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Abstract

Detecting out-of-distribution examples is im-
portant for safety-critical machine learning
applications such as detecting novel biological
phenomena and self-driving cars. However,
existing research mainly focuses on simple small-
scale settings. To set the stage for more realistic
out-of-distribution detection, we depart from
small-scale settings and explore large-scale multi-
class and multi-label settings with high-resolution
images and thousands of classes. To make future
work in real-world settings possible, we create
new benchmarks for three large-scale settings.
To test ImageNet multiclass anomaly detectors,
we introduce the Species dataset containing over
700,000 images and over a thousand anomalous
species. We leverage ImageNet-21K to evaluate
PASCAL VOC and COCO multilabel anomaly
detectors. Third, we introduce a new benchmark
for anomaly segmentation by introducing a
segmentation benchmark with road anomalies.
We conduct extensive experiments in these more
realistic settings for out-of-distribution detection
and find that a surprisingly simple detector based
on the maximum logit outperforms prior methods
in all the large-scale multi-class, multi-label, and
segmentation tasks, establishing a simple new
baseline for future work.

1. Introduction

Out-of-distribution (OOD) detection is a valuable tool for
developing safe and reliable machine learning (ML) systems.
Detecting anomalous inputs allows systems to initiate a con-
servative fallback policy or defer to human judgment. As an
important component of ML Safety (Hendrycks et al., 2021),
OOD detection is important for safety-critical applications
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such as self-driving cars and detecting novel microorgan-
isms. Accordingly, research on out-of-distribution detec-
tion has a rich history spanning several decades (Schölkopf
et al., 1999; Breunig et al., 2000; Emmott et al., 2015).
Recent work leverages deep neural representations for out-
of-distribution detection in complex domains, such as im-
age data (Hendrycks & Gimpel, 2017; Lee et al., 2018a;
Mohseni et al., 2020; Hendrycks et al., 2019b). However,
these works still primarily use small-scale datasets with
low-resolution images and few classes. As the community
moves towards more realistic, large-scale settings, strong
baselines and high-quality benchmarks are imperative for
future progress.

Large-scale datasets such as ImageNet (Deng et al., 2009)
and Places365 (Zhou et al., 2017) present unique chal-
lenges not seen in small-scale settings, such as a plethora
of fine-grained object classes. We demonstrate that the
maximum softmax probability (MSP) detector, a state-of-
the-art method for small-scale problems, does not scale
well to these challenging conditions. Through extensive
experiments, we identify a detector based on the maximum
logit (MaxLogit) that greatly outperforms the MSP and
other strong baselines in large-scale multi-class anomaly
segmentation. To facilitate further research in this setting,
we also collect a new out-of-distribution test dataset suitable
for models trained on highly diverse datasets. Shown in
Figure 2, our Species dataset contains diverse, anomalous
species that do not overlap ImageNet-21K which has ap-
proximately twenty two thousand classes. Species avoids
data leakage and enables a stricter evaluation methodol-
ogy for ImageNet-21K models. Using Species to conduct
more controlled experiments without train-test overlap, we
find that contrary to prior claims (Fort et al., 2021; Koner
et al., 2021), Vision Transformers (Dosovitskiy et al., 2021a)
pre-trained on ImageNet-21K are not substantially better at
out-of-distribution detection.

Moreover, in the common real-world case of multi-label
data, the MSP detector cannot naturally be applied in the
first place, as it requires softmax probabilities. To enable
research into the multi-label setting for anomaly detection,
we contribute a multi-label experimental setup and explore
various methods on large-scale multi-label datasets. We find
that the MaxLogit detector from our investigation into the
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Figure 2: The Species out-of-distribution dataset is designed for large-scale anomaly detectors pretrained on datasets as
diverse as ImageNet-21K. When models are pretrained on ImageNet-21K, many previous OOD detection datasets may
overlap with the pretraining set, resulting in erroneous evaluations. To rectify this, Species is comprised of hundreds of
anomalous species that are disjoint from ImageNet-21K classes and enables the evaluation of cutting-edge models.

the task and propose the simple baseline of using the max-
imum softmax probability of the classifier on an input to
gauge whether the input is out-of-distribution. In particular,
they formulate the task as distinguishing between examples
from an in-distribution dataset and various OOD datasets.
Importantly, entire images are treated as out-of-distribution.

