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Abstract— This paper evaluates two strategies, deep rein-
forcement learning (DRL) and model predictive control (MPC),
for maximizing harnessed power from a lifting surface con-
trolled ocean current turbine (OCT) through depth optimiza-
tion. To address spatiotemporal uncertainties in the ocean
current, an online Gaussian Process (GP) is applied, where the
prediction error of the ocean current speed is also modeled. We
compare the performance of the MPC-based optimization with
the DRL-based algorithm (i.e., deep Q-networks (DQN)) using
over one week of field collected acoustic doppler current profiler
(ADCP) data. The DRL-based algorithm is almost equivalent
to the MPC-based algorithm in real-time optimization when
the ocean current speed prediction is perfect. However, the
performance of the DQN-based algorithm surpasses the MPC-
based algorithm when ocean current prediction error is con-
sidered. The importance of using the DQN in improving the
error-tolerance of the proposed spatiotemporal optimization is
verified through the comparative results.

I. INTRODUCTION

To address the increased interest in renewable energy
resources due to environmental concerns, marine renewable
energy has drawn growing attention. There is high power
potential in the Gulf Stream ocean current (i.e., 18.6 GW ),
with the Florida Current share equal to 5.1 GW [1]. Ocean
current turbine (OCT) technologies are being developed to
harness the high power potential, where the harnessed power
is depth dependent, with the highest time averaged power
densities (exceeding 3.0kW/m2 in places) located within the
top 100 m of the ocean [2]. To locate the OCT near the ocean
surface, several technologies have been proposed: variable
buoyancy [3]–[5], lifting surface [6], [7], sub-sea winches
[8], and surface buoys [9]. In this paper, we focus on lifting
surface controlled OCT.

Assuming that the OCT is controlled and navigated
through lifting surface technology, spatiotemporal optimiza-
tion should be developed to determine the optimal ocean
depth. Hence, a hierarchical depth optimization and control
structure is proposed to maximize the harnessed power from
the lifting surface controlled OCT, where the upper level is
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defined as the real-time spatiotemporal optimization, and the
lower level is determined as the flight controller developed
by the lifting surface technology. A similar structure has been
proposed for the airborne wind turbine [10], and autonomous
underwater vehicle [11]. In this paper, we will focus on the
upper level control structure (i.e., spatiotemporal optimiza-
tion), assuming that the lower level control (i.e., flight control
operated by the lifting surface) can navigate to the optimal
depth found through the spatiotemporal optimization.

Model predictive control (MPC) is considered in this paper
because of its ability to handle highly constrained problems.
A large body of literature has investigated the usage of the
MPC algorithm for conducting real-time optimization and
finding the optimal control solutions [12]. An MPC-based
algorithm has been proposed to maximize the harnessed
power through finding the optimal flying altitude of the
airborne wind turbine [10], as well as the optimal water depth
for the autonomous underwater vehicle [11]. The real-time
trajectory sequence for autonomous vehicles has been found
through the convex quadratic programming-based MPC to
avoid collision [13]. The navigation problem of micro aerial
vehicles has been addressed by non-linear MPC to avoid
obstacles and find the aerial trajectory [14]. To address a
helicopter landing and touchdown on ships, two approaches
have been proposed based on a shrinking horizon MPC
method [15] and an infinite MPC method [16]. Further,
the real-time trajectory of a buoyancy controlled OCT has
been addressed through a basic MPC algorithm [17]. To
maximize the harnessed energy from the wave energy con-
verter, the non-linear MPC algorithm has been used to find
the generator’s optimal control sequence [18]. It should be
noted that MPC-based algorithms are model-based, which
guarantee the theoretical assurance of finding the optimal
control solution for real-time optimization problems. Still,
the MPC-based method is sensitive to the prediction errors
in the environment model.

On the other hand, reinforcement learning (RL) can be
used to find the optimal control sequence by training using
historical data (i.e., data-driven learning), which could be
robust to the environment model errors. Among different
RL-based approaches, the recently developed deep reinforce-
ment learning (DRL) has gained increased attention due to
its superior feature representation capability and significant
performance. DRL-based approaches have been applied to
address various real-time optimization problems, such as
active object detection for the intelligent robotic application
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[19], real-time control of a traffic signal [20], and especially
robot navigation [21]. In this paper, we will focus on the
real-time depth optimization of a lifting surface controlled
OCT, aiming to find the optimal turbine operation depth. In
similar applications, autonomous navigation of an unmanned
ship has been addressed through DRL in an uncertain
ocean environment [22]. Compared to [23], the optimal
control sequence for unmanned surface vehicle navigation
has been found through a DRL-based algorithm, enhancing
protective capability and less sensitivity to the environmental
uncertainties [24]. Furthermore, the real-time navigation of
an unmanned surface vehicle has been addressed through
DRL to avoid the collision under uncertainties arisen by the
dynamic obstacles [25].

