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A B S T R A C T

Ocean current turbines (OCT) convert the kinetic energy housed within the earth’s ocean currents into
electricity. However, OCT technologies used to harvest this energy are still at an early stage in development
due to technical and economic challenges stemming from the high operation and maintenance costs associated
with limited geographical location access and harsh operating environments. In an effort to alleviate reliability
concerns associated with marine electricity generation, this paper proposes a novel physics-guided rotor
blade imbalance fault detection framework that combines non-intrusively acquired fault features obtained
from the turbine’s electrical power signal with environmental condition data to enhance the fault detection
capabilities. The combination of these two data sources paved the way for the development of a physics-
informed neural network that ensures the classifications made by our framework are scientifically consistent
with the underlining hydro-kinematic rotor dynamics of the OCT. The effectiveness of our framework is
validated on simulation data produced by an in-house high-fidelity numerical simulation platform that includes
temporally and spatially dynamic oceanic operating environment models. Test results demonstrate a Type-I
error rate of 5.00% and a Type-II error rate of 2.92%.
1. Introduction

The kinetic energy within ocean currents, tides, and waves rep-
resents a highly concentrated source of clean and renewable energy.
However, harsh operating conditions reduces the longevity and reli-
ability of devices designed to extract this energy, and leads to high
Levelized Cost of Energy (LCOE). According to Neary et al. (2014),
an estimated 26%–32% of the LCOE associated with ocean current
turbine (OCT) operation is attributed to O&M costs alone. Additionally,
when compared to wind turbines (WT), OCT rotor blade failures are
especially pronounce since biofouling issues are prevalent and because
sea water is both more corrosive and dense than air.

Fault detection frameworks based on electrical signal analysis are
emerging to address rotor blade imbalance fault issues, as they allow
for non-intrusive condition-based monitoring to be performed. These
techniques customarily investigate the shaft rotating frequency (1P
frequency) of the turbine for abnormalities. In Saidi et al. (2020), a
framework was developed that employed a bispectrum-based signal
processing methodology to analyze the stator current signals acquired
from an OCTs suffering from biofouling issues. This bispectrum-based
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framework achieved better fault detecting success than other Fourier-
based signal processing approaches by investigating higher-order statis-
tical dependencies present within the frequency spectra of the gener-
ator stator current signals. In Li et al. (2020b), statistical thresholding
was used on fault features extracted from OCT stator current signals for
rotor blade imbalance fault detection. This method utilized the Hilbert
transform and principle component analysis for signal demodulation
and feature extraction. Experimental results from this work yielded a
Type II error rate of 4.60%, while the Type I error rate was 0.80%. One
limitation within both works is that the experiments were performed
in a test flume setup that held the rotor rotational speed approximately
constant. This implies that these works may be more suitable for fixed
speed rotor analysis, as opposed to variable speed.

More recently, it has been found that signal processing and
statistical-based fault detection frameworks perform better when their
features are utilized by machine learning algorithms. In general, frame-
works that incorporate machine learning are better at identifying
salient trends masked by frequency smearing and the low signal to
noise ratios of electrical signals obtained from the turbine’s generator,
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than frameworks that strictly employ signal processing and statistical-
based fault detection alone. In Wei et al. (2021), the Hilbert transform
and variational mode decomposition were combined with screening
linear discriminant analysis to perform rotor blade imbalance fault de-
tection on OCTs operating in a fluctuating current velocity conditions.
This framework attained a classification accuracy of 92.04%. In Free-
man et al. (2021), Morlet wavelets analysis was used for fault feature
engineering and a K-nearest neighbor machine learning algorithm to
detect rotor blade imbalance faults. Results from this work indicated an
overall 97.78% accuracy score. Neither of these approaches however,
adequately assessed how dynamically changing other oceanic environ-
mental parameters, in addition to the flow speed, would affect the
classification performance.

Building upon the success garnered from the incorporation of ma-
chine learning into signal processing and statistical-based fault de-
tection, a new paradigm of thought has begun traversing throughout
the machine learning research community. This line of thought attests
that data driven machine learning methodologies, as mentioned pre-
viously, can be improved by incorporating scientific prior knowledge
into learning pipelines (von Rueden et al., 2019; Karpatne et al., 2017;
Rai and Sahu, 2020). In such frameworks, a hybrid combination of
training data and preexisting physics knowledge can be combined to
ensure the framework learns in a way that respects the underlining
physics of the system being studied. The research performed in this
work is an extension of the research performed in Freeman et al.
(2021), employing a similar physics-informed hybrid approach. In our
framework, data simulated by a high fidelity numerical simulation
platform (VanZwieten et al., 2013) and prior knowledge related to the
spatiotemporal operating environment of the ocean current (i.e., South
Florida Gulf Stream) is utilized to develop a novel rotor blade imbal-
ance fault and severity classification framework. From the development
of this hybrid framework the following scientific merits are achieved:

1. Our framework integrates prior physics knowledge into the
learning pipeline of a neural network. This integration is pre-
formed via the inclusion of a physics-based loss function that
alleviates inconsistent target labeling. Specifically, the neural
network’s loss function is customized to ensure that model
predictions are scientifically consistent with the known physics
of the turbine’s underlining rotor dynamics. Such alleviations are
not possible when purely data driven methods are employed for
fault detection alone.

2. The incorporation of prior knowledge relating to the oceanic en-
vironmental conditions (i.e., current flow velocity, current shear,
and turbulence intensity) allows for extensive experimental in-
vestigations on the effects these parameters have on the signal
morphology of generator power signals, and by extension, rotor
blade imbalance faults. From these investigations, we were able
to engineer a never before used feature for rotor blade imbalance
fault detection. To our knowledge both the detailed morphology
investigation and use of the newly engineered feature have not
yet been performed in rotor blade imbalance fault detection
research.

The remainder of this paper is structured as follows: Section 2
describes the nature of rotor blade pitch imbalance faults and the ways
in which oceanic environmental conditions impact generator power
signal morphology. Section 3 describes how physics-informed machine
learning is integrated into our proposed framework. Section 4 briefly
introduces our numerical simulation platform and the environmental
parameter case study that we developed to test the robustness of the
framework. Section 5 discusses experimental design, quantified results,
and provides a comparative study with other state of the art methods
in this field. Lastly, Section 6 presents conclusion and ideas for future
work. Note that a list of the most relevant parameters used in this paper
2

is shown in Table A.4 in the Appendix.
2. Analysis of rotor blade pitch imbalance faults

Rotor blade pitch imbalance faults occur when the alignment of
a rotor blade deviates with respect to the others. In such cases, the
shaft drag and torque generated by the misaligned blade will differ
from the torque that is generated from the healthy blades. These shaft
torque variations generate dynamic loads and vibrations that propagate
internally throughout the turbine via the electromechanical coupling
that exists between the rotor shaft and generator (Gong and Qiao,
2012).

The equation of motion of a direct drive OCT turbine rotor can be
expressed similarly to Gong and Qiao (2012) and Zhang et al. (2017)
as:

𝐽 ⋅
𝑑𝜔
𝑑𝑡

= 𝑇 − 𝑇 (1)

where 𝐽 is the moment of inertia of the OCT generator (OCTG), 𝜔
s the angular rotational speed of the rotor, 𝑇 is the hydrodynamic
orque induced on the turbine’s rotor, and 𝑇 is the electromagnetic
orque generated by the rotor. However, for a steady and homogeneous
low field the rotor speed is typically constant such that 𝑑𝜔

𝑑𝑡 = 0 and
Eq. (1) reduces to 𝑇 = 𝑇 .

When turbulence is introduced into the system, the hydrodynamic
torque, 𝑇𝜏 , on the turbine’s rotor can be expressed similarly to Zhang
et al. (2017) as:

𝑇𝜏 = 𝑇 + 𝑇 (2)

where 𝑇 is the deviation of torque resulting from turbulence. Addition-
ally, the rotational speed of the rotor under the influence of turbulence
can be redefined as:

𝜔𝜏 = 𝜔 + 𝜔 (3)

for which 𝜔 is the rotational speed deviation resulting from turbulent
conditions.

With the hydrodynamic torque now analyzed for both constant flow
speed and turbulent conditions, the impacts that rotor blade imbalance
faults have on hydrodynamic torque can also be analyzed. Addition-
ally, the resulting effects from both imbalance faults and turbulent
conditions on the electrical signals output by the OCTG can also be
investigated.