Continuing this line of work, Lee et al. (2018a) propose to
improve the neural representation of the classifier to bet-
ter separate OOD examples. They use generative adver-
sarial networks to produce near-distribution examples and
induce uniform posteriors on these synthetic OOD examples.
Hendrycks et al. (2019b) observe that outliers are often easy
to obtain in large quantity from diverse, realistic datasets
and demonstrate that OOD detectors trained on these out-
liers generalize to unseen classes of anomalies. Other work
investigates improving the anomaly detectors themselves
given a fixed classifier (DeVries & Taylor, 2018; Liang et al.,
2018). However, as Hendrycks et al. (2019b) observe, many
of these works tune hyperparameters on a particular type
of anomaly that is also seen at test time, so their evaluation
setting is more lenient. In this paper, all anomalies seen
at test time come from entirely unseen categories and are
not tuned on in any way. Hence, we do not compare to
techniques such as ODIN (Liang et al., 2018). Additionally,
in a point of departure from prior work, we focus primarily
on large-scale images and datasets with many classes.

Recent work has suggested that stronger representations
from Vision Transformers pre-trained on ImageNet-21K can

make out-of-distribution detection trivial (Fort et al., 2021;
Koner et al., 2021). They evaluate models on detecting
CIFAR-10 when fine-tuned on CIFAR-100 or vice versa,
using models pretrained on ImageNet-21K. However, over
1,000 classes in ImageNet-21K overlap with CIFAR-10,
so it is still unclear how Vision Transformers perform at
detecting entirely unseen OOD categories. We create a
new OOD test dataset of anomalous species to investigate
how well Vision Transformers perform in controlled OOD
detection settings without data leakage and overlap. We find
that Vision Transformers pre-trained on ImageNet-21K are
far from solving OOD detection in large-scale settings.

Anomaly Segmentation. Several prior works explore seg-
menting anomalous image regions. One line of work uses
the WildDash dataset (Zendel et al., 2018), which contains
numerous annotated driving scenes in conditions such as
snow, fog, and rain. The WildDash test set contains fifteen
“negative images” from different domains for which the goal
is to mark the entire image as out-of-distribution. Thus,
while the task is segmentation, the anomalies do not exist
as objects within an otherwise in-distribution scene. This
setting is similar to that explored by Hendrycks & Gimpel
(2017), in which whole images from other datasets serve as
out-of-distribution examples.

To approach anomaly segmentation on WildDash, Krešo
et al. (2018) train on multiple semantic segmentation do-
mains and treat regions of images from the WildDash driv-
ing dataset as out-of-distribution if they are segmented as
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Amphibians 40.1 48.3 41.3 49.0 42.7 50.1
Arachnids 45.6 54.6 44.8 55.0 47.1 57.2
Fish 40.6 55.5 41.2 53.6 41.8 53.4
Fungi 66.0 76.8 63.9 76.1 63.7 76.4
Insects 46.8 54.9 47.6 52.8 47.8 52.1
Mammals 45.0 50.0 47.6 47.5 48.1 46.3
Microorganisms 76.3 82.4 69.3 81.0 72.7 84.9
Mollusks 44.5 51.9 43.4 49.8 44.8 51.6
Plants 68.4 75.8 65.7 72.9 67.2 73.9
Protozoa 72.9 81.6 71.8 81.8 71.2 79.1

Mean 54.6 63.2 53.7 61.9 54.7 62.5

Table 2: Results on Species. Models and the processed version of ImageNet-21K (ImageNet-21K-P) are from (Ridnik
et al., 2021a). All values are percent AUROC. Species enables evaluating anomaly detectors trained on ImageNet-21K
and evades class overlap issues present in prior work. Using Species to conduct more controlled experiments without class
overlap issues, we find that contrary to recent claims (Fort et al., 2021), simply scaling up Vision Transformers does not
make OOD detection trivial.

that would not exist for real anomalies. Figure 6 shows an
example of these inconsistencies. Techniques for detecting
image manipulation (Zhou et al., 2018; Johnson & Farid,
2005) are competent at detecting artificial image elements
of this kind. Our StreetHazards dataset overcomes these
issues by leveraging a simulated driving environment to nat-
urally insert anomalous 3D models into a scene rather than
overlaying 2D images. These anomalies are integrated into
the scene with proper lighting and orientation, mimicking
real-world anomalies and making them significantly more
difficult to detect.

