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Personalized Neural Network for Patient-Specific
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Abstract—The Internet of Things (IoT) has been widely ap-
plied in personal health monitoring on biosignals. Conventional
detection methods in the field count on a variety of heuristic
criteria by utilizing extracted features, which are carefully
selected through extensive clinical trials and experts’ experiences.
Recently, deep learning (DL) gains rapidly growing attention
in health monitoring. The most significant advantage of DL-
based methods is that DL could execute feature engineering
automatically with only labeled data, which results in a great
reduction in the expertise involved and manual works in the
detection methods design. However, individual differences among
various patients (subjects) can lead to accuracy degradation
of the pre-trained deep model. Simply fine-tuning the deep
model with the patient-specific data cannot alleviate the problem
since the pre-trained model may not generalize well to new
data. To address the problem, we propose a meta-learning
based personalization method to generate the personalized neural
network for each patient to conduct patient-specific detection.
Specifically, the proposed meta-learning method leverages a novel
patient-wise training tasks formatting strategy to train the neural
network that ends up with a well-generalized model initialization
containing across-patient knowledge. The well-generalized model
initialization would then be utilized to perform a quick adaptation
to the specific patient’s data domain. In this way, a new
patient could be immediately assigned with a personalized neural
network using limited labeled data. Experimental results show
that the proposed meta-learning based personalization method
achieves 8.2%, 2.5%, and 6.4% higher accuracy when compared
with the existing deep learning detection methods in VF detection,
AF detection, and human activity recognition respectively.

Index Terms—Deep Learning, IoT, Personalization, Health
Monitoring, Biosignal.

I. INTRODUCTION

Biomedical sensors have been widely utilized to perform
continuous and real-time health monitoring by being embed-
ded into the Internet-of-Thing (IoT) devices. These sensors
detect a broad range of biomedical signals, including elec-
trocardiogram (ECG) signal, intracardiac electrogram (IEGM)
signal, electroencephalography (EEG) signal, Microelectrome-
chanical systems (MEMS) motion signal, etc. The IoT devices
embedded with biomedical sensors are increasingly considered
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as a promising alternative to conventional analytical instru-
ments in the personal healthcare industry due to their accuracy,
low cost, and simplicity [1], [2], [3].

The conventional computer-aided methods are deployed in
the IoT monitors to conduct various tasks such as arrhythmia
detection [4], [5], [6] and human activity recognition [7], [8],
[9]. To find the most effective detection methods, essential
features extracted from the sensed data and the correspond-
ing detection rules are first derived from clinical trials. The
detection criteria are then transformed into a program that
is deployable and runnable on the IoT monitors. There are
hundreds of programmable parameters such as threshold value
affecting the detection in these methods. However, the process
of conventional detection methods design requires consider-
able expertise and labor works. Moreover, to achieve optimal
performance over all patients, experts have to carefully select
the features and adjust the programmable parameters [10],
[11], [12].

Recently, deep learning (DL) based detection on biosig-
nals has achieved outstanding performance in terms of ac-
curacy [13], [14], [15], [16], [17]. When compared with
conventional detection methods, the most significant advantage
of DL is the reduction of the expertise required in the detec-
tion method design. The labeled biosignals could be directly
utilized as the training material and the DL model outputs the
prediction without cumbersome criteria design, which is done
by experts or doctors in conventional methods.

However, there are three main challenges in applying the
aforementioned DL-based detection in health monitoring on
the resource-constrained IoT devices: 1) The detection perfor-
mance of the pre-trained deep model would degrade signifi-
cantly on some patients due to individual differences. There
is a high inter-patient variability on the biosignals in terms of
morphological characteristics [18], [19], [20]; 2) Fine-tuning
the pre-trained deep model using the biosignals of the specific
patient can be a straightforward but effective personalization
approach. However, the performance of the fine-tuned model
is highly dependent on the generalization of the initialization
of the pre-trained model. 3) To keep personal data confidential
and perform personalized monitoring, it is highly preferable to
conduct inference and model personalization on the user end.
However, most state-of-the-art deep models cannot satisfy the
resource constraints if deployed on the resource-constrained
IoT monitor such as microcontrollers (MCU). It is even more
impractical to conduct model personalization on the monitor
due to its confined computational resources.
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To address the aforementioned challenges, we first propose
a meta-learning method to personalize the convolutional neural
network (CNN) for patient-specific detection. Differing from
the N-way-K-shot classification targeted by conventional meta-
learning approaches such as MAML [21], our meta-learning
method accommodates the patient-specific detection through
a novel patient-wise training tasks formatting strategy. In this
way, the CNN could learn across-patient knowledge and end
up with a well-generalized model initialization. For the meta-
learning method, there are two essential processes defined as
the inner-loop update and the outer-loop update [21], [22].
The inner-loop update is conducted to acquire patient-specific
knowledge, whereas the outer-loop update acquires across-
patient knowledge. We propose an inner-loop update steps
annealing strategy to reduce the update steps to speed up the
meta-learning process and further propose a cyclical outer-loop
learning rate mechanism to improve the generalization of the
initial model. When a new patient is assigned, a quick adaption
would be performed on the well-generalized CNN to the
specific patient’s biosignals with a limited amount of labeled
data of the patient. We further present an edge computing
framework, where the model personalization can be conducted
on the user end without uploading their personal data to the
cloud. By leveraging the STM32 Cube.AI development tool,
the personalized model can be deployed on low-power MCU
to evaluate the practical performances in terms of latency,
memory overhead, and power. The effectiveness of our meta-
learning method is examined by three health monitoring ap-
plications including Ventricular Arrhythmia (VA) detection on
IEGM, Atrial Fibrillation (AF) detection on ECG, and Human
Activity Recognition (HAR) on MEMS motion signals.

The main contributions are summarized as follows:
• We propose a patient-wise task formatting strategy that

enables a general-purpose meta-learning method to effec-
tively learn across-patient knowledge.

• We introduce two optimizations techniques for the inner-
and outer-loop update to speed up the meta-learning
process while improving the model generalization.

• Our meta-learning method is shown to be effective and
generalized for various detection tasks on biosignals
while meeting the requirements of IoT health monitoring
applications in terms of memory, response time, and
energy consumption.

The rest of the paper is organized as follows. Section II
gives the background and related works. Section III introduces
the motivation of this work. Section IV presents the proposed
meta-learning based personalization method. Section V evalu-
ates the proposed personalization method. Finally, Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORKS

A. Health Monitoring in IoT on Biosignals

With the rapid development of biomedical sensors, IoT
devices are gaining more attention in health monitoring. IoT
monitoring device embedded with biomedical sensors presents
a way to monitor patients’ health conditions in a continuous,
real-time, and connective manner. The disease that occurs

sporadically and acutely could be detected by the computer-
aided method, diagnosed by doctors through data uploading,
and even treated by the IoT device in time. IoT-based health
monitoring is considered to be a promising alternative to in-
hospital instruments in personal healthcare industry.

There are various applications in health monitoring using
IoT devices. In the field of cardiac monitoring, the biosignals
reflected cardiac rhythm have been utilized for arrhythmias
detection. Implantable Cardioverter Defibrillator (ICD) is a
small device implanted to reduce Sudden Cardiac Death (SCD)
risk and improve the survival rate by detecting Ventricular
Tachycardia (VT) and Ventricular Fibrillation (VF) on intrac-
ardiac electrograms (IEGMs) and delivering defibrillation [4].
The arrhythmia detection methods deployed on ICD count
on a wide variety of criteria and there are hundreds of
parameters affecting the defibrillation decision [11], [23]. With
the capability of IoT, the sensed rhythm and treatment history
can be uploaded to help doctors to fine-tune the parameters for
each ICD recipient [24]. Long-term rhythm monitors with con-
nectivity are leveraged for Atrial Fibrillation (AF) detection.
The devices such as Insertable Cardiac Monitor (ICM) [5],
[10], wearable patch cardiac monitors [6], [25], and smart
watches [26] are programmed with AF detection methods.
Those devices could transmit the self-detected suspicious AF-
rhythm ECG episodes to the cardiologists for further diagnosis.