To begin, the hydrodynamic torque of an OCT under the influ-
ence of turbulence and rotor blade imbalance fault conditions can be
re-formulated as, 𝑇 , for which:

𝑇 = 𝑇 + 𝑇𝜏 (4)

where 𝑇 is the variable torque induced on the rotor shaft stemming
from the imbalance fault conditions. Also, the angular rotating speed
of rotor can be described as:

𝜔 = 𝜔 + 𝜔𝜏 (5)

where 𝜔 is the rotational speed deviation caused by the imbalance
fault.

To facilitate the investigation of the impacts that rotor blade im-
balance faults have on the electrical signals output by the OCTG, the
definition of 𝑇 can be reformulated similarly to Gong and Qiao (2013)
as:

𝑇 = 𝑇𝜏 (𝑡) + 𝐴 ⋅ 𝑐𝑜𝑠
(

∫ 2𝜋 ⋅ 𝑓 𝑑𝑡
)

(6)

where 𝑡 is the time index and 𝐴𝑣 is the magnitude of the shaft torque
variation resulting from the pitch imbalance fault, such that 𝑓𝐹 = 𝜔

2𝜋
is the variable frequency of 𝑇 . Furthermore, 𝑇 induces amplitude
and frequency modulations (AM and FM respectively) on the generator
stator current signal, 𝐼𝑠(𝑡), and its fundamental frequency, 𝑓𝑠(𝑡), such
hat:

𝑠(𝑡) = 𝐼 (𝑡) + 𝐴𝑖(𝑡) ⋅ 𝑠𝑖𝑛
(

2𝜋 ⋅ 𝑓 𝑑𝑡 + 𝜑𝑖

)

(7)
∫
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Fig. 1. Figure detailing the effects of current shear, 𝐹𝑆ℎ𝑒𝑎𝑟, on OCT rotor blades. The
onger 𝐹𝑆ℎ𝑒𝑎𝑟 arrows indicate a larger shear force magnitude.

𝑠(𝑡) = 𝑓 (𝑡) + 𝐴𝑓 (𝑡) ⋅ 𝑠𝑖𝑛
(

∫ 2𝜋 ⋅ 𝑓 𝑑𝑡 + 𝜑𝑓

)

(8)

In (7), 𝐼 is the component of the stator current signal stemming
rom the variability within the ocean current flow velocity resulting
rom turbulence and the presence of the pitch imbalance fault. Addi-
ionally, 𝐴𝑖 and 𝜓𝑖 are the respective amplitude and phase components
f the stator current signal that are generated by the pitch imbal-
nce fault. In (8), 𝐴𝑓 and 𝜑𝑓 are the respective amplitude and phase
omponents of the stator current’s fundamental frequency signal, 𝑓 ,
temming from the pitch imbalance fault conditions.
Eqs. (7) and (8) can be combined to formulate a more condensed

form of the modulated electrical stator current signal:

𝐼 = 𝐼𝑠(𝑡) ⋅ 𝑠𝑖𝑛
(

∫ 2𝜋 ⋅ 𝑓𝑠 𝑑𝑡
)

(9)

for which 𝐼 is the modulated generator stator current signal under
the influence of both turbulence and pitch imbalance fault conditions.

Lastly, if it is assumed that an ideal three-phase supply voltage is
output from the OCTG, then the three-phase instantaneous power, 𝑃 ,
can be expressed as:

𝑃 (𝑡) = 𝑉 (𝑡) ⋅ 𝐼(𝑡) (10)

where 𝑉 (𝑡) is the terminal voltage of the stator. The single-phase power
output by the generator can therefore be defined similarly to Watson
et al. (2010) as:

𝑠(𝑡) =

√

3
2

⋅

⎧
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(11)

where 𝑉𝐿𝐿 is the maximum supply line-to-line voltage and 𝜑𝑠 is the
initial phase angle of the fundamental supply current. Additionally,
𝐼𝑠𝑢𝑝 is the maximum fundamental supply current, 𝑚 is a constant
positive integer, 𝜔𝑠 is the supply current signal’s angular frequency,
and 𝐼𝑓𝑎𝑢𝑙𝑡 is the peak value of the stator current signal’s characteristic
fault component when the frequency equals 𝑓𝑠 +𝑚𝑓𝑅, for which where
𝑓𝑠 is the characteristic frequency of 𝐼𝑠𝑢𝑝 and 𝑓𝑅 is the rotor shaft’s
rotational frequency. Finally, 𝜑𝐹 is the initial value of the phase angle
when the characteristic fault component has a frequency of 𝑓𝑠 + 𝑚𝑓𝑅,
𝐼𝐹𝐹 is the maximum value of the characteristic fault component in the
stator current signal at the frequency 𝑓𝑠 − 𝑚𝑓𝑅, and 𝜑𝐹𝑁 is the initial
value of the phase angle when the characteristic fault component has
a frequency of 𝑓𝑠 − 𝑚𝑓𝑅.
3

From this analysis, the following key points can be summarized:
1. As shown in Fig. 1, in the presence of current shear, 𝐹𝑆ℎ𝑒𝑎𝑟,
the magnitude of the force induced on the rotor blades at the
top of the rotating plane will be greater than the force induced
on the blades closer to the bottom of the rotating plane. This
results in dynamic loads and vibrations being induced on the
turbine’s rotor shaft. Due to the electromagnetic coupling that
exists between the rotor shaft and generator, the kinetic energy
inherent to these dynamic loads and vibrations modulates the
OCTG’s electrical signals output. These modulations manifest
themselves as visible frequency excitations within the frequency
spectra of the turbine’s electrical signals at the 3P frequency (3
times the shaft rotating frequency).

2. However, when one of the blades is faulty, the forces exerted
on the faulty blade near the top of the rotating plane will be
different than the forces exerted on the other two blades when
they reach the top of the rotating plane. In this scenario, dy-
namic loads and vibrations will also be induced on the turbine’s
rotor shaft, however this time at the 1P frequency (shaft rotating
frequency) as opposed to the 3P frequency (see Fig. 9).

3. In the presence of turbulence, temporally and spatially varying
flow fields leads to differences in magnitudes of 𝐹𝑆ℎ𝑒𝑎𝑟 at the
top and bottom of the rotor’s rotating plane. This reduces the
magnitude of dynamic loads and vibrations that are induced on
the rotor shaft. This then leads to less pronounced frequency
excitations being present in the frequency spectra of the electri-
cal signals output by the OCTG. Additionally, the shaft rotation
speed will also vary because of the associated variable current
flow velocity that is inherent to turbulence (see Fig. 2). This
causes frequency smearing in the frequency spectra of 𝑃𝑠(𝑡), as
the characteristic 1P frequency of the rotor shaft will now vary
and overlap with the fundamental frequency of the stator current
signal, which in itself is also varying.

Therefore, the presence of 𝐹𝑆ℎ𝑒𝑎𝑟 increases the ease in detecting im-
balance faults, however, the presence of turbulence masks or increases
the difficulty in detecting imbalance faults.

3. Proposed fault detection and classification framework

Fig. 3 is a portrayal of our proposed fault detection and severity clas-
sification framework. A high level overview of this figure is presented
here:

1. Step 1 of the framework begins with the application of a Contin-
uous Wavelet Transform (CWT) on the 𝑃𝑠(𝑡) signals output from
the OCTG. Statistical features corresponding to the mean, stan-
dard deviation, skewness, kurtosis, peak to peak, and RMS values
are extracted from the wavelet coefficients residing within the
1P frequency range of the time–frequency spectrograms created
by the CWT.

2. These features are then tabulated into a six-degree feature space,
where Principle Component Analysis (PCA) is employed to re-
duce the dimensionality of the feature space. This lower di-
mensional feature space is then fed into a multinomial logistic
regression machine learning classifier for current flow speed
classification.