3. Multi-Class Prediction for OOD Detection

Problem with existing baselines. Existing baselines for
anomaly detection can work well in small-scale settings.
However, in more realistic settings image classification net-
works are often tasked with distinguishing hundreds or thou-
sands of classes, possibly with subtle differences. This is
problematic for the maximum softmax probability (MSP)
baseline (Hendrycks & Gimpel, 2017), which uses the neg-
ative maximum softmax probability as the anomaly score,
or −maxk exp f(x)k/

∑

i exp f(x)i = −maxk p̂(y = k |
x), where f(x) is the unnormalized logits of classifier f
on input x. Classifiers tend to have higher confidence on
in-distribution examples than out-of-distribution examples,
enabling OOD detection. Assuming single-model evalua-
tion and no access to other anomalies or test-time adaptation,
the MSP attains state-of-the-art anomaly detection perfor-
mance in small-scale settings. However, we show that the
MSP is problematic for realistic in-distribution datasets with
many classes, such as ImageNet and Places365 (Zhou et al.,
2017). Probability mass can be dispersed among visually
similar classes, as shown in Figure 3. Consequently, a
classifier may produce a low confidence prediction for an

in-distribution image, not because the image is unfamiliar,
but because the object’s exact class is difficult to determine.
To circumvent this problem, we propose using the negative
of the maximum unnormalized logit for an anomaly score
−maxk f(x)k, which we call MaxLogit. Since the logits
are unnormalized, they are not affected by the number of
classes and can serve as a better baseline for large-scale
out-of-distribution detection.

The Species Out-Of-Distribution Dataset. To enable
controlled experiments and high-quality evaluations of
anomaly detectors in large-scale settings, we create the
Species dataset, a new out-of-distribution test dataset that
has no overlapping classes with ImageNet-21K. Table 7
shows an overview of the Species dataset which is com-
prised of over 700,000 images scraped from the iNaturalist
website and contains over a thousand anomalous species
grouped into ten high-level categories: Amphibians, Arach-
nids, Fish, Fungi, Insects, Mammals, Microorganisms, Mol-
lusks, Plants, and Protozoa. Example images from the
Species dataset are in Figure 2. Despite its massive size,
iNaturalist does not have images for over half of known
species, so even models pretrained on the whole of iNatural-
ist will encounter anomalous species.

Setup. To evaluate the MSP baseline out-of-distribution
detector and the MaxLogit detector, we use ImageNet-21K
as the in-distribution dataset Din. To obtain representations
for anomaly detection, we use models trained on ImageNet-
21K-P, a cleaned version of ImageNet-21K with a train/val
split (Ridnik et al., 2021a). We evaluate a TResNet-M, ViT-
B-16, and Mixer-B-16 (Ridnik et al., 2021b; Dosovitskiy
et al., 2021b; Tolstikhin et al., 2021), and the validation
split is used for obtaining in-distribution scores. For out-
of-distribution test datasets Dout, we use categories from
the Species dataset, all of which are unseen during training.
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iForest LOF Dropout LogitAvg MSP MaxLogit

PASCAL VOC
FPR95 ↓ 98.6 84.0 97.2 98.2 82.3 35.6

AUROC ↑ 46.3 68.4 49.2 47.9 74.2 90.9

AUPR ↑ 37.1 58.4 45.3 41.3 65.5 81.2

COCO
FPR95 ↓ 95.6 78.4 93.3 94.5 81.8 40.4

AUROC ↑ 41.4 70.2 58.0 55.5 70.7 90.3

AUPR ↑ 63.7 82.0 76.3 74.0 82.9 94.0

Table 3: Multi-label out-of-distribution detection comparison of the Isolation Forest (iForest), Local Outlier Factor (LOF),
Dropout, logit average, maximum softmax probability, and maximum logit anomaly detectors on PASCAL VOC and
MS-COCO. The same network architecture is used for all three detectors. All results shown are percentages.

Results for these experiments are in Table 2. We also use
ImageNet-1K and Places365 as in-distribution datasets Din,
for which we use pretrained ResNet-50 models and use
several out-of-distribution test datasets Dout. Full results
with ImageNet and Places365 are in the Appendix.