In Human Activity Recognition (HAR), the biosignals of
accelerometer and gyroscope have been frequently utilized as
the input for activity classification. A real-time and automatic
activity recognition algorithm using wireless accelerometers
and heart rate monitors is devised in [27]. ActiServ system
is proposed to utilize fuzzy inference based classifiers to
perform real-time activity recognition on the mobile phone [7].
In [28], authors introduce an Android-based application named
ActiWare that could perform real-time recognition with the
Naive Bayes classifier on the extracted features from the
biosignals obtained with the built-in accelerometer. Authors
in [9] present a activity recognition based on hierarchical
classification approach on resource-constrained IoT platforms.
The devised approach could be executed either on gateway or
IoT devices.

B. Deep Learning in Healthcare
Deep learning is a subset of machine learning algorithms

and has been shown to outperform conventional methods in
various fields such as visual object detection and speech recog-
nition. The most significant advantage of deep learning is that
the deep models could automatically learn to extract essential
features through training with labeled data. On the other hand,
conventional methods normally require an extensive amount
of domain-level expertise to first define features and perform
classification based on the extracted features.

With the development of the technique, deep learning is
being accepted in health monitoring applications on biosig-
nals. Deep learning based arrhythmia detection has achieved
cardiologist-level performance in terms of accuracy [14]. In
their works, the authors utilize a convolutional neural network
(CNN) with ResNet architecture to perform twelve arrhyth-
mias classifications on 12-lead ECG. Authors in [16] develop
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(a) IEGM on VA of Patient 253.
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(b) IEGM on VA of Patient 266.
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(c) IEGM on VA of Patient 327.
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(d) ECG on AF of Patient 01.
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(e) ECG on AF of Patient 23.
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(f) ECG on AF of Patient 53.
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(g) Acceleration on Standing of Subject 11.
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(h) Acceleration on Standing of Subject 12.
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(i) Acceleration on Standing of Subject 16.

Fig. 1. Signal segments from different patients over three types of biosignals.

a 37-layer deep neural network to classify 4 triage categories
derived from clinical experiences on 12-lead ECGs. Authors
in [13] propose a CNN with a simple structure for ventricular
arrhythmia detection using single-lead ECG. Authors in [29]
propose a simple but effective 1D CNN for atrial fibrillation
detection on ECG. In [30], two 2D CNNs are presented to
detect AF using the ECG signals processed with Short-Term
Fourier Transform (STFT) and Stationary Wavelet Transform
(SWT). In [15], a two-channel deep neural network is pro-
posed to detect the presence of AF on ECG. The first channel
learns where to attend for detection and the second channel
learns to extract the features from ECG.

Deep learning has also been applied in HAR. Authors
in [31] propose a CNN model to detect human activity
based on the tri-axial acceleration signals. Authors in [17]
introduce a 1D CNN-based method to recognize 3 human
activities (i.e., walking, running, and staying still) based on the
acceleration signals obtained from the built-in accelerometer
of the smartphone. Authors in [32] utilize CNNs with varying
kernel dimensions along with Bi-directional LSTM (BiLSTM)
to automatically capture spatial and temporal features on
the biosignals obtained from accelerometer and gyroscope.
Authors in [33] propose a simple CNN to accurately classify
the action while being able to conduct inference in real-time.

Apart from arrhythmia detection and HAR, authors in [34]
use Long Short-Term Memory (LSTM)-based siamese net-
works to detect Parkinson’s disease on the speech signal.
Authors in [35] utilize the data obtained from accelerometer
and touchscreen typing to construct multi-modal deep learning
to detect Parkinson’s disease. Moreover, DL has achieved
outstanding performance in sleep stage classification. A DL
approach is proposed to conduct an end-to-end sleep stage
classification based on multivariate signals (EEG, EOG, and
EMG) without calculating spectrograms or extracting fea-
tures [36]. Authors of the work [37] proposed a multimodal
salient wave detection network that accurately detects the
sleep stage and adaptively targets essential information from

multimodal input.

III. MOTIVATIONS

We have performed some investigations and preliminary
experiments to evaluate the feasibility of deep learning to
health monitoring on biosignals in IoT. From our experimental
results, we find that there are several challenges in applying
deep learning for personalized and real-time health monitoring
on the resource-constrained IoT monitor.

A. Individual Differences on Deep Model Performance

We first evaluate the impact of individual differences on
the detection performance of the pre-trained deep models.
Individual differences could cause inter-patient variability on
biosignals in terms of morphological characteristics.

Here, we utilize the biosignal datasets of IEGMs [38],
ECG [39] and MEMS motion sensors [40] for Ventricular
Arrhythmias (VA) detection, Atrial Fibrillation (AF) detection,
and Human Activities Recognition (HAR) respectively as our
case study applications. For illustration, Fig. 1 shows the
biosignals of IEGMs, ECG, and acceleration over three pa-
tients (subjects) on the same event (i.e., VA in Fig. 1(a-c), AF
in Fig. 1(d-f), and Action Standing in Fig. 1(g-i) respectively).
As shown in Fig. 1, the morphological characteristics of
biosignals are highly variable even on the event (arrhythmia)
of the same type over different patients (subjects).

We then choose three CNNs (denoted as CNN-VA [41],
CNN-AF [29], and CNN-HAR [33]) that are proposed for
health monitoring on biosignals for each application. The
detailed dataset descriptions, experimental setup, and results
are illustrated in Section V.

Fig. 2 shows the experimental results in terms of accuracy of
each testing patient for all three applications. The individuals
are chosen from the testing fold and are denoted with their
corresponding numbering on the X-axis. From the figure, we
observe that a pre-trained CNN cannot achieve the expected
high detection accuracy for every patient in all cases. For
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(a) Individual accuracy in VA detection.
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(b) Individual accuracy in AF detection.
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(c) Individual accuracy in HAR.

Fig. 2. Individual detection accuracy on pre-trained and fine-tuned deep
models over three case study applications.

example, in terms of AF detection, there is a large degradation
of accuracy for some patients (e.g., Patient 23 and 53) while
the pre-trained model could achieve a near-perfect detection
accuracy for the others. It is because that individual differences
cause inter-patient variability, which appears to have unique
morphological characteristics and dynamics in biosignals (as
shown in Fig. 1) [18], [19], [42]. Therefore, personalizing the
pre-trained deep model is necessary for each patient.

B. Fine-tuning for Personalized Deep Model

As we stated in the previous subsection, personalization is a
necessary procedure in biosignal health monitoring to achieve
a better patient-specific detection performance. In conventional
methods, domain-level expertise is highly demanded since
the detection criteria, extracted features and programmable
parameters are carefully determined and modified for each in-
dividual [4], [5], [43]. Comparing with conventional methods,
personalization in deep learning can be achieved through fine-
tuning, which requires much less domain knowledge. Fine-
tuning the pre-trained deep model using a limited amount of
specific patient’s data to obtain the personalized model has
been investigated in various health monitoring applications
such as arrhythmias detection [18], epileptic seizure detec-
tion [44], [45], human activity recognition [46], etc.

We have conducted experiments to further evaluate the
performance of the fine-tuning based personalization on the
same testing patients from the three case study applications.
For each dataset, the fine-tuning is conducted on the pre-
trained CNN using each testing patient’s limited data with a
uniform hyperparameter setting. Fig. 2 shows the accuracy of

each testing patient after fine-tuning. As shown in the figure,
some deep models personalized with the patient-specific data
even experience a significant accuracy degradation (e.g., pa-
tient 205 in VA detection and patient 74 in AF detection).
The performances indicate that the pre-trained CNN could
easily overfit the patient-specific data during fine-tuning. A
straightforward solution is to optimize the hyperparameters
(e.g., update steps, learning rate, etc) of the fine-tuning process
for each patient. However, because of the inherent individual
differences of biosignals, each patient is expected to have
varying convergence rates during model fine-tuning.

