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A Deep Learning-Based
Generalized Empirical Flow
Model of Glottal Flow During
Normal Phonation
This paper proposes a deep learning-based generalized empirical flow model (EFM) that
can provide a fast and accurate prediction of the glottal flow during normal phonation.
The approach is based on the assumption that the vibration of the vocal folds can be rep-
resented by a universal kinematics equation (UKE), which is used to generate a glottal
shape library. For each shape in the library, the ground truth values of the flow rate and
pressure distribution are obtained from the high-fidelity Navier–Stokes (N–S) solution. A
fully connected deep neural network (DNN) is then trained to build the empirical map-
ping between the shapes and the flow rate and pressure distributions. The obtained DNN-
based EFM is coupled with a finite element method (FEM)-based solid dynamics solver
for fluid–structure–interaction (FSI) simulation of phonation. The EFM is evaluated by
comparing the N-S solutions in both static glottal shapes and FSI simulations. The results
demonstrate a good prediction performance in accuracy and efficiency.
[DOI: 10.1115/1.4053862]

1 Introduction

Voiced sound production in the human larynx is a complex
fluid–structure–interaction (FSI) process in which the forced air
from the lungs interacts with vocal fold tissues to initiate
sustained vibrations that modulate the glottal airflow [1]. An
accurate prediction of the vocal fold vibration and sound source
relies on an accurate prediction of intraglottal pressure and glottal
flow rate. In the past, the most commonly used glottal flow model
for simulating FSI was the Bernoulli equation, which simplified
the flow as a one-dimensional inviscid flow [2–4]. By coupling
with lumped-mass or continuum vocal fold models, the model
provided important understandings of the dynamics of FSI during
voice production [5–13]. Yet, the inviscid assumption made the
model inaccurate in predicting the glottal flow rate and intraglottal
pressures, especially during glottal closing when the glottis is typ-
ically in a divergent shape in which rich viscous effects occur
such as flow separation, shear layer instability, and intraglottal
vortices [14–16]. To improve the accuracy, research efforts have
been made to incorporate various viscous loss terms into the Ber-
noulli equation [7,14,17,18]. While the results showed

improvement over the original Bernoulli equation, the modified
model is largely based on assumptions of simple glottal shapes.

On the other hand, the quick advancement of the continuum
vocal fold model from simple two-dimensional configurations to
complex three-dimensional subject-specific configurations increas-
ingly requires a more sophisticated glottal flow model that can rep-
resent glottal flow dynamics in complex glottal shapes. The
Navier–Stokes (N–S) equation-based model, i.e., the full-order
model (FOM) can satisfy the requirement [19–22], but the very
high computational cost limits its use in statistical studies. There-
fore, there is a need and interest in developing a glottal flow model
that can provide accurate and fast solution of glottal flow dynamics
in complex glottal shapes.

It has been shown that self-sustained oscillation of vocal folds
is dominated by a few modes of vibration, even when the motion
is abnormal [23–26]. This high predictability of the vibratory pat-
tern of the vocal folds makes it feasible to model the glottal flow
dynamics based on the glottal shapes using deep-learning
approach. Nevertheless, related research focusing on this area is
still rare. A deep learning-based empirical flow model (EFM) for
glottal flow was proposed in our previous study [27]. The model
was based on the Bernoulli equation with a viscous loss term pre-
dicted by a deep neural network (DNN) model. With the trained
DNN-Bernoulli model, the flow resistance coefficient as well as
the flow rate and pressure distribution of a given glottal shape can
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be predicted. However, the DNN-Bernoulli model was developed
under certain initial and geometry conditions and the generaliza-
tion ability of the model may be limited. Can we find a general-
ized model to represent the vibration pattern of the vocal fold so
that we could use for fast and accurate prediction of the underly-
ing flow variables? To answer this question, we perform some
preliminary exploration and propose a deep learning-based gener-
alized EFM of the glottal flow during normal phonation in this
paper.

The outline of the paper is organized as follows: the overall
methodology is presented in Sec. 2; the three-dimensional shape
of the vocal fold during vibration, including the prephonatory
geometry and universal kinematics equation (UKE), is introduced
in Sec. 3; the process of building up the generalized glottal shape
library is elaborated in Sec. 4; details about the implementation
and evaluation of the DNN model are discussed in Sec. 5; imple-
mentation and evaluation of the performance of the present EFM
for FSI Simulation are discussed in Sec. 6; finally, the conclusions
and limitations are presented in Sec. 7.

