θd,θg) =

1

Tmax

Tmax∑
t=1

[log (1−D(G(xt)))] (19)

LG
f = − 1

Tmax

Ts∑
t=1

log

(
M∑
k=1

πi,kN (ft|μt,k, σt,k)

)

(20)

LG
h = − 1

Tmax

Tmax∑
t=1

[
ht
1 log (p

t
1) + ht

2 log (p
t
2)
]
(21)

LG
k =

1

Nz

(
1 + σ − μ2 − exp(σ)

)
. (22)

Note that the GMM parameters modeling ft beyond Ts are
discarded when calculating LG

f , whereas LG
h is calculated using

all of the categorical distribution parametersmodeling the health
indicatorHI until Tmax. Both terms are normalized by the total
sequence length Tmax. The practice of loss definition LG

h + LG
f

was found to be more robust and empowers the VAE to learn
the EoL in a straightforward manner. We empirically update the

parameters of D for k times and then update G once. The opti-
mization process betweenG andD alternates and improves their
performance gradually. The global optimal solution is achieved
if pdata = pg , meaning when the discrimination ability ofD has
been improved to a high limit but cannot correctly discriminate
further, it is thought that G has captured the distribution of the
real data.

D. Prognostics

Degradation Prediction: After sufficient offline training, Al-
gorithm 1 shows the pseudocode used to make a present-to-EoL
prediction at time step tp, when given previous data collected
in 0 < t < tp. At time t, the generator takes the transformed
feature data St as inputs and outputs yt as the parameters of
a probability distribution of the data point St+1. During the
prediction process, Ŝt is sampled based on theGMMparameters
and categorical distributions at time step t. Unlike during the
training process, the predicted Ŝt is fed into the next time step
t+ 1. The prediction process will continue untilHI = (0, 1) is
achieved.
RUL Prediction: The procedure of RUL prediction is based

on the present-to-EoL prediction. Starting from prediction time
tp, the algorithm calculates the prediction until the health state
indicator HI = (0, 1) is obtained at time step tEoL. Then, the
predicted RUL is defined as

RUL = tEoL − tp (23)

where tp = 1, 2, . . . , tEoL represents the RUL prediction and
can be carried out at each time step.

IV. EXPERIMENTS

A. Experimental Setup

Dataset Descriptions: In this article, three types of data
(aeroengine, wind turbine, and lithium-ion battery) have been
employed to verify the effectiveness and flexibility of the pro-
posed method in different industrial applications.

1) MAPSS:The aeroengine data, providedbyModularAero-
Propulsion System Simulation (MAPSS), consist of mul-
tiple multivariate run-to-failure recordings (21 sensors
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Fig. 3. Correlative and monotonic metrics performance of MAPSS,
HSSB, and Lithium-ion. The dot-line is the average value.

and 3 operational settings, see [31]) from a fleet of aero-
engines with dissimilar levels of initial wear and unspeci-
fied manufacturing disparity. Sensors (e.g., 1st, 5th, 10th,
etc.) with constant records are eliminated for contributing
nonsensical information. To select the optimal represen-
tative degradation feature (i.e., sensor), all features are
assessed by correlative and monotonic metrics. As shown
in Fig. 3, the 11th (static pressure at HPC outlet), the 12th
(ratio of fuel flow to Ps30), and the 13th (corrected fan
speed) features produce similar high criteria values. To
simplify, the 11th feature is selected.

2) HSSB:Thewind turbine generator (WTG) vibration data,
provided by Green Power Monitoring System, were col-
lected through a 50-days operation of real-world 32222-
J2-SKF tapered high-speed shaft bearings (HSSB) in-
stalled in a 2.2-MW WTG with a typical shaft speed of
30 Hz, ending with an inner race fault. By assessing the
typical time-series statistical features (mean, std, skew-
ness, kurtosis, and energy), kurtosis was found to be the
most representative degradation feature, shown in Fig. 3.
Visually, it undergoes a growing tendency of decay at an
early stage and accelerated growth at the end.