3. With the current flow speed of 𝑃𝑠(𝑡) now know, turbulence inten-
sity (T.I.) classification can be performed in step 3 of the frame-
work. In this step, the 𝑃𝑠(𝑡) signals output from the OCTG are
first categorized according to their newly predicted current flow
speeds. Then, once categorized, a new set of time-domain fea-
tures corresponding to the margin factor, impulse factor, shape
factor, crest factor, skew factor, and kurtosis factor are extracted
from the signals. These particular time domain features were
chosen because they were empirically found to adeptly quantify

high frequency fluctuations inherent to 𝑃𝑠(𝑡) signals simulated
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Fig. 2. The presence of turbulence creates a temporally and spatially varying water velocity field, which creates variability in the rotor torque and speed. As depicted in the figure,
as the current velocity magnitude increases and decreases, the amount of time needed for the rotor to make a full rotation decreases and increases respectively. Additionally, the
smoothness of healthy and faulty sign waves become distorted. Such a phenomenon creates a variable 1P characteristic frequency, which leads to smearing effects in the frequency
spectrum of the electrical signals output from the OCT generator. This smearing effects masks the presence of imbalance faults.
Source: Fig. 2 was adapted from Zhang et al. (2017).
Fig. 3. Schematic diagram of the proposed fault detection and classification framework.
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with increasing magnitudes of T.I. Finally, these newly acquired
time-domain features are utilized by a physics-guided neural
network that constrains model predictions to ensure consistency
with the underlying dynamics of the turbine’s rotor.

4. With the completion of step 3, both the current flow speed and
T.I. labels be assigned to each 𝑃𝑠(𝑡) signal. These labels are com-
bined with the wavelet coefficient statistical feature space that
was created in step 1 of the framework. This feature space now
consists of the following 8 features: the mean, standard devia-
tion, skewness, kurtosis, peak to peak, RMS, current flow speed
and T.I. classification labels. This eight-degree feature space is
then fed into a contemporary feed forward neural network.

5. After the neural network in step 4 has been trained, the degree
measure of the rotor blade pitch imbalance fault can now be
classified via step 5 of the framework.

Each step of the framework will be discussed in greater detail in the
ollowing sections. Additionally, a brief background literature synopsis
ill also be presented for interested readers.
4

3.1. Time–frequency analysis of generator power signals and input feature
acquisition

Fig. 4 provides a more in-depth portrayal of step 1 of our frame-
work. In the left most portion of the diagram, data is simulated by
our high-fidelity OCT numerical simulation platform. In the middle
portion of the diagram, a CWT is utilized to generate time–frequency
spectrograms for each simulated 𝑃𝑠(𝑡) signal. The CWT convolves the
enerator power signals, 𝑃𝑠(𝑡), with localized wave-like functions of
oscillatory nature. These wave-like functions are known as wavelets,
and are dilated and translated versions of a single mother wavelet basis
function, 𝛹 (𝑡) (Yan et al., 2014; Addison, 2017). A range of values
overning the dilation parameter, a, and the translation parameter,
, of 𝛹 (𝑡) can be utilized to increase the CWT’s ability to analyze
on-stationary signals. When creating spectrogram images, 𝛹 (𝑡) usually
akes on the form, 𝛹 (𝑡) = 𝛹 ((𝑡 − 𝑏)∕𝑎), for which in the equation below:

(𝑎, 𝑏) = 𝑤(𝑎)∫

∞

−∞
𝑥(𝑡) ⋅ 𝛹∗

( 𝑡 − 𝑏
𝑎

)

𝑑𝑡 (12)

the quantity 𝐓(𝑎, 𝑏) represents the wavelet coefficients, which are
measures of cross-correlation between 𝑃 (𝑡) and 𝛹 (𝑡) (Addison, 2017).
𝑠
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Fig. 4. Flow chart detailing step 1 of the frame work, for which statistical features are extracted from the 1P frequency range of the CWT spectrograms.
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Additionally, 𝑤(𝑎) is a weighting term that is used to ensure that
wavelets of the same scale all possess the same amount of energy, while
the * symbol indicates complex conjugation of 𝛹 (𝑡). When performing
the CWT, the optimal 𝛹 (𝑡) function largely depends on its similarity
ith the signal being analyzed. For the purposes of this research, the
orlet wavelet was selected as the 𝛹 (𝑡) of choice because of the simi-

larity of shape between its windowing kernel and the 1P characteristic
fault signature within 𝑃𝑠(𝑡). As detailed in Addison (2017), the Morlet
avelet is constructed by tapering a Gaussian window function with a
ine wave, such that: 𝛹 (t)= 𝑒2𝑖𝜋𝑓𝑡𝑒

(

−𝑡2∕2𝜎2
)

, for which 𝑖 is the imaginary
perator, 𝑓 is the peak frequency in Hertz of the sine wave, and 𝑡 is the
ime in seconds (Cohen, 2019). In this equation, 𝜎 = 𝑛∕2𝜋𝑓 , controls
he width of Gaussian window, for which 𝑛 is empirically determined.
he term 𝑛 heavily influences resolution quality, as it controls the
eisenberg uncertainty principle in regards to time–frequency analysis.
or our work 𝑛 was set to range between 5–15.
Lastly, in the right most portion of Fig. 4, the wavelet coefficients

ncompassed within the 1P band specific frequency range of the spec-
rograms are concatenated. Then, for each row of this matrix, statistical
eatures corresponding to the Mean, Standard Deviation, Skewness,
urtosis, P2P, and RMS values are tabulated into a six-degree feature
pace.

.2. Dimension reduction of feature space and ocean current flow speed
lassification

Once the wavelet coefficient statistical feature matrix is constructed,
CA is employed to reduce the dimensionality of the feature space.
hile there is more than one way to perform PCA, the method used
n this research begins with the construction of a covariance matrix,
-𝐌𝐚𝐭 (Cohen, 2014):

𝐂-𝐌𝐚𝐭 = (𝑛 − 1)−1
(

𝑋 − 𝑋̄
) (

𝑋 − 𝑋̄
)𝑇 (13)

where the 𝑛 by 𝑚 data set of wavelet coefficient statistical features is
represented by 𝑋, with 𝑋̄ being the mean value of 𝑋. Using Matlab’s
𝑒𝑖𝑔 function, an eigendecomposition is performed on the covariance
matrix, such that: [𝐖,𝜆]= 𝑒𝑖𝑔 (𝐗). Here, 𝐖 is an 𝑚 by 𝑚 matrix of the
resulting principal components, and 𝜆 is a diagonal matrix consisting
of the magnitudes of the eigenvalues associated with each principle
component.

For the purposes of our research, only the first three principle
components are input into a multinomial logistic regression machine
learning algorithm for current flow speed classification. Multinomial
logistic regression is a machine learning algorithm that assumes that
a linear relationship exists between the log odds of the dependent
and independent variables of a multi-class data set (Moon and Kim,
2020). When performing multinomial logistic regression with J classes,
one class is usually designated as the ‘‘piviot’’, for which J-1 binary
5

independent logistic regression models are constructed. In the case
when the Jth class is designated as the ‘‘piviot’’, the regression model
for class 𝐽 becomes (Moon and Kim, 2020):

𝑛
𝑃𝑅 (𝑌 = 𝑗)
𝑃𝑅 (𝑌 = 𝐽 )

= 𝐛𝑗 ⋅ 𝐱 (14)

In the above equation, the value of 𝑌 represents the outcome of
the random variable, where 𝐛𝑗 is the set of regression coefficients for
class 𝑗 and are usually estimated according to the maximum likelihood
method, while 𝐱 is the vector of observed features. Thus, the probability
that any instance of 𝐱 belongs to class 𝑗 can be expressed as:

𝑃𝑅 (𝑌 = 𝑗) = 𝑃𝑅 (𝑌 = 𝐽 ) ⋅ 𝑒𝐛𝑗 ⋅𝐱 (15)

Lastly, because the probability that 𝐱 belonging to each class must
equal 1, the probability that 𝐱 belongs to class 𝐉 is:

𝑃𝑅 (𝑌 = 𝑗) = 𝑒𝐛𝑗 ⋅𝐱

1 +
∑𝐽−1
𝑗=1 𝑒

𝐛𝑗 ⋅𝐱
(16)

Therefore, as derived in Moon and Kim (2020), when given the trun-
ated eigenvector feature matrix, 𝐱, the probability that any instance
ill have a class label of y is:

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑗 𝑃𝑅 (𝑌 = 𝑗) (17)

.3. Turbulence intensity prior knowledge infusion

Once each individual 𝑃𝑠(𝑡) signal has had its current flow speeds
lassified, a new set of time-domain features are extracted from the
ignals to create a new feature space. The set of time-domain features
xtracted from these signals are the margin factor, impulse factor,
hape factor, crest factor, kurtosis factor, and skewness factor. These
eatures have demonstrated a high proficiency at quantifying the mag-
itude of the impulsiveness within the 𝑃𝑠(𝑡) signals (Ali et al., 2018; Li
et al., 2020a). Since turbulence intensity was empirically found to most
prevalently expresses itself as a high frequency fluctuations within 𝑃𝑠(𝑡),
these features are used to construct this entirely new feature space.