Metrics. To evaluate out-of-distribution detectors in large-
scale settings, we use three standard metrics of detection
performance: area under the ROC curve (AUROC), false
positive rate at 95% recall (FPR95), and area under the
precision-recall curve (AUPR). The AUROC and AUPR are
important metrics, because they give a holistic measure of
performance when the cutoff for detecting anomalies is not a
priori obvious or when we want to represent the performance
of a detection method across several different cutoffs.

The AUROC can be thought of as the probability that an
anomalous example is given a higher score than an ordinary
example. Thus, a higher score is better, and an uninfor-
mative detector has a AUROC of 50%. AUPR provides a
metric more attuned to class imbalances, which is relevant in
anomaly and failure detection, when the number of anoma-
lies or failures may be relatively small. Last, the FPR95
metric consists of measuring the false positive rate at 95%.
Since these measures are correlated, we occasionally solely
present the AUROC for brevity and to preserve space.

Results. Results on Species are shown in Table 2. Results
with ImageNet-1K and Places365 as in-distribution datasets
are in Table 1. The proposed MaxLogit method outperforms
the maximum softmax probability baseline on all out-of-
distribution test datasets Dout. This holds true for all three
models trained on ImageNet-21K. The MSP baseline is not
much better than random and is has similar performance
for all three model classes. This suggests that contrary to
recent claims (Fort et al., 2021), simply scaling up Vision
Transformers does not make OOD detection trivial.

4. Multi-Label Prediction for OOD Detection

Current work on out-of-distribution detection primarily con-
siders multi-class or unsupervised settings. Yet as classifiers
become more useful in realistic settings, the multi-label
formulation becomes increasingly natural. To investigate

out-of-distribution detection in multi-label settings, we pro-
vide a baseline and evaluation setup.

Setup. We use PASCAL VOC (Everingham et al., 2009)
and MS-COCO (Lin et al., 2014) as in-distribution data. To
evaluate anomaly detectors, we use 20 out-of-distribution
classes from ImageNet-21K. These classes have no overlap
with ImageNet-1K, PASCAL VOC, or MS-COCO. The 20
classes are chosen not to overlap with ImageNet-1K since
the multi-label classifiers are pre-trained on ImageNet-1K.
We list the class WordNet IDs in the Appendix.

Methods. We use a ResNet-101 backbone architecture
pre-trained on ImageNet-1K. We replace the final layer with
2 fully connected layers and apply the logistic sigmoid func-
tion for multi-label prediction. During training we freeze the
batch normalization parameters due to an insufficient num-
ber of images for proper mean and variance estimation. We
train each model for 50 epochs using the Adam optimizer
(Kingma & Ba, 2014) with hyperparameter values 10−4 and
10−5 for β1 and β2 respectively. For data augmentation we
use standard resizing, random crops, and random flips to
obtain images of size 256 × 256 × 3. As a result of this
training procedure, the mAP of the ResNet-101 on PASCAL
VOC is 89.11% and 72.0% for MS-COCO.

As there has been little work on out-of-distribution detec-
tion in multilabel settings, we include comparisons to classic
anomaly detectors for general settings. Isolation Forest, de-
noted by iForest, works by randomly partitioning the space
into half spaces to form a decision tree. The score is deter-
mined by how close a point is to the root of the tree. The
local outlier factor (LOF) (Breunig et al., 2000) computes a
local density ratio between every element and its neighbors.
We set the number of neighbors as 20. iForest and LOF
are both computed on features from the penultimate layer
of the networks. MSP denotes a naive application of the
maximum softmax probability detector in the multi-label
setting, obtained by computing the softmax of the logits.
Alternatively, one can average the logit values, denoted by
LogitAvg. These serve as our baseline detectors for multi-
label OOD detection. We compare these baselines to the
MaxLogit detector that we introduce in Section 3. As in
the multi-class case, the MaxLogit anomaly score for multi-
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MSP Branch Background Dropout AE MaxLogit

StreetHazards
FPR95 ↓ 33.7 68.4 69.0 79.4 91.7 26.5

AUROC ↑ 87.7 65.7 58.6 69.9 66.1 89.3

AUPR ↑ 6.6 1.5 4.5 7.5 2.2 10.6

BDD-Anomaly
FPR95 ↓ 24.5 25.6 40.1 16.6 74.1 14.0

AUROC ↑ 87.7 85.6 69.7 90.8 64.0 92.6

AUPR ↑ 3.7 3.9 1.1 4.3 0.7 5.4

Table 4: Results on the CAOS benchmark. AUPR is low across the board due to the large class imbalance, but all methods
perform substantially better than chance. MaxLogit obtains the best performance. All results are percentages.

