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Abstract A cornerstone of theoretical neuroscience is the circuit model: a system of equations
that captures a hypothesized neural mechanism. Such models are valuable when they give rise to
an experimentally observed phenomenon — whether behavioral or a pattern of neural activity — and
thus can offer insights into neural computation. The operation of these circuits, like all models,
critically depends on the choice of model parameters. A key step is then to identify the model
parameters consistent with observed phenomena: to solve the inverse problem. In this work, we
present a novel technique, emergent property inference (EPI), that brings the modern probabilistic
modeling toolkit to theoretical neuroscience. When theorizing circuit models, theoreticians
predominantly focus on reproducing computational properties rather than a particular dataset. Our
method uses deep neural networks to learn parameter distributions with these computational
properties. This methodology is introduced through a motivational example of parameter inference
in the stomatogastric ganglion. EPI is then shown to allow precise control over the behavior of
inferred parameters and to scale in parameter dimension better than alternative techniques. In the
remainder of this work, we present novel theoretical findings in models of primary visual cortex and
superior colliculus, which were gained through the examination of complex parametric structure
captured by EPI. Beyond its scientific contribution, this work illustrates the variety of analyses
possible once deep learning is harnessed towards solving theoretical inverse problems.

Introduction

The fundamental practice of theoretical neuroscience is to use a mathematical model to understand
neural computation, whether that computation enables perception, action, or some intermediate
processing. A neural circuit is systematized with a set of equations — the model — and these equa-
tions are motivated by biophysics, neurophysiology, and other conceptual considerations
(Kopell and Ermentrout, 1988; Marder, 1998; Abbott, 2008; Wang, 2010; O’Leary et al., 2015).
The function of this system is governed by the choice of model parameters, which when configured
in a particular way, give rise to a measurable signature of a computation. The work of analyzing a
model then requires solving the inverse problem: given a computation of interest, how can we rea-
son about the distribution of parameters that give rise to it? The inverse problem is crucial for rea-
soning about likely parameter values, uniquenesses and degeneracies, and predictions made by the
model (Gutenkunst et al., 2007; Erguler and Stumpf, 2011; Mannakee et al., 2016).
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Ideally, one carefully designs a model and analytically derives how computational properties
determine model parameters. Seminal examples of this gold standard include our field’s understand-
ing of memory capacity in associative neural networks (Hopfield, 1982), chaos and autocorrelation
timescales in random neural networks (Sompolinsky et al., 1988), central pattern generation
(Olypher and Calabrese, 2007), the paradoxical effect (Tsodyks et al., 1997), and decision making
(Wong and Wang, 2006). Unfortunately, as circuit models include more biological realism, theory
via analytical derivation becomes intractable. Absent this analysis, statistical inference offers a toolkit
by which to solve the inverse problem by identifying, at least approximately, the distribution of
parameters that produce computations in a biologically realistic model (Foster et al., 1993;
Prinz et al., 2004; Achard and De Schutter, 2006; Fisher et al., 2013; O’Leary et al., 2014;
Alonso and Marder, 2019).

Statistical inference, of course, requires quantification of the sometimes vague term computation.
In neuroscience, two perspectives are dominant. First, often we directly use an exemplar dataset: a
collection of samples that express the computation of interest, this data being gathered either
experimentally in the lab or from a computer simulation. Although a natural choice given its connec-
tion to experiment (Paninski and Cunningham, 2018), some drawbacks exist: these data are well
known to have features irrelevant to the computation of interest (Niell and Stryker, 2010;
Saleem et al., 2013; Musall et al., 2019), confounding inferences made on such data. Related to
this point, use of a conventional dataset encourages conventional data likelihoods or loss functions,
which focus on some global metric like squared error or marginal evidence, rather than the computa-
tion itself.

Alternatively, researchers often quantify an emergent property (EP): a statistic of data that directly
quantifies the computation of interest, wherein the dataset is implicit. While such a choice may seem
esoteric, it is not: the above ‘gold standard’ examples (Hopfield, 1982, Sompolinsky et al., 1988,
Olypher and Calabrese, 2007; Tsodyks et al., 1997, Wong and Wang, 2006) all quantify and focus
on some derived feature of the data, rather than the data drawn from the model. An emergent
property is of course a dataset by another name, but it suggests different approach to solving the
same inverse problem: here, we directly specify the desired emergent property — a statistic of data
drawn from the model — and the value we wish that property to have, and we set up an optimization
program to find the distribution of parameters that produce this computation. This statistical frame-
work is not new: it is intimately connected to the literature on approximate bayesian computation
(Beaumont et al., 2002; Marjoram et al., 2003; Sisson et al., 2007), parameter sensitivity analyses
(Raue et al., 2009; Karlsson et al., 2012; Hines et al., 2014; Raman et al., 2017), maximum
entropy modeling (Elsayed and Cunningham, 2017; Savin and Tkacik, 2017; Miynarski et al.,
2020), and approximate bayesian inference (Tran et al., 2017, Goncalves et al., 2019); we detail
these connections in Section ‘Related approaches’.

The parameter distributions producing a computation may be curved or multimodal along various
parameter axes and combinations. It is by quantifying this complex structure that emergent property
inference offers scientific insight. Traditional approximation families (e.g. mean-field or mixture of
gaussians) are limited in the distributional structure they may learn. To address such restrictions on
expressivity, advances in machine learning have used deep probability distributions as flexible
approximating families for such complicated distributions (Rezende and Mohamed, 2015;
Papamakarios et al., 2019a) (see Section ‘Deep probability distributions and normalizing flows’).
However, the adaptation of deep probability distributions to the problem of theoretical circuit analy-
sis requires recent developments in deep learning for constrained optimization (Loaiza-
Ganem et al., 2017), and architectural choices for efficient and expressive deep generative model-
ing (Dinh et al., 2017; Kingma and Dhariwal, 2018). We detail our method, which we call emergent
property inference (EPI) in Section ‘Emergent property inference via deep generative models’.

Equipped with this method, we demonstrate the capabilities of EPl and present novel theoretical
findings from its analysis. First, we show EPI's ability to handle biologically realistic circuit models
using a five-neuron model of the stomatogastric ganglion (Gutierrez et al., 2013): a neural circuit
whose parametric degeneracy is closely studied (Goldman et al., 2001). Then, we show EPI's scal-
ability to high dimensional parameter distributions by inferring connectivities of recurrent neural net-
works that exhibit stable, yet amplified responses — a hallmark of neural responses throughout the
brain (Murphy and Miller, 2009; Hennequin et al., 2014; Bondanelli et al., 2019). In a model of
primary visual cortex (Litwin-Kumar et al., 2016; Palmigiano et al., 2020), EPI reveals how the
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recurrent processing across different neuron-type populations shapes excitatory variability: a finding
that we show is analytically intractable. Finally, we investigated the possible connectivities of a supe-
rior colliculus model that allow execution of different tasks on interleaved trials (Duan et al., 2021).
EPI discovered a rich distribution containing two connectivity regimes with different solution classes.
We queried the deep probability distribution learned by EPI to produce a mechanistic understanding
of neural responses in each regime. Intriguingly, the inferred connectivities of each regime repro-
duced results from optogenetic inactivation experiments in markedly different ways. These theoreti-
cal insights afforded by EPI illustrate the value of deep inference for the interrogation of neural
circuit models.

Results

Motivating emergent property inference of theoretical models
Consideration of the typical workflow of theoretical modeling clarifies the need for emergent prop-
erty inference. First, one designs or chooses an existing circuit model that, it is hypothesized, cap-
tures the computation of interest. To ground this process in a well-known example, consider the
stomatogastric ganglion (STG) of crustaceans, a small neural circuit which generates multiple rhyth-
mic muscle activation patterns for digestion (Marder and Thirumalai, 2002). Despite full knowledge
of STG connectivity and a precise characterization of its rhythmic pattern generation, biophysical
models of the STG have complicated relationships between circuit parameters and computation
(Goldman et al., 2001; Prinz et al., 2004).

A subcircuit model of the STG (Gutierrez et al., 2013) is shown schematically in Figure 1A. The
fast population (f1 and f2) represents the subnetwork generating the pyloric rhythm and the slow
population (s1 and s2) represents the subnetwork of the gastric mill rhythm. The two fast neurons
mutually inhibit one another, and spike at a greater frequency than the mutually inhibiting slow neu-
rons. The hub neuron couples with either the fast or slow population, or both depending on modula-
tory conditions. The jagged connections indicate electrical coupling having electrical conductance
gel, Smooth connections in the diagram are inhibitory synaptic projections having strength ggma onto
the hub neuron, and genp =5 nS for mutual inhibitory connections. Note that the behavior of this
model will be critically dependent on its parameterization — the choices of conductance parameters
z= [gelvgsy'nA}~

Second, once the model is selected, one must specify what the model should produce. In this
STG model, we are concerned with neural spiking frequency, which emerges from the dynamics of
the circuit model (Figure 1B). An emergent property studied by Gutierrez et al. is the hub neuron fir-
ing at an intermediate frequency between the intrinsic spiking rates of the fast and slow populations.
This emergent property (EP) is shown in Figure 1C at an average frequency of 0.55 Hz. To be pre-
cise, we define intermediate hub frequency not strictly as 0.55 Hz, but frequencies of moderate devi-
ation from 0.55 Hz between the fast (.35Hz) and slow (.68Hz) frequencies.

Third, the model parameters producing the emergent property are inferred. By precisely quanti-
fying the emergent property of interest as a statistical feature of the model, we use emergent prop-
erty inference (EPI) to condition directly on this emergent property. Before presenting technical
details (in the following section), let us understand emergent property inference schematically. EPI
(Figure 1D) takes, as input, the model and the specified emergent property, and as its output,
returns the parameter distribution (Figure 1E). This distribution — represented for clarity as samples
from the distribution — is a parameter distribution constrained such that the circuit model produces
the emergent property. Once EPI is run, the returned distribution can be used to efficiently generate
additional parameter samples. Most importantly, the inferred distribution can be efficiently queried
to quantify the parametric structure that it captures. By quantifying the parametric structure govern-
ing the emergent property, EPI informs the central question of this inverse problem: what aspects or
combinations of model parameters have the desired emergent property?

Emergent property inference via deep generative models

EPI formalizes the three-step procedure of the previous section with deep probability distributions
(Rezende and Mohamed, 2015; Papamakarios et al., 2019a). First, as is typical, we consider the
model as a coupled set of noisy differential equations. In this STG example, the model activity (or
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Figure 1. Emergent property inference in the stomatogastric ganglion. (A) Conductance-based subcircuit model of the STG. (B) Spiking frequency

w(x;z) is an emergent property statistic. Simulated at go = 4.5 nS and ggua = 3 nS. (C) The emergent property of intermediate hub frequency.

Simulated activity traces are colored by log probability of generating parameters in the EPI distribution (Panel E). (D) For a choice of circuit model and
emergent property, EPIl learns a deep probability distribution of parameters z. (E) The EPI distribution producing intermediate hub frequency. Samples

are colored by log probability density. Contours of hub neuron frequency error are shown at levels of 0.525, 0.53, ...

0.575 Hz (dark to light gray away

from mean). Dimension of sensitivity v; (solid arrow) and robustness v, (dashed arrow). (F) (Top) The predictions of the EPI distribution. The black and
gray dashed lines show the mean and two standard deviations according the emergent property. (Bottom) Simulations at the starred parameter values.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Emergent property inference in a 2D linear dynamical system.

Figure supplement 2. Analytic contours of inferred EPI distribution.
Figure supplement 3. Sampled dynamical systems z~gg(z | X) and their simulated activity from x(r = 0) = [%57 —

Figure supplement 4. EP| optimization of the STG model producing network syncing.

‘/75] colored by log probability.

state) X = [xg1, Xg2, Xhub, Xs1, Xs2] IS the membrane potential for each neuron, which evolves according to

the biophysical conductance-based equation:

dx(t)
dt

Cn = —h(x(t);z) +dB

M

where C,, = 1nF, and h is a sum of the leak, calcium, potassium, hyperpolarization, electrical, and
synaptic currents, all of which have their own complicated dependence on activity x and parameters
Z =g, 8syna), and dB is white gaussian noise (Gutierrez et al., 2013; see Section '‘STG model’ for
more detail).

Second, we determine that our model should produce the emergent property of ‘intermediate
hub frequency’ (Figure 1C). We stipulate that the hub neuron’s spiking frequency — denoted by sta-
tistic wpuy(X) — is close to a frequency of 0.55 Hz, between that of the slow and fast frequencies.
Mathematically, we define this emergent property with two constraints: that the mean hub frequency
is 0.55 Hz,
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Ez,x[whub(x§ Z) } =0.55 )

and that the variance of the hub frequency is moderate

Var, x[whub(X;2) ] = 0.0252. (3)

In the emergent property of intermediate hub frequency, the statistic of hub neuron frequency is
an expectation over the distribution of parameters z and the distribution of the data x that those
parameters produce. We define the emergent property X as the collection of these two constraints.
In general, an emergent property is a collection of constraints on statistical moments that together
define the computation of interest.