Lifting surface controlled OCT depth optimization will
seek to maximize the harvested electrical power subject
to several constraints, such as feasible turbine operation
depth range and turbine relocation speed. MPC and DRL
are both right-minded candidate methods to address highly
constrained optimization problems. The main contribution of
this paper is to present quantitative comparisons between
the DRL-enabled, learning-based optimization and MPC-
enabled, model-based optimization for lifting surface con-
trolled OCT depth optimization. The robustness of these two
methodologies is verified in the cases of no error and error
existence in the ocean current prediction using over one week
of field collected acoustic Doppler current profiler data from
the Gulf Stream.

The rest of this paper is organized as follows. Section II
presents the spatiotemporal ocean current modelling. Sec-
tion III describes our proposed methodologies based on
the MPC and DRL algorithms. Section IV presents the
simulation results and discussions, and Section V draws the
conclusions and future works.

II. MODELING SPATIOTEMPORAL OCEAN CURRENT

To model the spatiotemporal uncertainties in the ocean
current, it is important to use real data. The spatial and
temporal fluctuations in the current flow are resulted from
turbulence, waves, and lower frequency flow structures. Prior
to discussing the modeling procedure, we define the notations
used to characterize the ocean current. In this regard, the
“measured (observed) ocean current” denoted by V should
not be confused with the “predicted ocean current” V ∗. A
“prediction error” e is then added to the predicted ocean
current, thereby defining the “estimated ocean current” V̂ .

In this paper, we use the field measured data by a 75
kHz acoustic Doppler current profiler (ADCP) presented
in [2], which were recorded at a latitude of 26.09◦N and
longitude of −79.80◦E, as shown in Fig. 1. The measurement
resolution was 5m within 400 m water depth, where various
current flow data (i.e., current speed, northward current ve-
locity, eastward current velocity, etc.) were recorded. These
measured current data were filtered to remove bad data as
described in [2], which were mostly measured above a depth
of 50 m.

Measured ADCP Current Data, 2015
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Fig. 1. Time histories of the current flow recorded by a 75 kHz ADCP at
a latitude of 26.09◦N and longitude of −79.80◦E [2].

To optimize the trajectory of the turbine and maximize
harnessed power, we model spatiotemporal uncertainties and
predict future ocean currents. In this paper, we use an online
Gaussian process (GP) model to predict the future ocean
current, where the GP has been a well suited method to
model the ocean current spatiotemporal dynamics [26]. The
GP models a noisy process as the water speed vi by vi =
f (xi)+ε , where xi is the spatial zi and temporal t i values, and
ε denotes the Gaussian noise. To enable the GP model, a set
of the recorded data in the form of D = [(xi,vi)|x ∈ X ,v ∈V ]
is given, where xi denotes a vector of depth zi and time t i

values for a data point i. To define the GP model, we should
find the mean function m(x) and covariance function k(x,x

′
),

as follows [27]:

f (x)∼N (m(x),k(x,x
′
)) (1)

m(x) = E[ f (x)] (2)

k(x,x
′
) = E[( f (x)−m(x))( f (x

′
)−m(x

′
))] (3)

To predict the water speed, the GP predictive function
f (x∗) is stated at the future input x∗ based on the previous
evaluations. Given a set of observed ocean current speed
V , the future mean function m(x∗) and covariance function
k(x∗,x

′
) are defined in (5) and (6) as follows:

f (x∗)∼N (m(x∗),k(x∗,x
′
)) (4)

m(x∗) = k(x∗)T (K +σ
2IN)

−1V (5)

k(x∗,x
′
) = k(x∗,x∗)− k(x∗)T (K +σ

2IN)
−1k∗ (6)

where σ2 denotes the Gaussian observation noise hyperpa-
rameter, and:

k(x∗) = [k(x∗,x1),k(x∗,x2), ...,k(x∗,xn)] (7)

K = [k(xi,x j)]n×n (8)
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To enable the online GP model, a rolling window is
applied to predict the future ocean current by (5) and (6).
Therefore, a fixed-length rolling window is rolled over the
data to avoid the unbounded growth of memory requirements
due to increased data, where the old measured velocities are
removed with the arrival of a new set of data.

