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Abstract

We show that for every prime d and a € (0, 1/6), there is an infinite sequence of (d + 1)-regular
graphs G = (V, E) with girth at least 2alog,(|V|)(1 — 04(1)), second adjacency matrix eigenvalue
bounded by (3/ V2) Vd, and many eigenvectors fully localized on small sets of size O(|V|%). This
strengthens the results of [ 1, who constructed high girth (but not expanding) graphs with
similar properties, and may be viewed as a discrete analogue of the “scarring” phenomenon
observed in the study of quantum ergodicity on manifolds. Key ingredients in the proof
are a technique of Kahale [ ] for bounding the growth rate of eigenfunctions of graphs,
discovered in the context of vertex expansion and a method of Erd6s and Sachs for constructing
high girth regular graphs.

1 Introduction

We study the relationship between geometric properties of finite regular graphs, such as girth and
expansion, and localization properties of their Laplacian / adjacency matrix eigenvectors. This line
of work was initiated by Brooks and Lindenstrauss, who proved that the eigenvectors of high girth
graphs cannot be too localized in the following sense (in fact, they studied graphs with few short
cycles, but we will state the restriction of their results for high girth graphs for simplicity).

Theorem 1.1 ([ ). Suppose G = (V,E) is a (d + 1)—regular graph with adjacency matrix A. Then for
any normalized €, eigenvector v € RY of A and S C V with ||vs|3 := L ,e5 03 > €,

S| > Qd(€2d2’7€2girth((3))’ (1)
where girth(G) denotes the length of the shortest cycle in G.

The recent work [ ] improved (1) to
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under the same assumptions on G. Moreover, given any ¢ € (0, 1), they proved that for infinitely
many m € IN there is a (d + 1)—regular graph G, with m vertices, girth(G;,) > (1/8)log,(m), and a
localized eigenvector satisfying ||05||§ = ¢ and |S| < O(a*¢8"th(Gn)), This shows that (2) is sharp up to
constants and a factor of éd~2 in the regime where the girth is logarithmic in the number of vertices.

In this work, we construct examples which improve on the above in three ways: (1) the graphs
we construct are expanders with near-optimal spectral gap, (2) we improve the bounds on girth(G;,)
as well as the localization size |S| by constant factors, (3) our constructions are explicit whereas
[ ] used the probabilistic method to show existence non-constructively.

Theorem 1.2. For every d = p + 1, p prime, and parameter a € (0,1/6) there are infinitely many integers m
such that there exists a (d + 1)—regular graph G, = (V. E;) on m vertices with the following properties,

1. |Ai(Aw)l < (3/ V2) Vd for all nontrivial eigenvalues i # 1 of the adjacency matrices A
2. girth(G,,) > 2alog,,;_(m) — O(1) = 2alog,(m) - (1 - O(log_l(d))).

3. There is a set S5, C Vyy, of size O(m®) such that Ay, has at least {,, := |alog,(m)] eigenvalues
A € (=2 Vd, 2 Vd) with corresponding eigenvectors v : Ayv = Av supported entirely on S,,.

Moreover, the set of eigenvalues A realized by the localized eigenvectors of A, over all such m is dense in the

interval (=2 Vd, 2 Vd).

Note that the number 3/ V2 - Vd ~ 2.121 Vd above is quite close to the best possible bound of
2 Vd for an infinite sequence of regular graphs [ I

Remark 1.1. (Partial Localization on Smaller Sets). In fact the proof of Theorem 1.2 produces
eigenvectors v, with the additional property that for ¢ € (0, 1), there exists a subset S of vertices
with |S| = O(m®©), and ||vg||2 > O(e).

Finally, we show how to modify our construction to produce many localized eigenvectors
corresponding to eigenvalues with very high multiplicity.

Theorem 1.3 (Many Localized Eigenvectors). Theorem 1.2 is true with the last property replaced by:
there are £, := alog,(m) eigenvalues M1, ..., Ag,, each of multiplicity at least Q(m'~*%), such that each
eigenspace has a basis of orthogonal eigenvectors supported on sets of size O(m®).

1.1 Implications for Quantum Ergodicity on Graphs

The additional property of expansion in our examples is relevant to the study of quantum ergodicity
on graphs. Anantharaman and Le Masson proved that if a sequence of graphs has few short cycles
and a spectral gap, then the eigenvectors must be equidistributed on average in a sense stronger
than Theorem 1.1.