3) Lithium-ion: The dataset [32] consists of 124 commer-
cial lithium-ion batteries cycled to failure under various
fast-charging conditions. These lithium-ion phosphate
(LFP)/graphite cells (1.1 Ah, 3.3 V), manufactured by
A123 Systems, were cycled in horizontal cylindrical
fixtures on a 48-channel Arbin LBT potentiostat in a
30 ◦C forced convection temperature chamber. To capture
the electrochemical evolution of individual cells during
cycling, the cycle-to-cycle evolution of the discharge
voltage curve is considered as the most representative
degradation feature according to Fig. 3.

In each case, every selected feature is sampled to a fixed
sequence length Ts at intervals of n = ceil (T/Tmax) (where
ceil(·) returns a ceiling value), to form a training dataset. At each

time step t < Ts, the health indicatorHI = (1, 0)was concate-
nated to ft ∈ Rk (k = 1) whileHI = (0, 1) at Ts ≤ t ≤ Tmax.
To facilitate computational efficiency, Tmax is regarded as a
hyperparameter here and manually set to 100.
Model Layout Details: The LSTM network in generator G

consists of 256 internal (hidden) units. The number of compo-
nents for the GMM is set to M = 10. Discriminator D has a
bidirectional layout, whereas G is unidirectional.
Baseline Model: Two distinct baseline models have been em-

ployed to make a comparative study. By removing the encoder,
a pure decoder LSTM is used as a baseline autoregressive model
without latent variables, self-trained entirely with loss function
L = LG

f + LG
h to predict the next status at each time step in

the recurrence. The second one is VAE (G) (without adversarial
training) with loss function L = LG

f + LG
h + LG

k .
Implementation: Backpropagation through time (BPTT) and

mini-batch stochastic gradient descent (SGD) were used [23],
with the batch size set to 10. The model was pretrained for
10 epochs with loss function LG = LG

f + LG
h + LG

k to balance
G and D at the early stage of the training [33], [34]. Layer
normalization and recurrent dropout with a keep probability
of 90% were applied. The learning rate was set to 0.001 and
gradient clipping of 1.0 was used. The fivefold cross-validation
is employed for parameter tuning. The implementation was
built based on the Tensorflow platform equipped with NVIDIA
Geforce GTX 1080 Ti and Titan Xp GPU with 32-GB memory.
Evaluation: The models are compared by performance feed-

back from prognostics metrics: Prognostic horizon (PH), α− λ

accuracy, relative accuracy (RA), and convergence. PH is de-
fined as the difference between the EoL and the first time when
the prediction result continuously resides in the accuracy zone,
which has a constant bound with a magnitude of α error with
respect to true EoL. The α− λ accuracy determines whether a
prediction falls within specified limits (α of the actual RUL) at
specific circle tλ, which is expressedwith a fraction ofλ between
starting cycle of RUL prediction tp(λ = 0) and EoL (λ = 1) as

tλ = tp + λ(EoLtrue − tp). (24)

RA is the relative accuracy between the true and predicted
RUL over α error zone at tλ, shown in

RA = 1− |RULtrue − RUL|
αEoLtrue

, at tλ. (25)

Convergence [quantified by the center of mass (CoM), (26)]
is defined as the Euclidean distance between (tp, 0) and the
centroid (tC , EC) of the area under the relative error rate curve
E(k) between tp and EoL

CoM =
√

(tC − tp)2 + E2
C (26)

with

tC =
1

2

∑EoL
k=p(t

2
k+1 − t2k)E(k)∑EoL

k=p(tk+1 − tk)E(k)
(27)

EC =
1

2

∑EoL
k=p(tk+1 − tk)E(k)2∑EoL
k=p(tk+1 − tk)E(k)

. (28)
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Fig. 4. Present-to-EoL prediction of degradation progress by decoder LSTM, VAE, and VAE-GAN.

The performance of degradation prediction is evaluated using
the mean absolute error (MAE) on generated output as

MAEdecay =
1

N

N∑
i=1

⎛
⎝ 1

Ts

Ts∑
t=tp

∣∣∣Ŝt − St

∣∣∣
⎞
⎠ (29)

where Ts is the length of series, Ŝt is the predicted value, St is
the ground truth, and N is the number of series.