It should be noted that a large number of physical
processes occur in the spatiotemporal ocean environment,
resulting in large uncertainties in the ocean current flow
estimation. Hence, modeling the spatiotemporal uncertainties
of the ocean current is intricate, resulting in errors in current
prediction and obtained estimation of future ocean current.
There exist a multitude of resources for these inaccuracies
and errors in the current prediction [28], [29], including sen-
sor error, simplifications of the spatial and temporal model
and scale, an imperfection in the ocean current prediction
models, etc. The ocean current sensor errors may occur
due to data loss and Doppler noise, so the recorded ocean
currents are inaccurate. The spatial and temporal model of
the ocean current is simplified to reduce the complexity of the
calculations, which are another source of error. Furthermore,
errors also arise from the inaccuracies and simplifications in
the ocean current prediction models.

In this study, we use the GP model to estimate the future
ocean current speed according to the ocean currents recorded
by a 75 kHz ADCP. Although the measured ocean currents
are filtered to remove bad data, Doppler noise, spatial aver-
aging, and other errors still distort the measurements used
as the inputs to our prediction model. As explained, the
sensor errors may mislead the prediction model, where the
observed ocean currents differ from the real ocean current. To
simplify our model, we only consider the depth coordinate at
a specific latitude and longitude to interpret the spatial model
of the ocean environment. Finally, to avoid the curse of
dimensionality due to the substantial increase in the recorded
ocean current, we apply a fixed-size rolling window. In
summary, the error can occur due to the above-mentioned
factors, resulting in the deviation of the current estimations
from the true values. To account for the error in ocean current
prediction, we introduce an error value e to the predicted
ocean current value by (4) and rewrite the predicted ocean
current V ∗ as the estimated ocean current V̂ =V ∗+ e.

III. PROPOSED OPTIMIZATION METHODOLOGY

A. Optimization Problem Formulation

This paper targets solving real-time spatiotemporal opti-
mization to maximize the harnessed power from the lifting
surface controlled OCT. More specifically, the OCT can be
treated as an “autonomous underwater vehicle” but with the
primary role of energy generation. Given this primary role, it
is critical that the OCT maintains an accurate spatiotemporal
estimate of the Gulf Stream current profile and navigate itself
at or near the depth with the most intensive ocean flow.

The lifting surface controlled OCT is based on an 8 degree
of freedom OCT design presented in [30], which includes
twin counter rotating 20 m diameter variable pitch rotor
blades. A schematic diagram of the lifting surface controlled

Ocean Floor

20 m Diameter 

Variable Pitch Rotor

Lifting Surface

20 m Diameter 

Variable Pitch Rotor

Lifting Surface

Anchor Ocean Floor

20 m Diameter 

Variable Pitch Rotor

Lifting Surface

Anchor

Fig. 2. Schematic diagram of the lifting surface controlled OCT.

OCT is shown in Fig. 2. The generated power of the twin
rotor OCT P is formulated as follows:

Pt = 2× 1
2

ρACpv3
t (zt)−P∆z

= 1024×100π×0.415× v3
t (zt)−P∆z

(9)

where ρ is the ocean water density, A is the swept area of the
OCT rotor, Cp denotes the average power coefficient, and P∆z
is the power consumed to change the operating depth, which
is negligible compared to the first term due to the lifting
surface controlled design of the OCT. In the following, we
design two different approaches based on MPC and DRL to
find the optimal sequence of depths. Note that these optimal
depths are calculated to maximize the harnessed power from
the OCT in a given time horizon, where the effect of error
in ocean current prediction is also evaluated.

B. Model Predictive Control

The MPC-based optimization algorithm uses the model
of the system to determine the optimal control solutions.
The optimization problem is formulated at each time step
according to the OCT model to minimize a defined cost
function in a prediction horizon N due to the problem con-
straints. It should be noted that the real-time spatiotemporal
optimization is solved in a prediction horizon, where only
the first value of the obtained control sequence is defined as
the optimal depth in our problem. The MPC-based algorithm
is employed with the outlook of the prediction horizon (i.e.,
length of the sliding window) of N, where the sliding window
will be rolled in the next time step, as shown in Fig. 3. Hence,
an optimal depth sequence of N (Eq. (12)) is calculated
through solving an objective function, where its elements
are determined based on the first element of control sequence
found at each time step (Eq. (11)).