In other words, it is hard to determine when the pre-trained
model starts overfitting and it is impractical to determine
the proper hyperparameters with limited patient-specific data.
Therefore, improving the generalization of the pre-trained
model’s initialization is an alternative but necessary approach
to the problem.

Meta-learning approaches (e.g. MAML [47] and Rep-
tile [48]) provide a learning strategy that generates a pre-
trained model with well-generalized initialization by training
on the tasks (i.e., N-way-K-shot classification) containing
support and query set. The pre-trained model with well-
generalized initialization is shown to be able to quickly adapt
to the new task by fine-tuning. Such meta-learning approaches
are compatible with our application scenarios where the model
personalization is necessary and there is a limited amount
of patient-specific data. However, directly applying those
methods would mix training samples with different classes
from various patients in a single training task during the
meta-learning process. The training tasks with such biased
data distribution could cause gradient diminishing and training
instability, which degrade the generalization of the model and
lead to low detection accuracy after fine-tuning. Therefore, it
is necessary to further optimize the meta-learning process to
adapt the patient-specific detection scenarios.

C. Feasibility of Deep Model Deployment and Personalization

We further evaluate the feasibility of the deployment of deep
model on resource-constrained IoT monitors. The resource-
constrained IoT monitors are considered to be wearable or
implantable devices using microcontrollers (MCUs) since only
the MCU-based IoT monitors could perform long-term, real-
time and continuous detection with limited-capacity batteries
in the health monitoring scenarios.

Most MCU-based IoT monitors have less than 256 KB on-
chip memory, 2 MB off-chip memory, and 200 MHz CPU
frequency [49]. As a result, some deep models with a great
number of weight parameters for accurate detection [14], [15]
cannot be deployed or executed on the MCU-based IoT mon-
itors. Even if optimizations such as pruning and compression
are applied to the models, the work-in memory required during
inference could easily exceed the capacity of the on-chip
memory of the low-power MCUs and the execution latency
of a large model may not satisfy the time constraints.

An alternative solution to the constrained hardware re-
sources problem is to perform hierarchical detection, where
the MCU-based IoT monitor carries lightweight classification
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and offloads compute-intensive classification tasks to a local
gateway or cloud server [9], [50]. However, the approach still
requires a relatively frequent data exchange between the IoT
monitor and the offloaded device. Moreover, the cybersecurity
vulnerabilities in data transmission to the cloud could lead to
sensitive data leakage and device manipulation [51], [52]. It is
highly demanded to perform inference and model updates on
the user end without uploading personal health data. Therefore,
it is necessary to provide a system-level solution for privacy-
preserving model personalization and efficient inference on the
recourse-constrained IoT monitor.

IV. METHOD

In this section, we present the details of the personalized
deep learning based patient-specific health monitoring for
the resource-constrained IoT monitors. There are two key
steps: 1) Meta-learning: Based on the problem formulation,
the proposed meta-learning is conducted on the server with
collected patients’ data to obtain a well-generalized deep
model initialization containing across-patient knowledge; 2)
Personalization: A quick personalization is performed on the
meta-model to adapt to the specific patient’s data.

Compared with the original method introduced in [41], the
proposed meta-learning method further optimizes the patient-
wise tasks formatting strategy to accommodate different health
monitoring applications other than ventricular arrhythmias
detection. The strategy enables the method to conduct the
meta-learning process even when the patients are not with
a certain class of data. Furthermore, optimization techniques
such as cyclical learning rate mechanism are applied in the
proposed method to improve the initial model generalization.
We further introduce the updates for the model personalization
in [41]. The model personalization would be executed on
the user end without data uploading by leveraging an edge
computing framework.

A. Meta-Learning

Existing meta-learning algorithms [47], [48] focus on solv-
ing N-way-K-shot classification and are not compatible to the
patient-specific detection scenarios. To address the challenges,
we propose a patient-wise training tasks formatting strategy
and two other optimization techniques to ensure that the meta-
learning process is stabilized and the across-patient knowledge
is well-learned by the meta-model.

We first introduce the meta-learning process along with
necessary definitions. The initial model parameters of the deep
learning model is denoted as ϕ. There is a TaskSet defined as
T , which contains tasks τ extracted from training dataset. The
meta-learning process would iteratively train the deep model ϕ
over tasks extracted from the T to obtain the well-generalized
meta-model parameters ϕ∗.

In the meta-learning process, the patient-wise training tasks
formatting strategy is proposed to formulate the tasks such
that the across-patient knowledge could be properly learned
by the model. For each task of T , following the strategy, we
randomly select 2N patients from the training patients dataset
for each class. Each one of those 2N patients must contain the

data labeled with the targeted class. Next, we randomly collect
p samples labeled with the targeted class of each patient in the
first N selected patients and q samples of each patient in the
rest N patients Such process would be repeated for c times
to form a task τi, where c is the total number of classes. The
total number of tasks in T is then denoted as TS.

Once the task τi is formed, the collected p samples of each
class from the first N patients would be extracted to form
the support set, denoted as τspti . The q samples of each class
from the other N patients in τi would be formed as query set,
denoted as τ qryi . The formal definition of both set are shown
as follows:

τspti = {(x, y)i,Mspt
j
} for j = 1, ..., c · p ·N,

τ qryi = {(x, y)i,Mqry
j
} for j = 1, ..., c · q ·N,

(1)

where (x, y)i is the data-label pairs in τi, and Mspt and Mqry

are the pair indices (in τi) set for τspti and τ qryi separately.
There are total c · p ·N indices for pairs in τspti and c · q ·N
indices for τ qryi . A TaskSet T is constructed by repeating the
process to extract tasks τi for a pre-defined number TS times.

In meta-learning, on each formulated task, there is an
important procedure defined as inner-loop update [47]. The
inner-loop update is the process of fine-tuning the initial
model parameters ϕ on the given new task to acquire task-
specific knowledge. Here, the deep model inference is denoted
as fθ(x), where x is the input data and θ is deep model
parameters. When adapting the model to the task τi in inner-
loop update, k-step gradient update is applied to update the
model parameter from θ0i (= ϕ) to θki using the segment and
label pairs in the support set τspti . The gradient update on step
m (where 0 < m ≤ k) is defined as follows:

θmi = θm−1
i − α

1

|τspti |

∑
(x,y)∈τspt

i

∇θm−1
i
L(fθm−1

i
(x), y), (2)

where L is the loss function and α is the inner-loop learning
rate. The gradient descent (GD) in Eqn. (2) would be processed
for k steps to end up with the task-specific model with
parameters θki for the task τi:

θki = GDk(θ
0
i ), (3)

which is inner-loop model update in meta-learning.
Once obtaining a series of task-specific models from the

inner-loop update for each task τi ∈ T , we then evaluate the
generalization of the task-specific models and obtain a well-
generalized meta-model. This procedure is defined as outer-
loop update, which acquires across-task knowledge by meta-
learning the parameters of each task-specific model obtained
from inner-loop update [47].

The outer-loop update begins with calculating the loss of
each task-specific model on the corresponding task’s query
set. The loss is calculated as follows:

Lτi(θ
k
i ) =

1

|τ qryi |
∑

(x,y)∈τqry
i

L(fθk
i
(x), y). (4)

Next, we form a task batch using the mini-batch methodology
(i.e., the batch-size number of tasks are grouped as a batch)
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Fig. 3. Illustration of the meta-learning process. The red line indicates the inner-loop model update and the blue line indicates the outer-loop meta-model
update. The meta-model learns the across-patient knowledge and iteratively updates its parameters towards the well-generalized initialization ϕ∗.

from T . The objective is to minimize the loss based on one
batch of tasks. The loss is defined as follows:

Lmeta(ϕ) =
B∑

b=1

Lτb(θ
k
b ), (5)

where b is the index of the task in the batch and B is the
batch size. The minimization of the loss defined in Eqn. (5) is
to improve the generalization of meta-model parameters ϕ for
all tasks in the batch. Such objective is known as outer-loop
meta-model update [47]. The optimizer utilized here could be
Adam or Stochastic Gradient Descent (SGD). The meta-model
parameters updating is shown as follows:

ϕ′ = ϕ− β∇ϕ
1

|B|

B∑
b=1

Lτb(θ
k
b ), (6)

where β is the outer-loop learning rate and ϕ′ is the up-
dated meta-model parameters that contain the across-patient
knowledge. The parameters ϕ′ would be utilized as the initial
parameters for inner-loop and outer-loop update on the next-
round batch of tasks. To obtain the well-generalized meta-
model parameters ϕ∗, the meta-model would be updated
iteratively with the aforementioned inner-loop and outer-loop
update on batches of tasks.