2 Overall Methodology

The underlying assumption of the approach is that the vocal
fold kinematics can be approximated by a few vibration modes
described by the surface–wave approach [28]. A number of past
studies showed that the vocal fold vibration in normal phonation
is dominated by two modes [23–25,28]. Therefore, in this work,
we assume that the vibration of the vocal folds is approximated by
a linear combination of the modal displacement of the two domi-
nant modes, and then a UKE can be obtained. To efficiently verify
this hypothesis, Bernoulli-finite element method (FEM) FSI simu-
lations with various vocal fold material properties and subglottal
pressures are employed as the fast shape generators, and the UKE
is examined by generating a large number of glottal shapes from
FSI simulations and fitting the glottal shapes with the UKE using
the genetic algorithm (GA) [29–31]. We choose GA for the shape
fitting because it can be abstracted as a constrained optimization
problem with bounded variables. The probability distribution
function (PDF) of each fitting parameter is then obtained and used
to construct a generalized glottal shape library by appropriately
resampling the PDF of the fitting parameters. For each shape in
the library, the ground truth value of the flow rate and pressure
distribution are obtained from high-fidelity N–S solutions. A fully
connected DNN [32] is then used to build the empirical mapping
between input parameters (fitting parameters in the UKE and sub-
glottal pressure) and output parameters (flow rate and pressure
distribution). We choose DNN because there is no need to care
about the details of the mathematical relationship between the
input and output, and the flow variables for any glottal shape that
not in the shape library can be well predicted by virtue of the
interpolation capability of the trained DNN. K-fold cross valida-
tion is performed to fine-tune the architecture and hyperpara-
meters and evaluate the prediction performance of the DNN. The
developed empirical glottal flow model is therefore composed of
two parts: (a) glottal shape parameterization using the UKE and
GA, and (b) glottal flow rate and intraglottal pressure prediction
using the trained DNN. The performance of the developed flow
model (EFM) is evaluated by comparing to the N–S solutions
(FOM) in both static glottal shapes and FSI simulations.

3 Three-Dimensional Shape of Vocal Fold During

Vibration

3.1 Prephonatory Geometry. The prephonatory geometry of
the vocal fold (right half) is shown in Fig. 1. The length L along
the anterior–posterior direction (z), medial surface thickness T
along the inferior–superior direction (y), and depth D along the
lateral direction (x) are 1.5 cm, 0.3 cm, and 0.75 cm, respectively.
The subglottal angle a equals to arctan0.5. An initial gap
Dx¼ 0.002 cm along the lateral direction (x) exists between the

left and right counterpart. The vocal fold is divided into three
layers including the cover, ligament, and body. The thickness of
the cover (TC) and ligament (TL) layers are both 0.05 cm. Each
layer is assumed to be invariant in the anterior–posterior direction.
The above dimensions are selected in the range typical for adult
humans [5,19,28]. The vocal fold model is discretized with
10,810 tetrahedral elements, the mesh density is comparable to
our previous three-dimensional simulations of similar configura-
tions [21,33,34] where grid convergence studies were performed.

3.2 Universal Kinematics Equation. Past in vivo and ex
vivo studies have shown that vocal fold vibrations are dominated
by a few vibratory modes in real physiological conditions
[23–26]. Following the surface–wave approach in Ref. [12], the
kinematics of the medial surface of the vocal fold can be
described with a combination of (m, n) modes, where m and n cor-
respond to the number of half-wavelengths in the
anterior–posterior and inferior–superior directions, respectively.
For normal phonation, the most dominant modes are the (1,0) and
(1,1) modes, where (1,0) represents the medial–lateral motion and
(1,1) represents the convergent–divergent motion [12,28]. The
displacement of the medial surface over time can be represented
by a linear combination of the modal displacement of these two
modes

n y; z; tð Þ ¼ an y; z; tð Þð1;0Þ þ ð1� aÞn y; z; tð Þð1;1Þ (1)

where the subscripts (1,0) and (1,1), respectively, refer to modes
(1,0) and (1,1), and a is the weight coefficient of mode (1,0). An
equivalent equation exists for the left-half vocal fold. Note that in
our study, to simplify the model, only the lateral (x) vibration is
allowed and the vertical (y) motion is fixed. This treatment is the
same as that adopted in Refs. [12] and [28].

In Ref. [28], based on the surface–wave approach and small-
angle approximation [12], the modal displacement of the medial
surface of the vocal fold at any instant in time was defined as

n y; z; tð Þðm;nÞ ¼ nmsin
mpz
L

� �
sinxt� n

x
c

� �
y� ymð Þcosxt

� �
(2)

where nm is the modal displacement amplitude, ym is the inflection
point for the vertical half wavelength, x is angular frequency, and
c is the speed of the mucosal wave [28].

The displacement of the medial surface of the vocal fold over
time in Eq. (1) can then be expressed as

n y; z; tð Þ ¼ nmsin
pz
L

� �
sinxt� 1� að Þ x

c

� �
y� ymð Þcosxt

� �

(3)

Note that our later FSI simulation results reflected that the loca-
tion of the inflection point changes along the anterior–posterior
direction, therefore, the inflection location is modeled as

Fig. 1 Prephonatory geometry of the vocal fold
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ym ¼ T � b sin
pz
L
þ 1

� �
(4)

where 0 � b � T/2.
By superimposing the time-dependent displacement in Eq. (3)

on the prephonatory geometry, the three-dimensional shape of the
glottis at any time instant can be obtained. Equation (3) is also
termed as the UKE in this paper.

4 Generalized Glottal Shape Library

The vocal fold shape during vibration can be described by
Eqs. (3) and (4) with the following parameters: the vibration
amplitude nm, weight coefficient of mode (1,0) a, inflection point
factor b, phase / ¼ 12xt=p, and ratio between the angular fre-
quency and mucosal wave speed x/c, which is related to the vibra-
tion frequency f . The estimated physiological range of these
parameters for normal phonation [28] is listed in Table 1. It is
worth pointing out that the variation in terms of the length of the
vocal fold is not considered, which simplifies the transverse iso-
tropic model with a constant ligament stiffness.

In this section, we aim to verify that the UKE can be used as a
generalized equation to represent any glottal shape during normal
phonation. To have a good estimation of the possible glottal
shapes during FSI, FSI simulations of vocal fold vibration under
various subglottal pressures and material properties are conducted.
The simulations employ the finite element vocal fold model
coupled with the Bernoulli equations for fast solutions [33]. A
large number of glottal shapes are extracted from the simulation
results and used to fit the UKE by using the GA [29–31]. The fit-
ting error is used to quantify the representative capability of the
UKE. Finally, the PDF of each input parameter in the UKE is
obtained and used to build the generalized glottal shape library
through appropriate resampling.