Fig. 4 shows a schematic of the proposed MPC-based op-
timization algorithm for our problem. The objective function
is defined as Eq. (10) subject to Eq. (11)- Eq. (13):

J∗ = min
Z

k+N−1

∑
i=k

[ω1l1(zi|k,vi|k)+ω2l2(zi|k,vi|k)] (10)

s.t.
z(i+1|k) = z∗0|k (11)

Z = [z0|k, ...,zN|k] (12)

V̂ =V ∗+ e (13)
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Fig. 3. Real-time MPC-based algorithm using the sliding window to find
the optimal solution of the spatiotemporal optimization.

where J∗ is the MPC cost function, Z is the control sequence
defined as the depth sequence in our problem. l1(zi|k,vi|k)
and l2(zi|k,vi|k) represent the cost function terms; ω1 and ω2
denote the weights of cost function terms. z∗0|k is the first
element of the optimal control sequence Z∗, as follows:

Z∗ = [z∗0|k,z
∗
1|k, ...,z

∗
N|k] (14)

The first objective function term l1(z(i|k),v(i|k)) is defined
to maximize the harnessed power from the OCT through
minimizing the expected power of the E(P(z(i|p)) due
to the power relation defined in Eq. (9). To mitigate the
uncertainties in the current flow, we define the second term
as suggested in [31]. The first term and the second term of
the cost function are defined as follows:

l1(zi|k,vi|k) =−E(P(zi|k,vi|k)) (15)

l2(zi|k,vi|k) =
z ′=zu

∑
z ′=zl

σ
c(v(t(i),z ′)|V,V̂ ) (16)

where E(P(z(i|k),v(i|k))) shows the expected power, zl and
zu are the lower bound and upper bound of the ocean depths.
σ c(v(t(i),z ′)|V,V̂ ) denotes the conditional standard deviation
of the future estimated ocean current from the measured
ocean current.

C. Deep Reinforcement Learning

Reinforcement learning is a data-driven, learning-based
technique to find the optimal control solutions (i.e., optimal
depth in our problem). It should be noted that RL is formu-
lated as a Markov decision process, where the OCT as an
agent observes the current state st ∈ S, takes action at ∈ A
according to the learned policy π , resulting in a reward rt ∈R
and state change. The RL-based optimization learns to map
each state to the optimal action to maximize the cumulative
discounted reward Rt = ∑

t=τ
t=0 γ trt . The proposed design for

the real-time spatiotemporal optimization based on DRL is
shown in Fig. 5.
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Ocean Current 

Environment
OCT Power Model
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𝑱𝑱 = �
𝒊𝒊=𝟎𝟎

𝑵𝑵−𝟏𝟏
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𝒁𝒁= [𝒛𝒛𝟎𝟎|𝒌𝒌 ,… ,𝒛𝒛𝑵𝑵|𝒌𝒌]

Fig. 4. Proposed architecture for the MPC-based real-time spatiotemporal
optimization.

Spatiotemporal 
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Reward
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Policy: ε-greedy
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𝑸(𝒔,𝒂;𝜽) ; 𝟏− 𝜺

𝐫𝐚𝐧𝐝𝐨𝐦𝒂; 𝜺

Fig. 5. Proposed architecture for the DRL-based real-time spatiotemporal
optimization.

The state, action, reward, and policy notations should be
described according to the problem, which are defined in our
real-time spatiotemporal optimization. The state is defined
as the position of the OCT and the current flow speeds at a
different depth, formulated as follows:

S = {zt ,v1
t ,v

2
t , ...,v

n
t } (17)

The action space is determined as the potential optimal
depth due to the current state (i.e., the position of the OCT
and the current flow speeds), as follows:

A = {z1,z2, ...,zn} (18)

In our proposed spatiotemporal optimization algorithm, we
define the reward R(st ,at) of an OCT taking action at at state
st . The reward is defined as the power change that occurred
due to the depth change, as follows:

R(st ,at) =

{
+1, E(P(zt+1))−P(zt)> δ

0, else
(19)