Third, we perform emergent property inference: we find a distribution over parameter configura-
tions z of models that produce the emergent property; in other words, they satisfy the constraints
introduced in Equations 2 and 3. This distribution will be chosen from a family of probability distri-
butions Q = {gs(z) : € O}, defined by a deep neural network (Rezende and Mohamed, 2015;
Papamakarios et al., 2019a; Figure 1D, EP| box). Deep probability distributions map a simple ran-
dom variable z, (e.g. an isotropic gaussian) through a deep neural network with weights and biases
0 to parameters z = gg(zy) of a suitably complicated distribution (see Section '‘Deep probability distri-
butions and normalizing flows’ for more details). Many distributions in Q will respect the emergent
property constraints, so we select the most random (highest entropy) distribution, which also means
this approach is equivalent to bayesian variational inference (see Section 'EPI as variational infer-
ence’). In EPI optimization, stochastic gradient steps in 0 are taken such that entropy is maximized,
and the emergent property X is produced (see Section 'Emergent property inference (EPI)’). We
then denote the inferred EPI distribution as gy(z | X), since the structure of the learned parameter
distribution is determined by weights and biases 8, and this distribution is conditioned upon emer-
gent property X.

The structure of the inferred parameter distributions of EPI can be analyzed to reveal key informa-
tion about how the circuit model produces the emergent property. As probability in the EPI distribu-
tion decreases away from the mode of g4(z | X) (Figure 1E yellow star), the emergent property
deteriorates. Perturbing z along a dimension in which g(z | X) changes little will not disturb the
emergent property, making this parameter combination robust with respect to the emergent prop-
erty. In contrast, if z is perturbed along a dimension with strongly decreasing gg(z | X), that parame-
ter combination is deemed sensitive (Raue et al., 2009; Raman et al., 2017). By querying the
second-order derivative (Hessian) of log ge(z | X) at a mode, we can quantitatively identify how sensi-
tive (or robust) each eigenvector is by its eigenvalue; the more negative, the more sensitive and the
closer to zero, the more robust (see Section 'Hessian sensitivity vectors’). Indeed, samples equidis-
tant from the mode along these dimensions of sensitivity (vi, smaller eigenvalue) and robustness (v,,
greater eigenvalue) (Figure 1E, arrows) agree with error contours (Figure 1E contours) and have
diminished or preserved hub frequency, respectively (Figure 1F activity traces). The directionality of
v, suggests that changes in conductance along this parameter combination will most preserve hub
neuron firing between the intrinsic rates of the pyloric and gastric mill rhythms. Importantly and
unlike alternative techniques, once an EPI distribution has been learned, the modes and Hessians of
the distribution can be measured with trivial computation (see Section '‘Deep probability distribu-
tions and normalizing flows'’).

In the following sections, we demonstrate EPIl on three neural circuit models across ranges of bio-
logical realism, neural system function, and network scale. First, we demonstrate the superior scal-
ability of EPI compared to alternative techniques by inferring high-dimensional distributions of
recurrent neural network connectivities that exhibit amplified, yet stable responses. Next, in a model
of primary visual cortex (Litwin-Kumar et al., 2016; Palmigiano et al., 2020), we show how EPI dis-
covers parametric degeneracy, revealing how input variability across neuron types affects the excit-
atory population. Finally, in a model of superior colliculus (Duan et al., 2021), we used EPI to
capture multiple parametric regimes of task switching, and queried the dimensions of parameter
sensitivity to characterize each regime.
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Scaling inference of recurrent neural network connectivity with EPI

To understand how EPI scales in comparison to existing techniques, we consider recurrent neural
networks (RNNs). Transient amplification is a hallmark of neural activity throughout cortex and is
often thought to be intrinsically generated by recurrent connectivity in the responding cortical area
(Murphy and Miller, 2009, Hennequin et al., 2014; Bondanelli et al., 2019). It has been shown
that to generate such amplified, yet stabilized responses, the connectivity of RNNs must be non-nor-
mal (Goldman, 2009; Murphy and Miller, 2009), and satisfy additional constraints (Bondanelli and
Ostojic, 2020). In theoretical neuroscience, RNNs are optimized and then examined to show how
dynamical systems could execute a given computation (Sussillo, 2014; Barak, 2017), but such bio-
logically realistic constraints on connectivity (Goldman, 2009; Murphy and Miller, 2009;
Bondanelli and Ostojic, 2020) are ignored for simplicity or because constrained optimization is diffi-
cult. In general, access to distributions of connectivity that produce theoretical criteria like stable
amplification, chaotic fluctuations (Sompolinsky et al., 1988), or low tangling (Russo et al., 2018)
would add scientific value to existing research with RNNs. Here, we use EPI to learn RNN connectivi-
ties producing stable amplification, and demonstrate the superior scalability and efficiency of EPI to
alternative approaches.

We consider a rank-2 RNN with N neurons having connectivity W = UV and dynamics

TX =—Xx+ Wx, (4)

where U=[U; Uy]+gx®, V=[Vi Va]+gx"), U0, Vi, Vo€ [-1,1]Y, and x{Y) x(} ~N(0,1). We
infer connectivity parameters z=[U;,U,,V,,V,] that produce stable amplification. Two conditions
are necessary and sufficient for RNNs to exhibit stable amplification (Bondanelli and Ostojic, 2020):
real(A1)<I and A}>1, where A, is the eigenvalue of W with greatest real part and A* is the maximum
eigenvalue of W* =W+TWT. RNNs with real(A;) =0.5+0.5 and A} = 1.5+0.5 will be stable with modest
decay rate (real(A;) close to its upper bound of 1) and exhibit modest amplification (A{ close to its

lower bound of 1). EPI can naturally condition on this emergent property

X:sz[real(/\l)} _ {0.5}
AS 15 -
{real(/\l )] {0.252}
Var, x = .
L 0.25?

Variance constraints predicate that the majority of the distribution (within two standard devia-
tions) are within the specified ranges.

For comparison, we infer the parameters z likely to produce stable amplification using two alter-
native simulation-based inference approaches. Sequential Monte Carlo approximate bayesian com-
putation (SMC-ABC) (Sisson et al., 2007) is a rejection sampling approach that uses SMC
techniques to improve efficiency, and sequential neural posterior estimation (SNPE)
(Goncalves et al., 2019) approximates posteriors with deep probability distributions (see Section
‘Related approaches’). Unlike EPI, these statistical inference techniques do not constrain the predic-
tions of the inferred distribution, so they were run by conditioning on an exemplar dataset xo = .,
following standard practice with these methods (Sisson et al., 2007, Goncalves et al., 2019). To
compare the efficiency of these different techniques, we measured the time and number of simula-
tions necessary for the distance of the predictive mean to be less than 0.5 from p = x (see Section
‘Scaling EPI for stable amplification in RNNs').

As the number of neurons N in the RNN, and thus the dimension of the parameter space
z € [-1,1]", is scaled, we see that EPI converges at greater speed and at greater dimension than
SMC-ABC and SNPE (Figure 2A). It also becomes most efficient to use EPI in terms of simulation
count at N = 50 (Figure 2B). It is well known that ABC techniques struggle in parameter spaces of
modest dimension (Sisson et al., 2018), yet we were careful to assess the scalability of SNPE, which
is a more closely related methodology to EPI. Between EPI and SNPE, we closely controlled the
number of parameters in deep probability distributions by dimensionality (Figure 2—figure supple-
ment 1), and tested more aggressive SNPE hyperparameter choices when SNPE failed to converge
(Figure 2—figure supplement 2). In this analysis, we see that deep inference techniques EPI and
SNPE are far more amenable to inference of high dimensional RNN connectivities than rejection
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Figure 2. Inferring recurrent neural networks with stable amplification. (A) Wall time of EPI (blue), SNPE (orange), and SMC-ABC (green) to converge on
RNN connectivities producing stable amplification. Each dot shows convergence time for an individual random seed. For reference, the mean wall time
for EPI to achieve its full constraint convergence (means and variances) is shown (blue line). (B) Simulation count of each algorithm to achieve
convergence. Same conventions as A. (C) The predictive distributions of connectivities inferred by EPI (blue), SNPE (orange), and SMC-ABC (green),
with reference to xo = p (gray star). (D) Simulations of networks inferred by each method (7 = 100ms). Each trace (15 per algorithm) corresponds to
simulation of one z. (Below) Ratio of obtained samples producing stable amplification, stable monotonic decay, and instability.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Architecture parameter comparison of EPl and SNPE.
Figure supplement 2. SNPE convergence was enabled by increasing nyound, NOt fatom-
Figure 2 continued on next page
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Figure 2 continued

Figure supplement 3. Model characteristics affect predictions of posteriors inferred by SNPE, while predictions of parameters inferred by EPI remain
fixed.

sampling techniques like SMC-ABC, and that EPI outperforms SNPE in both wall time (elapsed real
time) and simulation count.

No matter the number of neurons, EPI always produces connectivity distributions with mean and
variance of real(A;) and A} according to X (Figure 2C, blue). For the dimensionalities in which SMC-
ABC is tractable, the inferred parameters are concentrated and offset from the exemplar dataset xg
(Figure 2C, green). When using SNPE, the predictions of the inferred parameters are highly concen-
trated at some RNN sizes and widely varied in others (Figure 2C, orange). We see these properties
reflected in simulations from the inferred distributions: EPI produces a consistent variety of stable,
amplified activity norms |x(¢)|, SMC-ABC produces a limited variety of responses, and the changing
variety of responses from SNPE emphasizes the control of EPI on parameter predictions (Figure 2D).
Even for moderate neuron counts, the predictions of the inferred distribution of SNPE are highly
dependent on N and g, while EPI maintains the emergent property across choices of RNN (see Sec-
tion 'Effect of RNN parameters on EPI and SNPE inferred distributions’).

To understand these differences, note that EPI outperforms SNPE in high dimensions by using
gradient information (from V,[real(A;),A3]"). This choice agrees with recent speculation that such
gradient information could improve the efficiency of simulation-based inference techniques
(Cranmer et al., 2020), as well as reflecting the classic tradeoff between gradient-based and sam-
pling-based estimators (scaling and speed versus generality). Since gradients of the emergent prop-
erty are necessary in EPI optimization, gradient tractability is a key criteria when determining the
suitability of a simulation-based inference technique. If the emergent property gradient is efficiently
calculated, EPI is a clear choice for inferring high dimensional parameter distributions. In the next
two sections, we use EPl for novel scientific insight by examining the structure of inferred
distributions.

EPI reveals how recurrence with multiple inhibitory subtypes governs
excitatory variability in a V1 model

Dynamical models of excitatory (E) and inhibitory (l) populations with supralinear input-output func-
tion have succeeded in explaining a host of experimentally documented phenomena in primary
visual cortex (V1). In a regime characterized by inhibitory stabilization of strong recurrent excitation,
these models give rise to paradoxical responses (Tsodyks et al., 1997), selective amplification
(Goldman, 2009; Murphy and Miller, 2009), surround suppression (Ozeki et al., 2009), and normal-
ization (Rubin et al., 2015). Recent theoretical work (Hennequin et al., 2018) shows that stabilized
E-I models reproduce the effect of variability suppression (Churchland et al., 2010). Furthermore,
experimental evidence shows that inhibition is composed of distinct elements — parvalbumin (P),
somatostatin (S), VIP (V) — composing 80% of GABAergic interneurons in V1 (Markram et al., 2004,
Rudy et al., 2011; Tremblay et al., 2016), and that these inhibitory cell types follow specific connec-
tivity patterns (Figure 3A; Pfeffer et al., 2013). Here, we use EPl on a model of V1 with biologically
realistic connectivity to show how the structure of input across neuron types affects the variability of
the excitatory population — the population largely responsible for projecting to other brain areas
(Felleman and Van Essen, 1991).

We considered response variability of a nonlinear dynamical V1 circuit model (Figure 3A) with a
state comprised of each neuron-type population’s rate x = [xz, xp, xs,xy] . Each population receives
recurrent input Wx, where W is the effective connectivity matrix (see Section ‘Primary visual cortex’)
and an external input with mean h, which determines population rate via supralinear nonlinearity
#(-) = []%.. The external input has an additive noisy component ¢ with variance o> = [07,0%,0%,07%].
This noise has a slower dynamical timescale 7,.s.>7 than the population rate, allowing fluctuations
around a stimulus-dependent steady-state (Figure 3B). This model is the stochastic stabilized supra-
linear network (SSSN) (Hennequin et al., 2018)
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Figure 3. Emergent property inference in the stochastic stabilized supralinear network (SSSN). (A) Four-population model of primary visual cortex with
excitatory (black), parvalbumin (blue), somatostatin (red), and VIP (green) neurons (excitatory and inhibitory projections filled and unfilled, respectively).
Some neuron-types largely do not form synaptic projections to others (|(Wg, a, )|<0.025). Each neural population receives a baseline input hy, and the E-
and P-populations also receive a contrast-dependent input h.. Additionally, each neural population receives a slow noisy input e. (B) Transient network
responses of the SSSN model. Traces are independent trials with varying initialization x(0) and noise e. (C) Mean (solid line) and standard deviation
se(x;z) (shading) across 100 trials. (D) EPI distribution of noise parameters z conditioned on E-population variability. The EPI predictive distribution of
sg(x;2) is show on the bottom-left. (E) (Top) Enlarged visualization of the gz-op marginal distribution of EPI gg(z | X(5Hz)) and gg(z | X(10Hz)). Each
black dot shows the mode at each op. The arrows show the most sensitive dimensions of the Hessian evaluated at these modes. (F) The predictive
distributions of o% + o3 of each inferred distribution gg(z | X(5Hz)) and gp(z | X(10Hz)).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. EPI inferred distribution for X(10Hz).

Figure supplement 2. EPI optimization.

Figure supplement 3. EPI predictive distributions of the sum of squares of each pair of noise parameters.