B. Results and Discussion

The present-to-EoL prediction results for MAPSS, HSSB,
and Lithium-ion generated by the baselines (decoder LSTM,
VAE) and the proposed VAE-GAN model are shown in Fig. 4
by columns, respectively. In each row, one typical test series
for each case is visualized at every 10-time steps as an ex-
ample. The MAEdecay for all test series are listed in Table I.
The starting circle of prediction tp is 20 since the indicator
remains stable at the beginning. By utilizing decoder LSTM
as a standalone predictive model, the degradation prediction can
be conditioned on the previous points. Specifically, the decoder
LSTM is employed at first to encode the observations into a
hidden state h. Afterward, h is used as the initial hidden state
to yield the remaining degradation prediction. The degradation
curves predicted by decoder LSTM roughly represent the real
trend, and the degradation distribution becomes closer to the

ground truth as the prediction step approaching to EoL. As more
observations become available, the result can be more accurate.
According to Table I, VAE is able to produce predictions more
accurate than decoder LSTM as the MAEdecay converges faster
to a certain level (e.g., MAEdecay < 0.02 in MAPSS) after step
50 (t > 50). Furthermore, the smaller MAEdecay by VAE in
the first half of the lifetime indicates that VAE can generate
better degradation predictions than decoder LSTM even at the
early time. The main reason is that the prediction is conditioned
not only on the previous observations but also on the latent
vector z encoded by bidirectional LSTM. As Table I shows,
VAE-GAN outperforms the baseline models at the early stage
as MAEdecay within 0.05 (e.g., MAPSS), which indicates that
adversarial training helps VAE capture the distribution of real
data better.
Fig. 5 depicts the RUL predictions of three typical series

with the related RUL ground truth as reference, i.e., series #1
(Lithium-ion), series #2 (MAPSS), and series #3 (HSSB). The
RUL prediction is visualized at every five time steps. As the
PH performance is illustrated in Fig. 5, a longer PH implies
more time to take corrective action based on a prediction with
some credibility. The allowable error bound α with respect to
EoL ground truth is set to 0.05. Evidently, the PH of VAE is
wider than that of decoder LSTM, and the VAE-GAN further
extends the PH. Both VAE and VAE-GAN provide sufficient
PH allowing for corrective maintenance.
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Fig. 5. Row 1: PH with α = 0.05. It illustrates whether the algorithm predicts within the desired accuracy around EoL and sufficiently in advance.
Row 2: α− λ accuracy performance with α = 0.1, λ = 0.25, 0.5. This further illustrates if the algorithm stays within desired performance levels
relative to RUL at a given time. Row 3: Relative error rate (1-RA) and convergence performance with α = 0.1. The relative error rate quantifies how
well an algorithm performs at a given time relative to RUL. CoM quantifies how fast the performance converges.

The RUL prediction quality evaluated by the α− λ metric is
illustrated in Fig. 5, which label either “True” or “False” by ver-
ifying whether the prediction falls within α (α = 0.1) accuracy
when prognosticated at early (i.e., λ = 0.25) or halfway (i.e.,
λ = 0.5) to EoL from when the first prediction is made. This is
a more stringent requirement than staying within a converging
cone of the error margins as a system nears EoL. Since tλ may
not be consistent with the frequency of the prediction step, t′λ
that is closest to tλ is chosen. It can be observed that VAE and
VAE-GAN predict more precise RUL than Decoder LSTM in
the early and medium term.
As highlighted by the RULs provided in Fig. 5 and Table I,

the predictions by all three models converge to the true RULs,
which validate the assumption that prognostic performance
improves as more information becomes available with time.
Then, the RA metric in (25) is employed to quantify the ac-
curacy levels. The RA by decoder LSTM is relatively higher
and fluctuates more heavily than that of VAE. The VAE-GAN
further lowers the relative error and flattens the fluctuation,
proving to be a more accurate and stable predictive model.
Since RA outputs error information at a specific time step, to
assess the general error of models, cumulative relative accu-
racy (CRA), the average of RA values accumulated at every
cycle [2], is used to produce an aggregate accuracy level. The