The policy π : S → R guides the agent (i.e., OCT in
our problem) to choose the optimal action at according to
the current state st . The ε−greedy policy can be applied
to balance the exploitation along with the exploitation in
the process of choosing optimal actions. However, a simple
ε−greedy algorithm with a constant ε (i.e., a constant rate
of exploration vs. exploitation during the training process)
does not justify an ensured optimal policy. Therefore, we
use an adaptive ε−greedy policy [32], where the value
of ε decreases over the training procedure. Eventually, the
policy π(st ,at) determines the probability of choosing a set
of feasible actions, where the adaptive ε−greedy policy is
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applied to calculate the probability of each action, as follows:

at = π(st ,at) =

{
at ← argmax

at
Q(st ,at), 1− ε

at ← random a ∈ A, ε

(20)

ε = εmin +(εmax− εmin)e−d×ne (21)

where d and ne are decay factor and episode number,
respectively. Q(st ,at) is the Q-value determined by Bellman
equation, as follows:

Q(st ,at) = rt + γmax
at

Q(st+1,at) (22)

The future state st+1 is determined by the current state st
and action policy π , and our method aims to find the optimal
policy π∗ to maximize the cumulative reward. We use the
DRL approach to find the optimal policy. Among different
DRL algorithms, including deep Q-networks (DQN), deep
deterministic policy gradient methods, trust region policy
optimization, etc. [33], we choose the DQN, described in
the following section.

Deep Q-networks: A DQN is a neural network-based RL,
which maps the relation between states and actions, where
the DQN as the RL-based algorithm should interact with an
environment by observing a sequence of the current state,
action, reward, and future state (st ,at ,rt ,st+1). The DQN
uses the neural network as a nonlinear estimation to find the
optimal action estimation Qπ∗ , where all weights in the neu-
ral network are denoted by θ , which are calculated through
minimizing the Mean Square Error (MSE), as follows:

L(θ) = [(rt + γmax
at

Q(st+1,at))−Q(st ,at ;θ)]2 (23)

where rt + γmax
at

Q(st+1,at) is denoted as target Q-value

found through the target network, which is utilized to provide
a stable update on the neural network and defined by similar
architecture with the main network but a different set of
weight parameters θ−.

After the training procedure of the DQN is completed
according to Eq. (23), the optimal weights of the neural
network θ ∗ are obtained. Hence, the optimal Q-value is
determined by Q(st ,at ;θ ∗). In our problem, the DQN is
trained offline using the previously measured ocean current
V , where the constructed DQN is then used to find the
optimal depth in a real-time application, feeding with the
estimated ocean currents V̂ .

IV. RESULTS AND DISCUSSIONS

To quantify the performance of the MPC-based and DRL-
based spatiotemporal optimization, the testing results of the
proposed methodology on a sample 1.4 MW lifting surface
controlled OCT over one week (from September 18, 2015
to September 26, 2015) are presented in this section. To
enable the MPC-based algorithm, the utilized time step is
1 hour, prediction horizon is N = 10, assuming zl = 40 m
and zu = 150 m since the maximum ocean currents occur
in the top 100 m depths. For the DQN-based algorithm, we
select a network with two hidden layers and use a buffer
size of 5e5 (including 94 MB data), a batch size of 64,

γ = 0.5, εmin = 0.01, εmax = 1, d = 0.01, and ne = 3000,
where the target network is updated every 4 steps. To train the
DQN network, we use a four-week measured ocean current
data set (from August 20 to September 17, 2015), where the
constructed network is then tested on a one-week period that
indicated above. It should be noted that the DQN algorithm is
sensitive to the network parameters, and fine-tuning through
trial and error are used to determine the parameters. The
results are shown in two cases of with and without ocean
current prediction error.

A. Results

To highlight the differences between the proposed MPC-
and DRL-based algorithms, two cases of testing “no pre-
diction error” and “current speed prediction error” are con-
sidered. In the first case, the current prediction error e is
assumed zero. Hence, the estimated ocean current speed V̂
is equal to the predicted ocean current V ∗. To include the
current prediction error, we assume that V̂ is deviated from
the predicted ocean current V ∗ by e, as dictated by the high
spatiotemporal uncertainties in the ocean current.