As depicted in Fig. 5, our framework integrates both the physics-
based prior knowledge obtained from the oceanic environment
(VanZwieten et al., 2013), and the new T.I. time-domain features into
the machine learning pipeline of a neural network. The T.I.-based prior
knowledge incorporation is made via the inclusion of a physics-based
loss function, which ensures that model predictions remain scientifi-
cally consistent with the underlining physics of the OCT’s rotor. When
these T.I. time-domain features are merged with the environmental-
based prior knowledge, the neural network is allowed to learn from
both inputs in a symbiotic-like fashion.

The T.I. classification portion of our framework begins by consid-
ering the time-domain features describing the nature of 𝑃𝑠(𝑡) when the
rotor is under the influence of turbulence, a variable current flow, and
imbalance fault conditions. Initially, this feature set, 𝐔, consists of the
T.I.-based time-domain features, 𝐅𝑇 , and their correlated current flow
speed labels, 𝐅𝑆 , which were predicted in step 2 of the framework:

[ ]
𝐔 = 𝐅𝑇 ,𝐅𝑆 (18)
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Fig. 5. Schematic detailing how a key physical relationship existing between T.I. and 𝑃𝑠(𝑡) are leveraged to construct a physics-based loss function. Time-domain features
characterizing 𝑃𝑠(𝑡) are fed into a feed-forward neural network. During training, a physics-based loss term is appended to the loss function of the neural network to penalize T.I.
classifications that violate the physical relationship existing between T.I. values and 𝑃𝑠(𝑡).
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In a similar fashion to the work done in Karpatne et al. (2017),
our framework can adopt a basic multi-layer perceptron architecture to
classify T.I. for any instance of 𝐔. In the case of a fully connected neural
network, with 𝐿 hidden layers, the following modeling equations, also
derived from Karpatne et al. (2017), can be used to correlate instances
f 𝐮 to their target prediction 𝐲̂ as:

1 = 𝐖𝑇
1 ⋅ 𝐮 + 𝐛1 (19)

𝑖 = 𝐖𝑇
𝑖 ⋅ 𝐚𝑖−1 + 𝐛𝑖, ∀𝑖 = 2 to 𝐿 (20)

𝑖 = 𝑓
(

𝐳𝑖
)

∀𝑖 = 1 to 𝐿 (21)

̂ = 𝐖𝑇
𝐿+1 ⋅ 𝐚𝐿 + 𝐛𝐿+1 (22)

here in the above equations, (𝐖,𝐛) represents the set of all weight
nd bias terms present throughout all hidden and output layers, with
(⋅) acting as the hidden layer activation function.

.4. Construction of the physics-based loss function

Customarily, when training a neural network, the goal is to mini-
ize the empirical loss of 𝐘̂ while also maintaining the lowest possible
odel complexity. This can be achieved as demonstrated in the formula
elow:

rgmin𝑓 = CE𝐿𝑜𝑠𝑠
(

𝐘̂,𝐘
)

+ 𝜆 𝐑 (𝐖) (23)

or which a multi-class cross-entropy loss function, CE𝐿𝑜𝑠𝑠, is used.
ere, CE𝐿𝑜𝑠𝑠, is defined as Moon and Kim (2020):

E𝐿𝑜𝑠𝑠 = −
𝑀
∑

𝑐=1
𝑦𝑜,𝑐 log

(

𝑝𝑜,𝑐
)

(24)

here𝑀 represents the number of class labels, 𝑦 is the binary indicator
ttesting if the class label, 𝑐, is correct for a given observation, 𝑜, and
or which 𝑝 is the predicted probability that observation, 𝑜 is indeed of
lass, 𝑐. Additionally, from (23), 𝐑, is a function that measures model
omplexity, in which 𝜆1 and 𝜆2 are trade off hyper-parameters, such
hat according to Karpatne et al. (2017):
6

𝐑 (𝐖) = 𝜆1‖𝐖‖1 + 𝜆2‖𝐖‖2 (25) 𝑉
To alleviate some of the inconsistencies that exists between 𝐘̂ and
, a physics-based loss term, as proposed in Karpatne et al. (2017) is
ncorporated into the model’s empirical loss function:

𝐨𝐬𝐬 = L
(

𝐘, 𝐘̂
)

+ 𝜆𝑅 (𝑓 ) + 𝜆𝑃𝐵𝐋𝐨𝐬𝐬𝑃𝐻𝑌
(

𝐘̂
)

(26)

Here, L
(

𝐘, 𝐘̂
)

is the empirical error of the model predictions,
here again, the function 𝑅 (𝑓 ) measures the complexity of the model,
ith 𝜆 being a trade off hyper-parameter. However, in this particular
ersion of the loss function, the term 𝐋𝐨𝐬𝐬𝑃𝐻𝑌

(

𝐘̂
)

is added to pe-
alize physics-based violations of the model predictions and 𝜆𝑃𝐵 is a
hysics-based hyper-parameter that decides upon the importance of the
nconsistencies captured by 𝐋𝐨𝐬𝐬𝑃𝐻𝑌

(

𝐘̂
)

.
From the investigations performed in our research, which analyzed

he affects of certain oceanic environmental parameters on 𝑃𝑠(𝑡), our
ramework was able to discover and leverage a key physical rela-
ionship that exist between T.I. and 𝑃𝑠(𝑡). Our framework used this
elationship as a form of prior knowledge to aid in the development
f our physics based loss function. This key physical relationship can
e explained by first formally defining T.I according to TSI (2012):

𝐈 =

√

𝜎2𝑥 + 𝜎2𝑦 + 𝜎2𝑧

𝑉
(27)

here 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 represent the standard deviation of the current
low velocities in the x,y, and z directions, while 𝑉 represents the
ean current velocity. Then, as stated in Pyakurel et al. (2017), we
ake note that the standard deviation of 𝑃𝑠(𝑡) increases with increasing
.I. Combining this bit of information with the fact that, within the
urbulence energy spectrum, small scale turbulence and its associated
igher frequency components obey a -5/3 slope (Chasnov, 1991), we
ere able to derive a relatively accurate way of approximating a metric
hat is proportional to T.I., abbreviated below as 𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥:

𝐈𝑎𝑝𝑝𝑟𝑜𝑥 =

[

𝐒𝐓𝐃
(

𝑃𝑠
)

𝑃𝑠

]

(

− 5
3

)

(28)

where 𝑃𝑠 is the mean value of 𝑃𝑠 and 𝐒𝐓𝐃 (⋅) is the standard deviation
function operator.

For an OCT operating with an average current flow velocity of
̄ , the relationship that exists between 𝐒𝐓𝐃

(

𝑃
)

when the T.I. is
𝑠
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Fig. 6. Display of a regularized grid of T.I. values populated along the 𝑥-axis and 𝑉 values populated along the 𝑦-axis. For all 𝑃𝑠(𝑡) signals simulated with the same 𝑉 , the
magnitude of 𝐒𝐓𝐃

(

𝑃𝑠
)

should monotonically increase with increasing T.I.
approximately 𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥.(𝑛), and 𝐒𝐓𝐃
(

𝑃𝑠
)

when the T.I. is approximately
𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥.(𝑛+1), can be formally described as:

𝐒𝐓𝐃
(

P𝑠
)

𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥.(𝑛) ,𝑉
−𝐒𝐓𝐃

(

P𝑠
)

𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥.(𝑛+1) ,𝑉
≤ 0, if 𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥.(𝑛) ≤ 𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥.(𝑛+1) (29)

In words, Eq. (29) simply states that for the same 𝑉 , the standard
deviation of 𝑃𝑠(𝑡) increases with increasing T.I. This concept can be
visualized more succinctly in Fig. 6. To leverage this relationship was
hen classifying T.I., a physics-based loss function was constructed as
ollows:

1. Consider an unlabeled set of 𝐒𝐓𝐃
[

𝑃𝑠
]

values that are mapped
onto a regularized grid of T.I. by 𝑉 values, such as those shown
in Fig. 6. In such a scenario, the difference in 𝐒𝐓𝐃

[

𝑃𝑠
]

values
simulated with the same 𝑉 value, but with different 𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥
values can be described as:

𝛥𝐒𝐓𝐃
[

P𝑠
]

𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥 ,𝑉
= 𝐒𝐓𝐃

[

P𝑠
]

𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥.(𝑛) ,𝑉
− 𝐒𝐓𝐃

[

P𝑠
]

𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥.(𝑛+1) ,𝑉

(30)

where a positive value of 𝛥𝐒𝐓𝐃
[

P𝑠
]

𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥 ,𝑉
would be inter-

preted as a violation of the key physical relationship described
in (29).