5.1. Experiments

Evaluation. In anomaly segmentation experiments, each
pixel is treated as a prediction, resulting in many predictions
to evaluate. To fit these in memory, we compute the metrics
on each image and average over the images to obtain final
values.

Methods. Our first baseline is pixel-wise Maximum Soft-
max Probability (MSP). Introduced by Hendrycks & Gim-
pel (2017) for multi-class out-of-distribution detection, we
directly port this baseline to anomaly segmentation. Alter-
natively, the background class might serve as an anomaly
detector, because it contains everything not in the other
classes. To test this hypothesis, “Background” uses the pos-
terior probability of the background class as the anomaly
score. The Dropout method leverages MC Dropout (Gal
& Ghahramani, 2016) to obtain an epistemic uncertainty
estimate. Following Kendall et al. (2015), we compute the
pixel-wise posterior variance over multiple dropout masks
and average across all classes, which serves as the anomaly
score. We also experiment with an autoencoder baseline
similar to Baur et al. (2019); Haselmann et al. (2018) where
pixel-wise reconstruction loss is used as the anomaly score.
This method is called AE. The “Branch” method is a di-
rect port of the confidence branch detector from DeVries
& Taylor (2018) to pixel-wise prediction. Finally, we use
the MaxLogit method described in earlier sections indepen-
dently on each pixel.

For all of the baselines except the autoencoder, we train
a PSPNet (Zhao et al., 2017) decoder with a ResNet-101
encoder (He et al., 2015) for 20 epochs. We train both the
encoder and decoder using SGD with momentum of 0.9, a
learning rate of 2× 10−2, and learning rate decay of 10−4.
For AE, we use a 4-layer U-Net (Ronneberger et al., 2015)
with a spatial latent code as in Baur et al. (2019). The U-Net
also uses batch norm and is trained for 10 epochs. Results
are in Table 4.

Results and Analysis. MaxLogit outperforms all other
methods across the board by a substantial margin. The
intuitive baseline of using the posterior for the background
class to detect anomalies performs poorly, which suggests
that the background class may not align with rare visual
features. Even though reconstruction-based scores succeed

in product fault segmentation, we find that the AE method
performs poorly on the CAOS benchmark, which may be
due to the more complex domain. AUPR for all methods
is low, indicating that the large class imbalance presents a
serious challenge. However, the substantial improvements
with the MaxLogit method suggest that progress on this task
is possible and there is much room for improvement. A
comparison with other datasets is in Table 6 (Pinggera et al.,
2016; Blum et al., 2019; Jung et al., 2021).

In Figure 4, we see that both MaxLogit and MSP have many
false positives, as they assign high anomaly scores to se-
mantic boundaries, a problem also observed in the recent
works of (Blum et al., 2019; Angus, 2019). However, the
problem is less severe with MaxLogit. A potential explana-
tion for this is that even when the prediction confidence dips
at semantic boundaries, the maximum logit can remain the
same in a ‘hand-off’ procedure between the classes. Thus,
MaxLogit provides a natural mechanism to combat semantic
boundary artifacts that could be explored in future work.

6. Conclusion

We scaled out-of-distribution detection to settings with
thousands of classes and high-resolution images. We
identified an issue faced by the MSP baseline and proposed
the maximum logit detector as a natural solution. We
introduced the Species dataset to enable more controlled
experiments without class overlap and also investigated
using multi-label classifiers for OOD detection, establishing
an experimental setup for this previously unexplored setting.
Finally, we introduced the CAOS benchmark for anomaly
segmentation, consisting of diverse, naturally-integrated
anomalous objects in driving scenes. Baseline methods
on the CAOS benchmark substantially improve on random
guessing but are still lacking, indicating potential for future
work. Interestingly, the MaxLogit detector also provides
consistent and significant gains in the multi-label and
anomaly segmentation settings, thereby establishing it as a
new baseline in place of the maximum softmax probability
baseline on large-scale OOD detection problems. In all,
we we hope that our contributions will enable further
research on out-of-distribution detection for real-world
safety-critical environments.
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mantic segmentation with ladder-densenet models, 2018.