Fig. 6 shows the simulation results over one week, where
the initial depth of OCT is set to 50 m. The optimal
trajectories determined by the MPC-based algorithm and the
DRL-based algorithm are demonstrated in Fig. 6 (a), where
the obtained optimal depths look similar. However, two
differences in choosing the optimal depth (i.e., September
19 and September 23), indicating the difference between
the selection strategy of the MPC and DRL algorithms.
As shown in this figure, both algorithms tend to navigate
the OCT through the higher ocean current speeds, verifying
the performance of the proposed spatiotemporal optimiza-
tion methodology. The harnessed power from the lifting
surface controlled OCT using two spatiotemporal algorithms
is shown in Fig. 6 (b).

To understand the effect of “current speed prediction
error”, the simulation results are obtained considering the
difference between estimated ocean current and predicted
ocean current. To evaluate the results with the first case, a
similar initial depth of 50 m and the same simulation period
are set. Since the prediction error has a noisy nature, the
optimal depth sequence is different each time. Hence, the
tests are performed multiple times, and the obtained results
are shown in Table I. We performed 4 different tests, and
the results are shown in terms of cumulative energy and
average power for MPC and DRL algorithms. As shown in
this table, a significant decrease is observed compared to the
baseline (i.e., the case without prediction error), which is
more observable in the MPC algorithm.

We show the optimal depth and the harnessed power
of Test 1 in Fig. 7, where the estimated ocean current is
significantly different from the true ocean current. Note that
the prediction error is defined as 20% noise disturbances
[34]. As shown in Fig. 7 (a), the obtained trajectory by
the DRL follows the higher current flow, resulting in a
larger harvested power despite the more depth fluctuations
at several time steps; still, the MPC algorithm is misled and
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TABLE I
COMPARISON OF DRL AND MPC WITH OCEAN CURRENT PREDICTION ERROR IN FOUR SAMPLE TESTS. THE OBTAINED SOLUTIONS ARE COMPARED

WITH THE BASELINE (I.E., THE CASE WITHOUT PREDICTION ERROR).

MPC DRL

Test No. Cumulative Energy Average Power Decrease to Baseline Cumulative Energy Average Power Decrease to Baseline
[MWh] [kW] [%] [MWh] [kW] [%]

Test 1 105.5 628.2 9.2 108.5 645.7 6.2
Test 2 104.4 621.1 10.2 108.1 643.4 6.5
Test 3 104.5 622.3 10.1 108.0 642.8 6.6
Test 4 105.7 629.2 9.1 108.2 644.1 6.4
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Fig. 6. Comparison of an optimal sequence determined by (i) MPC-based
algorithm and (ii) DRL-based algorithm in case of “no prediction error”.
(a) Optimal position; and (b) Optimal power.

deviated significantly from the optimal depths. Therefore,
a multitude of the determined depths by the MPC-based
algorithm, especially on September 22 and September 23,
are deviated from the optimal depth and current, as shown
in Fig. 6 (a). The DRL algorithm outperforms the MPC
algorithm since it learns the optimal policy through offline
training of the DQN network with the previously measured
ocean current; hence, the DRL is less affected by the ocean
current prediction error.

B. Discussions

Through a careful evaluation of the results under the “no
error” case, it is verified that the model-based algorithm
(i.e., MPC) and the learning-based algorithm (i.e., DRL)

Measured ADCP Current Data, 2015

Sep.18 Sep.19 Sep.20 Sep.21 Sep.22 Sep.23 Sep.24
(a)

-100

-90

-80

-70

-60

-50

- 
D

ep
th

 (
m

)

MPC-based Algorithm
DRL-based Algorithm

1

1.5

2

2.5

[m/s]

Sep.18 Sep.19 Sep.20 Sep.21 Sep.22 Sep.23 Sep.24
(b)

200

400

600

800

1000

1200

P
o

w
er

 (
kW

)

MPC-based Algorithm
DRL-based Algorithm

Fig. 7. Comparison of an optimal sequence determined by (i) MPC-based
algorithm and (ii) DRL-based algorithm in case of “ocean current prediction
error”. (a) Optimal position; and (b) Optimal power.

can optimally find the trajectory as the control sequence in
the real-time spatiotemporal optimization problem. The final
result of MPC and DRL algorithms in terms of cumulative
energy and average power under the “no error” case and
“current speed prediction error” are presented in Table II.
It should be noted that the results of the “current speed
prediction error” case are reported as an average of the results
obtained by 100 tests. To understand the effect of the current
prediction error, the decrease compared to the “no error” case
is also included in the table. The obtained cumulative energy
over one week is 116.3 MWh and 115.6 MWh for MPC and
DRL, respectively. Further, the average harnessed power over
a period of one week is 692.1 kW for MPC and 688.1 kW
for DRL.
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TABLE II
COMPARISON OF CUMULATIVE ENERGY AND AVERAGE POWER WITH

AND WITHOUT OCEAN CURRENT PREDICTION ERROR USING MPC AND

DRL. THE CASE WITHOUT PREDICTION ERROR IS A BASELINE.