Figure supplement 4. SSSN simulations for small increases in neuron-type population input (left); average (solid) and standard deviation (shaded) of
stochastic fluctuations of responses (right).
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T%:—X—b—d)(WX-i-h—i—e), (6)

generalized to have multiple inhibitory neuron types. It introduces stochasticity to four neuron-type
models of V1 (Litwin-Kumar et al., 2016). Stochasticity and inhibitory multiplicity introduce substan-
tial complexity to the mathematical treatment of this problem (see Section 'Primary visual cortex:
Mathematical intuition and challenges’) motivating the analysis of this model with EPI. Here, we con-
sider fixed weights W and input h (Palmigiano et al., 2020), and study the effect of input variability
z=[op,0p,05,0v]' on excitatory variability.

We quantify levels of E-population variability by studying two emergent properties

X(5Hz): E,xse(x;z) =5Hz X(10Hz): E,xse(x;z) =10Hz
Var,xse(x;z) = 1HZ? Var,sg(x;z) = 1Hz?,

7)

where sg(x;z) is the standard deviation of the stochastic E-population response about its steady
state (Figure 3C). In the following analyses, we select 1 Hz? variance such that the two emergent
properties do not overlap in sg(z;x).

First, we ran EPI to obtain parameter distribution g¢(z | X(5Hz)) producing E-population variabil-
ity around 5 Hz (Figure 3D). From the marginal distribution of oz and op (Figure 3D, top-left), we
can see that sg(x;z) is sensitive to various combinations of o and op. Alternatively, both o5 and oy
are degenerate with respect to sg(x;z) evidenced by the unexpectedly high variability in those
dimensions (Figure 3D, bottom-right). Together, these observations imply a curved path with
respect to sg(x;z) of 5 Hz, which is indicated by the modes along op (Figure 3E).

Figure 3E suggests a quadratic relationship in E-population fluctuations and the standard devia-
tion of E- and P-population input; as the square of either o or op increases, the other compensates
by decreasing to preserve the level of sg(x;z). This quadratic relationship is preserved at greater
level of E-population variability X'(10Hz) (Figure 3E and Figure 3—figure supplement 1). Indeed,
the sum of squares of or and op is larger in gg(z | X(10Hz)) than ge(z | X(5Hz)) (Figure 3F,
p<1 x 10719), while the sum of squares of o5 and oy are not significantly different in the two EPI dis-
tributions (Figure 3—figure supplement 3, p = .40), in which parameters were bounded from 0 to
0.5. The strong interaction between E- and P-population input variability on excitatory variability is
intriguing, since this circuit exhibits a paradoxical effect in the P-population (and no other inhibitory
types) (Figure 3—figure supplement 4), meaning that the E-population is P-stabilized. Future
research may uncover a link between the population of network stabilization and compensatory
interactions governing excitatory variability.

EPI revealed the quadratic dependence of excitatory variability on input variability to the E- and
P-populations, as well as its independence to input from the other two inhibitory populations. In a
simplified model (7 = 7,0i0), it can be shown that surfaces of equal variance are ellipsoids as a func-
tion of o (see Section 'Primary visual cortex: Mathematical intuition and challenges’). Nevertheless,
the sensitive and degenerate parameters are intractable to predict mathematically, since the covari-
ance matrix depends on the steady-state solution of the network (Hennequin et al., 2018,
Gardiner, 2009), and terms in the covariance expression increase quadratically with each additional
neuron-type population (see also Section 'Primary visual cortex: Mathematical intuition and chal-
lenges’). By pointing out this mathematical complexity, we emphasize the value of EPI for gaining
understanding about theoretical models when mathematical analysis becomes onerous or
impractical.

EPI identifies two regimes of rapid task switching

It has been shown that rats can learn to switch from one behavioral task to the next on randomly
interleaved trials (Duan et al., 2015), and an important question is what neural mechanisms produce
this computation. In this experimental setup, rats were given an explicit task cue on each trial, either
Pro or Anti. After a delay period, rats were shown a stimulus, and made a context (task) dependent
response (Figure 4A). In the Pro task, rats were required to orient toward the stimulus, while in the
Anti task, rats were required to orient away from the stimulus. Pharmacological inactivation of the
SC impaired rat performance, and time-specific optogenetic inactivation revealed a crucial role for
the SC on the cognitively demanding Anti trials (Duan et al., 2021). These results motivated a
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Figure 4. Inferring rapid task switching networks in superior colliculus. (A) Rapid task switching behavioral paradigm (see text). (B) Model of superior
colliculus (SC). Neurons: LP - Left Pro, RP - Right Pro, LA - Left Anti, RA - Right Anti. Parameters: sW - self, AW - horizontal, vW -vertical, dW - diagonal
weights. (C) The EPI inferred distribution of rapid task switching networks. Red/purple parameters indicate modes z*(sW) colored by sW. Sensitivity
Figure 4 continued on next page
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vectors vy (z*) are shown by arrows. (Bottom-left) EPI predictive distribution of task accuracies. (D) Mean and standard error (Nt = 25, bars not visible)
of accuracy in Pro (top) and Anti (bottom) tasks after perturbing connectivity away from mode along v;(z*) (left), vias (middle), and veiag (right).
The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Task accuracy by EPI inferred SC network connectivity.

Figure supplement 2. SC network simulations by regime.

Figure supplement 3. Eigenmodes of SC connectivity.

Figure supplement 4. EP| optimization of the SC model producing rapid task switching.
Figure supplement 5. SC connectivities obtained through brute-force sampling.

nonlinear dynamical model of the SC containing four functionally defined neuron-type populations.
In Duan et al., 2021, a computationally intensive procedure was used to obtain a set of 373 connec-
tivity parameters that qualitatively reproduced these optogenetic inactivation results. To build upon
the insights of this previous work, we use the probabilistic tools afforded by EPI to identify and char-
acterize two linked, yet distinct regimes of rapid task switching connectivity.

In this SC model, there are Pro- and Anti-populations in each hemisphere (left (L) and right (R))
with activity variables x = [xuo,xLA,xmn,xRA]T (Duan et al., 2021). The connectivity of these popula-
tions is parameterized by self sW, vertical vW, diagonal dW and horizontal hW connections
(Figure 4B). The input h is comprised of a positive cue-dependent signal to the Pro- or Anti-popula-
tions, a positive stimulus-dependent input to either the Left or Right populations, and a choice-
period input to the entire network (see Section ‘SC model’). Model responses are bounded from 0
to 1 as a function ¢ of an internal variable u

du
x =¢(u).

The model responds to the side with greater Pro neuron activation; for example the response is
left if x;p>xgp at the end of the trial. Here, we use EPI to determine the network connectivity
z=[sW,vW,dW,hW]" that produces rapid task switching.

Rapid task switching is formalized mathematically as an emergent property with two statistics:
accuracy in the Pro task pp(x;z) and Anti task p4(x;z). We stipulate that accuracy be on average 0.75
in each task with variance .0752

Seventy-five percent accuracy is a realistic level of performance in each task, and with the chosen
variance, inferred models will not exhibit fully random responses (50%), nor perfect performance
(100%).

The EPI inferred distribution (Figure 4C) produces Pro- and Anti-task accuracies (Figure 4C, bot-
tom-left) consistent with rapid task switching (Equation 9). This parameter distribution has rich struc-
ture that is not captured well by simple linear correlations (Figure 4—figure supplement 1).
Specifically, the shape of the EPI distribution is sharply bent, matching ground truth structure indi-
cated by brute-force sampling (Figure 4—figure supplement 5). This is most saliently observed in
the marginal distribution of sW-hW (Figure 4C top-right), where anticorrelation between sW and AW
switches to correlation with decreasing sW. By identifying the modes of the EPI distribution z*(sW)
at different values of sW (Figure 4C red/purple dots), we can quantify this change in distributional
structure with the sensitivity dimension v, (z) (Figure 4C red/purple arrows). Note that the direction-
ality of these sensitivity dimensions at z*(sW) changes distinctly with sW, and are perpendicular to
the robust dimensions of the EPI distribution that preserve rapid task switching. These two direction-
alities of sensitivity motivate the distinction of connectivity into two regimes, which produce different
types of responses in the Pro and Anti tasks (Figure 4—figure supplement 2).
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When perturbing connectivity along the sensitivity dimension away from the modes

2=17"(sW)+8v,(z" (sW)), (10)

Pro-accuracy monotonically increases in both regimes (Figure 4D, top-left). However, there is a
stark difference between regimes in Anti-accuracy. Anti-accuracy falls in either direction of v; in
regime 1, yet monotonically increases along with Pro accuracy in regime 2 (Figure 4D, bottom-left).
The sharp change in local structure of the EPI distribution is therefore explained by distinct sensitivi-
ties: Anti-accuracy diminishes in only one or both directions of the sensitivity perturbation.

To understand the mechanisms differentiating the two regimes, we can make connectivity pertur-
bations along dimensions that only modify a single eigenvalue of the connectivity matrix. These
eigenvalues Aan, Agides Atask, and Agiae correspond to connectivity eigenmodes with intuitive roles in
processing in this task (Figure 4—figure supplement 3A). For example, greater Ay,q will strengthen
internal representations of task, while greater A4, will amplify dominance of Pro and Anti pairs in
opposite hemispheres (Section ‘Connectivity eigendecomposition and processing modes’). Unlike
the sensitivity dimension, the dimensions v, that perturb isolated connectivity eigenvalues A, for
a € {all, side, task, diag} are independent of z*(sW) (see Section 'Connectivity eigendecomposition
and processing modes’), e.g.

2=2"(sW) + 8Viask. 11)

Connectivity perturbation analyses reveal that decreasing A, has a very similar effect on Anti
accuracy as perturbations along the sensitivity dimension (Figure 4D, middle). The similar effects of
perturbations along the sensitivity dimension v;(z*) and reduction of task eigenvalue (via perturba-
tions along —v,s) suggest that there is a carefully tuned strength of task representation in connec-
tivity regime 1, which if disturbed results in random Anti-trial responses. Finally, we recognize that
increasing Agiag has opposite effects on Anti-accuracy in each regime (Figure 4D, right). In the next
section, we build on these mechanistic characterizations of each regime by examining their resilience
to optogenetic inactivation.

EPI inferred SC connectivities reproduce results from optogenetic
inactivation experiments

During the delay period of this task, the circuit must prepare to execute the correct task according
to the presented cue. The circuit must then maintain a representation of task throughout the delay
period, which is important for correct execution of the Anti-task. Duan et al. found that bilateral
optogenetic inactivation of SC during the delay period consistently decreased performance in the
Anti-task, but had no effect on the Pro-task (Figure 5A; Duan et al., 2021). The distribution of con-
nectivities inferred by EPI exhibited this same effect in simulation at high optogenetic strengths 7,
which reduce the network activities x(¢) by a factor 1 — y (Figure 5B) (see Section ‘Modeling optoge-
netic silencing’).

To examine how connectivity affects response to delay period inactivation, we grouped connec-
tivities of the EPI distribution along the continuum linking regimes 1 and 2 of Section 'EPI identifies
two regimes of rapid task switching’. Z(sW) is the set of EPl samples for which the closest mode was
z*(sW) (see Section 'Mode identification with EPI’). In the following analyses, we examine how error,
and the influence of connectivity eigenvalue on Anti-error change along this continuum of connectiv-
ities. Obtaining the parameter samples for these analysis with the learned EPI distribution was more
than 20,000 times faster than a brute force approach (see Section ‘Sample grouping by mode’).

The mean increase in Anti-error of the EPI distribution is closest to the experimentally measured
value of 7% at y = 0.675 (Figure 5B, black dot). At this level of optogenetic strength, regime 1
exhibits an increase in Anti-error with delay period silencing (Figure 5C, left), while regime 2 does
not. In regime 1, greater A, and Agia decrease Anti-error (Figure 5C, right). In other words, stron-
ger task representations and diagonal amplification make the SC model more resilient to delay
period silencing in the Anti-task. This complements the finding from Duan et al., 2021 (Duan et al.,
2021) that A¢asx and Agiag improve Anti accuracy.

At roughly y = 0.85 (Figure 5B, gray dot), the Anti-error saturates, while Pro-error remains at
zero. Following delay period inactivation at this optogenetic strength, there are strong similarities in
the responses of Pro- and Anti-trials during the choice period (Figure 5D, left). We interpreted these
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Figure 5. Responses to optogenetic perturbation by connectivity regime. (A) Mean and standard error (bars)
across recording sessions of task error following delay period optogenetic inactivation in rats. (B) Mean and
standard deviation (bars) of task error induced by delay period inactivation of varying optogenetic strength y
across the EPI distribution. (C) (Left) Mean and standard error of Pro and Anti error from regime 1 to regime 2 at
v = 0.675. (Right) Correlations of connectivity eigenvalues with Anti error from regime 1 to regime 2 at y = 0.675.
(D) (Left) Mean and standard deviation (shading) of responses of the SC model at the mode of the EPI distribution
to delay period inactivation at y = 0.85. Accuracy in Pro (top) and Anti (bottom) task is shown as a percentage.
(Right) Anti-accuracy following delay period inactivation at y = 0.85 versus accuracy in the Pro-task across
connectivities in the EPI distribution.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. SC responses to delay period inactivation at Anti error saturating levels.
Figure supplement 2. SC responses to delay period inactivation at experiment matching levels.

similarities to suggest that delay period inactivation at this saturated level flips the internal represen-
tation of task (from Anti to Pro) in the circuit model. A flipped task representation would explain
why the Anti-error saturates at 50%: the average Anti-accuracy in EPI inferred connectivities is 75%,
but average Anti accuracy would be 25% (100% - E,[pp]) if the internal representation of task is
flipped during the delay period.This hypothesis prescribes a model of Anti-accuracy during delay
period silencing of py opto = 100% — pp, which is fit closely across both regimes of the EPI inferred
connectivities (Figure 5D, right). Similarities between Pro- and Anti-trial responses were not present
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at the experiment-matching level of y = 0.675 (Figure 5—figure supplement 2 left) and neither was
anticorrelation in pp and pa opio (Figure 5—figure supplement 2 right).