Lee, K., Lee, H., Lee, K., and Shin, J. Training confidence-
calibrated classifiers for detecting out-of-distribution sam-
ples. International Conference on Learning Representa-

tions, 2018a.

Lee, K., Lee, K., Lee, H., and Shin, J. A simple unified
framework for detecting out-of-distribution samples and
adversarial attacks. ArXiv, abs/1807.03888, 2018b.

Liang, S., Li, Y., and Srikant, R. Enhancing the reliability
of out-of-distribution image detection in neural networks.
International Conference on Learning Representations,
2018.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., and
Dollar, P. Microsoft COCO: Common objects in context.
ECCV, 2014.

Mohseni, S., Pitale, M., Yadawa, J., and Wang, Z. Self-
supervised learning for generalizable out-of-distribution
detection. In AAAI, 2020.

Pinggera, P., Ramos, S., Gehrig, S. K., Franke, U., Rother,
C., and Mester, R. Lost and found: Detecting small road
hazards for self-driving vehicles. 2016 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems

(IROS), pp. 1099–1106, 2016.

Ridnik, T., Ben-Baruch, E., Noy, A., and Zelnik-Manor,
L. Imagenet-21k pretraining for the masses. ArXiv,
abs/2104.10972, 2021a.

Ridnik, T., Lawen, H., Noy, A., Ben Baruch, E., Sharir,
G., and Friedman, I. Tresnet: High performance gpu-
dedicated architecture. In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision,
pp. 1400–1409, 2021b.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
Medical Image Computing and Computer-Assisted In-

tervention – MICCAI 2015, pp. 234–241, 2015. ISSN
1611-3349. doi: 10.1007/978-3-319-24574-4_28.

Savva, M., Chang, A. X., and Hanrahan, P. Semantically-
Enriched 3D Models for Common-sense Knowledge.
CVPR 2015 Workshop on Functionality, Physics, Inten-

tionality and Causality, 2015.

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J.,
and Platt, J. Support vector method for novelty detection.
In Proceedings of the 12th International Conference on

Neural Information Processing Systems, NIPS’99, pp.
582–588, Cambridge, MA, USA, 1999. MIT Press.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,
X., Unterthiner, T., Yung, J., Keysers, D., Uszkoreit, J.,
Lucic, M., et al. Mlp-mixer: An all-mlp architecture for
vision. arXiv preprint arXiv:2105.01601, 2021.

Yu, F., Zhang, Y., Song, S., Seff, A., and Xiao, J. LSUN:
construction of a large-scale image dataset using deep
learning with humans in the loop. CoRR, 2015.

Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madha-
van, V., and Darrell, T. BDD100K: A diverse driving
video database with scalable annotation tooling. CoRR,
abs/1805.04687, 2018.

Zendel, O., Honauer, K., Murschitz, M., Steininger, D., and
Fernandez Dominguez, G. Wilddash-creating hazard-
aware benchmarks. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pp. 402–416, 2018.

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. Pyramid scene
parsing network. 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 6230–6239,
2017.

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Tor-
ralba, A. Places: A 10 million image database for scene
recognition. PAMI, 2017.

Zhou, P., Han, X., Morariu, V. I., and Davis, L. S. Learn-
ing rich features for image manipulation detection. In
Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1053–1061, 2018.



Scaling Out-of-Distribution Detection for Real-World Settings

FPR95 ↓ AUROC ↑ AUPR ↑
Din Dtest

out B M D K B M D K B M D K

Im
ag

eN
et

Gaussian 2 0 5 4 100 100 97 98 93 98 55 79
Rademacher 21 4 4 15 89 98 98 93 29 70 62 54
Blobs 26 32 72 8 80 79 37 99 25 17 7 93
Textures 68 56 74 59 80 87 76 85 25 36 16 48
LSUN 66 63 59 60 75 77 76 79 21 22 19 38
Places365 64 59 63 72 79 83 79 79 27 32 24 46
Mean 41.3 35.8 46 36.1 85.2 87.2 76.9 88.7 37 45.8 30.5 59.7