4.1 Bernoulli-Finite Element Method Fluid–Structure–
Interaction Simulation. The vocal fold tissue is modeled as the
viscoelastic, transversely isotropic material. The baseline material
properties of each layer of the vocal fold [5,34] are listed in
Table 2.

Based on the baseline material properties listed in Table 2, the
ranges of the material properties for each layer can be obtained by
simultaneously multiplying the corresponding E0

pz and G0
pz with a

factor k, where the physiological range of k is [0.5,5.0] with an
increment size Dk¼ 0.5. Note that the values of k for the cover
layer and ligament layer are always the same. The various mate-
rial property factors of the cover-ligament layers and body layer
under selected subglottal pressure conditions at P0 ¼ 0.5 kPa,
0.75 kPa, 1.0 kPa can be respectively expressed as

kCL ¼ mDk; m ¼ 1; 2;…; 10 (5)

kB ¼ nDk; n ¼ 1; 2;…; 10 (6)

where the subscripts CL and B indicate the cover-ligament layers
and body layer, respectively.

By systematically varying kCL, kB <and P0, a total of 300 cases
are generated for the FSI simulations. For each case, the density
and kinematic viscosity of the air are 1.145� 10�3 g/cm3 and
�¼ 1.655� 10�1 cm2/s, respectively. The glottis is discretized
with NS¼ 69 uniformly spaced cross sections along the
inferior–superior direction such that the spacing is 0.01 cm. Simi-
lar to the treatment adopted in Ref. [28], the contact surface is cal-
culated as an average of the left and right surface coordinates.
Note that this treatment is consistent in the subsequent EFM-FSI
and FOM-FSI model. A uniform Rayleigh damping factor is used
for each case. As an example, the vibration pattern of the vocal
folds during one converged cycle at P0¼ 1.0 kPa, kCL¼ 1.0,
kB¼ 4.0 is illustrated in Fig. 2, where the left subfigure corre-
sponds to the time history of the flow rate Q during one converged
cycle, and the right subfigure corresponds to the glottal shape at
five representative phases probed from the left subfigure. The
vibration shows a typical alternative convergent-divergent glottal
shape change.

4.2 Glottal Shape Fitting With the Genetic Algorithm. In
this section, we aim to verify that those glottal shapes extracted
from the Bernoulli-FEM FSI simulations can be represented by
the UKE. The GA is employed to inversely determine the values
of the fitting parameters from the range listed in Table 1 such that
the difference between the optimized and target (FSI) values of
the nodal displacement is minimal. In the optimization process, as
the flow rate heavily relies on the minimum cross section area, an
equal constraint between the optimized and target minimum cross
section area along the inferior–superior direction of the glottis is
enforced. Therefore, the constrained minimization function for
each glottal shape can be written as

Table 1 Estimated physiological range of the
parameters in the UKE

Parameters Range

nm [0, 0.1 cm]
a [0, 1]
b [0, T/2]
/ [0, 24]
f [100Hz, 250Hz]

Table 2 Baseline material properties of each layer of the vocal
fold

q (g/cm3) Ep (kPa) tp E0
pz (kPa) tpz G0

pz (kPa)

Cover 1.043 2.01 0.9 40 0.0 10
Ligament 1.043 3.31 0.9 66 0.0 40
Body 1.043 3.99 0.9 80 0.0 20

q is the tissue density; Ep and E0
pz are the transversal and longitudinal

Young’s Modulus, respectively; tp and tpz are the transversal and longitu-
dinal Poisson ratio, respectively; G0

pz is the longitudinal shear modulus
[5,34].

Fig. 2 Glottal flow rate and vocal fold vibration pattern during
one cycle of a representative Bernoulli-FEM FSI simulation
case at P0 51.0 kPa, kCL51.0, kB 5 4.0
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nm; a; b; /; f ¼ argmin

Xn
i¼1

½nioptimized nm; a; b; /; fð Þ � nitarget�
2

n

Subject to argmin Aoptimized
j ¼ argminAtarget

j ; ðAoptimized
j Þmin

¼ ðAtarget
j Þmin

(7)

where argmin refers to the argument of the minimum, the values
of nm; a; b; /; f are bounded by the corresponding ranges listed
in Table 1, n is the number of nodal points of the glottis surface,
and Aoptimized

j and Atarget
j are the optimized and target cross section

area function with j the cross section index, respectively. The con-
straints imply that the location and value of the optimized mini-
mum cross section area are equal to the target one.