average RA at tλ and CRA of all test series are presented in
Table II.
Row 3 in Fig. 5 presents the performance of convergence

metric indicating the rate atwhich the relative accuracy improves
with time. As stated earlier, convergence is the Euclidean dis-
tance between (tp, 0) and the centroid of the area under the
RA curve from tp to the End-of-Useful-Predictions (EoUP).
EoUP is introduced to express the minimum acceptable PH in
demand to take maintenance. From the industrial perspective,
any prediction made beyond EoUP is of little or no use since it
does not leave enough time to carry out corrective measures.
Considering the concept that lower distance implies a faster
convergence, it can be seen in Fig. 5 and Table II that, compared
to decoder LSTM, VAE and VAE-GAN can produce reliable
predictions at earlier stages. Moreover, the convergence of VAE
after adversarial training has been slightly improved.

C. Extended Discussion

1) Multivariate Time Series: Theoretically and practically,
the proposed model can be easily extended to handle multifea-
ture input. Since the outputs at each time step are the parameters
of the probability distribution of the next data St, a multivari-
ate normal distribution should be employed in such case. For
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TABLE I
MAE PERFORMANCE

TABLE II
(CUMULATIVE) RELATIVE ACCURACY AND CONVERGENCE

example, in order to satisfy two feature series input, a modified
probability distribution [compared to (11)] that considering the
correlation between two features (instead of i.i.d.) is adopted

p(f1
t , f

2
t ) =

M∑
i=1

πiN (f1
t , f

2
t |μ1

i , σ
1
i , μ

2
i , σ

2
i , ρ

12
i ) (30)

TABLE III
MULTIVARIATE FEATURE SERIES INPUT PERFORMANCE COMPARISON

where N is the probability distribution function for a bivariate
normal distribution, and ρ12i is the correlation parameter of each
bivariate normal distribution.
Accordingly, the output yt (10) is modified as

yt = W yht + by = [(π̂1, μ
1
1, σ̂

1
1 , μ

2
1, σ̂

2
1 , ρ̂

12
1 ), . . . ,

(π̂M , μ1
M , σ̂1

M , μ2
M , σ̂2

M , ρ̂12M ),

(p̂1, p̂2)] (31)

where yt ⊆ R6M+2 can be split intoM mixed Gaussian distri-
butions to describe ft = (f1

t , f
2
t ) and one categorical (p1, p2)

distribution to describe health indicator HI. In addition to exp
and softmax operations (12)–(14), tanh operation is applied to
ρ to ensure ρ ⊆ [−1, 1].
Identically, a trivariate normal distribution (with yt ⊆

R10M+2) should be considered for three feature series input
(f t ⊆ R3), and an n-variate normal distribution (with yt ⊆
R(1+2n+C2

n)M+2) for n-dimensional feature (f t ⊆ Rn). The
general formula for the n-dimensional normal density is

Ff (f
1, f2, . . . , fn) =

exp{− 1
2 (f − μ)′K−1(f − μ)}
(
√
2π)n

√
det(K)

(32)

where f = (f1, . . . , fn), μ = E(f) and K is the covariance
matrix.
To further explore the relationship between prognostic ac-