P
la

ce
s3

65

Gaussian 10 6 71 12 93 96 35 93 16 24 2 16
Rademacher 20 10 91 1 89 93 10 100 11 15.9 1.6 88
Blobs 59 6 88 27 72 98 15 93 5 41 2 31
Textures 86 72 87 74 65 79 43 79 4 11 1 12
Places69 88 89 92 91 61 64 52 65 5 6 3 6
Mean 53 36.6 85.8 40.9 76 85.8 31.1 85.8 8 19.2 2 30.5

Table 5: B is for the maximum softmax probability baseline, M is for maximum logit, D is for the method in (DeVries
& Taylor, 2018), and K is our own KL method described below. Both M and K are ours. Results are on ImageNet and
Places365. All values are percentages and are rounded so that 99.95 rounds to 100.

A. Full Multiclass OOD Detection Results

Datasets. To evaluate the MSP baseline out-of-
distribution detector and the MaxLogit detector, we
use the ImageNet-1K object recognition dataset and
Places365 scene recognition dataset as in-distribution
datasets Din. We use several out-of-distribution test datasets
Dout, all of which are unseen during training. The first
out-of-distribution dataset is Gaussian noise, where each
example’s pixels are i.i.d. sampled from N (0, 0.5) and
clipped to be contained within [−1, 1]. Another type of
test-time noise is Rademacher noise, in which each pixel is
i.i.d. sampled from 2 · Bernoulli(0.5) − 1, i.e. each pixel
is 1 or −1 with equal probability. Blob examples are more
structured than noise; they are algorithmically generated
blob images. Meanwhile, Textures is a dataset consisting
in images of describable textures (Cimpoi et al., 2014).
When evaluating the ImageNet-1K detector, we use LSUN

images, a scene recognition dataset (Yu et al., 2015). Our
final Dout is Places69, a scene classification dataset that
does not share classes with Places365. In all, we evaluate
against out-of-distribution examples spanning synthetic and
realistic images.

KL Matching Method. To verify our intuitions that led
us to develop the MaxLogit detector, we developed a less
convenient but similarly powerful technique applicable for
the multiclass setting. Recall that some classes tend to be
predicted with low confidence and others high confidence.
The shape of predicted posterior distributions is often class
dependent.

We capture the typical shape of each class’s posterior
distribution and form posterior distribution templates for
each class. During test time, the network’s softmax pos-

terior distribution is compared to these templates and an
anomaly score is generated. More concretely, we compute
k different distributions dk, one for each class. We write
dk = Ex′∼Xval [p(y|x

′)] where k = argmaxk p(y = k | x′).
Then for a new test input x, we calculate the anomaly
score mink KL[p(y | x) ‖ dk] rather than the MSP baseline
−maxk p(y = k | x). Note that we utilize the validation
dataset, but our KL matching method does not require the
validation dataset’s labels. That said, our KL matching
method is less convenient than our MaxLogit technique,
and the two perform similarly. Since this technique re-
quires more data than MaxLogit, we opt to simply use the
MaxLogit in the main paper.

Results. Observe that the proposed MaxLogit method out-
performs the maximum softmax probability baseline for
all three metrics on both ImageNet and Places365. These
results were computed using a ResNet-50 trained on ei-
ther ImageNet-1K or Places365. In the case of Places365,
the AUROC improvement is over 10%. We note that the
utility of the maximum logit could not be appreciated as
easily in previous work’s small-scale settings. For example,
using the small-scale CIFAR-10 setup of Hendrycks et al.
(Hendrycks et al., 2019a), the MSP attains an average AU-
ROC of 90.08% while the maximum logit attains 90.22%, a
minor 0.14% difference. However, in a large-scale setting,
the difference can be over 10% on individual Dout datasets.
We are not claiming that utilizing the maximum logit is a
mathematically innovative formulation, only that it serves as
a consistently powerful baseline for large-scale settings that
went unappreciated in small-scale settings. In consequence,
we suggest using the maximum logit as a new baseline for
large-scale multi-class out-of-distribution detection.
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Overview of Other Detection Methods. There are other
techniques in out-of-distribution detection which require
other assumptions such as more training data. For instance,
(Hendrycks et al., 2019a; Mohseni et al., 2020) use addi-
tional training data labeled as out-of-distribution, and the
MaxLogit technique can be naturally extended should such
data be available. (Hendrycks et al., 2019c) use rotation
prediction and self-supervised learning, but we found that
scaling this to the ImageNet multiclass setting did not pro-
duce strong results. The MSP baseline trained with auxil-
iary rotation prediction has an AUROC of 59.1%, and with
MaxLogit it attains a 73.6% AUROC, over a 10% absolute
improvement with MaxLogit. Nonetheless this technique
did not straightforwardly scale, as the network is better
without auxiliary rotation prediction. Likewise, (Lee et al.,
2018b) propose to use Mahalanobis distances, but in scaling
this to 1000 classes, we consistently encountered NaN errors
due to high condition numbers. This shows the importance
of ensuring that out-of-distribution techniques can scale.