The population size and the number of generations for the GA
are chosen based on a trial-and-error experiment such that the
optimization accuracy and efficiency is balanced. Specifically, the
optimization is run for 6 times until the relative change of the fit-
ness function doesn’t show significant difference with a pre-
scribed convergence criterion. For this case, the corresponding
values are chosen as 160 and 100, respectively. The overall resid-
ual of the fitness function extracted from the Bernoulli-FEM FSI
cases is plotted in Fig. 3. The residual for each phase is normal-
ized by the corresponding maximum nodal displacement. The rel-
ative residuals for most of the phases are close to 0 and the
maximum relative residual among all the phases is around 0.01,
indicating that GA converges well for each glottal shape and
therefore the UKE can be used a generalized equation to represent
the extracted glottal shapes. Furthermore, the kernel density esti-
mation [35] is used as a nonparametric way to estimate the PDF
of the fitting parameters, and the corresponding PDF for
P0¼ 0.75 kPa is plotted in Fig. 4. The PDF for P0¼ 0.5 kPa and
P0¼ 1.0 kPa are highly similar and thus not shown. Note that the
PDF of the optimized frequency is not plotted in those figures
because the values for all cases are similar and the corresponding
PDFs are concentrated at f ¼ 210Hz. Therefore, to reduce the
number of redundant shapes, we fix the value of the optimized fre-
quency to be f ¼ 210Hz. Based on the PDFs, the generalized
glottal shape library can be built by appropriately resampling the
parameters. Concretely, we first locate the parameter values with
the local maximum probabilities from each PDF, and then with
this located value as the center value, conduct the uniform resam-
pling from each PDF such that the majority of the representative
glottal shapes can be included in this library. The resampled val-
ues of the input parameters under different subglottal pressure

Fig. 3 Relative residual of the fitness function of GA

Fig. 4 PDF of optimized shape parameters for P05 0.75 kPa: (a) nm, (b) a, (c) b, and (d) /
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conditions are listed in Table 3. Note that for different subglottal
pressure values, only the amplitude nm is different, and the other
parameters are all the same. A total of NL ¼ 3960 different shapes
are generated by substituting the values in Table 3 into the UKE,
and these shapes constitute the generalized glottal shape library
which are used as the raw data for training the DNN in Sec. 5.2.

5 Implementation of the Deep Neural Network Model

For each shape in the generalized glottal shape library, the sub-
glottal pressure P0 and the parameters nm; a; b; and / are the
input features, and the corresponding output targets are the flow
rate Q and the pressure distribution Pi, where i is the index of the
discretized cross sections in the inferior–superior direction of the
vocal folds. The ground truth values of the flow rate Q and pres-
sure distribution Pi are obtained by solving the N–S equations.
Then, the mapping relationship between the input features and the
corresponding output targets can be established by a fully con-
nected DNN as follows:

Q; Pi ¼ f ðP0; nm; a; b; /; hÞ (8)

where f is the function representing the overall DNN, and h
denotes all learnable parameters of the DNN. With this trained
DNN, the flow rate and pressure distribution along any glottal
shape generated by the UKE can be well predicted.

5.1 N–S Solution of the Output Targets. The fluid flow is
governed by the incompressible N–S equations as follows:

@ui
@xi

¼ 0 (9)

@ui
@t

þ @uiuj
@xj

¼ � 1

qf

@p

@xi
þ tf

@2ui
@xj@xj

(10)

where ui, q, p, and t are the incompressible flow velocity, density,
pressure, and kinematic viscosity, respectively. An in-house
sharp-interface immersed-boundary N–S flow solver [22] is used
to obtain the ground truth solution of the output targets. The size
of the computational domain is 1.5 cm� 21.0 cm� 1.5 cm in the x
(lateral), y (inferior–superior), and z (anterior–posterior) direction.
The vocal folds are placed 3.2 cm and 17.0 cm away from the inlet
and outlet of the computational domain, respectively. The grid
independence study is performed by comparing the flow rate and
average pressure distribution on coarse, medium and fine meshes
with fixed Courant–Friedrichs–Lewy number. The mesh number
Nx�Ny�Nz on the coarse, medium and fine meshes are
64� 64� 24, 128� 128� 48, and 256� 256� 96 in the x, y, and
z direction, respectively, where Nx, Ny, and Nz are the number of
mesh nodes in the x, y, and z direction, respectively. The mesh is
stretched to the far field in the x and y direction, while uniformly
distributed in the z direction. From the results, the medium mesh
is adequate to obtain the ground truth solution of the output targets
from the shape library. The relative error of the flow rate obtained
on the coarse and medium mesh with respect to that obtained on
the fine mesh are 12.1% and 1.0%, respectively. The minimum
interval of the medium mesh is 0.003 cm and 0.01 cm in the x and
y direction, respectively. Moreover, the total CPU time required
for convergence on the coarse, medium and fine meshes are

respectively 0.2, 2.3, and 35 h on a parallel computer with 32
CPUs.

5.2 Implementation Details of the Deep Neural Network.
As mentioned above, the input features and corresponding output
targets extracted from the shape library can be organized as a vec-
tor x and y, respectively,

x ¼ ½P0 nm a b/�T

y ¼ ½QP1 P2…PNP
�T

(11)

where NP¼ 68 is the dimension of the output pressure
distribution.

The mapping relationship between the input features x and cor-
responding output targets y can be established by a fully con-
nected DNN [32,36]. In the fully connected DNN, the input and
output layers are denoted as z0 and zL, respectively. The layers
between the input and output layers are called the hidden layers zl,
where l¼ 1,…, L�1. Neurons in the hidden layer zl have connec-
tions to all neurons of the previous layer zl�1

zl ¼ rlðWT
l zl�1 þ blÞ (12)

where Wl is the learnable weights, bl is the additive bias, and rl is
the nonlinear activation function.

The loss function J of the DNN is

J ¼ 1

N

X
jjzL � yjj22 þ kjjWjj2 (13)

where zL is the predicted value, and k is the regularization coeffi-
cient to prevent the overfitting of the DNN model and its value is
taken as 0.001.