2. Therefore, in a similar fashion as to what was derived in
Karpatne et al. (2017), our physics-based loss term can be
defined as:

𝐋𝐨𝐬𝐬𝑃𝐻𝑌
(

𝐘̂
)

= 1
𝐕̄𝐧 ⋅

(

𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥.(𝑛−1)
) ⋅

𝑉𝑛
∑

𝑉𝑛

⋅
𝐓𝐈𝑛−1
∑

𝐓𝐈𝑛

⋅𝐑𝐄𝐋𝐔
(

𝛥𝐒𝐓𝐃
[

P𝑠
]

𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥 ,𝑉

)

(31)

where the mean value of all 𝛥𝐒𝐓𝐃
[

P𝑠
]

𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥 ,𝑉
violations across

every T.I. x 𝑉 coordinate can be evaluated by the ReLU activa-
7

tion function.
3. Lastly, the physics-based loss term is re-implemented back into
the original empirical loss function, such that:

𝐋𝐨𝐬𝐬 = L
(

𝐘, 𝐘̂
)

+ 𝜆𝑅 (𝑓 ) +
𝜆𝑃𝐵

𝐕̄𝐦 ⋅
(

𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥.(𝑛−1)
)

⋅
𝑉𝑚
∑

𝑉𝑚

⋅
𝐓𝐈𝑛−1
∑

𝐓𝐈𝑛

⋅ 𝐑𝐄𝐋𝐔
(

𝛥𝐒𝐓𝐃
[

P𝑠
]

𝐓𝐈𝑎𝑝𝑝𝑟𝑜𝑥 ,𝑉

)

(32)

Fig. 5 can be referenced for more details on how this loss
function integrates back into our overall framework.

4. Numerical simulation validation and data set preparation

4.1. Validation of our high fidelity numerical simulation platform

While the work performed in this research does not use data gener-
ated by an in service OCT, geometric and inertial properties derived
from the experimental OCT pictured in Fig. 7 were used to create
the utilized high fidelity numerical simulation platform. This 20-kW
experimental OCT was fabricated and deployed into the South Florida
Gulf Stream by Florida Atlantic University’s Southeast National Ma-
rine Renewable Energy Center (SNMREC). Additionally, spatiotemporal
environmental data, acquired from an ADCP, were used to further
increase model fidelity (VanZwieten et al., 2013; Tian et al., 2016).

The research performed in VanZwieten et al. (2013) and Tian et al.
(2016) investigated ways in which marine environmental conditions
impacted OCT performance. Insights from these studies were used to
validate and fine-tune modeling algorithms within the SNMREC numer-
ical simulation platform. The CFD based analyses performed in these
studies quantified, among other things, the effects of ambient current
flow velocity and turbulence intensity on the performance of the SNM-
REC prototype OCT. Additionally, the following flow statistics obtained
from the 13-month measurement campaign described in VanZwieten
et al. (2013) and Tian et al. (2016) were utilized:

• The mean ocean current speed at a depth of 20 m is 1.6 m/s, with
the overall current speed at this depth ranging between 0.4 and
2.5 m/s.

• The average measured vertical current shear was 0.004 [m/s]/m.
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Fig. 7. A high level overview of the numerical simulation platform used to generate data for this study. Operational performance data as well as a variety of other geometric and
inertial properties are obtained from the SNMREC 20-kW prototype OCT. This data is primarily used as a modeling aid for the simulation platform. Additionally, spatiotemporal
oceanic environmental data, as profiled by an ADCP, is used to further increase the modeling fidelity of the simulation platform.
Table 1
Overview of simulation platform data generation.
Length: 120 s Sampling Frequency: 200 Hz Num. of Sims: Source=500/Target=50

Parameters Parameter range Step size increment Simulations per step

Turbulence intensity 10% 5% 50
Current flow speed 0.4 m/s–2.4 m/s 0.4 m/s 50
Pitch imbalance 0 Deg–5 Deg 1 Deg 50
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These measurements were utilized to set the operating parameters
f the numerical simulation platform during data generation. Our
umerical simulation platform was developed using a Blade Element
omentum (BEM) rotor modeling technique that uses a dynamic wake
nflow model (VanZwieten et al., 2013). This BEM algorithm is sim-
lar to the AeroDyn aerodynamics code utilized within NREL’s FAST
ind turbine simulator. NREL’s FAST wind turbine simulator has been
ertified by Germanischer Lloyd for turbine design and analysis.
NREL’s WTPerf code was used to validate our simulation platform’s

ydrodynamics model. This validation found peak power and thrust
oefficients of 0.447 and 0.694 using our numerical simulation plat-
orm, while values of 0.444 and 0.685 were respectively calculated
sing NREL’s WTPerf code (VanZwieten et al., 2013). NREL’s HarpOpt
ode was used to create our variable pitch rotor model design to
elp ensure appropriate rotor geometry values such as cord lengths
wist angles were utilized (VanZwieten et al., 2016). The turbulent
low field was mathematically constructed using algorithms discussed
n Pyakurel et al. (2017), which includes a method for modeling spatial
low coherence over the swept area of the rotor. Lastly, the degrees of
reedom of the OCT were limited to the rotation of the rotor about its
xis, which is the ‘‘Tidal Turbine’’ version of the numerical simulation
latform presented in Tzelepis et al. (2017).

.2. Simulation setup and data set preparation

Table 1 provides an overview of the environmental parameters
sed to simulate OCT performance data for this work. The ranges for
hese values were obtained from the 13-month ADCP study summarized
n VanZwieten et al. (2013) and Tian et al. (2016), with the turbulence
ntensity range derived from measurements recorded at potential tidal
nergy sites. In total, 50 random seeds were utilized when running sim-
lations for each turbulence intensity, flow speed, and pitch imbalance
ombination depicted in Table 1. Thus, 7200 individual simulations
ere run. For each case, the turbulence intensity, current flow speed,
nd degree of the pitch imbalance fault parameters were varied. The
ime length of each simulation was 115 s, and the sampling frequency
8

F

as 200 Hz. However, to account for the turbine’s ramp-up time,
nly the last 50 s of data were used from each simulation. Lastly,
he average rotor speed was maintained near the targeted operating
peed associated with maximum power production through the use of
fixed gain torque controller, 𝜏 = 𝑘 ⋅ 𝜔2. However, it should be noted
hat ‘‘average speed’’ does not imply ‘‘constant speed’’, as investigating
ariable speed rotor dynamics is more representative of real world
perating conditions, and thus more beneficial to both the academic
nd commercial OCT communities overall.
Fig. 8 displays the 𝑃𝑠(𝑡) signals simulated for the zero-degree

healthy) fault case for seed one of the data set. Plots (a)–(f) hold a
pecific current flow speed value constant while the T.I. is allowed to
ary discreetly according to the values specified in parameter range col-
mn of Table 1. As shown, even in the healthy state, the morphology of
𝑠(𝑡) varies greatly with respect to the external operating environment.
salient trend, correlating high frequency fluctuation with increasing
agnitudes of current flow speed and T.I. can be seen to exist. Thus, the
rimary objective of our framework is to establish a consistent means of
ccurately quantifying the differences between healthy and fault rotor
lade states regardless of the external environmental parameters that
ny particular 𝑃𝑠(𝑡) signal may have been simulated with.