In summary, the connectivity inferred by EPI to perform rapid task switching replicated results
from optogenetic silencing experiments. We found that at levels of optogenetic strength matching
experimental levels of Anti-error, only one regime actually exhibited the effect. This connectivity
regime is less resilient to optogenetic perturbation, and perhaps more biologically realistic. Finally,
we characterized the pathology in Anti-error that occurs in both regimes when optogenetic strength
is increased to high levels, leading to a mechanistic hypothesis that is experimentally testable. The
probabilistic tools afforded by EPI yielded this insight: we identified two regimes and the continuum
of connectivities between them by taking gradients of parameter probabilities in the EPI distribution,
we identified sensitivity dimensions by measuring the Hessian of the EPI distribution, and we
obtained many parameter samples at each step along the continuum at an efficient rate.

Discussion

In neuroscience, machine learning has primarily been used to reveal structure in neural datasets
(Paninski and Cunningham, 2018). Careful inference procedures are developed for these statistical
models allowing precise, quantitative reasoning, which clarifies the way data informs beliefs about
the model parameters. However, these statistical models often lack resemblance to the underlying
biology, making it unclear how to go from the structure revealed by these methods, to the neural
mechanisms giving rise to it. In contrast, theoretical neuroscience has primarily focused on careful
models of neural circuits and the production of emergent properties of computation, rather than
measuring structure in neural datasets. In this work, we improve upon parameter inference techni-
ques in theoretical neuroscience with emergent property inference, harnessing deep learning
towards parameter inference in neural circuit models (see Section 'Related approaches’).

Methodology for statistical inference in circuit models has evolved considerably in recent years.
Early work used rejection sampling techniques (Beaumont et al., 2002, Marjoram et al., 2003;
Sisson et al., 2007), but EPI and another recently developed methodology (Goncalves et al., 2019)
employ deep learning to improve efficiency and provide flexible approximations. SNPE has been
used for posterior inference of parameters in circuit models conditioned upon exemplar data used
to represent computation, but it does not infer parameter distributions that only produce the com-
putation of interest like EPI (see Section ‘Scaling inference of recurrent neural network connectivity
with EPI’). When strict control over the predictions of the inferred parameters is necessary, EPI uses
a constrained optimization technique (Loaiza-Ganem et al., 2017) (see Section 'Augmented
lagrangian optimization’) to make inference conditioned on the emergent property possible.

A key difference between EPI and SNPE, is that EPI uses gradients of the emergent property
throughout optimization. In Section 'Scaling inference of recurrent neural network connectivity with
EPI', we showed that such gradients confer beneficial scaling properties, but a concern remains that
emergent property gradients may be too computationally intensive. Even in a case of close biophysi-
cal realism with an expensive emergent property gradient, EPl was run successfully on intermediate
hub frequency in a five-neuron subcircuit model of the STG (Section ‘Motivating emergent property
inference of theoretical models’). However, conditioning on the pyloric rhythm (Marder and Selver-
ston, 1992) in a model of the pyloric subnetwork model (Prinz et al., 2004) proved to be prohibitive
with EPI. The pyloric subnetwork requires many time steps for simulation and many key emergent
property statistics (e.g. burst duration and phase gap) are not calculable or easily approximated with
differentiable functions. In such cases, SNPE, which does not require differentiability of the emergent
property, has proven useful (Gongalves et al., 2019). In summary, choice of deep inference tech-
nique should consider emergent property complexity and differentiability, dimensionality of parame-
ter space, and the importance of constraining the model behavior predicted by the inferred
parameter distribution.

In this paper, we demonstrate the value of deep inference for parameter sensitivity analyses at
both the local and global level. With these techniques, flexible deep probability distributions are
optimized to capture global structure by approximating the full distribution of suitable parameters.
Importantly, the local structure of this deep probability distribution can be quantified at any parame-
ter choice, offering instant sensitivity measurements after fitting. For example, the global structure
captured by EPI revealed two distinct parameter regimes, which had different local structure
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quantified by the deep probability distribution (see Section ‘Superior colliculus’). In comparison,
bayesian MCMC is considered a popular approach for capturing global parameter structure
(Girolami and Calderhead, 2011), but there is no variational approximation (the deep probability
distribution in EPI), so sensitivity information is not queryable and sampling remains slow after con-
vergence. Local sensitivity analyses (e.g. Raue et al., 2009) may be performed independently at indi-
vidual parameter samples, but these methods alone do not capture the full picture in nonlinear,
complex distributions. In contrast, deep inference yields a probability distribution that produces a
wholistic assessment of parameter sensitivity at the local and global level, which we used in this
study to make novel insights into a range of theoretical models. Together, the abilities to condition
upon emergent properties, the efficient inference algorithm, and the capacity for parameter sensitiv-
ity analyses make EPI a useful method for addressing inverse problems in theoretical neuroscience.

Code availability statement
All software written for this study is available at https://github.com/cunningham-lab/epi (copy
archived at swh:1:rev:38febae7035¢ca921334a616b0f396b3767bf18d4), Bittner, 2021.

Materials and methods

Emergent property inference (EPI)

Solving inverse problems is an important part of theoretical neuroscience, since we must understand
how neural circuit models and their parameter choices produce computations. Recently, research on
machine learning methodology for neuroscience has focused on finding latent structure in large-
scale neural datasets, while research in theoretical neuroscience generally focuses on developing
precise neural circuit models that can produce computations of interest. By quantifying computation
into an emergent property through statistics of the emergent activity of neural circuit models, we
can adapt the modern technique of deep probabilistic inference towards solving inverse problems in
theoretical neuroscience. Here, we introduce a novel method for statistical inference, which uses
deep networks to learn parameter distributions constrained to produce emergent properties of
computation.

Consider model parameterization z, which is a collection of scientifically meaningful variables that
govern the complex simulation of data x. For example (see Section ‘Motivating emergent property
inference of theoretical models’), z may be the electrical conductance parameters of an STG subcir-
cuit, and x the evolving membrane potentials of the five neurons. In terms of statistical modeling,
this circuit model has an intractable likelihood p(x | z), which is predicated by the stochastic differen-
tial equations that define the model. From a theoretical perspective, we are less concerned about
the likelihood of an exemplar dataset x, but rather the emergent property of intermediate hub fre-
quency (which implies a consistent dataset x).

In this work, emergent properties X are defined through the choice of emergent property statis-
tic £(x; z) (which is a vector of one or more statistics), and its means p, and variances o:

X E,x[f(x;2)] = w, Varx[f(x;2)] = o’ (12)

In general, an emergent property may be a collection of first-, second-, or higher-order moments
of a group of statistics, but this study focuses on the case written in Equation 12. In the STG exam-
ple, intermediate hub frequency is defined by mean and variance constraints on the statistic of hub
neuron frequency wpu, (x;2) (Equations 2 and 3). Precisely, the emergent property statistics f(x;z)
must have means p and variances o over the EPI distribution of parameters (z~g4(z)) and the data
produced by those parameters (x~p(x | z)), where the inferred parameter distribution gg(z) itself is
parameterized by deep network weights and biases 6.

In EPI, a deep probability distribution gg(z) is optimized to approximate the parameter distribu-
tion producing the emergent property X. In contrast to simpler classes of distributions like the
gaussian or mixture of gaussians, deep probability distributions are far more flexible and capable of
fitting rich structure (Rezende and Mohamed, 2015; Papamakarios et al., 2019a). In deep proba-
bility distributions, a simple random variable zy ~ g¢(zy) (we choose an isotropic gaussian) is mapped
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deterministically via a sequence of deep neural network layers (gq, . g) parameterized by weights
and biases 0 to the support of the distribution of interest:

z=g(20) = 8i(---81(20)) ~q0(2). (13)

Such deep probability distributions embed the inferred distribution in a deep network. Once opti-
mized, this deep network representation of a distribution has remarkably useful properties: fast sam-
pling and probability evaluations. Importantly, fast probability evaluations confer fast gradient and
Hessian calculations as well.

Given this choice of circuit model and emergent property X, go(z) is optimized via the neural net-
work parameters 8 to find a maximally entropic distribution g within the deep variational family
Q = {qp(z) : 6 € O} that produces the emergent property X:

q6(z | X) = qg(z) argmax H(qe(z))
qp€Q (14)
s.6.X By x[f(x2)] =, Var,s[f(x;2)] = 07,

where H(qg(z)) = E,[—logge(z)] is entropy. By maximizing the entropy of the inferred distribution gg,
we select the most random distribution in family Q that satisfies the constraints of the emergent
property. Since entropy is maximized in Equation 14, EPI is equivalent to bayesian variational infer-
ence (see Section 'EPI as variational inference’), which is why we specify the inferred distribution of
EPI as conditioned upon emergent property X’ with the notation gg(z | X). To run this constrained
optimization, we use an augmented lagrangian objective, which is the standard approach for con-
strained optimization (Bertsekas, 2014), and the approach taken to fit Maximum Entropy Flow Net-
works (MEFNs) (Loaiza-Ganem et al., 2017). This procedure is detailed in Section 'Augmented
lagrangian optimization’ and the pseudocode in Algorithm ‘Augmented lagrangian optimization’.

In the remainder of Section 'Emergent property inference (EPI)’, we will explain the finer details
and motivation of the EPI method. First, we explain related approaches and what EPI introduces to
this domain (Section 'Related approaches’). Second, we describe the special class of deep probabil-
ity distributions used in EPI called normalizing flows (Section ‘Deep probability distributions and nor-
malizing flows’). Then, we establish the known relationship between maximum entropy distributions
and exponential families (Section ‘Maximum entropy distributions and exponential families’). Next,
we explain the constrained optimization technique used to solve Equation 14 (Section ‘Augmented
lagrangian optimization’). Then, we demonstrate the details of this optimization in a toy example
(Section ‘Example: 2D LDS’). Finally, we explain how EPI is equivalent to variational inference (Sec-
tion 'EPI as variational inference’).

Related approaches

When bayesian inference problems lack conjugacy, scientists use approximate inference methods
like variational inference (VI) (Saul and Jordan, 1998) and Markov chain Monte Carlo (MCMC)
(Metropolis et al., 1953, Hastings, 1970). After optimization, variational methods return a parame-
terized posterior distribution, which we can analyze. Also, the variational approximation is often cho-
sen such that it permits fast sampling. In contrast MCMC methods only produce samples from the
approximated posterior distribution. No parameterized distribution is estimated, and additional
samples are always generated with the same sampling complexity. Inference in models defined by
systems of differential has been demonstrated with MCMC (Girolami and Calderhead, 2011),
although this approach requires tractable likelihoods. Advancements have introduced sampling
(Calderhead and Girolami, 2011), likelihood approximation (Golightly and Wilkinson, 2011), and
uncertainty quantification techniques (Chkrebtii et al., 2016) to make MCMC approaches more effi-
cient and expand the class of applicable models.

Simulation-based inference (Cranmer et al., 2020) is model parameter inference in the absence
of a tractable likelihood function. The most prevalent approach to simulation-based inference is
approximate bayesian computation (ABC) (Beaumont et al., 2002), in which satisfactory parameter
samples are kept from random prior sampling according to a rejection heuristic. The obtained set of
parameters do not have a probabilities, and further insight about the model must be gained from
examination of the parameter set and their generated activity. Methodological advances to ABC
methods have come through the use of Markov chain Monte Carlo (MCMC-ABC) (Marjoram et al.,
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2003) and sequential Monte Carlo (SMC-ABC) (Sisson et al., 2007) sampling techniques. SMC-ABC
is considered state-of-the-art ABC, yet this approach still struggles to scale in dimensionality
(Sisson et al., 2018; Figure 2). Still, this method has enjoyed much success in systems biology
(Liepe et al., 2014). Furthermore, once a parameter set has been obtained by SMC-ABC from a
finite set of particles, the SMC-ABC algorithm must be run again from scratch with a new population
of initialized particles to obtain additional samples.

For scientific model analysis, we seek a parameter distribution represented by an approximating
distribution as in variational inference (Saul and Jordan, 1998): a variational approximation that
once optimized yields fast analytic calculations and samples. For the reasons described above, ABC
and MCMC techniques are not suitable, because they only produce a set of parameter samples lack-
ing probabilities and have unchanging sampling rate. EPI infers parameters in circuit models using
the MEFN (Loaiza-Ganem et al., 2017) algorithm with a deep variational approximation. The deep
neural network of EPI (Figure 1E) defines the parametric form (with weights and biases as variational
parameters ) of the variational approximation of the inferred parameter distribution g¢(z | x). The
EPI optimization is enabled using stochastic gradient techniques in the spirit of likelihood-free varia-
tional inference (Tran et al., 2017). The analytic relationship between EPI and variational inference is
explained in Section 'EPI as variational inference’.

We note that, during our preparation and early presentation of this work (Bittner et al., 2019a;
Bittner et al., 2019b), another work has arisen with broadly similar goals: bringing statistical infer-
ence to mechanistic models of neural circuits (Nonnenmacher et al., 2018; Michael et al., 2019,
Goncgalves et al., 2019). We are encouraged by this general problem being recognized by others in
the community, and we emphasize that these works offer complementary neuroscientific contribu-
tions (different theoretical models of focus) and use different technical methodologies (ours is built
on our prior work [Loaiza-Ganem et al., 2017], theirs similarly [Lueckmann et al., 2017)).