Note that the range of values of Q and Pi are different, i.e., Q �
0 while Pi=P0 � 1, therefore for the ease of training the DNN,
the input features x are, respectively, mapped to the subsets of the
output targets y (i.e., Q and Pi) with different architectures of the
DNN.

The whole dataset from the shape library is randomly split into
the training and test sets. To avoid the overfitting of the model, we
use five-fold cross validation [32] to fine tune the architecture and
hyperparameters of the DNN, such as the number of hidden
layers, the number of neurons on each hidden layer, the initializa-
tion of the weights, the activation function, the optimization
method, the minibatch size, and the number of epochs [32]. The
final architecture and hyperparameters of the DNN are chosen
from those that have the lowest errors on the validation set. The
final DNN model is then trained on the full training set, and the
prediction performance of the trained model is evaluated on
the test set.

Two separate networks are used for training the Q and Pi,
denoted as DNN-Q and DNN-P, respectively. The input layer for
both DNNs has five neurons which correspond to the dimension
of the input vector. The output layer of DNN-Q has a single neu-
ron which corresponds to the ground truth value of the flow rate
Q, while that of DNN-P has 68 neurons which correspond to the
ground truth value of the pressure distribution on the discretized
cross sections along the inferior-superior direction of the vocal
folds. Since Q and Pi are bounded by different ranges (Q � 0 and
Pi=P0 � 1), the softplus and tanh activation function [32] are used

Table 3 Resampled values of input parameters

P0 (kPa) nm a b /

0.5 0.02, 0.03, 0.04, 0.1 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 0.0, 0.015, 0.03, 0.135, 0.15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
0.75 0.025, 0.04, 0.055, 0.1
1.0 0.035, 0.055, 0.075, 0.1
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on the output layer of DNN-Q and DNN-P, respectively. Besides
the input layer and output layer, there are two hidden layers for
both DNNs. The number of neurons on the hidden layers of DNN-
Q is 64, and the softplus activation function is used on each hid-
den layer, whereas the number of neurons on the hidden layers of
DNN-P are 256, and the relu activation function [32] is used on
each hidden layer. All of the weights on each layer are initialized
with a random normal distribution. Both of the DNN models are
optimized using a mean-squared loss function with an adaptive
version of the stochastic gradient descent algorithm called Nadam
(Nesterov Adam) [37]. Both of the DNN models are trained with
10,000 epochs, where one epoch consists of one full training cycle
on the training set, and the mini-batch size is 128 for each epoch.
The DNN models are implemented on the open-source machine
learning platform KERAS [38] using TENSORFLOW [39] as the backend.

5.3 Evaluation of the Trained Deep Neural Network Mod-
els. The relative percent difference (RPD) between the true and
predicted outcomes is used to evaluate the trained DNN models.
The expression of the RPD for Q and Pi for each glottal shape in
the training data is as follows:

EQ ¼ jQ� Q̂j
maxðjQj; jQ̂jÞ

(14)

EP ¼

XNP

i¼1

jPi � P̂i j
maxðjPij; jP̂i jÞ

NP
(15)

where Q; Pi and Q̂, P̂i are, respectively, the true and predicted
outcomes.

The history of the fivefold cross validation results for DNN-Q
and DNN-P is plotted in Fig. 5. The horizontal axis corresponds to
the number of epochs, and the vertical axis corresponds to the
mean RPD between the true and predicted outcomes. The compar-
ison is between the training and validation sets. It took 10,000
epochs for the mean RPD on the training and validation sets to
converge for DNN-Q and DNN-P. The converged mean RPD on
the training and validation sets are 1.71% and 1.89% for DNN-Q,
and 1.97% and 4.12% for DNN-P, respectively. The performance
of the trained DNN-Q and DNN-P on the test set is plotted in
Fig. 6. After running 10,000 epochs, the mean RPD on the test set
converges at 1.74% and 3.52% for DNN-Q and DNN-P, respec-
tively. The scatter plots of the true and predicted outcomes on the
test set show a good prediction performance. Note that the plot of
DNN-P is more scattered than that of DNN-Q. Although DNN-P

has more neurons in the hidden layers than DNN-Q, given that the
dimension of the output pressure distribution is much higher than
the output flow rate as well as the input parameters, it’s more chal-
lenging to predict the pressure distribution. Further improvements
could be introducing more advanced neural network architectures
(e.g., convolutional neural network [32], long short-term memory
network [32]) and feeding inputs with higher dimensions into the
neural networks. The final mean RPD on the training, validation
and test sets for DNN-Q and DNN-P are summarized in Table 4.

Furthermore, six shapes under different subglottal pressures are
randomly selected from the test set, and the comparison of the
true and predicted pressure distribution of these shapes are shown
in Fig. 7. From these figures, we can observe that the pressure dis-
tribution can be well predicted by the trained DNN-P model.

To summarize, the diagram of the implementation of the pres-
ent empirical flow model is illustrated in Fig. 8. Concretely, it is
divided into the following steps: first, various glottal shapes are
extracted from 300 converged Bernoulli-FEM FSI results under
different subglottal pressure and material properties. Second,
these extracted shapes are fitted with the UKE using the GA and
the PDF of the fitted input parameters of the UKE are determined.
Third, 3960 different glottal shapes are generated by appropriate
resampling from the PDF of the input parameters with high proba-
bilities and then substituting them into the UKE, which constitute
the generalized shape library. Fourth, for each shape in the library,
the ground truth values of the flow rate Q and pressure distribution
Pi are obtained by solving the N–S equation. Finally, the mapping
relationship between the input parameters together with the sub-
glottal pressure (input features) and the corresponding flow rate
and pressure distribution along the inferior–superior direction of
the glottal shape (output targets) are established by the fully con-
nected DNN. With this empirical flow model, for any glottal
shape, the input features can be extracted from the UKE with the
GA and then the flow rate and pressure distribution can be pre-
dicted with the trained DNNs. The implementation procedure of
the empirical flow model can be summarized in Table 5.