. Quantification of simulation results

.1. Justification for taking a physics-guided approach

In order to motivate a discussion concerning the justification of
mplementing a physics-based learning approach into our framework,
irst reference Fig. 4, in which statistical input features are extracted
rom the 1P band specific frequency range of the CWT spectrograms.
ig. 9 portrays an instance of these spectrogram, for which two signals
ontained within seed 1 of the data set are depicted. In both instances,
he characteristic 1P frequency range of interest is highlighted, and
n average current flow speed of 0.8 m/s was maintained. However,

ig. 9(a), displays a 5-Degree imbalance fault case simulated with 20%
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Fig. 8. Representative look at the 0-degree fault case for seed 1 of the data set. In each of the plots (a)–(f) the average current flow speed is held constant while the T.I. is
allowed to vary. Take note of the extents to which the signal morphology changes as the magnitude of the current flow speed and T.I. parameter values increase. Despite the
dynamic changes in signal morphology, all of the depicted time-series signals are simulated for healthy states of the rotor.
Fig. 9. The high degree of similarity between the two CWT spectrograms is highlighted. Such similarities depict the challenge of performing fault detection when oceanic operating
arameters are allowed to vary according to their natural ranges. (a) displays a 5-Deg fault case, and (b) displays a 0-Deg fault case. In particular, notice how the frequency
ctivity within the 1P frequency range of interest is roughly the same despite the fault severity diapason.
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.I., while in Fig. 9(b) portrays a 0-Degree (healthy) imbalance fault
case simulated with 5% T.I.

Now consider Table 2, which lists the names and mathematical
formulas of the features used to train the machine learning algorithms
utilized within our framework. Of special note is the Adjusted 𝑃 -value
column, which quantifies the magnitude of the statistical difference
between features extracted from the spectrogram displayed in Fig. 9(a),
and the features extracted from the spectrogram corresponding to
Fig. 9(b). As shown in the Adjusted 𝑃 -value column of Table 2, all of the
features have a 𝑃 -value > 0.05. This implies that there is no statistically
significant difference between features extracted from Fig. 9(a) and
those extracted from Fig. 9(b), despite the fact that Fig. 9(a) represents
the most severe fault case contained within our study, while Fig. 9(b)
represents a completely healthy non-fault case.
9

b

The lack of distinction between fault cases is blurred as oceanic
environmental parameters are allowed to vary in accordance to their
full dynamic ranges. Recall that as highlighted at the end of Section 2,
he presence of turbulence masks or increases the difficulty of per-
orming imbalance fault detection. Difficulties such as these help to
llustrates the need of including a physics-guided methodology within
ur framework. Such methodologies are especially adept at discovering
alient trends hidden deep within the data and thus lend themselves
ell to incipient fault detection.

.2. Current flow speed and turbulence intensity classification

The first step that our framework employs when classifying rotor
lade pitch imbalance faults is to determine the current flow speed that
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Table 2
Proposed input features with adjusted P-vals. *P-Values acquired from Fig. 3 Investiga-
tion, **Flow Speed feature provided by step 2 of framework, ***T.I. feature provided
by step 3 of framework.
Proposed fault detection input features w/ Adj. P-vals

Number Feature Mathematical equation Adj. P-value*

1 Mean 𝜇 = 1
𝑁

∑𝑁
𝑖=1 𝑥𝑖 0.2975

2 Standard deviation 𝜎 =
√

1
𝑁

∑𝑁
𝑖=1

(

𝑥𝑖 − 𝑥̄
)2 0.0527

3 Skewness 𝑚𝑢3 =
∑𝑁
𝑖=1(𝑥𝑖−𝑥̄)

3

(𝑁−1)∗𝜎3
0.351

4 Kurtosis 𝜇4 =
∑𝑁
𝑖=1(𝑥𝑖−𝑥̄)

4

∑𝑁
𝑖=1(𝑥𝑖−𝑥̄2)

2 0.0941

5 Peak-to-Peak 𝑃2𝑃 = 𝑚𝑎𝑥 (𝑥) − 𝑚𝑖𝑛 (𝑥) 0.301

6 Root-Mean-Squared 𝑅𝑀𝑆 =
√

1
𝑁

∑𝑁
𝑖=1

(

𝑥𝑖
)2 0.298

7 Crest factor 𝐶𝐹 = 𝑚𝑎𝑥 (𝑥) ∕𝑅𝑀𝑆 0.0762
8 Shape factor 𝑆𝐹 = 𝑅𝑀𝑆 (𝑥) ∕𝑚𝑒𝑎𝑛 [𝑎𝑏𝑠 (𝑥)] 0.0982
9 Impulse factor 𝐼𝐹 = 𝑚𝑎𝑥 (𝑥) ∕𝑚𝑒𝑎𝑛 [𝑎𝑏𝑠 (𝑥)] 0.0661
10 Margin factor 𝑀𝐹 = 𝑚𝑎𝑥 (𝑥) ∕𝑚𝑒𝑎𝑛 [𝑎𝑏𝑠 (𝑥)]2 0.08562
11 Skewness factor 𝑘𝑒𝑤𝐹𝑎𝑐𝑡 =

∑𝑁
𝑖=1

(

𝑥𝑖 − 𝑥̄
)3 ∕

(

𝑁 ∗ 𝜎3
)

0.07215
12 Kurtosis factor 𝐾𝑢𝑟𝑡𝐹𝑎𝑐𝑡 =

∑𝑁
𝑖=1

(

𝑥𝑖 − 𝑥̄
)4 ∕

(

𝑁 ∗ 𝜎4
)

0.09934
13 Flow speed N/A N/A**
14 Turbulence intensity N/A N/A***

a particular instance was simulated under. While the current flow speed
in itself is not a particularly useful feature when classifying imbalance
faults, T.I. is. However, as depicted in Eq. (27), it is necessary to know
the current flow speed in order to predict T.I.

Fig. 10(a) depicts the principle component feature space associated
with current flow speed prediction. This projection matrix was con-
structed using features 1–6 of Table 2, and as shown in Fig. 10(b),
approximately 97% of the total variance can be captured within the
first three principle components alone. This projection matrix was then
input into a multinomial logistic regression machine learning classifier,
where, from the confusion matrix presented in (c), a classification
accuracy of 95.64% is achieved. Next, these predicted current flow
speed labels are concatenated with features 7–12 of Table 2 and in-
put into the physics-guided neural network portion of our framework
for turbulence intensity classification. Through the use of the neural
network’s physics-guided loss function, a 98.19% turbulence intensity
classification accuracy is obtained. Additional details regarding the
construction of this physics-guided neural network are discussed in
Section 5.3.

5.3. Imbalance fault degree classification

To demonstrate the effectiveness of our proposed fault detection
framework, we compared its performance with the baseline and in-
termediary methods discussed below. 𝑃𝑠(𝑡) signals were simulated in
accordance with the oceanic environmental parameters as shown in
Table 1. This ensured that the distributions of their environmental
parameters (T.I., current flow speed, and the degree of the pitch im-
balance fault) varied with each other in the same manner that they
would for an OCT deployed at sea for a sustained length of time. The
size of the data set consisted of 7,200 simulations, for which the results
from the 10% partitioned test set are shared. Input features 1–12, as
shown in Table 2, are collected from each instance and are used in
some capacity to train the machine learning models listed below. The
neural network models utilized in this work are implemented using
the tensor flow 2.0 backend of Keras, for which the Adam optimizer
was used to perform stochastic gradient decent. Fully connected neural
networks were constructed with 3 hidden layers consisting of 6 nodes
each. Lastly, the 𝜆1 and 𝜆2 hyper-parameters of (25) were set equal to
1 for all experiments to ensure that no special hyper-parameter tuning
was used for any specific experimental scenario.

Repeated 10 fold cross validation was performed, for which random
initializations of the neural network weights between 0 and 1 was used
during model training to allow for the mean and standard deviation
10
of the evaluated models to be presented in Fig. 11. Listed below are
explanations of the different machine learning models that were used
to help test the validity and robustness of our proposed fault detection
framework.

• Purely Data-Driven Approach: Before analyzing the value
gained from incorporating current flow speed and T.I. prior
knowledge integration into our framework’s machine learning
pipeline, we wanted to first observe the baseline performance of
a purely data-driven approach at addressing the pitch imbalance
fault problem. To accomplish this we predicted the severity of
several different pitch imbalance faults through the use of a multi-
nominal logistic regression (MLR), a k-nearest neighbor (KNN),
and a classic artificial neural network (ANN). Each model was
trained using input features 1–12, as described in Table 2, and
did not include any physics-based prior knowledge information
relating to the current flow speed or turbulence intensity.

• Knowledge-Based Data-Driven Approach: To aid in understand-
ing the impact of including current flow speed prior knowledge
into the machine learning pipeline of our fault detection frame-
work, we analyzed the performance of the MLR, KNN, and ANN
machine learning models with this knowledge included in the
input feature set. For this specific scenario, the machine learning
models are now designated as: MLR𝐾𝐵 , KNN𝐾𝐵 , and ANN𝐾𝐵 , and
include features 1–13 from Table 2. (Feature 13 was predicted
in step 2 of our proposed fault detection framework, shown in
Fig. 3).