Fig. 3 demonstrates the meta-learning process beginning
with initial model parameters ϕ and ending up with the well-
generalized ϕ∗. The number of classes c for detection is set 2
in the example. Each batch is formed by extracting B number
of tasks from T and the batch size B is fixed. As shown
in Fig. 3, for each task τ in a batch, the samples labeled as
the first class are denoted with a red border and the samples
labeled as the second class are denoted with a green border.
The first N patients’ p samples of each class form the support
set τspt and the q segments from the other N patients of each
class form the query set τ qry of τ . As shown in Fig. 3, the
inner-loop update is conducted within each task (indicated by
the red line) and the outer-loop update is conducted batch by
batch (indicated by blue line). Note that the batches would be
re-formulated for the next epoch.

To increase the generalization of the final meta-model
parameters and speed up the learning process, we further
propose two optimization techniques:

1) Inner-loop Update Optimization: The meta-learning pro-
cess of conventional meta-learning methods is time-consuming

and may come with training instability problem [22]. To
speed up the meta-learning process while obtaining the well-
generalized meta-model parameters, we propose an inner-loop
update steps annealing strategy.

This strategy is based on the observation that the meta-
model would quickly converge in the preceding epochs of
the meta-learning process. As a consequence, for the task
batches utilized in the latter epochs, the losses calculated in
the inner-loop update tend to be stable. Therefore, we propose
an annealing strategy based on the observation. That is, inner-
loop update steps k in Eqn. (3) would be reduced along with
epoch numbers. The inner-loop update steps are calculated as
follows:

θki = GDk(θ
0
i ), for k = max[k − (e mod W ),K], (7)

where e is the number of current epoch, W is the preset
updating stride, and K is the minimal inner-loop update steps.

To stabilize the gradients, we further invoke the multi-step
loss optimization to take the loss of the task-specific model
calculated from each inner-loop update step [22]. The Eqn. (4)
can be re-written as:

Lτi(θ
k
i ) =

k∑
m=0

vk(m)

(
1

|τ qryi |
∑

(x,y)∈τqry
i

L(fθm
i
(x), y)

)
, (8)

where k is the inner-loop steps calculated in Eqn. (7) and
vk(m) is the weight of the loss at the step m. A slight
difference between our formulation and the method in [22] is
that there are k different weights vector v for each calculated
inner-loop update step. The loss calculated in step 0 (i.e.,
the initial parameters θ0 before the inner-loop update) is also
considered in our multi-step loss optimization.

2) Cyclical Outer-loop Learning Rate Mechanism: In
MAML, authors utilize a static learning rate for outer-
loop learning rate for the meta-model update. Authors in
MAML++ [22] further optimize the outer-loop update by
setting a cosine annealing of outer-loop learning rate. How-
ever, the outer-loop update with a cosine annealing learning
rate may suffer from the early overfitting, where the initial
model quickly overfits on a small cluster of strongly-featured
training data with a high starting learning rate. What makes
the problem more severe is that the model is likely not to be
back on the ”right” track in the following training steps with
an annealing learning rate. Another possible problem is that

Authorized licensed use limited to: University of Pittsburgh. Downloaded on July 06,2022 at 18:53:49 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3162182, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS, VOL. 1, NO. 1, JAN. 2022 7

Algorithm 1: Patient-Specific Meta-Learning
Given ϕ: deep model initial parameters.
Given D,M : samples set and sample-label indices
pair set over all training patients.

Given α, β: inner-loop and outer-loop learning rate.
Given p, q: number of samples for support and query
set of each class over each patient.

Given N : total number of chosen patients for a task.
Given c,B, TS: total number of classes, task batch
size, TaskSet size.

Given W,k,K: preset updating stride, inner-loop
update steps, and the minimal inner-loop update steps.

Given v: weights vectors for inner-loop update.
1 Initialize TaskSet T : for i = 1, 2, ..., TS do
2 Randomly select 2N patients containing the data

labeled with the target class, format patient-wise
task with:

3 τspti = {(x, y)i,Mspt
j
} for j = 1, ..., c · p ·N

4 τ qryi = {(x, y)i,Mqry
j
} for j = 1, ..., c · q ·N

5 end
6 for each epoch e = 1, 2, ... do
7 Formulate batches of tasks from T
8 k ← max[k − (e mod W ),K]
9 β ← cyclic LR scheduler(e)

10 for each batch do
11 for b = 1, 2, ..., B do
12 θ0b ← ϕ
13 Lb(θ

0
b )← 1

|τqry
b |

∑
(x,y)∈τqry

b
L(fθ0

b
(x), y)

14 for n = 1, ..., k do
15 θnb ← GDn(θ

0
b )

16 Lb(θ
n
b )←

1
|τqry

b |
∑

(x,y)∈τqry
b
L(fθn

b
(x), y)

17 end
18 Lqry

b (θkb )←
∑k

m=0 vk(m)Lb(θ
m
b )

19 end
20 Lmeta(ϕ)←

∑B
b=1 L

qry
b (θkb )

21 ϕ← ϕ− β∇ϕ
1

|B|Lmeta(ϕ)

22 end
23 end

the meta-model may be hard to jump out of the local minimum
with an annealing learning rate during meta-learning.

In this work, we develop a cyclical outer-loop learning rate
mechanism by applying cyclical learning rate [53] for meta-
model update. To be more specific, the outer-loop learning
rate would change cyclically along with the epoch number
increase during meta-learning. The primary benefit is that the
meta-model would be updated with a relatively lower learning
rate in the first few epochs as a ”warm-up” starting, which
is a way to reduce the chance of causing overfitting in the
early epochs. The learning rate changing cyclically could also
force the meta-model to jump out of the local minimal for a
better-generalized initialization.

Algorithm 1 is devised to comprehensively illustrate the
process of our meta-learning approach. The training TaskSet

φ*φ*

PatientPatient

Patient-specific samples

Personalized deep model

Health Monitor Labeling

Meta-model 
Downloading

Edge Device

Fine-tuning

Fig. 4. Illustration of the deep model personalization process.

T is firstly constructed with the tasks extracted using the
proposed patient-wise training task strategy (Line 1-5). Within
each epoch, the task batches are formulated with the given
batch size B. The inner-loop update step is determined with
the mechanism defined in Eqn. 7 of the inner-loop update
optimization (Line 8). The outer-loop learning rate is then
determined by the cyclical learning rate scheduler (Line 9).
Next, for each task in a task batch, the meta-model parameters
ϕ is assigned as the task-specific model parameters θ0 (Line
12). The multi-step loss is calculated based on the task-
specific model’s inference on the query set from step 0 to k
during inner-loop update (Line 13-17). The task-specific model
is updated on the task’s support set using gradient descent
defined in Eqn. 3. The multi-step loss is accumulated with
weight vector vk for each step from 0 to k (Line 18). The
accumulated multi-step loss from each batch is then added
as the meta-loss and the meta-model is updated with the
outer-loop learning rate β (Line 20-21). The aforementioned
processes of meta-learning would be executed iteratively.

B. Personalization

Once the well-generalized meta-model ϕ∗ is obtained, the
next essential step is to personalize the model to adapt to
the specific patient’s data. The personalized deep model is
expected to be deployed on the resource-constrained IoT
monitor and perform patient-specific detection on the sensed
biosignals. To overcome the resource constraints problem, in
this work, we focus on the deep model with a reasonable
amount of weight parameters that can perform inference solely
on the resource-constrained IoT monitor. We further introduce
an edge device to perform the model personalization on the
user end without data sharing.