The developed empirical flow model is then coupled with the
FEM based solid dynamics solver for FSI simulation. The abstract
workflow of the EFM for FSI simulation is illustrated in Fig. 9.
First, the flow rate Q and pressure distribution Pi of the glottal
shape X at a certain time instant t can be obtained by the present
empirical flow model, then the pressure load is fed into the FEM
solid solver to calculate the corresponding deformation of the
glottis DX, finally the updated glottal shape XþDX is used as the
initial shape of the glottis at the next time instant tþDt. The
empirical flow model and FEM based solid solver are coupled in a
weak manner, i.e., they are solved sequentially/explicitly with
only one fixed-point iteration required at each time-step.

Fig. 5 Convergence history of the DNNs for flow rate and pressure using fivefold cross validation: (a) DNN-Q and
(b) DNN-P
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6 Evaluation of the Performance of the Generalized

Empirical Flow Model for Fluid–Structure–Interaction

Simulation

To evaluate the prediction performance of the present generalized
EFM for FSI simulation, the EFM-FSI results are first compared
with the FOM quasi-static (QS) results and the correlation and agree-
ment between these results are analyzed, and then compared with the
FOM-FSI results in terms of the voice quality-related parameters and
CPU time. Detailed discussions are given as below.

6.1 Comparison With Full-Order Model-Quasi-Static
Results. A series of new subglottal pressure and material proper-
ties are simulated using the EFM-FSI model to generate the glottal
shapes that are not in the shape library and evaluate the corre-
sponding prediction performance. The values of the selected sub-
glottal pressure and material properties are listed in Table 6. The
simulation setup is the same with the Bernoulli-FEM FSI simula-
tion. An example of the converged time history of the flow rate Q
at P0 ¼ 0.8 kPa, kCL ¼ 4.75, kB ¼ 3.75 predicted by the EFM is
illustrated in Fig. 10. Note that some small fluctuations at the end
of the closing phase can be observed, and this is likely due to the

unsatisfactory representation of these shapes by the UKE because
of the contact issue (i.e., the contact surface is calculated by aver-
aging the left and right surface coordinates, which may not strictly
satisfy the UKE) and the intrinsic weak extrapolation capability of
the DNN. However, since these values are very small, the whole
prediction performance will barely be affected.

Full-order model-QS is achieved by extracting various glottal
shapes from the converged EFM-FSI results at different phases,
and then feeding each extracted shape into the standalone N–S
solver to obtain the corresponding ground-truth flow rate and pres-
sure distribution. To this end, various glottal shapes are extracted
from the converged FSI results of the cases listed in Table 6. By
excluding the fully closed and nearly closed shapes, which may
not be well represented by the UKE due to the contact issue, the
total number of the extracted shapes for evaluation is 1582.

For each FSI case n in Table 6, at each time-step of the steady-
cycle EFM-FSI result, the flow rate Qn;k

EFM and pressure distribu-
tion Pn;k

i;EFM are, respectively, extracted, and the corresponding ref-
erence values of Qn;k

FOM and Pn;k
i;FOM can be computed by the FOM,

where k is the index of the time-step for each case. The time-
averaged error of Q and Pi for each FSI case, designated as En

Q
and En

P, can be calculated as follows:

En
Q ¼ 1

nt �Q
n
FOM

Xnt
k¼1

jQn;k
FOM � Qn;k

EFMj (16)

En
P ¼

Xnt
k¼1

XNP

i¼1

jPn;k
i;FOM � Pn;k

i;EFMj
P0

(17)

Fig. 6 Performance of the trained DNN models on the test set: (a) DNN-Q and (b) DNN-P

Table 4 Mean RPD on the training, validation, and test sets

Train Validation Test

Q 1.71% 1.89% 1.74%
Pi 1.97% 4.12% 3.52%
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where nt and �Q
n
FOM are the number of extracted time instants and

the time-averaged reference values of the flow rate for each case,
respectively.

The overall average error of Q and Pi, designated as EQ and EP,
can be calculated as

EQ ¼ 1

nc

Xnc
n¼1

En
Q (18)

EP ¼ 1

nc

Xnc
n¼1

En
P (19)

where nc is the number of cases listed in Table 6. The overall
average error of Q and Pi are 7.87% and 1.68%, respectively.

Additionally, the correlation and agreement between the true
and predicted Q and Pi for the extracted 1582 glottal shapes are

quantified. In terms of Q, the Pearson correlation coefficient
between QFOM and QEFM is excellent (0.993, P< 0.0005). The
scatter and correlation plots are also depicted in Fig. 11, where the
horizontal and vertical axes correspond to the true (QFOM) and
predicted (QEFM) values, respectively. The Bland–Altman plot
[40] is used to analyze the agreement between QFOM and QEFM.
The result is plotted in Fig. 12. As can be seen from this figure,
the mean difference between QFOM and QEFM is �2.784mL/s, and
the 95% limits of agreement (LoA) between them is from
�12.505mL/s to 6.936mL/s. The 95% confidence interval of the
mean difference, upper LoA and lower LoA between QFOM

and QEFM is [�3.0288mL/s, �2.5401mL/s], [6.5177mL/s,
7.3539mL/s] and [�12.9288mL/s, �12.0866mL/s], respectively.
The number of the outliers, which mainly come from the diver-
gent glottal shapes at the closing phase, is 38, and the percentage
of the outliers is 2.40%.