The method EPI differs from SNPE in some key ways. SNPE belongs to a ‘sequential’ class of
recently developed simulation-based inference methods in which two neural networks are used for
posterior inference. This first neural network is a deep probability distribution (normalizing flow)
used to estimate the posterior p(z | x) (SNPE) or the likelihood p(x | z) (sequential neural likelihood
(SNL) [Papamakarios et al., 2019b]). A recent approach uses an unconstrained neural network to
estimate the likelihood ratio (sequential neural ratio estimation (SNRE) [Hermans et al., 2020]). In
SNL and SNRE, MCMC sampling techniques are used to obtain samples from the approximated pos-
terior. This contrasts with EPl and SNPE, which use deep probability distributions to model parame-
ters, which facilitates immediate measurements of sample probability, gradient, or Hessian for
system analysis. The second neural network in this sequential class of methods is the amortizer. This
unconstrained deep network maps data x (or statistics f(x;z) or model parameters z) to the weights
and biases of the first neural network. These methods are optimized on a conditional density (or
ratio) estimation objective. The data used to optimize this objective are generated via an adaptive
procedure, in which training data pairs (x;, z;) become sequentially closer to the true data and
posterior.

The approximating fidelity of the deep probability distribution in sequential approaches is opti-
mized to generalize across the training distribution of the conditioning variable. This generalization
property of the sequential methods can reduce the accuracy at the singular posterior of interest.
Whereas in EPI, the entire expressivity of the deep probability distribution is dedicated to learning a
single distribution as well as possible. The well-known inverse mapping problem of exponential fami-
lies (Wainwright and Jordan, 2008) prohibits an amortization-based approach in EPI, since EPI
learns an exponential family distribution parameterized by its mean (in contrast to its natural parame-
ter, see Section ‘Maximum entropy distributions and exponential families’). However, we have shown
that the same two-network architecture of the sequential simulation-based inference methods can
be used for amortized inference in intractable exponential family posteriors when using their natural
parameterization (Bittner and Cunningham, 2019).

Finally, one important differentiating factor between EPI and sequential simulation-based infer-
ence methods is that EPI leverages gradients V,f(x;z) during optimization. These gradients can
improve convergence time and scalability, as we have shown on an example conditioning low-rank
RNN connectivity on the property of stable amplification (see Section 'Scaling inference of recurrent
neural network connectivity with EPI’). With EPI, we prove out the suggestion that a deep inference
technique can improve efficiency by leveraging these emergent property gradients when they are
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tractable. Sequential simulation-based inference techniques may be better suited for scientific prob-
lems where V,f(x;z) is intractable or unavailable, like when there is a nondifferentiable emergent
property. However, the sequential simulation-based inference techniques cannot constrain the pre-
dictions of the inferred distribution in the manner of EPI.

Structural identifiability analysis involves the measurement of sensitivity and unidentifiabilities in
scientific models. Around a single parameter choice, one can measure the Jacobian. One approach
for this calculation that scales well is EAR (Karlsson et al., 2012). A popular efficient approach for
systems of ODEs has been neural ODE adjoint (Chen et al., 2018) and its stochastic adaptation
(Li et al., 2020). Casting identifiability as a statistical estimation problem, the profile likelihood works
via iterated optimization while holding parameters fixed (Raue et al., 2009). An exciting recent
method is capable of recovering the functional form of such unidentifiabilities away from a point by
following degenerate dimensions of the fisher information matrix (Raman et al., 2017). Global struc-
tural non-identifiabilities can be found for models with polynomial or rational dynamics equations
using DAISY (Pia Saccomani et al., 2003), or through mean optimal transformations (Hengl et al.,
2007). With EPI, we have all the benefits given by a statistical inference method plus the ability to
query the first- or second-order gradient of the probability of the inferred distribution at any chosen
parameter value. The second-order gradient of the log probability (the Hessian), which is directly
afforded by EPI distributions, produces quantified information about parametric sensitivity of the
emergent property in parameter space (see Section 'Emergent property inference via deep genera-
tive models’).

Deep probability distributions and normalizing flows

Deep probability distributions are comprised of multiple layers of fully connected neural networks
(Equation 13). When each neural network layer is restricted to be a bijective function, the sample
density can be calculated using the change of variables formula at each layer of the network. For

z; = 8i(Zi—1),

p(2) :p<g;1(zi>)‘detagf—(zf)\ —_—

-1
detagi(zi—l)' ) (15)
aZi

0z;_

However, this computation has cubic complexity in dimensionality for fully connected layers. By
restricting our layers to normalizing flows (Rezende and Mohamed, 2015, Papamakarios et al.,
2019a) - bijective functions with fast log determinant Jacobian computations, which confer a fast
calculation of the sample log probability. Fast log probability calculation confers efficient optimiza-
tion of the maximum entropy objective (see Section 'Augmented lagrangian optimization’).

We use the real NVP (Dinh et al., 2017) normalizing flow class, because its coupling architecture
confers both fast sampling (forward) and fast log probability evaluation (backward). Fast probability
evaluation facilitates fast gradient and Hessian evaluation of log probability throughout parameter
space. Glow permutations were used in between coupling stages (Kingma and Dhariwal, 2018).
This is in contrast to autoregressive architectures (Papamakarios et al., 2017; Kingma et al., 2016),
in which only one of the forward or backward passes can be efficient. In this work, normalizing flows
are used as flexible parameter distribution approximations gg(z) having weights and biases 8. We
specify the architecture used in each application by the number of real NVP affine coupling stages,
and the number of neural network layers and units per layer of the conditioning functions.

When calculating Hessians of log probabilities in deep probability distributions, it is important to
consider the normalizing flow architecture. With autoregressive architectures (Kingma et al., 2016;
Papamakarios et al., 2017), fast sampling and fast log probability evaluations are mutually exclu-
sive. That makes these architectures undesirable for EPI, where efficient sampling is important for
optimization, and log probability evaluation speed predicates the efficiency of gradient and Hessian
calculations. With real NVP coupling architectures, we get both fast sampling and fast Hessians mak-
ing both optimization and scientific analysis efficient.

Maximum entropy distributions and exponential families
The inferred distribution of EPI is a maximum entropy distribution, which have fundamental links to
exponential family distributions. A maximum entropy distribution of form:
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p*(z) =argmax H(p(z))
pEP ('I 6)
S.t.Ez~p[T(z)] = Peopts

where T(z) is the sufficient statistics vector and p,, a vector of their mean values, will have probabil-
ity density in the exponential family:

p*(z) xcexp(n' T(z)). (17)

The mappings between the mean parameterization ,, and the natural parameterization 7 are
formally hard to identify except in special cases (Wainwright and Jordan, 2008).
In this manuscript, emergent properties are defined by statistics f(x; z) having a fixed mean w and

2

variance o* as in Equation 12. The variance constraint is a second moment constraint on f(x;z):

Varx[f(x:2)] = B, x | (f(x;2) — p)° . (18)

As a general maximum entropy distribution (Equation 16), the sufficient statistics vector contains
both first and second order moments of f(x;z)

Ex~p(x | z) [f(X7 Z)]

T(z)= , (19)
Ex~p(x | z) [(f(X,Z) - p‘)z]
which are constrained to the chosen means and variances
"
l'l‘opt = |:0_2:| ‘ (20)

Thus, w,, is used to denote the mean parameter of the maximum entropy distribution defined by
the emergent property (all constraints), while p is only the mean of f(x;z). The subscript ‘opt’ of p
is chosen since it contains all the constraint values to which the EPI optimization algorithm must
adhere.

Augmented lagrangian optimization
To optimize g¢(z) in Equation 14, the constrained maximum entropy optimization is executed using
the augmented lagrangian method. The following objective is minimized:

L(6: M) = —H(go) + 10, R(O) +5 |IR(6) (1)
where there are average constraint violations
R(8) =By gy [T(2) — oy, (22)
Nopr € R™ are the lagrange multipliers where m is the number of total constraints
m =[] = |T(2)| =2|f (x;2)], (23)

and c is the penalty coefficient. The mean parameter w,, and sufficient statistics 7(z) are determined
by the means p and variances o of the emergent property statistics f(x;z) defined in Equation 14.
Specifically, T(z) is a concatenation of the first and second moments (Equation 19) and op; iS @ CcON-
catenation of their constraints p and o? (Equation 20). (Although, note that this algorithm is written
for general T(z) and p,,, to satisfy the more general class of emergent properties.) The lagrange
multipliers 7, are closely related to the natural parameters 7 of exponential families (see Section
‘EPI as variational inference’). Weights and biases 6 of the deep probability distribution are opti-

mized according to Equation 21 using the Adam optimizer with learning rate 10~ (Kingma and Ba,
2015).
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The gradient with respect to entropy H(gg(z)) can be expressed using the reparameterization
trick as an expectation of the negative log density of parameter samples z over the randomness in
the parameterless initial distribution go(zo):

H(qe(2)) = . / —q0(2)log(qe(2))dz =, g4, [—108(qe(2))] = By, -4, [—108(q0(g6(20)))]- (24)

Thus, the gradient of the entropy of the deep probability distribution can be estimated as an
average of gradients with respect to the base distribution z,:

VoH (qp(2)) = By~ g0 [~V log(qe(86(20)))]- (25)

The gradients of the log density of the deep probability distribution are tractable through the use
of normalizing flows (see Section ‘Deep probability distributions and normalizing flows’).

The full EPI optimization algorithm is detailed in Algorithm 1. The lagrangian parameters 7, are
initialized to zero and adapted following each augmented lagrangian epoch, which is a period of
optimization with fixed (7, ¢) for a given number of stochastic gradient descent (SGD) iterations. A
low value of ¢ is used initially, and conditionally increased after each epoch based on constraint error
reduction. The penalty coefficient is updated based on the result of a hypothesis test regarding the
reduction in constraint violation. The p-value of E[[|R(0x:1)||]>YE[||R(6:)||] is computed, and ¢y is
updated to  Ber  with  probability 1—p. The  other update rule s
Noptii1 = Mopix + k22 (T(27) — pyy) given a batch size n and zl) ~gg(z). Throughout the study,
v = 0.25, while B was chosen to be either 2 or 4. The batch size of EPI also varied according to
application.

Algorithm 1. Emergent property inference

1 initialize @ by fitting g to an isotropic gaussian of mean p,;, and variance o2
2 initialize c9>0 and 1,9 = 0.

init

3 for Augmented lagrangian epoch k = 1, ..., kya, do
4 for SGD iteration i = 1, ..., ipa do

5 Sample z((,]

,...,zé") ~ g0, get transformed variable zV) = go (2!

O)):]: 17"'7”

6 Update 6 by descending its stochastic gradient (using ADAM optimizer [Kingma and Ba, 2015]).
1 : 1< ;
VoL(®: N i €)== > Vlogge(@”) +~ >~ Vo(T(27) = by ) s
J=1 J=1

7 end

8 Sample z(()l),...,z

(r(#) =) 3 35 (1(2) - )

=

(j)

~qo, get transformed variable z0) = go(z)), j=1,...,n

9 Update Moy k1 = Mopts + Ck%z;:l (T(ZU)) - l"opt)-
10 Update c¢py1>¢ (see text for detail).

11 end

In general, ¢ and 7,,, should start at values encouraging entropic growth early in optimization.
With each training epoch in which the update rule for ¢ is invoked, the constraint satisfaction terms
are increasingly weighted, which generally results in decreased entropy (e.g. see Figure 1—figure
supplement 1C). This encourages the discovery of suitable regions of parameter space, and the sub-
sequent refinement of the distribution to produce the emergent property. The momentum parame-
ters of the Adam optimizer are reset at the end of each augmented lagrangian epoch, which
proceeds for iy, iterations. In this work, we used a maximum number of augmented lagrangian
epochs kyax> = 5.

Rather than starting optimization from some 6 drawn from a randomized distribution, we found
that initializing g¢(z) to approximate an isotropic gaussian distribution conferred more stable, consis-
tent optimization. The parameters of the gaussian initialization were chosen on an application-spe-

cific basis. Throughout the study, we chose isotropic Gaussian initializations with mean p,;, at the
2

center of the support of the distribution and some variance o7, except for one case, where an ini-
tialization informed by random search was used (see Section 'Stomatogastric ganglion’). Deep prob-

ability distributions were fit to these gaussian initializations using 10,000 iterations of stochastic
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gradient descent on the evidence lower bound (as in Bittner and Cunningham, 2019) with Adam
optimizer and a learning rate of 1073.

To assess whether the EPI distribution gg(z) produces the emergent property, we assess whether
each individual constraint on the means and variances of f(x;z) is satisfied. We consider the EPI to
have converged when a null hypothesis test of constraint violations R(8); being zero is accepted for
all constraints i € {1, ...,m} at a significance threshold & = 0.05. This significance threshold is adjusted
through Bonferroni correction according to the number of constraints m. The p-values for each con-
straint are calculated according to a two-tailed nonparametric test, where 200 estimations of the
sample mean R(6)' are made using Ny, samples of z~ gg(z) at the end of the augmented lagrangian
epoch. Of all k.. augmented lagrangian epochs, we select the EPI inferred distribution as that
which satisfies the convergence criteria and has greatest entropy.

When assessing the suitability of EPI for a particular modeling question, there are some important
technical considerations. First and foremost, as in any optimization problem, the defined emergent
property should always be appropriately conditioned (constraints should not have wildly different
units). Furthermore, if the program is underconstrained (not enough constraints), the distribution
grows (in entropy) unstably unless mapped to a finite support. If overconstrained, there is no param-
eter set producing the emergent property, and EPI optimization will fail (appropriately).