As shown in Fig. 4, the IoT health monitor would firstly
transmit some recorded patient-specific samples to the edge
device. Once the limited patient-specific samples are received
by the edge device, all the doctor is supposed to do is to
label those samples through a physical follow-up. The labeling
would be processed purely on the edge device without data
sharing to keep the sensitive health data confidential.

Next, the edge device would automatically personalize the
meta-model ϕ∗ downloaded from the cloud by fine-tuning
with the labeled patient-specific samples. This process can
be conducted with gradient descent based model updating.
The meta-model could quickly adapt to the specific patient’s
rhythm feature since the model with ϕ∗ contains across-patient
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knowledge through meta-learning. Specifically, the parameters
of the deep model with ϕ∗ would be updated by SGD and
back-propagation with those limited but labeled samples of
the new patient. The model would be personalized to adapt to
the specific patient with a few training iterations. As shown
in Fig. 4, the personalized deep model would be further
deployed back on the health monitoring to perform real-time,
continuous, and patient-specific detection.

The reason why we devise the computing framework is that
the fine-tuning process requires relatively extensive computing
resources and cannot be executed solely by the IoT moni-
tor itself. Moreover, it is privacy-preserving to conduct the
personalization on the edge device without sending personal
data to the cloud. In this case, we set the architecture shown
in Fig. 4, which enables the model personalization to be
conducted efficiently by the edge device while keeping the
personal data on the user end.

It is also worth noting that our proposed method enables
the model personalization to be conducted semi-automatically.
Doctors in our method are only expected to provide labels on a
limited amount of data without receiving qualification training
on how to fine-tune programmable parameters of conventional
computer-aided methods [23]. The process of parameters fine-
tuning in conventional methods requires the doctors to not
only read and label the recorded rhythm, but also modify the
parameter value based on their expertise and experience. Our
method could significantly reduce the workload by eliminating
the manual personalized programmable parameters finding
process. Once the labeled patient-specific data is received, the
deep model could be automatically and effectively adapted to
patient-specific data by the proposed meta-learning method.

V. EXPERIMENTS

In this section, we first introduce data preparation. We
then introduce the experimental setup including the evaluation
paradigm, evaluated methods, and implementation details.
We finally present experimental results in terms of detection
metrics and practical performances.

A. Data Preparation

There are three health monitoring applications chosen in the
experiments to evaluate the generalization and effectiveness of
our proposed method. The applications include Ventricular Ar-
rhythmia (VA) detection on intracardiac electrograms (IEGMs)
signal, Atrial Fibrillation (AF) detection on electrocardiogram
(ECG) signal, and Human Activities Recognition (HAR) on
MEMS motion signal. We would introduce the dataset and
data pre-processing for each application.

TABLE I
DATA PROFILE OF VA DATASET.

Data
2-second Segments

Events
Non-Overlapping Overlapping

VA 2,318 10,613 155
Non-VA 6,513 13,047 266

1) VA detection: The dataset of IEGMs is retrieved from
volume I & II of Ann Arbor Electrogram Libraries (AAEL),
one of the largest dataset for IEGMs and used by all manu-
facturers developing implantable defibrillators to evaluate their
methods [38]. The sampling rate of all recordings is 1, 000
Hz. Different episodes of recordings have been annotated and
reviewed by cardiac electrophysiologists to ensure an accurate
interpretation of arrhythmia.

Here, we select all recordings over 95 patients to form
the dataset. Each selected recording contains the one-channel
IEGMs sensed by RVA-Bi lead. First, we apply a band-pass
FIR filter with a pass-band frequency of 0.5 Hz and a stop-
band frequency of 50 Hz. All recordings are then resampled to
250 Hz as the sampling rate is widely utilized in implantable
devices [54]. Then, the recording is divided into various VA
or non-VA events based on the rhythm diagnostic annotations
on the IEGMs. Finally, each event is segmented into segments
using a 2-second sliding window (250 Hz× 2 s = 500 samples)
with and without a overlap (0.2 s for VA events and 0.5
s for non-VA events). The overlap is set to perform data
augmentation for training only. The detailed segments and
events statistics are illustrated in Table I.

TABLE II
DATA PROFILE OF AF DATASET.

Data 10-second Segments Events

AF 358,474 7,358
Non-AF 299,840 46,347

2) AF detection: The dataset of ECG is retrieved from Long
Term AF Database (LTAFDB) [39], [55], which includes 84
long-term ECG recordings of human subjects with AF. The
sampling rate of each recording is 128 Hz.

Here, we select the recordings of all 84 patients to form the
dataset. Each selected recording contains the ECG of the lead
I. The first step is to apply a band-pass FIR filter with a pass-
band frequency of 0.5 Hz and a stop-band frequency of 50
Hz. Then, the episodes annotated with AF of each recording
would be labeled as AF while the other episodes are labeled as
non-AF. Each episode is then segmented into non-overlapped
10-second segments and the label (i.e., AF or non-AF) on
the segments is the same as the corresponding episode. The
detailed data profile of the AF dataset are shown in Table II.

TABLE III
DATA PROFILE OF HAR DATASET.

Data Walking Upstairs Downstairs Sitting Standing Laying
Segments 1,722 1,544 1,406 1,777 1,906 1,944

Events 30 30 30 30 30 30

3) HAR: The dataset of MEMS human motion signals is
retrieved from UCI-HAR [40]. UCI-HAR is a commonly used
dataset in HAR. It includes the smartphone accelerometer and
gyroscope data at a sampling rate of 50Hz over 30 volunteers.
There are six activities (i.e., Walking, Upstairs, Downstairs,
Sitting, Standing, Laying) wearing a smartphone (i.e., Sam-
sung Galaxy S II) on the waist. The labels of the signal data
are made manually based on the recorded video [40]. Here, we
select all segments that have been pre-processed by UCI-HAR
(i.e., apply noise filters and then sampled in fixed-width sliding
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windows of 2.56 seconds and 50% overlap [40]). Each sample
consists of 9-channel signals including triaxial acceleration
from the accelerometer, triaxial body acceleration, and triaxial
angular velocity from the gyroscope. The detailed data profile
of the HAR dataset are shown in Table III.

B. Experimental Setup

1) Inter-Patient Evaluation Paradigms: In the experiments,
each dataset is firstly partitioned patient-wisely to ensure that
the same patients’ data can only be in either training or testing
set. For example, once the patient is selected for training,
the data of the patient would only be utilized in the training
set. The split is conducted randomly on the patients and we
perform 10-time random sampling on patients for each dataset.
The partition ratio is 80%-20% for training and testing patients
for each split. The performance is reported based on the
average performance of each testing patient.

For the validation, the training patients’ signal segments
serve as the training set and are used to perform learning
to learn a well-generalized deep model initialization in our
method or training in the baseline methods. For each patient
in the testing split, a small portion of segments is extracted to
serve as the personalizing set and used to personalize or fine-
tune the model for the specific patient. There are 12-second
(6 segments), 50-second (5 segments), and 10.42-second (4
segments) recordings of each class selected as personalization
data in VA detection, AF detection, and HAR respectively.
The rest segments of the testing patient serve as testing set
and are used to report the detection performance. During
testing, for each patient, the patient-specific segments from the
personalizing set are utilized to personalize the deep model,
and the segments from the testing set are utilized to evaluate
the personalized model.

In the personalization process of conventional computer-
aided methods and deep learning based methods, the person-
alization set is highly expected to contain all targeted classes.
Only in this way, the characteristics of the data could be
learned either by doctors or deep learning models to further
personalize the method. The detection performance could be
degraded if the method is modified without knowing the
data with targeted classes. However, it is not always capable
to collect data with all targeted classes in a personalization
setting. In our experiments, for each testing patient, the pre-
defined number of segments are only collected when there are
more than doubled amount of segments of each class.