Parameter [Unit] MPC DRL
Without Prediction Error

Cumulative Energy [MWh] 116.3 115.6
Average Power [kW ] 692.1 688.1

With Prediction Error
Cumulative Energy [MWh] 105.2 108.3

Average Power [kW ] 626.2 644.6
Decrease to Baseline [%] 9.5 6.3

It is worthwhile to mention that the comparison study is
not trivial. It is tough to set an even ground and evaluate
the two optimization algorithms (MPC along with DRL)
adequately. To realize a fair comparison, we make an effort
to define a similar condition for both approaches. Due to
the high error in the estimation of ocean current, an input
disturbance rejection can be applied for improving DRL
algorithm [35] and MPC algorithm [36], which is beyond
the scope of our study.

The ocean environment is noisy, highly affected by the
ocean current’s spatiotemporal uncertainties, and it is highly
probable that we fail to precisely model and predict the future
ocean current. Hence, the prediction error should be added to
the ocean current prediction model, resulting in the difference
between the estimated and predicted ocean currents. After
adding the “current prediction error” to our GP model, we
investigate the high deviation from the optimal trajectory
found in the “no error” case, highlighting the importance of
the error modeling for practical applications. Both algorithms
are deviated from the optimal trajectory, while the learning-
based algorithm is significantly better than the model-based
algorithm to find the optimal solutions in a noisy environ-
ment. The average harnessed power from the lifting surface
controlled OCT is reduced by 9.5% to 626.2 kW for MPC,
while the power decreasing is 6.3% for DRL, verifying the
error-tolerance of the learning-based algorithm compared to
the model-based algorithm. The obtained cumulative energy
over one week is significantly decreased compared to the
“no error” case, that is 105.2 MWh and 108.3 MWh for the
MPC algorithm and DRL algorithm, respectively.

Different policies provoke a difference between the net
energy in choosing the optimal depth, where the MPC algo-
rithm follows the system and environment model; still, the
DRL algorithm learns the policy from its interactions with
the environment. Hence, the MPC algorithm can guarantee
the ensured performance in the non-noisy environment and
outperform the DRL, while the DRL can find semioptimal
solutions after fine-tuning its parameters through offline
training of the network. Therefore, improving the prediction
of ocean current boosts the results obtained from the MPC
algorithm. Meanwhile, the DRL extracts the robust and
efficient high-level features from the noisy and uncertain
ocean current historical data to beat the MPC algorithm.

V. CONCLUSIONS

Real-time spatiotemporal optimization for a case study
of a lifting surface controlled OCT was presented. The
optimization target was to find a sequence of optimal turbine
operation depths to maximize the harnessed power. DRL
and MPC strategies were applied to solve the optimization
problem and find the optimal control sequence. Simulations
were run for the two cases of “no prediction error” and
“ocean current prediction error” to verify the effectiveness.
We showed that the DRL and MPC algorithms operated
similarly when the estimated ocean current was assumed
similar to the predicted current. However, the DRL outper-
formed the MPC in case of high prediction error due to the
spatiotemporal uncertainties in the ocean current.

Future work will focus on testing the performance and ro-
bustness of the proposed methodology over various modeling
errors. Also, one of the major drawbacks of the DRL and
neural network-based algorithms is the generalization issue,
which will be carefully tested in future works and will be
justified with a stochastic MPC [37] and a robust MPC [38].
The robust MPC will be explored for rejection of disturbance
and uncertainties of the model, in addition to improving
the prediction of the ocean current. Meanwhile, the robust
DRL [39] will also need to be tested to fairly compare the
robust model-based and learning-based approaches. It is of
interest to extend the proposed methodology to optimize an
OCT array and design a real-time spatiotemporal optimiza-
tion framework for the OCT array, assuming wake effects
between multiple OCTs, optimal navigation, and collision
avoidance.
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