ODIN (Liang et al., 2018) assumes that, for each OOD
example source, we can tune hyperparameters for detection.
For this reason we do not evaluate with ODIN in the rest
of the paper. However, for thoroughness, we evaluate it
here. ODIN uses temperature scaling and adds an epsilon
perturbation to the input in order to separate the softmax
posteriors between in- and out-of-distribution images; we
set these hyperparameters following (DeVries & Taylor,
2018). Then, MaxLogit combined with ODIN results in an
FPR95 of 33.6, an AUROC of 88.8 and an AUPR of 51.3 on
ImageNet. On Places365, the FPR95 is 35.3, the AUROC is
86.5, and the AUPR is 24.2. Consequently, techniques built
with different assumptions can integrate well with MaxLogit.
We do not train ImageNet-21K models from scratch with
these methods due to limited compute.

For multi-label classification experiments, we choose the
following classes from ImageNet-21K to serve as out-of-
distribution data: dolphin (n02069412), deer (n02431122),
bat (n02139199), rhino (n02392434), raccoon (n02508213),
octopus (n01970164), giant clam (n01959492), leech
(n01937909), Venus flytrap (n12782915), cherry tree
(n12641413), Japanese cherry blossoms (n12649317),
red wood (n12285512), sunflower (n11978713), crois-
sant (n07691650), stick cinnamon (n07814390), cotton
(n12176953), rice (n12126084), sugar cane (n12132956),
bamboo (n12147226), and tumeric (n12356395). These
classes were hand-chosen so that they are distinct from
VOC and COCO classes.

B. OOD Segmentation

We cover methods used in the paper in more depth and the
modifications necessary to make the methods work with
OOD detection in semantic segmentation. We use f to

MSP MaxLogit

FS Lost and Found
FPR95 ↓ 45.6 18.8
AUROC ↑ 87.0 92.0
AUPR ↑ 6.0 38.1

Road Anomaly
FPR95 ↓ 68.4 64.9
AUROC ↑ 73.8 78.0
AUPR ↑ 20.6 24.4

Table 6: Auxiliary analysis of the MSP and the MaxLogit us-
ing prior less comprehensive anomaly segmentation datasets.
All values are percentages. Our MaxLogit detector outper-
forms the MSP baseline detector on all metrics.

denote the function typically a neural network, x is the input
image, and yi,j is the prediction for pixel i, j. We will
denote the output probability distribution per pixel as P and
locations i, j as the location of the respective pixel in the
output. f(x)i,j denotes the ith row and j’th column of the
output.

Confidence Estimation. The method proposed in (De-
Vries & Taylor, 2018) works by training a confidence branch
added at the end of the neural network. We denote the net-
work predictions as both P and ĉ whereby every pixel is
assigned a confidence value.

b ∼ B(0.5)

c := ĉ · b+ (1− b)

P := P · c+ (1− c)y

The confidence estimation denoted by c is given “hints”
during training to guide what it is learning. The B is a beta
distribution and acts as a regularizer similar to dropout so
that the network f does not exclusively rely on the true
labels being present. The final loss is modified to include
the extra term below:

Lp =
1

|P |

∑

i

−log(pi)yi

Lc =
1

|P |

∑

i

−log(ĉi)

L = Lp + λLc

The reasoning for Lc is to encourage the network to output
confident predictions. Finally λ is initialized to 0.1 and is
updated by a “budget” parameter which is set to the default
of 0.3. The update equation:

{

λ/0.99
∑

ĉi ≤ budget

λ/1.01
∑

ĉi > budget