Similarly, in terms of Pi, the Pearson correlation coefficient
between Pi;FOM and Pi;EFM is excellent (0.997, P< 0.0005). The

Fig. 7 Comparison of the true and predicted pressure distribution in six randomly selected glottal shapes
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scatter and correlation plots are also depicted in Fig. 13, where the
horizontal and vertical axes correspond to the true (Pi;FOM) and
predicted (Pi;EFM) values, respectively. The Bland–Altman analy-
sis between Pi;FOM and Pi;EFM is plotted in Fig. 14. From this fig-
ure, we can observe that the mean difference between Pi;FOM and
Pi;EFM is 0.006 kPa, and the 95% LoA between them is from -
0.011 kPa to 0.023 kPa. The 95% confidence interval of the mean
difference, upper LoA and lower LoA between Pi;FOM and
Pi;EFM is [0.0053 kPa, 0.0062 kPa], [0.0218 kPa, 0.0232 kPa] and
[�0.0117 kPa, �0.0103 kPa], respectively. The number of the out-
liers is 87, and the percentage of the outliers is 5.50%.

The above correlation and agreement analysis results between
the true and predicted Q and Pi for various glottal shapes indicate
that the present EFM-FSI results agree very well with the corre-
sponding FOM-QS results.

6.2 Comparison With Full-Order Model-Fluid–Structure–
Interaction Results. FSI simulations at P0¼ 0.8 kPa, kCL ¼ 1.75,
kB ¼ 3.75 (case 1) and P0 ¼ 0.875 kPa, kCL ¼ 3.75, kB ¼ 3.75
(case 2) from Table 6 are conducted by using both the EFM-FSI
model and FOM-FSI model. The comparison of the phase-
averaged time history of the flow rate Q for both cases is illus-
trated in Fig. 15. From this figure, we can observe that the peak
flow rate, mean flow rate, and fundamental frequency are close to
each other while the opening quotient and skewing of the wave-
form are different. The phase-averaged values of these quantities
are listed in Table 7. The relative errors of the F0, Qmax, and
Qmean between the EFM-FSI and NS-FSI simulations are below
11%, while it is as high as 17% and 48%, respectively, for the
opening quotient and skewing quotient. The large errors in the
opening quotient and skewing quotient could come from two sour-
ces: (a) in the GA optimization process, although the desired loca-
tion and value of the optimized minimum cross section area are
preset to be equal to the target one (Eq. (7)), the actual optimized
location of the minimum cross section area may be shifted and the
corresponding value may be changed especially for the divergent
shape, which may affect the profile of the flow rate at the flow
decreasing phase, (b) the EFM-FSI model is a quasi-steady model
while the FOM-FSI is a fully unsteady model. The quasi-steady
assumption is known to affect the waveform of the glottal flow.
Moreover, the consistent underestimation of the open and skew
coefficients would point to a more symmetric waveform, which
could result from a lack of higher harmonics. This might indicate
the need for higher order modes. Therefore, further improvements
on the UKE model may be considered.

Furthermore, the average computational time required for one
vibration cycle of the EFM-FSI and FOM-FSI simulation is

compared. In order to obtain one vibration cycle, the average time
required for the EFM-FSI simulation is 1.5 h on a single CPU,
while that required for the FOM-FSI simulation is 20 h on a paral-
lel computer with 64 CPUs, which indicates the high efficiency of
the present EFM for FSI simulation of the glottal flow.

Fig. 8 Diagram of the implementation of the empirical flow
model

Table 5 Algorithm of the implementation of the empirical flow model

1 Extract various shapes from converged Bernoulli-FEM FSI results;
2 Fit these extracted shapes with the UKE using the GA;
3 Obtain the PDF of the fitted parameters of the UKE: nm; a; b; and /;
4 Resample the PDF of nm; a; b; and / for various P0;
5 Substitute the resampled values into the UKE to generate the generalized shape library;
6 Obtain the ground-truth values of Q and Pi for each shape in the library;
7 Establish the mapping relationship Eq. (8) with a fully connected DNN.

Fig. 9 Workflow of the empirical flow model for FSI simulation

Table 6 Selected subglottal pressure and material properties
for evaluation

P0 (kPa) kCL kB

0.625 1.75, 2.75, 3.75, 4.75 1.75, 3.75
0.7
0.8
0.875

Fig. 10 Example of the converged time history of the flow rate
Q predicted by EFM-FSI at P0 50.8 kPa, kCL 5 4.75, kB 5 3.75
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Fig. 11 Scatter and correlation plot of Q comparing EFM-FSI solutions to quasi-static N–S solutions: (a)
scatter-plot and (b) correlation-plot

Fig. 12 Bland–Altman analysis plot of Q comparing EFM-FSI
solutions to quasi-static N–S solutions

Fig. 13 Scatter and correlation plot of Pi comparing EFM-FSI solutions to quasi-static N–S solutions: (a)
scatter-plot and (b) correlation-plot

Fig. 14 Bland–Altman analysis plot of Pi comparing EFM-FSI
solutions to quasi-static N–S solutions
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7 Conclusion

A deep learning-based generalized EFM that can provide fast
and accurate prediction of the dynamics of the glottal flow during
normal phonations is proposed in this paper.