2) Evaluated Methods: We implement the following detec-
tion methods for performance comparison:
Criteria-based detection. We implement conventional de-
tection methods based on detection criteria and handcrafted
features for each case study application:

• For VA detection on IEGMs, we simulate the VA detec-
tion method used in single-chamber ICDs [24], denoted
as Classic-VA. This method continuously monitors each
heartbeat and reports VA if the criteria are satisfied. We
set two detection zones for VT and VF respectively. The
heart rate boundary of the VT/VF zone and fast/slow
interval threshold are carefully selected for each testing

patient to simulate the manual intervention such that the
best discrimination performance could be achieved.

• For AF detection on ECG, we simulate an AF detection
method deployed in ICM [10], denoted as Classic-AF.
This method detects AF rhythm based on AF evidence
score and P-wave evidence score [10]. The first one is
derived from the Lorenz plot. The second one is derived
from the features extracted on the P-waves portions of the
ECG. The programmable parameters of detection criteria
are carefully adjusted for each testing patient.

• For HAR on MEMS motion signals, we implement
the detection method using support vector machine
(SVM) [40], denoted as Classic-HAR. The features used
in SVM are 561 hand-designed features extracted in [40].

CNN-based detection. We implement existing deep learning
based detection methods for each case study application:

• For VA detection on IEGMs, we invoke two existing CNN
models. One is proposed in [41], defined as CNN1-VA.
The other is proposed in [13], defined as CNN2-VA.

• For AF detection on ECG, we implement the method
in [29], defined as CNN-AF.

• For HAR on MEMS motion signals, we implement the
method proposed in [33], defined as CNN-HAR.

We invoke the same network structure with necessary modi-
fications (e.g., change filter size and reduce number of conv
layers) to fit the input dimensions and recourse-constrained
embedded devices for each case. Moreover, the pre-trained
CNN would be fine-tuned with the personalizing set and then
evaluated on the testing set. We denote them as CNN1-FT-VA,
CNN2-FT-VA, CNN-FT-AF and CNN-FT-HAR.
Conventional meta learning-based detection. We implement
three conventional meta-learning methods to evaluate the ef-
fectiveness of the proposed method.

• MAML: a conventional meta-learning method [47], de-
noted as MAML-VA, MAML-AF and MAML-HAR.

• FOMAML: MAML with first-order approximation
in [56], denoted as FOMAML-VA, FOMAML-AF and
FOMAML-HAR for each application.

• Reptile: a conventional meta-learning method proposed
in [48], denoted as Reptile-VA, Reptile-AF and Reptile-
HAR for each application.

Proposed meta learning-based detection. We implement the
proposed meta-learning method and denote it as Meta-VA,
Meta-AF, Meta-HAR for each application. We also implement
the original meta-learning based model proposed in [41]
for comparison purpose, denoted as Meta-Origin-VA, Meta-
Origin-AF, and Meta-Origin-HAR.

Note that all meta-learning based detection methods would
first obtain the meta-model from the training set, fine-tune the
meta-model with the personalizing set, and finally evaluate the
personalized model on the testing set of each testing patient.
The architecture of the meta-model is the one proposed in [41]
for VA detection, [29] for AF detection, and [33] for HAR.

3) Implementation Details: We adopt PyTorch (1.6.0) for
deep models training and personalization. We have set the ran-
dom seed using manual seed and manual seed all for CNN
models. All random numbers used in those methods are based
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TABLE IV
PERFORMANCES OF METHODS ON SEGMENTS IN VA DETECTION.

Methods F1 Se/Sp BAC/ACC PPV/NPV
CNN1-VA [41] .893 .966/.885 .925/.885 .884/.971
CNN1-FT-VA .952 .978/.958 .968/.962 .943/.990
CNN2-VA [13] .803 .942/.879 .910/.893 .703/.980
CNN2-FT-VA .931 .977/.962 .970/.966 .891/.990
FOMAML-VA [56] .943 .973/.947 .960/.955 .933/.986
MAML-VA [47] .940 .972/.951 .961/.956 .930/.987
Reptile-VA [48] .872 .913/.905 .909/.898 .868/.957
Meta-Origin-VA [41] .956 .974/.949 .961/.948 .949/.987
Meta-VA .967 .982/.961 .974/.967 .956/.994

TABLE V
PERFORMANCES OF METHODS ON EVENTS IN VA DETECTION.

Methods F1 Se/Sp BAC/ACC PPV/NPV
Classic-VA [24] .945 .972/.917 .936/.935 .912/.952
CNN1-VA [41] .936 .969/.882 .926/.890 .925/.946
CNN1-FT-VA .960 .967/.960 .963/.965 .959/.966
CNN2-VA [13] .876 .966/.864 .915/.900 .805/.978
CNN2-FT-VA .946 .968/.952 .962/.959 .923/.983
FOMAML-VA [56] .962 .969/.944 .957/.956 .965/.957
MAML-VA [47] .969 .972/.953 .963/.965 .979/.965
Reptile-VA [48] .874 .876/.907 .892/.879 .907/.925
Meta-Origin-VA [41] .970 .977/.950 .963/.960 .974/.971
Meta-VA .982 .983/.963 .970/.972 .989/.992

on the random.seed of numpy. The SVM method (i.e., Classic-
HAR) is implemented using sklearn library of Python. The
other methods (i.e., Classic-VA and Classic-AF) are simulated
using Python as well. All those experiments run on the PC
with 8 cores of Intel i9 9900K CPU, 32 GB RAM, 512 GB
SSD, and an NVIDIA GeForce GTX 2080Ti GPU on Ubuntu
16.04. The STM32F469NI discovery kit (with 2 MB flash and
324 KB SRAM) [57] is utilized as the IoT health monitor.
STM32Cube.AI [58] developed by ST is utilized to deploy the
model on the board. A Raspberry Pi 4B (with Cortex-A72, 8
GB RAM, and 3.5 W in operation) [59] is utilized as the edge
device for CNN fine-tuning (personalization).

C. Results

1) Detection Performance: We evaluate our meta-learning
method against other methods in terms of various metrics
including F1 score (F1), Sensitivity (Se), Specificity (Sp),
balanced accuracy (BAC), accuracy (ACC), positive predictive
value (PPV), and negative predictive value (NPV). Note that
all the metrics are calculated based on the average performance
of each patient in the testing set.

We first present VA detection performance on IEGMs from
AAEL. The condition positive is VA and the condition negative
is non-VA. Table IV demonstrates the detection performance
on VA segments. The performances indicate that fine-tuning
is necessary for CNN models to perform patient-specific VA
detection since almost all metrics of CNN1-FT-VA and CNN2-
FT-VA improve after being fine-tuned on the personal data. As
shown in Table IV, Meta-VA achieves the best performance on
all metrics compared with other evaluated methods. It indicates
that the generalization of the CNN initialization is critical in
model personalization and our proposed meta-learning method
provides an effective solution to the problem.

TABLE VI
PERFORMANCES OF METHODS ON SEGMENTS IN AF DETECTION.

Methods F1 Se/Sp BAC/ACC PPV/NPV
CNN-AF [29] .838 .952/.926 .939/.939 .823/.966
CNN-FT-AF .859 .932/.958 .945/.958 .854/.956
FOMAML-AF [56] .839 .888/.972 .930/.941 .864/.935
MAML-AF [47] .841 .879/.972 .926/.936 .875/.928
Reptile-AF [48] .791 .708/.854 .811/.823 .870/.875
Meta-Origin-AF [41] .856 .933/.952 .943/.950 .846/.961
Meta-AF .866 .918/.973 .946/.960 .872/.946

TABLE VII
PERFORMANCES OF METHODS ON EVENTS IN AF DETECTION.