• Physics-Guided Prior Knowledge Approach: Lastly, to validate
the benefit of the physics-informed loss function developed in
Section 3.3, 3.4, and displayed in Fig. 5, a T.I. label, depicted as
feature 14 in Table 2, is included in the input feature set of the
machine learning models. Due to the incorporation of the physics-
informed T.I. label, this subset of machine learning models are
designated as: MLR𝑃ℎ𝑦, KNN𝑃ℎ𝑦, and ANN𝑃ℎ𝑦, for which features
1–14, as listed in Table 2, are used to train these models.

Fig. 11 portrays the classification accuracy obtained from the dif-
erent machine learning models used to validate our fault detection
ramework. Fig. 11 is comprised of machine learning models that used
purely data driven approach (MLR, KNN, and ANN) to address the
mbalance fault problem, the use of knowledge-based machine learning
odels (MLR𝐾𝐵 , KNN𝐾𝐵 , and ANN𝐾𝐵) that incorporate the use of

current flow speed prior knowledge integration, and physics guided
approaches (MLR𝑃ℎ𝑦, KNN𝑃ℎ𝑦, ANN𝑃ℎ𝑦) that incorporate the use of a
physics-based loss function for T.I. classification. As depicted in the
figure, the purely data driven models demonstrate the lowest accuracy.
The low accuracy stems from there being no statistical difference
amongst features of differing fault classes that were simulated with
different oceanic environmental operating parameters. Specifically, it
is very difficult for the data driven models to discern between features
simulated with a common current flow speed but a different T.I. and
imbalance fault degree measures. As shown in Table 3, the MLR, and
KNN models possess a classification accuracy within the 15%-37.5%
range, and while the performance of the ANN model was noticeably
better, at 39%–56%, this accuracy range was still unsatisfactory.

When compared to the data driven models, the machine learning
models that utilized the current flow speed prior knowledge integration
(MLR𝐾𝐵 , KNN𝐾𝐵 , and ANN𝐾𝐵) demonstrated improved accuracy when
performing fault detection. Specifically, the MLR𝐾𝐵 , KNN𝐾𝐵 models are
hown to have a classification accuracy that ranges between 45%–60%,
hile the ANN𝐾𝐵 model attains a higher accuracy, ranging between

64%–74%. However, the ceiling of the maximum achievable accuracy
score is still capped for these knowledge-based model because knowing
the current flow speed that a particular instance was simulated at still
does not address the difficulty associated with distinguishing between
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Fig. 10. Current flow speed and T.I. classification results. (a) 2D projection matrix obtained when PCA is employed on features 1–6 of Table 2. (B) Cumulative variance explained
from the principle component analysis. As shown, more than 95% variance is captured from the first three principle components alone. (c) Confusion matrix obtained after
multinomial logistic regression is employed to predict the current flow speed. (d) Confusion matrix obtained after the physics-informed loss function is employed to predict
turbulence intensity.

Fig. 11. Box plots portraying the classification accuracy of different machine learning algorithms used to justify the validity of our framework. The figure is comprised of purely
data-driven (MLR, KNN, and ANN), prior knowledge integration approaches (MLR𝐾𝐵 , KNN𝐾𝐵 , and ANN𝐾𝐵), and physics-guided approaches (MLR𝑃ℎ𝑦, KNN𝑃ℎ𝑦, and ANN𝑃ℎ𝑦). The
data-driven and knowledge integrated approaches perform less favorably than the approaches physics guided approaches.
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features that were simulated with the same current flow speed but
different T.I. values.

When considering instances simulated with one particular current
flow speed, an overwhelming majority of the miss-classifications were
instances possessing high T.I. values and high imbalance fault degree
measures. Deeper analysis of this trend found that the statistical nature
of the wavelet coefficient energy residing within the 1P frequency range
of these instances was quite similar to the statistical nature of the
wavelet coefficient energy residing within the 1P frequency range of
those instances simulated with low T.I. values and low imbalance fault
degree measures. This reasoning makes sense because increasing mag-
nitudes of T.I. masks certain signal dynamics associated with increasing
pitch angle deviations of the rotor blades. Therefore, even if the pitch
angle deviation of a rotor blade is large for one particular instance,
if the T.I. associated with this instance is also large, the statistical
nature of the features extracted are virtually indistinguishable from
those coming form the instance simulated with both a low T.I. and low
imbalance fault degree measure.

Lastly, when evaluating the performance of the MLR𝑃ℎ𝑦, KNN𝑃ℎ𝑦,
and ANN𝑃ℎ𝑦 models, which combine both current flow speed prior
knowledge integration and T.I. physics-guided learning into their re-
spective machine learning pipelines, the highest possible accuracy is
attained through these approaches. The MLR𝑃ℎ𝑦, KNN𝑃ℎ𝑦, and ANN𝑃ℎ𝑦
odels in particular are able to perform T.I. classification when per-
orming imbalance fault detection, for which the MLR𝑃ℎ𝑦, and KNN𝑃ℎ𝑦
odels attain a classification accuracy ranging between 86%–94%,
hile the ANN𝑃ℎ𝑦 model achieves an accuracy ranging between 88%–
8%. This improved accuracy is attributed to the fact that turbulence
ntensity classification is finally being performed through the imple-
entation of the physics-guided loss function. As stated previously,
haft torque variations resulting from misaligned rotor blades induce
arying dynamic loads and vibrations onto the turbine’s rotor shaft.
hese varying dynamic loads and vibrations eventually manifesting
hemselves as frequency excitations within the 1P frequency range of
𝑠(𝑡). However, these manifestations can also be masked with increas-
ng amounts of T.I. Therefore, having a means of reliably quantifying
.I. also allow the magnitude of the masking effect to be quantified by
hese models, thus ensuring better performance.

.4. Computational costs analysis

The computational cost associated with the implementation of our
roposed fault detection framework should be considered in two sep-
rate phases. The initial offline training phase consists of all of the
yper-parameter optimizations and machine learning training needed
o properly calibrate our framework for fault detection and severity
lassification tasks. These calibrations include, but are not limited to
avelet hyper-parameter optimizations, wavelet coefficient threshold-
ng, neural network L1 and L2 norm determination, etc. This initial
hase occurs entirely offline, and took approximately 4.5 days to
omplete. However, this phase is something that only needs to be
one once. The computational cost of the second phase is relatively
ow since all of the training, tuning, and thresholding has already
een completed. New instances are simply projected onto the already
stablished models in real time. The Tic-Toc function provided by
ATLAB revealed that only 11.3356 s of elapsed time was needed
o fully classify a new sample instance. These new instances can be
rocessed as little or as frequently as needed, ranging from several
imes per hour to several times per month. For reference, a typical
nstance utilized in this research is a 50 s long generator power signal,
ampled at a frequency of 200 Hz.
Lastly, it should be noted that our proposed framework does not

equire the use of complex sensor networks (e.g., ones containing
ibration, strain, torque, acoustic emission sensors, etc.) that are cur-
12

ently used in contemporary fault detection and condition monitoring f
Table 3
Study comparing the performance of state of the art frameworks proposed by Wei et al.
(2021) and Freeman et al. (2021) against our newly proposed.
Test set comparative study (w/95% Confidence)

Total number of Test Set Simulations: 720

Error metric Wei et.al. Freeman et.al. Our proposed

Accuracy (%) 59.03% 61.11% 92.08%
Phy-based Violations N/A N/A 57
Type II Error (%) 36.93% 44.64% 2.92%
Type I Error (%) 63.07% 55.36% 5.00%

systems. Thus, when taken together, the relatively low computational
costs of the second phase, coupled with the negation of an intrusive
sensory network means that our proposed framework can be effortlessly
integrated into existing OCT control systems.