Example: 2D LDS
To gain intuition for EPI, consider a two-dimensional linear dynamical system (2D LDS) model (Fig-
ure 1—figure supplement 1A):

dx
=A 2
dz X (26)
with
A [01,1 01,2} 27)
a) azp

To run EPI with the dynamics matrix elements as the free parameters z = [a; 1,a12,a2.1,a25] (fixing
7 =1 s), the emergent property statistics f(x;z) were chosen to contain parts of the primary eigen-
value of A, which predicate frequency, imag(A;), and the growth/decay, real(\,), of the system

real(A;)(x;z) }

imag(A,) (xi2) 29

f(X;Z)é[

A is the eigenvalue of greatest real part when the imaginary component is zero, and alternatively
that of positive imaginary component when the eigenvalues are complex conjugate pairs. To learn
the distribution of real entries of A that produce a band of oscillating systems around 1 Hz, we for-
malized this emergent property as real(A;) having mean zero with variance 0.25%, and the oscillation

i
real(A1)(x; z)} [025

frequency M having mean 1 Hz with variance 0.1 Hz%:

X Enlfxz)] E[

(29)

2

Var,«[f(x;2)]= Varzx{ 262

imag(A1)(x; (27

To write the emergent property X in the form required for the augmented lagrangian optimiza-
tion (Section ‘Augmented lagrangian optimization’), we concatenate these first and second moment
constraints into a vector of sufficient statistics 7(z) and constraint values .

Ex~p(x | z) [real(/\ 1 )(X;Z)}

0
. Ex~p(x‘z)[imag()\l)(x;z)] |,
Bl @8 B iy [(reald) (i2) =0)°] | = | 252 | THore 30
By —p(x|2) [(imag(/\ 1)(x:z) — 277)2] @
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From now on in all scientific applications (Sections ‘Stomatogastric ganglion’, ‘Scaling EPI for sta-
ble amplification in RNNSs’, 'Primary visual cortex’, ‘Superior colliculus’), we specify how the EPI opti-
mization was setup by specifying f(x;z), p, and o>.

Unlike the models we presented in the main text, this model admits an analytical form for the
mean emergent property statistics given parameter z, since the eigenvalues can be calculated using
the quadratic formula:

J1tas, 1ta22\2 2021—01,1G22
(allfan):t\/(anrazz) +4(u12u21 allaz)

A= 5 (31)

We study this example, because the inferred distribution is curved and multimodal, and we can
compare the result of EPI to analytically derived contours of the emergent property statistics.

Despite the simple analytic form of the emergent property statistics, the EPI distribution in this
example is not simply determined. Although E,[T(z)] is calculable directly via a closed form function,
the distribution gj(z | X') cannot be derived directly. This fact is due to the formally hard problem of
the backward mapping: finding the natural parameters i from the mean parameters p of an expo-
nential family distribution (Wainwright and Jordan, 2008). Instead, we used EPI to approximate this
distribution (Figure 1—figure supplement 1B). We used a real NVP normalizing flow architecture
three coupling layers and two-layer neural networks of 50 units per layer, mapped onto a support of
z € [—10,10]. (see Section '‘Deep probability distributions and normalizing flows’).

Even this relatively simple system has nontrivial (although intuitively sensible) structure in the
parameter distribution. To validate our method, we analytically derived the contours of the probabil-
ity density from the emergent property statistics and values. In the a; 1-a2, plane, the black line at
real(A;) = “3%2 = 0, dashed black line at the standard deviation real(A;) = 4322 £ 0.25, and the
dashed gray line at twice the standard deviation real(A;) = % + 0.5 follow the contour of proba-
bility density of the samples (Figure 1—figure supplement 2A). The distribution precisely reflects
the desired statistical constraints and model degeneracy in the sum of a;; and a,,. Intuitively, the
parameters equivalent with respect to emergent property statistic real(A;) have similar log densities.

To explain the bimodality of the EPI distribution, we examined the imaginary component of A;.
When real(A;) = ai,1 + a2, = 0 (which is the case on average in X), we have

apaxp—apdy :
imag(A)) = { \/: if al,1a2,2 <al,2a2,1 )

0 otherwise

In Figure 1—figure supplement 2B, we plot the contours of imag(A;) where a; 1a2 is fixed to 0
at one standard deviation (Z, black dashed) and two standard deviations (2?”, gray dashed) from the
mean of 2. This validates the curved multimodal structure of the inferred distribution learned
through EPI. Subtler combinations of model and emergent property will have more complexity, fur-
ther motivating the use of EPI for understanding these systems. As we expect, the distribution
results in samples of two-dimensional linear systems oscillating near 1 Hz (Figure 1—figure supple-
ment 3).

EPI as variational inference
In variational inference, a posterior approximation gj is chosen from within some variational family Q
to be as close as possible to the posterior under the KL divergence criteria

qp(2) = arngaxKL(qo(Z) | [p(z]x)). (33)

q9<
This KL divergence can be written in terms of entropy of the variational approximation:

KL(qe(2) | | p(2]%)) = Byr-g,[108(q0(2))] — Brgy[log(p(z | X))] (34)

= —H(qp) — By, [log(p(x | 2)) +1log(p(2)) —log(p(x))] (35)

Since the marginal distribution of the data p(x) (or ‘evidence’) is independent of 6, variational
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inference is executed by optimizing the remaining expression. This is usually framed as maximizing
the evidence lower bound (ELBO)

argmaxKL(qg | | p(z | X)) = argmaxH(qg) + E,~4, log(p(x | 2)) +log(p(z))]. (36)
q0€Q q6€Q
Now, we will show how the maximum entropy problem of EPI is equivalent to variational infer-
ence. In general, a maximum entropy problem (as in Equation 16) has an equivalent lagrange dual
form:

argmax H(q(z)) <=argmax H(q(z)) + 1" E,_,[T(z)],

q€Q q€Q (37)
S.0.E,-g[T(2)] =0

with lagrange multipliers n*. By moving the lagrange multipliers within the expectation

q = argmaxF (9(2) +Byg [0 T(2)], (38)
qe

inserting a logexp(-) within the expectation,

q= argmaxH (4(2)) +Ey-q [logexp(n* ' T(2))], (39)
g€

and finally choosing T'(-) to be likelihood averaged statistics as in EPI

IEx~p(x | z) [d)l (X; Z)]
q" = argmaxH(q(z)) +E,-, [logexp | n*" ) (40)

9€Q EX~p(X | z) [(bm(x; Z)]

we can compare directly to the objective used in variational inference (Equation 36). We see that
EPI is exactly variational inference with an exponential family likelihood defined by sufficient statistics
T(z) = Ey_px| [P (x;2)], and where the natural parameter n* is predicated by the mean parameter
Popi- Equation 40 implies that EPI uses an improper (or uniform) prior, which is easily changed.

This derivation of the equivalence between EPI and variational inference emphasizes why defining
a statistical inference program by its mean parameterization w,, is so useful. With EPI, one can
clearly define the emergent property X that the model of interest should produce through intuitive
selection of p, for a given T(z). Alternatively, figuring out the correct natural parameters n* for the

same T(z) that produces X is a formally hard problem.

Stomatogastric ganglion

In Section '‘Motivating emergent property inference of theoretical models’ and ‘Emergent property
inference via deep generative models’, we used EPI to infer conductance parameters in a model of
the stomatogastric ganglion (STG) (Gutierrez et al., 2013). This five-neuron circuit model represents
two subcircuits: that generating the pyloric rhythm (fast population) and that generating the gastric
mill rhythm (slow population). The additional neuron (the IC neuron of the STG) receives inhibitory
synaptic input from both subcircuits, and can couple to either rhythm dependent on modulatory con-
ditions. There is also a parametric regime in which this neuron fires at an intermediate frequency
between that of the fast and slow populations (Gutierrez et al., 2013), which we infer with EPI as a
motivational example. This model is not to be confused with an STG subcircuit model of the pyloric
rhythm (Marder and Selverston, 1992), which has been statistically inferred in other studies
(Prinz et al., 2004; Gongalves et al., 2019).

STG model

We analyze how the parameters z = [ge, gyna] govern the emergent phenomena of intermediate
hub frequency in a model of the stomatogastric ganglion (STG) (Gutierrez et al., 2013) shown in
Figure 1A with activity x = [xg1, X2, Xpub, Xs1, Xs2], using the same hyperparameter choices as Gutierrez
et al. Each neuron’s membrane potential x,(7) for a € {f1,2, hub, s1,s2} is the solution of the follow-
ing stochastic differential equation:
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Cmddita =— [hlmk (%;2) + hea(X;2) 4+ hi (X 2) + iy (X 2) + hetec (X;2) + hsy,,(x;z)] +dB. 41
The input current of each neuron is the sum of the leak, calcium, potassium, hyperpolarization,
electrical and synaptic currents. Each current component is a function of all membrane potentials
and the conductance parameters z. Finally, we include gaussian noise dB to the model of Gutierrez
et al. so that the model stochastic, although this is not required by EPI.
The capacitance of the cell membrane was set to C,, = 1nF. Specifically, the currents are the dif-
ference in the neuron’s membrane potential and that current type's reversal potential multiplied by
a conductance:

Mieak (X;2) = Sleak (X — Viear) (42)

hetec(X;2) = ga1 (X" — x;) (43)

hoyn (%:2) = goyn L (W™ — Vi) (44)
hea(x;2) = gcaMu (Xa — Vea) (45)
hx(x;z) = gxN(xa — Vi) (46)
iy (%;2) = g H (Xo — Vi) (47)

The reversal potentials were set to Vi = —40mV, V¢, = 100mV, Vg = —80mV, V,y, = —20mV, and
Vin = —75mV. The other conductance parameters were fixed to gra =1 % 1074uS. gca, gx, and guyy
had different values based on fast, intermediate (hub) or slow neuron. The fast conductances had
values gc, = 1.9x 1072, gg =3.9 x 1072, and gy, =2.5 x 1072, The intermediate conductances had val-
ues gc, = 1.7x 1072, gx = 1.9 x 1072, and gj,;, =8.0 x 1073, Finally, the slow conductances had values
gca=8.5%x1073, gg =1.5x 1072, and gy, = 1.0 x 1072,

Furthermore, the Calcium, Potassium, and hyperpolarization channels have time-dependent gat-
ing dynamics dependent on steady-state gating variables M., N, and H., respectively:

M, =05 (1 +tanh (x“ _V‘)> (48)
V2

%:/\N(Nw ~N) (49)

N, =0.5 (1 +tanh (X“VZVS» (50)
Ay = by cosh <x“2;4v3> (51)

H,, ! (53)

1+exp (X—“Vt“)
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—1499

=27 ————
1 +exp (L‘;j ”7)

(54)

where we set vi =0mV, v, =20mV, v =0mV, vs=15mV, vs =78.3mV, v =10.5mV, v; = —42.2mV,
vg = 87.3mV, v =5mV, and v, = —25mV.
Finally, there is a synaptic gating variable as well:

1

Sp=—""-""-——7".
1+exp (—Vf"vfj"“)

(55)

When the dynamic gating variables are considered, this is actually a 15-dimensional nonlinear
dynamical system. The gaussian noise dB has variance (1 x 107'2)> A%, and introduces variability in
frequency at each parameterization z.

Hub frequency calculation

In order to measure the frequency of the hub neuron during EPI, the STG model was simulated for
T =300 time steps of dr = 25ms. The chosen dt and T were the most computationally convenient
choices yielding accurate frequency measurement. We used a basis of complex exponentials with
frequencies from 0.0 to 1.0 Hz at 0.01 Hz resolution to measure frequency from simulated time
series

®=1[0.0,0.01,...,1.0] ". (56)

To measure spiking frequency, we processed simulated membrane potentials with a relu (spike
extraction) and low-pass filter with averaging window of size 20, then took the frequency with the
maximum absolute value of the complex exponential basis coefficients of the processed time-series.
The first 20 temporal samples of the simulation are ignored to account for initial transients.

To differentiate through the maximum frequency identification, we used a soft-argmax Let
X, € CI® be the complex exponential filter bank dot products with the signal x, € RY, where
a € {f1,f2, hub,s1,s2}. The soft-argmax is then calculated using temperature parameter 8, = 100

e = softmax(B,,|Xa| @), (57)

where i =10,1,...,100]. The frequency is then calculated as

we =0.01¢,Hz. (58)

Intermediate hub frequency, like all other emergent properties in this work, is defined by the
mean and variance of the emergent property statistics. In this case, we have one statistic, hub neu-
ron frequency, where the mean was chosen to be 0.55 Hz,(Equation 2) and variance was chosen to
be 0.025% Hz? (Equation 3).

EPI details for the STG model
EPI was run for the STG model using

f(X§Z) = Whub(X§Z)7 (59)
w=1[0.55], (60)
and
o? =1[0.025?] (1)

(see Sections 'Maximum entropy distributions and exponential families’, ‘Augmented lagrangian
optimization’, and example in Section ‘Example: 2D LDS’). Throughout optimization, the augmented
lagrangian parameters 1 and ¢, were updated after each epoch of iy = 5,000 iterations (see Section
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‘Augmented lagrangian optimization’). The optimization converged after five epochs (Figure 1—fig-
ure supplement 4).