Methods F1 Se/Sp BAC/ACC PPV/NPV
Classic-AF [10] .846 .921/.865 .917/.911 .797/.958
CNN-AF [29] .800 .945/.898 .921/.922 .776/.943
CNN-FT-AF .844 .920/.939 .930/.941 .837/.953
FOMAML-AF [56] .839 .886/.956 .921/.939 .861/.943
MAML-AF [47] .844 .882/.965 .924/.941 .875/.940
Reptile-AF [48] .746 .753/.860 .796/.800 .749/.878
Meta-Origin-AF [41] .823 .926/.938 .932/.947 .813/.949
Meta-AF .852 .910/.965 .936/.947 .861/.949

Table V illustrates the detection performance on VA events.
The performance on events is more practical in real-world
scenarios since the defibrillation therapy should be determined
based on the rhythm episodes instead of segment in conven-
tional VA detection in ICDs [11]. Therefore, we leverage a
simple but effective mechanism to determine VA events for all
CNN models. That is, the VA rhythm would be determined
if there are 4 consecutive VA predictions on the 2-second
segments. In other words, the monitor would consistently
monitor the latest four inferences, and the detection period
is 8 seconds. The criteria is set since the detection period of
the classic method for VAs detection in ICDs is usually 5 to
10 seconds [23].

Compared with Classic-VA, CNN1-VA achieves a 0.3%
deduction from a baseline of 97.2% on VA event detection
rate represented Se and a 3.5% deduction on non-VA event
detection rate from a baseline of 91.7% represented by Sp.
The two metrics, Se and Sp, become 96.7% and 96.0% respec-
tively after fine-tuning in CNN1-FT-VA. The performances of
CNN2-FT-VA also indicate that the fine-tuning could further
improve the detection performance for the pre-trained deep
model. The two SOTA meta-learning approaches, FOMAML-
VA and MAML-VA, achieve better performances on VA detec-
tion compared with CNN1-VA-FT and CNN2-VA-FT in terms
of F1 score. As for Meta-VA, it achieves the best performance
on all evaluated metrics. It has the near-optimal detection
rate on VA events (98.3%) and non-VA events (96.3%), and
the highest F1 score (0.982). When compared with Meta-
Origin-VA [41], the performances of Meta-VA show that the
proposed two optimization techniques could further improve
the generalization of the model initialization to fit patient-
specific detection.

Table VI shows the AF detection performance on segments
level. The condition positive is AF and the condition negative
is non-AF. As shown in the table, simply fine-tuning on the
pre-trained model CNN-AF is not an effective approach since
some metrics (e.g., Se and NPV) degrades when comparing
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TABLE VIII
PERFORMANCES OF METHODS ON SEGMENTS IN HAR.

Methods Macro-F1 ACC F1-Walking F1-Upstairs F1-Downstairs F1-Sitting F1-Standing F1-Laying
Classic-HAR [40] 0.968 0.967 0.979 0.981 0.994 0.920 0.932 1.000
CNN-HAR [33] 0.919 0.916 0.990 0.973 0.984 0.778 0.803 0.987
CNN-FT-HAR 0.916 0.914 0.973 0.966 0.982 0.763 0.820 0.989
FOMAML-HAR [56] 0.941 0.937 0.981 0.981 0.982 0.844 0.870 0.990
MAML-HAR [47] 0.936 0.933 0.982 0.966 0.979 0.841 0.866 0.980
Reptile-HAR [48] 0.690 0.714 0.512 0.614 0.533 0.698 0.804 0.981
Meta-Origin-HAR [41] 0.934 0.931 0.983 0.968 0.976 0.834 0.851 0.992
Meta-HAR 0.945 0.941 0.988 0.974 0.981 0.860 0.882 0.990

TABLE IX
PERFORMANCES OF METHODS ON EVENTS IN HAR.

Methods Macro-F1 ACC F1-Walking F1-Upstairs F1-Downstairs F1-Sitting F1-Standing F1-Laying
Classic-HAR [40] 0.995 0.993 1.000 0.983 1.000 0.983 0.983 1.000
CNN-HAR [33] 0.913 0.925 0.983 1.000 0.994 0.739 0.761 1.000
CNN-FT-HAR 0.928 0.944 1.000 0.983 0.994 0.767 0.822 1.000
FOMAML-HAR [56] 0.959 0.969 0.983 1.000 0.994 0.900 0.878 1.000
MAML-HAR [47] 0.959 0.969 1.000 0.967 0.989 0.906 0.911 0.983
Reptile-HAR [48] 0.812 0.856 0.689 0.911 0.858 0.644 0.783 0.983
Meta-Origin-HAR [41] 0.965 0.972 1.000 1.000 1.000 0.906 0.883 1.000
Meta-HAR 0.985 0.989 1.000 0.983 0.994 0.950 0.983 1.000

CNN-FT-AF with CNN-AF. It indicates that the general-
ization of deep model initialization is essential for patient-
specific detection. In meta-learning methods, both FOMAML-
AF and MAML-AF achieve relatively similar performance
when compared with CNN-FT-AF. Reptile-AF achieves the
worst detection performances among all evaluated methods.
On the other hand, Meta-AF achieves the best detection
performances on almost all metrics except Se, PPV and NPV.
As shown in Table VI, Meta-AF achieves the highest F1 score
(0.866) among all methods. The total accuracy of Meta-AF is
96.0%, together with detection accuracy on AF segments being
91.8% and non-AF segments being 97.3%. It indicates that the
proposed meta-learning method could also adapt to the ECG
domain by generating a well-generalized model initialization.

Table VII shows the AF detection performance on events
level. Here, we leverage a mechanism to determine AF events
for all CNN models, where the AF event would be determined
if there are 3 consecutive AF predictions on the 10-second
segments. As shown in the table, Meta-AF achieves a 10.0%
increase from a baseline of 86.5% on non-AF event detection
rate represented by Sp, and a 3.6% increase on accuracy from
a baseline of 91.1% of Classic-AF. As for SOTA meta-learning
methods, FOMAML-AF and MAML-AF achieve relatively
comparable performance when compared with CNN-FT-AF
in terms of F1. It indicates that the devised patient-wise tasks
formatting strategy in Meta-AF could increase the meta-model
generalization and further improve the detection performance.

Table VIII shows the activity recognition performance in
terms of Macro-F1 (i.e., average F1 score over 6 activities), to-
tal accuracy, and F1 over each activity classification over seg-
ments. As shown in the table, Classic-HAR achieves the best
performance over almost all metrics except F1-Walking. As
for CNN-FT-HAR, its performance degrades after fine-tuning
using a limited amount of personal data. It again indicates
that the quality of the generalization of model initialization
is critical in patient-specific detection. SOTA meta-learning
methods such as FOMAML-HAR, MAML-HAR, and Retiple-

HAR do not achieve significant performance improvement
due to the training tasks formatting issue as introduced in
Section III-B. As for Meta-HAR, it achieves 0.945 Macro-
F1 score and 94.1% total accuracy, which are the second-best
activity recognition performance among all evaluated methods.

Table IX shows the performance on events level of HAR.
Here, we devise a mechanism to classify events for all
methods. The classification of the event would be considered
correct if there are more than half of the number of segments
to be predicted correctly by the method. As shown in the
table, Meta-HAR achieves even better performances than other
deep learning based methods in the classification of the action
Sitting (i.e., 0.950 in F1-Sitting) and Standing (i.e., 0.983 in
F1-Standing). Although Classic-HAR still achieves the best
performances over almost all metrics, the performance gap
between Meta-HAR and Classic-HAR has been significantly
narrowed. When compared with Classic-HAR, Meta-HAR
achieves 0.985 F1 score with only 1.0% differences, and
98.9% total accuracy with only 0.4% differences. Furthermore,
Meta-HAR achieves the best activity recognition performance
among all deep learning based HAR methods in terms of
Macro-F1 and accuracy.