5.5. Comparative study with other state-of-the-art approaches

Our proposed fault detection and severity classification algorithm
was compared against the works done by Wei et al. in (Wei et al., 2021)
and the previous work of Freeman et al. in (Freeman et al., 2021). For
his comparative study, Wei’s method was chosen in particular because
t confronted challenges associated with performing imbalance fault
etection on a variable speed rotor. In summary, Wei’s algorithm begins
irst by using the HT to perform phase demodulation on the generator
tator current signal of a MCT. Next, WMD is utilized to denoise
he demodulated stator current signal before the application of power
pectral density analysis (PSD). Lastly, screening linear discriminant
nalysis (S-LDA) is applied on the analyzed PSD signal for fault severity
lassification. The performance of the fault detection framework uti-
ized by Wei was cited as being able to correctly predicted the presence
nd severity of a pitch imbalance fault 92.04% of the time.
In contrast, Freeman’s framework in Freeman et al. (2021) begins

y employing a Morlet CWT on the generator power signal of a MCT
or demodulating purposes. Then, statistical features are extracted from
he wavelet coefficients residing within the 1P frequency range of
he signal. PCA is then employed on the wavelet coefficient feature
pace, where a K-Nearest Neighbor classifier is utilized to perform
ault detection and severity classification. Results from Freeman’s work
emonstrated that the presence of a pitch imbalance fault can be
ccurately detected 100% of the time, and correctly classified based
pon severity more than 97% of the time. Since the work performed
n this study is an extension of Freeman’s work in Freeman et al.
2021), it was important to also include this work in the comparative
tudy.
Both methods were tested and compared against our proposed

ramework using the data set generated for this current work. This
ew data set is an extension of the data set used in Freeman et al.
2021), where in this new scenario, data was generated with a wider
ange of current flow speeds and T.I. values than what was included in
ither of works Wei et al. (2021) or Freeman et al. (2021). This new
ata set is intended to more closely resemble at sea conditions over an
xtended period of time, and therefore represents a more challenging
CT operating scenario. To the best of our knowledge, no other works
nvestigate the effects of at sea conditions on the performance of OCTs
s extensively as what was presented in our current work. Therefore,
e are confident that the scientific merit and contribution of this work
s worthwhile to all relevant research communities.
As depicted in Table 3, when Wei’s framework (Wei et al., 2021)

s employed on the new data set its performance dropped severely.
n particular, once instances possessing different current velocities and
.I. were fed into the framework, the increased complexity of the 𝑃𝑠(𝑡)
ignal morphology caused the effectiveness of the S-LDA to diminish. As
hown, Wei’s method was only able to achieve an accuracy of 59.03%,

or which of the total misclassifications present, 36.93% of them were
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Table A.4
List of the most relevant parameters used in the development of framework.
Symbol Description

𝐽 Moment of Inertia
𝜔 Angular rotational speed of rotor
𝑇 Hydrodynamic Torque induced on rotor
𝑇 Electromagnetic torque induced on rotor
𝑇𝜏 Hydrodynamic torque induced on rotor from turbulence
𝑇 Deviation in torque from turbulence
𝜔𝜏 Angular rotational speed of rotor in turbulence
𝜔 Angular speed deviation of rotor in turbulence
𝑇 Hydrodynamic Torque induced on rotor under turbulence and imbalance fault conditions
𝜔 Angular rotational speed of rotor in turbulence and imbalance fault conditions
𝜔 Angular speed deviation induced on rotor from turbulence and imbalance fault conditions
𝐴𝑣 Magnitude of shaft torque variation resulting from pitch imbalance fault conditions
𝐼𝑠(𝑡) Generator stator current signal
𝐼 Component of 𝐼𝑠(𝑡) from variable ocean current velocity and imbalance fault conditions
𝑓𝑠(𝑡) Fundamental frequency of 𝐼𝑠(𝑡)
𝐴𝑖 Amplitude component of 𝐼𝑠(𝑡) stemming from imbalance fault
𝐴𝑓 Amplitude component of 𝑓𝐹 stemming from imbalance fault
𝜑𝑖 Phase component of 𝐼𝑠(𝑡) stemming from imbalance fault
𝜑𝑓 Phase component of 𝐼𝑠(𝑡) stemming from imbalance fault
𝑓𝑅 Fundamental frequency of 𝐼𝑠(𝑡)
𝐼 Modulated generator stator current signal
𝑃 Three phase instantaneous power signal of the generator
𝑉 Terminal voltage of the generator stator
𝑃𝑠(𝑡) Single Phase power output by the generator
𝑉𝐿𝐿 Maximum supply line-to-line voltage
𝐼𝑠𝑢𝑝 Fundamental supply current
𝜑𝑠 Initial phase angle of the fundamental supply current
𝜑𝐹 Initial phase angle of 𝐼𝑠𝑢𝑝 when 𝜑𝑠 of 𝑓𝐹 equals 𝑓𝑠(𝑡) + 𝑚 ⋅ 𝑓𝑅
𝜑𝐹𝑁 Initial phase angle of 𝐼𝑠𝑢𝑝 when 𝜑𝑠 of 𝑓𝐹 equals 𝑓𝑠(𝑡) - 𝑚 ⋅ 𝑓𝑅
𝑚 Constant positive integer
𝐼𝑓𝑎𝑢𝑙𝑡 Peak value of 𝐼𝑠(𝑡) when 𝑓𝐹 equals 𝑓𝑠(𝑡) + 𝑚 ⋅ 𝑓𝑅
𝐼𝐹𝐹 Maximum value of 𝐼𝑠(𝑡) when 𝑓𝐹 equals 𝑓𝑠(𝑡) - 𝑚 ⋅ 𝑓𝑅
𝗨 Turbulence intensity time domain feature set and their associated labels
𝗙𝑇 Time domain features used to classify turbulence
𝗙𝑆 Time domain feature labels used to classify turbulence
𝗟𝗼𝘀𝘀 Neural Network empirical loss function.
𝜆𝑃𝐵 Physics-based hyper-parameter dictating importance of physics-based inconsistencies
𝗟𝗼𝘀𝘀𝑃𝐻𝑌 Physics-based loss term used by the framework’s empirical loss function.
𝗧𝗜 Magnitude of simulated Turbulence Intensity
𝗧𝗜𝑎𝑝𝑝𝑟𝑜𝑥 Magnitude of Turbulence Intensity approximated by our framework
𝗦𝗧𝗗 Standard deviation operator
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attributed to Type-II errors, with the remaining 63.07% of them cor-
responding to Type-I errors. Similarly, the performance of Freeman’s
previous framework also demonstrated unsatisfactory performance. In
summary, the overall accuracy achieved was only slightly better at
61.11%, for which of the total misclassifications present, 44.64% of
them were attributed to Type-II errors, with the remaining 55.36% of
them corresponding to Type-I errors.

Our newly proposed framework was able to achieve an accuracy
score of 92.08%, for which only 2.92% of the total instances classified
were attributed to Type-II errors, and 5.00% of the total instances
classified were attributed to Type-I errors. This improved performance
is attributed to the T.I. classification that was performed by the physics-
informed loss function that is integrated into our framework’s machine
learning pipeline. Furthermore, it should also be noted, that the 57
physics-based violations that were made by our framework can all
be attributed to incorrect current flow speed classifications that were
made in step 2 of Fig. 3, and not necessarily because of any inherent
deficiencies with the physics-informed loss function. If Eq. (27) is
referenced, then this finding makes sense, as the average current flow
speed is a variable that needs to be known in order to calculate T.I.
In contrast, neither of the frameworks developed by Wei or Freeman
provided a means to classify T.I. (hence the reason of the N/A entries
in Table 3). This implies that neither methods is capable of accounting
for the masking of imbalance fault signatures within that coincides
with increasing magnitudes of T.I. (see Figs. 10(a) and 10(c) and
ection 5.1).
13

i

. Conclusions

In this paper, we developed a novel fault detection and severity clas-
ification framework for OCT rotor blade imbalances. The robustness of
he framework was enhanced through the integration of physics-based
rior knowledge into the framework’s machine learning pipeline. This
rior knowledge was derived from oceanic environmental parameters
cquired from a 13-month ADCP case study. Through the use of this
rior knowledge, we engineered a never before used feature for rotor
lade imbalance fault detection that approximated ambient T.I. We
hen used this feature to construct a physic-guided neural network,
hich in itself utilized a physics-based loss function to constrain T.I.
redictions according to the turbine’s underlining rotor dynamics. Our
ramework was able to achieve an average classification accuracy of
2.08%, while maintaining a 2.92% Type II and a 5.00% Type I
rror rate. These results compared favorably to other state of the art
ethods in this field, (Wei et al., 2021; Freeman et al., 2021), where
nly a respective 59.03% and 61.11% accuracy score was obtained
sing the data set created for this work. In the future, we hope to
urther expand the robustness of our framework via the incorporation
f transfer-learning based fault detection approaches.
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