For EPI in Figure 1E, we used a real NVP architecture with three coupling layers and two-layer
neural networks of 25 units per layer. The normalizing flow architecture mapped zy~N(0,1) to a sup-
port of z = [ge, gsyma] € [4,8] X [0.01,4], initialized to a gaussian approximation of samples returned
by a preliminary ABC search. We did not include g¢n<0.01, for numerical stability. EPI optimization
was run with an augmented lagrangian coefficient of ¢y = 10°, hyperparameter 8 = 2, a batch size
n = 400, and we simulated one x() per z{). The architecture converged with criteria Ny, = 100.

Hessian sensitivity vectors
To quantify the second-order structure of the EPI distribution, we evaluated the Hessian of the log

2
m%z(:w)' The eigenvector of this Hessian with most negative eigenvalue is defined as

the sensitivity dimension vy, and all subsequent eigenvectors are ordered by increasing eigenvalue.

probability

These eigenvalues are quantifications of how fast the emergent property deteriorates via the param-
eter combination of their associated eigenvector. In Figure 1D, the sensitivity dimension v (solid)
and the second eigenvector of the Hessian v, (dashed) are shown evaluated at the mode of the dis-
tribution. Since the Hessian eigenvectors have sign degeneracy, the visualized directions in 2-D
parameter space were chosen to have positive ggna. The length of the arrows is inversely propor-
tional to the square root of the absolute value of their eigenvalues A; = —10.7 and A, = —3.22. For
the same magnitude perturbation away from the mode, intermediate hub frequency only diminishes
along the sensitivity dimension v, (Figure 1E-F).

Scaling EPI for stable amplification in RNNs

Rank-2 RNN model

We examined the scaling properties of EPI by learning connectivities of RNNs of increasing size that
exhibit stable amplification. Rank-2 RNN connectivity was modeled as W= UV', where

U=[U Ul+ex™, V=[Vi Va]+gx", and x{¥,x{} ~A/(0,1). This RNN model has dynamics

i

X = —x+ Wx. (62)

In this analysis, we inferred connectivity parameterizations z= [U],UJ,V],V]] € [~1,1]*") that
produced stable amplification using EPI, SMC-ABC (Sisson et al., 2007), and SNPE
(Goncgalves et al., 2019) (see Section Related methods).

Stable amplification
For this RNN model to be stable, all real eigenvalues of W must be less than 1: real(A;)<1, where A,
denotes the greatest real eigenvalue of W. For a stable RNN to amplify at least one input pattern,

the symmetric connectivity W* = %W

must have an eigenvalue greater than 1: A}>1, where A* is the
maximum eigenvalue of W*. These two conditions are necessary and sufficient for stable amplifica-

tion in RNINs (Bondanelli and Ostojic, 2020).

EPI details for RNNs

We defined the emergent property of stable amplification with means of these eigenvalues (0.5 and
1.5, respectively) that satisfy these conditions. To complete the emergent property definition, we
chose variances (0.25%) about those means such that samples rarely violate the eigenvalue con-
straints. To write the emergent property of Equation 5 in terms of the EPI optimization, we have

=" “
w=[is] o

and
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025
o= {0 252] (63)

(see Sections 'Maximum entropy distributions and exponential families’, ‘Augmented lagrangian
optimization’, and example in Section ‘Example: 2D LDS'). Gradients of maximum eigenvalues of
Hermitian matrices like W* are available with modern automatic differentiation tools. To differentiate
through the real(A;), we solved the following equation for eigenvalues of rank-2 matrices using the
rank reduced matrix W' =VTU

T 2 _ r
AR \/Tr(;/V P —4Det (W) »

For EPI in Figure 2, we used a real NVP architecture with three coupling layers of affine transfor-
mations parameterized by two-layer neural networks of 100 units per layer. The initial distribution
was a standard isotropic gaussian zo~A (0,1) mapped to the support of z; € [-1,1]. We used an aug-
mented lagrangian coefficient of ¢y = 10%, a batch size n =200, 8 =4, and we simulated one w per
z(). We chose to use in., = 500 iterations per augmented lagrangian epoch and emergent property
constraint convergence was evaluated at N =200 (Figure 2B blue line, and Figure 2C-D blue). It
was fastest to initialize the EPI distribution on a Tesla V100 GPU, and then subsequently optimize it
on a CPU with 32 cores. EPI timing measurements accounted for this initialization period.

Methodological comparison

We compared EPI to two alternative simulation-based inference techniques, since the likelihood of
these eigenvalues given z is not available. Approximate bayesian computation (ABC)
(Beaumont et al., 2002) is a rejection sampling technique for obtaining sets of parameters z that
produce activity x close to some observed data xy. Sequential Monte Carlo approximate bayesian
computation (SMC-ABC) is the state-of-the-art ABC method, which leverages SMC techniques to
improve sampling speed. We ran SMC-ABC with the pyABC package (Klinger et al., 2018) to infer
RNNs with stable amplification: connectivities having eigenvalues within an e-defined /-2 distance of

_ [real(A1)] [0.5
XO*[ M }*[1.5}' o

SMC-ABC was run with a uniform prior over z € [1,1]*Y, a population size of 1000 particles with
simulations parallelized over 32 cores, and a multivariate normal transition model.

SNPE, the next approach in our comparison, is far more similar to EPI. Like EPI, SNPE treats
parameters in mechanistic models with deep probability distributions, yet the two learning algo-
rithms are categorically different. SNPE uses a two-network architecture to approximate the poste-
rior distribution of the model conditioned on observed data x¢. The amortizing network maps
observations x; to the parameters of the deep probability distribution. The weights and biases of the
parameter network are optimized by sequentially augmenting the training data with additional pairs
(z;, x;) based on the most recent posterior approximation. This sequential procedure is important to
get training data z; to be closer to the true posterior, and x; to be closer to the observed data. For
the deep probability distribution architecture, we chose a masked autoregressive flow with affine
couplings (the default choice), three transforms, 50 hidden units, and a normalizing flow mapping to
the support as in EPI. This architectural choice closely tracked the size of the architecture used by
EPI (Figure 2—figure supplement 1). As in SMC-ABC, we ran SNPE with xo = p. All SNPE optimiza-
tions were run for a limit of 1.5 days, or until two consecutive rounds resulted in a validation log
probability lower than the maximum observed for that random seed. It was always faster to run
SNPE on a CPU with 32 cores rather than on a Tesla V100 GPU.

To compare the efficiency of these algorithms for inferring RNN connectivity distributions produc-
ing stable amplification, we develop a convergence criteria that can be used across methods. While
EPI has its own hypothesis testing convergence criteria for the emergent property, it would not
make sense to use this criteria on SNPE and SMC-ABC which do not constrain the means and varian-
ces of their predictions. Instead, we consider EPl and SNPE to have converged after completing its
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most recent optimization epoch (EPI) or round (SNPE) in which the distance |E,x[f(x;z)] — w/, is less
than 0.5. We consider SMC-ABC to have converged once the population produces samples within
the e = 0.5 ball ensuring stable amplification.

When assessing the scalability of SNPE, it is important to check that alternative hyperparamteriza-
tions could not yield better performance. Key hyperparameters of the SNPE optimization are the
number of simulations per round n,,umq, the number of atoms used in the atomic proposals of the
SNPE-C algorithm (Greenberg, 2019), and the batch size n. To match EPI, we used a batch size of
n = 200 for N< = 25, however we found n = 1,000 to be helpful for SNPE in higher dimensions. While
Myound = 1,000 yielded SNPE convergence for N< =25, we found that a substantial increase to
Myound = 25,000 yielded more consistent convergence at N = 50 (Figure 2—figure supplement 2A).
By increasing nyoumd, we also necessarily increase the duration of each round. At N =100, we tried
two hyperparameter modifications. As suggested in Greenberg, 2019, we increased n,, by an
order of magnitude to improve gradient quality, but this had little effect on the optimization (much
overlap between same random seeds) (Figure 2—figure supplement 2B). Finally, we increased
Mound by an order of magnitude, which yielded convergence in one case, but no others. We found
no way to improve the convergence rate of SNPE without making more aggressive hyperparameter
choices requiring high numbers of simulations. In Figure 2C-D, we show samples from the random
seed resulting in emergent property convergence at greatest entropy (EPI), the random seed result-
ing in greatest validation log probability (SNPE), and the result of all converged random seeds
(SMC).

Effect of RNN parameters on EPl and SNPE inferred distributions

To clarify the difference in objectives of EPl and SNPE, we show their results on RNN models with
different numbers of neurons N and random strength g. The parameters inferred by EPI consistently
produces the same mean and variance of real(A;) and A}, while those inferred by SNPE change
according to the model definition (Figure 2—figure supplement 3A). For N =2 and g = 0.01, the
SNPE posterior has greater concentration in eigenvalues around x, than at g = 0.1, where the model
has greater randomness (Figure 2—figure supplement 3B top, orange). At both levels of g when

N =2, the posterior of SNPE has lower entropy than EPI at convergence (Figure 2—figure supple-
ment 3B top). However at N = 10, SNPE results in a predictive distribution of more widely dispersed
eigenvalues (Figure 2—figure supplement 3A bottom), and an inferred posterior with greater
entropy than EPI (Figure 2—figure supplement 3B bottom). We highlight these differences not to
focus on an insightful trend, but to emphasize that these methods optimize different objectives with
different implications.

Note that SNPE converges when it's validation log probability has saturated after several rounds
of optimization (Figure 2—figure supplement 3C), and that EPI converges after several epochs of
its own optimization to enforce the emergent property constraints (Figure 2—figure supplement
3D blue). Importantly, as SNPE optimizes its posterior approximation, the predictive means change,
and at convergence may be different than x, (Figure 2—figure supplement 3D orange, left). It is
sensible to assume that predictions of a well-approximated SNPE posterior should closely reflect the
data on average (especially given a uniform prior and a low degree of stochasticity); however, this is
not a given. Furthermore, no aspect of the SNPE optimization controls the variance of the predic-
tions (Figure 2—figure supplement 3D orange, right).

Primary visual cortex
V1 model

E-l circuit models, rely on the assumption that inhibition can be studied as an indivisible unit, despite
ample experimental evidence showing that inhibition is instead composed of distinct elements
(Tremblay et al., 2016). In particular three types of genetically identified inhibitory cell-types — par-
valbumin (P), somatostatin (S), VIP (V) — compose 80% of GABAergic interneurons in V1
(Markram et al., 2004; Rudy et al., 2011, Tremblay et al., 2016), and follow specific connectivity
patterns (Figure 3A; Pfeffer et al., 2013), which lead to cell-type-specific computations
(Mossing et al., 2021; Palmigiano et al., 2020). Currently, how the subdivision of inhibitory cell-
types, shapes correlated variability by reconfiguring recurrent network dynamics is not understood.
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In the stochastic stabilized supralinear network (Hennequin et al., 2018), population rate
responses x to mean input h, recurrent input Wx and slow noise ¢ are governed by

1%=—x+¢(Wx+h+e), (68)
where ¢(-) = []i, and the noise is an Ornstein-Uhlenbeck process e~OU(Tyise, o)
Tnoisedea = 7Eadt+ V 2Tuoisea'ardB (69)

with 7y = 5ms>7 = 1ms. The noisy process is parameterized as

o= Oy |1+ ——, (70)

T noise

so that o parameterizes the variance of the noisy input in the absence of recurrent connectivity
(W =0). As contrast ¢ € |0, 1] increases, input to the E- and P-populations increases relative to a base-
line input h=h, + ch.. Connectivity (Wg) and input (h, s and h.g) parameters were fit using the
deterministic V1 circuit model (Palmigiano et al., 2020)

Wee Wep Wgs Wey 2.18 —1.19 —.594 —.229
W Wpe Wep Wes Wpy | | 1.66 —.651 —.680 —242 a1
T Wee Wep Wes Wey | | .895 —5.22x107% —1.51x 10~ — 761 ’
Wye Wyp Wis Wiy 3.34 -231 —.254 —252x%x 1074
416
N 429 a2)
PR 491 |7
486
and
359
403
hege = o | (73)
0

To obtain rates on a realistic scale (100-fold greater), we map these fitted parameters to an equiv-
alence class

Wee Wep Wgs Wey 218 —.119 —.0594 —.0229
W Wpe Wep Wes Wpy | | 166 —.0651 —.068 —.0242 74
T | Wer W Wes Wy | |.0895 —522x107% —1.51x 1075  —.0761 ’
Wy Wyp Wis Wiy 334 —.231 —.0254  —252x1073
Iy i 4.16
h 4.29
h=1| "= : (75)
By 491
Ry 4.86
and
e 3.59
hep 4.03
h, = = . (76)
hes 0
hey 0

Circuit responses are simulated using 7 =200 time steps at df =0.5ms from an initial condition
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drawn from x(0)~U[10Hz,25Hz]. Standard deviation of the E-population sg(x;z) is calculated as the
square root of the temporal variance from t,, = 75ms to Tdt = 100ms

55(367) = B, [(520) = B 1)) 77)

EPI details for the V1 model

To write the emergent properties of Equation 7 in terms of the EPI optimization, we have

f(x;z) = sp(x;2), (78)
p=1[5] (79)

(or p.=110]), and
o =[12] (80)

(see Sections 'Maximum entropy distributions and exponential families’, ‘Augmented lagrangian
optimization’, and example in Section 'Example: 2D LDS’).