Here, we just give out a discussion on the performance gap
between Classic-HAR and other deep learning based methods.
The extensive amount of the hand-designed and carefully-
chosen features enables Classic-HAR to properly classify the
action based on the knowledge that has been fully explored by
the experts first. For the other deep learning based methods, the
deep model could only learn to correctly classify the action
from being trained on the relatively limited amount of the
labeled signal segments, which severely restricts the detection
performance. However, on the other hand, as shown in Ta-
ble IX, the performance gap between our method and Classic-
HAR has been greatly narrowed on event-level detection
through the proposed optimizations. Moreover, deep learning
based methods could learn to classify the action by itself with
only labeled data. When compared with Classic-HAR, the
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Fig. 5. Individual detection accuracy on all methods over three applications.

deep learning based methods require much less expertise in
the development process. Moreover, the deep models can be
deployed on the IoT monitors while Classic-HAR is hardly
runnable due to the hardware resources constraints.

To recall the performances reported in Fig. 2, we have
demonstrated the individual accuracy on the same patients
chosen in Fig. 2 of each application. In VA detection shown
in Fig. 5(a). Meta-VA achieves a stable and high detection ac-
curacy over all testing patients while other methods’ detection
accuracy would degrade on different certain patients. In AF
detection shown in Fig. 5(b), on patient 42 and 74, Meta-AF
could achieve a much higher detection accuracy while other
methods do not detect well. The same case has been observed
in Fig. 5(c) on patient 10 and 16 as well. It indicates that our
method could effectively personalize the deep model for the
individual with well-generalized model parameters.

2) Model Generalization: To demonstrate the generaliza-
tion of model initialization obtained from different methods,
we present the average accuracy and loss curve over all testing
patients during personalization on each case study application.
The 5-step gradient descent (GD) is applied to personalize
each pre-trained model. The evaluated methods include fine-
tuning, FOMAML, MAML, Reptile, and the proposed method
Meta.

As shown in Fig. 6, at step 0, the initial model of our Meta
method does not perform better compared with other methods
in terms of accuracy. The model initialization of Meta could
rapidly adapt to the specific patient’s rhythm and end up with
higher accuracy. This trend is shown in all three applications in
Fig. 6. The other methods such as FOMAML, and MAML do
not appear in the same trend during personalization as demon-
strated in Fig. 6(b) and Fig. 6(c). The averaged individual
accuracy of those methods does not increase along with update
steps and even degrades after fine-tuning. It indicates that

the proposed meta-learning method delivers a well-generalized
model initialization for model personalization. The loss curves
shown in Fig. 6 illustrate that Meta could rapidly converge on
the dataset of different applications.

3) Performance on Hardware: We deploy all evaluated
CNN models on the board STM32F469NI discovery kit (with
ARM Cortex M4) [57] to test its inference performance
in terms of energy, latency, and memory overhead on real
hardware. Since all meta-learning methods utilize the same
CNN architecture as CNN-based detection methods, the per-
formances of model inference would be relatively similar over
the same application. In other words, the practical perfor-
mances of 4 CNN models could represent the performances
of all evaluated deep learning based approaches since meta-
learning methods do not interfere with the processes of model
inference and fine-tuning. The models require only 36 KB,
28 KB, 319 KB, and 295 KB to store model parameters for
CNN1-VA, CNN2-VA, CNN-AF, and CNN-HAR respectively.
The average latency on the inference over a segment is 9.94
ms, 8.44 ms, 64.5 ms, and 37.04 ms for CNN1-VA, CNN2-
VA, CNN-AF, and CNN-HAR respectively. The power of the
testing board is 161 mW (supplied with 5 V). It indicates
that the model could meet the hardware constraints of the
implantable or wearable devices for detection tasks [60], [9].
The fine-tuning overhead on the edge device (i.e., Raspberry Pi
4B in the experiments) is 1.74 s, 1.73 s, 5.32 s, and 5.12 s over
CNN1-VA, CNN2-VA, CNN-AF, and CNN-HAR respectively.
The performance of fine-tuning overhead indicates that it is
capable to conduct the deep model personalization on the user
end. With the design of the edge computing framework, local
personalization could significantly reduce the risks of personal
data and model leakage.

VI. CONCLUSIONS

In this paper, we propose a novel meta-learning method
for patient-specific detection on the resource-constrained IoT
monitors. The meta-learning method aims to generate a well-
generalized model initialization for the model to be person-
alized on patient-specific data. A novel patient-wise training
tasks formatting strategy is presented to address the training
sample mixture problem in conventional meta-learning meth-
ods. The inner- and outer-loop optimizations are proposed
to further improve the generalization of the meta-model ini-
tialization. A computing framework is further developed to
provide the capability of local model personalization on the
edge devices to avoid data breaches and model manipulation.
The deep models personalized by our method achieve 8.2%,
2.5%, and 6.4% higher detection accuracy compared with the
existing deep learning methods in VA detection, AF detection,
and HAR respectively.

REFERENCES

[1] A. M. Ghosh, D. Halder, and S. A. Hossain, “Remote health monitoring
system through IoT,” in 2016 5th International Conference on Informat-
ics, Electronics and Vision (ICIEV). IEEE, 2016, pp. 921–926.

[2] P. Valsalan, T. A. B. Baomar, and A. H. O. Baabood, “IoT based health
monitoring system,” Journal of Critical Reviews, vol. 7, no. 4, pp. 739–
743, 2020.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on July 06,2022 at 18:53:49 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3162182, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS, VOL. 1, NO. 1, JAN. 2022 13

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 1 2 3 4 5

Ac
cu
ra
cy

Steps

CNN1-FT CNN2-FT FOMAML
MAML Reptile Meta

0.00

0.20

0.40

0.60

0.80

0 1 2 3 4 5

Lo
ss

Steps

CNN1-FT CNN2-FT FOMAML
MAML Reptile Meta

(a) Accuracy and loss curve in VA detection.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 1 2 3 4 5

Ac
cu
ra
cy

Steps

CNN-FT FOMAML MAML
Reptile Meta

0.00

0.20

0.40

0.60

0.80

0 1 2 3 4 5

Lo
ss

Steps

CNN-FT FOMAML MAML
Reptile Meta

(b) Accuracy and loss curve in AF detection.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 1 2 3 4 5

Ac
cu
ra
cy

Steps

CNN-FT FOMAML MAML
Reptile Meta

0.00

0.50

1.00

1.50

0 1 2 3 4 5

Lo
ss

Steps

CNN-FT FOMAML MAML
Reptile Meta

(c) Accuracy and loss curve in HAR.

Fig. 6. Accuracy and loss trend during personalization of deep learning based methods over three applications.

[3] J. Wan, M. A. Al-awlaqi, M. Li, M. O’Grady, X. Gu, J. Wang, and
N. Cao, “Wearable IoT enabled real-time health monitoring system,”
EURASIP Journal on Wireless Communications and Networking, vol.
2018, no. 1, pp. 1–10, 2018.

[4] J. Zdarek and C. W. Israel, “Detection and discrimination of tachycardia
in ICDs manufactured by St. Jude Medical,” Herzschrittmacherthera-
pie+ Elektrophysiologie, vol. 27, no. 3, pp. 226–239, 2016.

[5] Boston Scientific, Inc, “LUX-Dx™ Insertable Cardiac Monitor (ICM)
System,” 2017. [Online]. Available: https://www.bostonscientific.
com/content/dam/bostonscientific/Rhythm%20Management/portfolio-
group/lux-dx-icm/pdf/LUX-Dx-Clinic-Resource-Guide.pdf

[6] iRhythm Technologies, Inc, “iRhythm Zio Patch,” 2021. [Online].
Available: https://www.irhythmtech.com

[7] M. Berchtold, M. Budde, D. Gordon, H. R. Schmidtke, and M. Beigl,
“Actiserv: Activity recognition service for mobile phones,” in Interna-
tional Symposium on Wearable Computers (ISWC), 2010, pp. 1–8.

[8] D. Castro, W. Coral, C. Rodriguez, J. Cabra, and J. Colorado, “Wearable-
based human activity recognition using an IoT approach,” Journal of
Sensor and Actuator Networks, vol. 6, no. 4, p. 28, 2017.

[9] F. Samie, L. Bauer, and J. Henkel, “Hierarchical classification for
constrained IoT devices: A case study on human activity recognition,”
IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8287–8295, 2020.
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