The approach is based on the assumption that the vocal fold
kinematics can be approximated by a few vibration modes as
described by the surface–wave approach. Therefore, the vibration
of the vocal folds during normal phonations can be represented by
a UKE, which is a linear combination of the dominant two modes.
To verify that the UKE can be used as a generalized equation to
represent any glottal shape during normal phonation, a large num-
ber of glottal shapes are generated from Bernoulli-FEM FSI simu-
lation under various subglottal pressure and material properties
and are fitted with a UKE using the GA. Furthermore, the PDF for
each fitting parameter is obtained and used to build the general-
ized glottal shape library by appropriately resampling the PDF of
the parameters and substituting into the UKE. For each shape in
the library, the ground truth value of the flow rate and pressure
distribution are obtained from high-fidelity N-S solutions. A fully
connected DNN is used to build the empirical mapping between
input parameters (parameters in the UKE and subglottal pressure)
and output parameters (flow rate and pressure distribution). K-fold
cross validation is performed to fine tune the architecture and
hyperparameters and evaluate the prediction performance of the
DNN. The developed empirical glottal flow model is therefore
composed of two parts: (a) glottal shape parameterization using
the UKE and GA, and (b) glottal flow rate and intraglottal pres-
sure prediction using the trained DNN. The present empirical flow
model is directly coupled with a FEM based solid dynamics solver
for FSI simulation. The EFM-FSI results are compared with the

full-order model (FOM) QS and FSI results. For the comparison
with the FOM-QS model, the EFM shows an excellent agreement
in terms of predicting the flow rate and pressure distribution. The
average error of the prediction for the flow rate and pressure dis-
tribution is 7.87% and 1.68%, respectively. For the comparison
with the FOM-FSI model, the EFM shows a good agreement on
the frequency, peak and mean flow rate and vocal fold vibration
pattern with the relative errors less than 10%. The EFM shows a
relatively larger error in predicting the opening quotient and
skewness quotient. The comparison of the details of the intraglot-
tal pressure distribution between the two models reflects that one
of the reasons might be the inaccurate prediction of the location of
the minimum area when the glottis has a divergent shape. It
should be noted that the EFM-FSI model is a quasi-steady model
while the FOM-FSI is a fully unsteady model. The quasi-steady
assumption might also contribute to the differences between the
two models. The overall good prediction performance of the pres-
ent EFM in accuracy and efficiency indicates a great promise for
future clinical use. The developed EFM can be further extended to
predict the dynamics of the glottal flow during abnormal phona-
tions with relative ease.

Nevertheless, we acknowledge that there are limitations for the
present EFM which need to be addressed in the future work. The
limitations are summarized as follows:

(1) Although the two-mode representation is reasonable for
describing the glottal shapes during normal vocal fold
vibration, it would fail when the vibration pattern becomes
more complex, i.e., asymmetric vibration, anterior–
posterior wave. For these cases, including higher order
modes in the UKE would be necessary, which will be
explored in future studies.

(2) The model is assumed to vibrate only along the lateral
direction while the vertical motion is fixed. This limitation
needs to be addressed by including the vertical motion in
the UKE model in the future.

(3) Another complexity not included in this study is the initial
shape of the glottis. The deformation modes describe the
profile of the medial surface of the vocal fold, and the vocal
folds of different materials/geometries can have the same
medial surface profiles to be described by the same modes
and the corresponding parameters. However, the initial
shape of the glottis is related to the library. We assumed a
fully closed prephonatory glottal shape. In realistic cases,
various shapes could occur. This complexity also needs to
be included in the future.

(4) The quasi-steady assumption we used in the present model
is based on the work of Ref. [41], which demonstrated that
the flow acceleration/deceleration term is an order smaller
than other terms during the most of the vibration cycle and
only significant during late closing stage. The model at the

Fig. 15 Comparison of the phase-averaged time history of the flow rate between EFM-FSI
simulations and FOM-FSI simulations: (a) case 1 and (b) case 2

Table 7 Comparison of voice quality-related parameters
between EFM-FSI simulations and FOM-FSI simulations

EFM-FSI FOM-FSI EFM-FSI FOM-FSI
Case 1 Case 1 d1(%) Case 2 Case 2 d2 (%)

F0 (Hz) 210.8 207.9 1.4 212.0 219.3 3.3
Qmax (mL/s) 115.0 105.5 9.0 140.0 126.7 10.6
Qmean (mL/s) 54.8 53.0 3.4 63.6 58.9 7.9
so 0.54 0.46 17.4 0.55 0.48 14.6
ss 0.23 0.44 48.1 0.22 0.41 46.0

F0 is the fundamental frequency; Qmax and Qmean are the peak and mean
glottal flow rate of the open quotient, respectively; so is the open quotient,
defined as the ratio of the duration of the glottal open phase to the cycle
period; ss is the skewing quotient, defined as the ratio of the duration of
the flow increasing phase to the duration of the flow decreasing phase
[21]; d1 and d2 are the absolute value of the relative error between the
EFM-FSI and FOM-FSI results for cases 1 and 2, respectively.
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current stage does not include unsteady effects, causing
errors in FSI simulations, as can be seen from the deviated
skewing of the flow rates in Fig. 15. In the future work,
unsteady effects could be included in the EFM and the long
short-term memory [42] network could also be employed
for better and robust time series prediction.
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