curacy and feature dimension, the proposed model is extended
to match feature series with 2 or 3 dimensions, where the top n
most representative features are selected based on Section III-A.
Features 1, 2, and 3 represent the 11th (static pressure at HPC
outlet), 12th (ratio of fuel flow to Ps30), and 13th (corrected fan
speed) features, respectively. The comparative result is presented
in Fig. 6 and Table III. It can be observed that there is a slight
increase in performancewhenf t ⊆ R2. However, when the fea-
ture dimension reaches 3, it dramatically deteriorates the prog-
nostic performance. This is because the added feature 2 is highly
correlatedwith feature 1 and offers little useful information (also
known as feature redundancy) in terms of training. Additionally,
using multiple inputs significantly increases the computational
burden and, thus, is hard to achieve Nash equilibrium during
the training process. When the feature dimension exceeds 3,
the training process becomes unstable and cannot guarantee
convergence. One of the reasons is that each feature dimension
has a different distribution, even under the same degradation
mode. It is hard to model all the different distributions at the
same time precisely. In the future work, a multivariate adaptive
prognostic model by generative adversarial learning will be
further studied.
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Fig. 6. Row 1: The present-to-EoL prediction of degradation by VAE-GAN of multifeatures. Row 2: Performance by VAE-GAN without GMM part.

TABLE IV
PERFORMANCE OF THE PROPOSED METHOD WITH/WITHOUT GMM

2) Ablation Study: To evaluate the effects of GMM, the
GMM part is removed in the proposed VAE-GAN. In order
to meet the one-hot encoded constraints of HI, the exp and
softmax operations are attached to the fully connection layer.
The performance on the MAPSS dataset is shown in Table IV
and illustrated in column 1 of Fig. 6. Here, the model is learning
different degradation modes, where different conditions may or
may not occur, thus averaging over different events is not mean-
ingful. In this case, by integrating the GMM, the performance
improvements indicate thatmultiple subdistributions helpmodel
varied degradation mechanisms. In other words, degradations
have multiple possible modes that should not be mixed or
averaged. The effect of GMM on multivariate feature modeling
is also conducted as illustrated in row 2 of Fig. 6, and the poor
performancewithoutGMMfurther validates thatGaussian com-
ponents have two complementary roles as proposed and proofed
in [35]: 1) separately modeling different stochastic events,
and 2) separately modeling scenarios governed by different
rules.

3) Threshold: In most prognostic methods, EoL is obtained
when an indicator (e.g., selected feature) exceeds a predefined
threshold. However, this will introduce additional concerns.
Take CMAPSS data as an example, if the averaged feature
value (11th feature) at failure time is chosen as a threshold
among 100 degradation cases, there is a 50% probability that

the system will break down before reaching that threshold.
If the minimum feature value at failure time is chosen, this
will introduce a systematic error (±13.61) on RUL prediction
even if the degradation prediction is 100% accurate. In this
article, the feature transformation method, which incorporates
one-hot health indicator, enables the model to learn different
EoLs and, thus, bypass low-accuracy prediction produced from
an imprecise predefined failure threshold.

4) Generalization: Like most of the classical machine
learning-based prognostic models, the proposed method in this
article needs enough run-to-failure historical data to achieve a
significant performance level. Although the implementation of
Gaussian components in our proposed model enables separately
modeling different stochastic events and separately modeling
scenarios governed by different rules [35], it is unable to produce
an accurate prediction for new coming data that have large
variations from the learning datasets (i.e., data follow a new
degradation mode that has not been observed before). To tackle
this problem, concepts such as physics-informed [36] or domain
adaptation [37] are encouraged.

V. CONCLUSION

This article proposed a novel sequence-to-sequenceVAEwith
an adversarial learning approach to predict long-term degra-
dation progress and RUL without defining a specific failure
threshold. This approach used correlative andmonotonicmetrics
to identify the critical features related to degradation, which
are then concatenated with health indicator vectors to train
the model. The VAE consisted of a bidirectional LSTM-based
encoder and an autoregressive LSTM-GMM-based decoder,
fully utilizing the capability of LSTM in learning long-term
dependencies in time series data. The output of the LSTMwithin
the decoder was connected to a fully connected layer to map
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the output into the parameters of a GMM and a categorical
distribution for sampling consequent predictions. Experiments
on real-world health monitoring data of aeroengines, wind
turbines, and lithium-ion batteries verified the effectiveness
and robustness of the proposed approach. Prediction is con-
ditioned on the previous encoded observations, which en-
ables multimode degradation prediction. The adversarial train-
ing helps the VAE better capture the distribution of real
degradation progress, thus leading to a more accurate RUL
prediction.
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