For EPI in Figure 3D-E and Figure 3—figure supplement 1, we used a real NVP architecture
with three coupling layers and two-layer neural networks of 50 units per layer. The normalizing flow
architecture mapped zo~A(0,1) to a support of z = [0, op, o5, 0] € [0.0,0.5]*. EPI optimization was
run using three different random seeds for architecture initialization  with an augmented lagrangian
coefficient of ¢y = 107!, B =2, a batch size n = 100, and simulated 100 trials to calculate average
se(x;z) for each z). We used i, = 2,000 iterations per epoch. The distributions shown are those of
the architectures converging with criteria N5y = 100 at greatest entropy across three random seeds.
Optimization details are shown in Figure 3—figure supplement 2. The sums of squares of each pair
of parameters are shown for each EPI distribution in Figure 3—figure supplement 3. The plots are
histograms of 500 samples from each EPI distribution from which the significance p-values of Section
‘EPI reveals how recurrence with multiple inhibitory subtypes governs excitatory variability in a V1
model’ are determined.

Sensitivity analyses

In Figure 3E, we visualize the modes of gg(z | X) throughout the oz-0p marginal. At each local mode
z*(op), where op is fixed, we calculated the Hessian and visualized the sensitivity dimension in the
direction of positive op.

Testing for the paradoxical effect

The paradoxical effect occurs when a populations steady state rate is decreased (or increased) when
an increase (decrease) in current is applied to that population (Tsodyks et al., 1997). To see which,
if any, populations exhibited a paradoxical effect, we examined responses to changes in input to
individual neuron-type populations, where the initial condition was the steady state response to h
(Figure 3—figure supplement 4). Input magnitudes were chosen so that the effect is salient (0.002
for E and P, but 0.02 for S and V). Only the P-population exhibited the paradoxical effect at this con-
nectivity W and input h.

Primary visual cortex: Mathematical intuition and challenges
We write the original Equations 68 and 69 in the following way:

dx:%(—x+f(Wx+h+e))dt

(81)
dr e+ v2 . dW

Tnoise v Tnoise

where in this paper we chose X, the covariance of the noise to be

de=—
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g 0 0 O
0 gp 0 O
= T noise ~ (82)
0 0 o5 O
0 0 0 oy

where 7, is the reparameterized standard deviation of the noise for population o from Equation 70.
We are interested in computing the covariance of the activity. For that, first we define
v=wx+h+e the total input to each cell type, and the matrix S, the negative
Jacobian S =1 — wf'(v). Then, Equation 81 can be written as an 8-dimensional system. Linearizing
around the fixed point of the system without fluctuations, we find the equations that describe the

fluctuations of the input to each cell type:

s S — Tnoe=Tf 5 0 V2 ‘25

. ( v) o = ( V) g+ | ) aw (83)
¢ 0 1 € 0 25
noise V/Tnoise €

where dW is a vector with the private noise of each variable. The dW term is multiplied by a non-
diagonal matrix, because the noise that the voltage receives is the exact same as the one that comes
from the OU process and not another process. The covariance of the inputs A, = (§vév') can be
found as the solution the following Lyapunov equation (Hennequin et al., 2018; Gardiner, 2009):

S ERDTN (A AN (A AN ST 0 (A A @)
0 I Al A Al A\ =Bt )\ 2 p, 2p,

Tnoise Toise Troise Tnoise

Where A, = (8v8¢T) can be eliminated by solving this block matrix multiplication:

2A. T2 -T2 1 _
SAy + A, ST = 76 4 “nolse T = (( I14+8) " Ac+ A
T noise (TTnoise) T noise T noise

1+ST)*1) (85)

The equation above is another Lyapunov Equation, now in 4 dimensions. In the simplest case in
which 7,0 = 7, the voltage is directly driven by white noise, and A, can be expressed in powers of §
and S7. Because S satisfies its own polynomial equation (Cayley Hamilton theorem), there will be
four coefficients for the expansion of S and four for ST, resulting in 16 coefficients that define A, for
a given S. Due to symmetry arguments (Gardiner, 2009), in this case the diagonal elements of the
covariance matrix of the voltage will have the form:

A= > al®)d} (86)

i={E.P.S,V}

These coefficients g;(S) are complicated functions of the Jacobian of the system. Although
expressions for these coefficients can be found explicitly, only numerical evaluation of those expres-
sions determine which components of the noisy input are going to strongly influence the variability
of excitatory population. Showing the generality of this dependence in more complicated noise sce-
narios (e.g. Tyeise™>7 as in Section 'EPI reveals how recurrence with multiple inhibitory subtypes gov-
erns excitatory variability in a V1 model’), is the focus of current research.

Superior colliculus
SC model

The ability to switch between two separate tasks throughout randomly interleaved trials, or ‘rapid
task switching,’ has been studied in rats, and midbrain superior colliculus (SC) has been show to play
an important in this computation (Duan et al., 2015). Neural recordings in SC exhibited two popula-
tions of neurons that simultaneously represented both task context (Pro or Anti) and motor response
(contralateral or ipsilateral to the recorded side), which led to the distinction of two functional clas-
ses: the Pro/Contra and Anti/lpsi neurons (Duan et al., 2021). Given this evidence, Duan et al. pro-
posed a model with four functionally-defined neuron-type populations: two in each hemisphere
corresponding to the Pro/Contra and Anti/lpsi populations. We study how the connectivity of this
neural circuit governs rapid task switching ability.
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The four populations of this model are denoted as left Pro (LP), left Anti (LA), right Pro (RP) and
right Anti (RA). Each unit has an activity (x,) and internal variable (u,) related by

Xo= () = Gtanh(“a - “) +%> 87)

where a € {LP,LA,RA,RP}, a=0.05 and b=0.5 control the position and shape of the nonlinearity.
We order the neural populations of x and u in the following manner

XLp urp
X, u

X = LA _ LA i (88)
XRP Ugp
XRA URA

which evolve according to
d

Tzltl:—u—k—Wx—i-h—i-dBA (89)

with time constant 7 =0.09s, step size 24 ms and Gaussian noise dB of variance 0.22. These hyper-
parameter values are motivated by modeling choices and results from Duan et al., 2021.

The weight matrix has four parameters for self sW, vertical vW, horizontal AW, and diagonal dW
connections:

sW vW hW dw
vW sW dw hW
W dw sW W |
aw hw vW sWw

We study the role of parameters z= [sW,vW,hW,dW]" in rapid task switching.
The circuit receives four different inputs throughout each trial, which has a total length of 1.8 s.
h = heonstant + hp bias + Brute + Dehoice—period -+ Miight - (?1)
There is a constant input to every population,
heonstant = leonstant[1,1, 1, 1] T, (92)
a bias to the Pro populations

hP,bias = IP,biz\s[lvoa I,O}T, (93)

rule-based input depending on the condition

T .
<l
hPArule(t) _ IP,I'HIE[1707 1,0} s if r<1 Z.S (94)
0, otherwise
T .
<
hA‘,rulc(t) — ]A,rule [07 1,0, 1} , if t_].Z-S ’ 5
0, otherwise
a choice-period input
T .
hchoice(t) = Ichome[L 1’ 17 1} ’ if >].2.S 7 (96)
0, otherwise

and an input to the right or left-side depending on where the light stimulus is delivered
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Bigne[1,1,0,0] T, if 1.25 <t <1.5s and Left
higne (1) = § gt [0,0,1,1) 7, if 1.25 <t <1.55 and Right- (97)

0, otherwise

The input parameterization was fixed to Ileonstant = 0.75, Ippias = 0.5, Ipyuie = 0.6, Ia yue =0.6,
Tenoice = 0.25, and Ilight =0.5.

Task accuracy calculation
The accuracies of the Pro- and Anti-tasks are calculated as

pr(x;2) =By px| 2 [dp(x;2)] (98)
and

PA(%2) =By p(x| [da(x;2)] (99)

where dp(x;z) and da(x;z) calculate the decision made in each trial (approximately 1 for correct and
0 for incorrect choices). Specifically,

dp(x;z) = Ofxzp(t = 1.85) — xgp(t = 1.85)] (100)

in Pro-trials where the stimulus is on the left side, and © approximates the Heaviside step function.
Similarly,

da(x;z) = Oxgp(t = 1.85) — xpp(t = 1.85)] (101)
in Anti-trials where the stimulus was on the left side. Our accuracy calculation only considers one

stimulus presentation (Left), since the model is left-right symmetric. The accuracy is averaged over
200 independent trials, and the Heaviside step function is approximated as

O(x) = sigmoid(BgX), (102)

where Bg = 100.

EPI details for the SC model

To write the emergent properties of Equation 9 in terms of the EPI optimization, we have

o [dr(x;2)
ron =) 13
5
u:[%}, (104)
and
2 .0752]
o= {-0752 (105)

(see Sections 'Maximum entropy distributions and exponential families’, ‘Augmented lagrangian
optimization’, and example in Section 'Example: 2D LDS’).

Throughout optimization, the augmented lagrangian parameters 1 and ¢, were updated after
each epoch of iy, = 2,000 iterations (see Section ‘Augmented lagrangian optimization’). The optimi-
zation converged after ten epochs (Figure 4—figure supplement 4).

For EPI in Figure 4C, we used a real NVP architecture with three coupling layers of affine transfor-
mations parameterized by two-layer neural networks of 50 units per layer. The initial distribution was
a standard isotropic gaussian zy~N(0,1) mapped to a support of z; € [-5,5]. We used an aug-
mented lagrangian coefficient of ¢y = 10?, a batch size n = 100, and 8 = 2. The distribution was the
greatest EPI distribution to converge across five random seeds with criteria Niest = 25.
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The bend in the EPI distribution is not a spurious result of the EPI optimization. The structure dis-
covered by EPI matches the shape of the set of points returned from brute-force random sampling
(Figure 4—figure supplement 5A) These connectivities were sampled from a uniform distribution
over the range of each connectivity parameter, and all parameters producing accuracy in each task
within the range of 60% to 90% were kept. This set of connectivities will not match the distribution
of EPI exactly, since it is not conditioned on the emergent property. For example, the parameter set
returned by the brute-force search is biased toward lower accuracies (Figure 4—figure supplement
5B).

Mode identification with EPI

We found one mode of the EPI distribution for fixed values of sW from 1 to —1 in steps of 0.25. To
begin, we chose an initial parameter value from 500 parameter samples z~ gy(z | X) that had closest
sW value to 1. We then optimized this estimate of the mode (for fixed sW) using probability gra-
dients of the deep probability distribution for 500 steps of gradient ascent with a learning rate of
5 x 1073. The next mode (at sW = 0.75) was found using the previous mode as the initialization. This
and all subsequent optimizations used 200 steps of gradient ascent with a learning rate of 1 x 1073,
except at sW = —1 where a learning rate of 5 x 10~* was used. During all mode identification optimi-
zations, the learning rate was reduced by half (decay = 0.5) after every 100 iterations.

Sample grouping by mode

For the analyses in Figure 5C and Figure 5—figure supplement 1, we obtained parameters for
each step along the continuum between regimes 1 and 2 by sampling from the EPI distribution.
Each sample was assigned to the closest mode z*(sW). Sampling continued until 500 samples were
assigned to each mode, which took 2.67 s (5.34 ms/sample-per-mode). It took 9.59 min to obtain
just five samples for each mode with brute force sampling requiring accuracies between 60% and
90% in each task (115 s/sample-per-mode). This corresponds to a sampling speed increase of
roughly 21,500 once the EPI distribution has been learned.

Sensitivity analysis

At each mode, we measure the sensitivity dimension (that of most negative eigenvalue in the Hes-
sian of the EPI distribution) v{(z*). To resolve sign degeneracy in eigenvectors, we chose v{(z*) to
have negative element in AW. This tells us what parameter combination rapid task switching is most
sensitive to at this parameter choice in the regime.

Connectivity eigendecomposition and processing modes

To understand the connectivity mechanisms governing task accuracy, we took the eigendecomposi-
tion of the connectivity matrices W = QAQ~!, which results in the same eigenmodes q; for all W
parameterized by z (Figure 4—figure supplement 3A). These eigenvectors are always the same,
because the connectivity matrix is symmetric and the model also assumes symmetry across hemi-
spheres, but the eigenvalues of connectivity (or degree of eigenmode amplification) change with z.
These basis vectors have intuitive roles in processing for this task, and are accordingly named the all
eigenmode - all neurons co-fluctuate, side eigenmode - one side dominates the other, task eigen-
mode - the Pro or Anti-populations dominate the other, and diag mode - Pro- and Anti-populations
of opposite hemispheres dominate the opposite pair. Due to the parametric structure of the connec-
tivity matrix, the parameters z are a linear function of the eigenvalues A = [Aaii, Aside; AtaskAdiag) | @SSOCi-
ated with these eigenmodes.

z=AA (106)

11 1 1
A_l 1 -1 -1 1 (107)
4011 =1 =1

1 -1 1 -1

We are interested in the effect of raising or lowering the amplification of each eigenmode in the
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connectivity matrix by perturbing individual eigenvalues A. To test this, we calculate the unit vector
of changes in the connectivity z that result from a change in the associated eigenvalues

0z

Va= gt (108)
I3 |
where
0z
= Ae,, 109
. e (109)

and for example e, = [I,O,O,O]T. So v, is the normalized column of A corresponding to eigenmode
a. The parameter dimension v, (a € {all,side, task,anddiag}) that increases the eigenvalue of connec-
tivity A, is z-invariant (Equation 109) and v, L v;,. By perturbing z along v,, we can examine how
model function changes by directly modulating the connectivity amplification of specific eigenmo-
des, which have interpretable roles in processing in each task.

Modeling optogenetic silencing

We tested whether the inferred SC model connectivities could reproduce experimental effects of
optogenetic inactivation in rats (Duan et al., 2021). During periods of simulated optogenetic inacti-
vation, activity was decreased proportional to the optogenetic strength y € [0, 1]

Xo =1 —=7)P(uy). (110)

Delay period inactivation was from 0.8<7<1.2.
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