Theorem 1.4. [ , 1 Suppose G, = (Vyn, Eiy) is a sequence of (d + 1)-reqular graphs on m
vertices with adjacency matrices A, satisfying:

(BST) The sequence of graphs converges to a tree in the sense of Benjamini-Schramm, i.e., there exist R, — oo
and o, — 0, such that

1
al{v € Vi : Niu(v, Ryy) contains a cycle}| < ayy,

where Ny, (v, R) is the set of vertices at distance at most R from v, in G,,. Note that this condition is
implied by girth(G,,) — oo.



(EXP) There is a constant > 0 such that

Ni(Am)l < (@d+ 1)1 - ),
for all nontrivial eigenvalues i # 1.

Then for any sequence of test functions ay, : Viy — R with ¥ ycy am(x) = 0, [|amlleo < 1:

1 2. -
o 20 ()P < B min(Ry, log(1 /) lanlly + s Zllanl, — 0, (3)
1<m
where gb(m) . (m) is any eigenbasis of Ay,.

The above may be viewed as a discrete analogue of the quantum ergodicity theorem of
Shnirelman, Zelditch, and Colin de Verdiére [ , , ], which states that if the geodesic
flow on a compact manifold is ergodic, then it must have a dense subsequence of Laplacian
eigenfunctions whose mass distribution converges weakly to the volume measure as the energy
goes to infinity. In Theorem 1.4, the manifold has been replaced by a sequence of graphs, the
condition of ergodic geodesic flow has been replaced by BST and EXP, and the notion of weak
convergence involves a sequence of test functions on the graphs rather than a single test function
on the manifold.

An even stronger notion of delocalization for the Laplacian on a manifold is Quantum Unique
Ergodicity (QUE) (see e.g. [ | for a detailed discussion), where instead of a dense subsequence
of eigenfunctions, one requires that every subsequence of eigenfunctions becomes equidistributed.
It is not completely clear what the correct analogous notion should be for a sequence of finite graphs.
There are various proposals; one definition which appears in Anantaraman’s ICM survey [ ]
and in [ , Question 1.3] in the context of sequences of manifolds is: for every sequence of

test functions a,, as in Theorem 1.4, and every sequence of eigenfunctions gbgm), one has

@™, anp™) — 0. )

Since the graphs constructed in Theorem 1.2 satisfy BST and EXP, the theorem shows that these

properties cannot imply unique ergodicity in the above sense: take the tp(m) to be the localized
eigenvectors of G, and let a,, be the indicator functions of the sets S, on which they are localized,
translated by a constant to have mean zero. It is then immediate that (4)5::1 , amﬁi’?} =1-0(1) for
the entire sequence.
The presence of localized eigenvectors is sometimes referred to as “scarring” (see e.g. [ ,
1), which may be partial or complete depending on whether a large fraction or all of the mass
is localized on a small set. Theorem 1.2 and Remark 1.1 may be interpreted as saying that scarring
can occur even under strong expansion and girth assumptions.

Remark 1.2 (QE over intervals). The works [ , ] also study a more refined version
of quantum ergodicity on graphs, where the average (3) is taken over a spectral window I C
(-2 Vd, 2 Vd) rather than the entire spectrum. These results hold on intervals I of width roughly
1/log(m), and it would be interesting to see whether our examples can prove a lower bound on the
length of the smallest window that is possible. While Theorem 1.3 does produce many localized
eigenvectors in a very small window (due to high multiplicity), the problem of controlling the other
eigenvectors well enough to say that the average in a small window is not equidistributed is not
pursued here and remains open.



1.2 Techniques and Vertex Expansion

The starting point of the proofs of Theorems 1.2 and 1.3 is a construction in the proof of [ ,
Theorem 1.6] which has the following ingredients:

1. (Pairing trees [ , Lemma 3.4]): A pair of trees is glued by randomly identifying their
leaves, ensuring that the final graph has high girth.

2. (Degree-Correction [ , Lemma 3.5]): The above gluing yields an irregular graph where
the identified leaf vertices have degree two. Each such vertex is identified with a particular
vertex of degree d — 1 in a degree-correcting gadget whose remaining vertices have degree
d + 1 thereby yielding a d + 1 regular graph.

We modify this proof in two ways. First, we replace the random pairing in step (1) by a more
efficient, simpler, and deterministic method. Second, in order to obtain the additional property of
expansion, we replace the degree-correcting gadget in step (2) by a high girth Ramanujan graph
[ , ]. To analyze the spectrum of the resulting graph, we must argue that its largest
nontrivial eigenvector cannot have too much mass on the interface between the trees and the
Ramanujan graph — once this is established, it is easy to analyze the contributions from the two
pieces separately. We do this by employing a lemma of N. Kahale, which supplies a way to control
the mass of eigenvectors on certain highly symmetric sets (such as our interface) by exhibiting
certain appropriate super-harmonic test functions, and by a careful construction of such a function.

Kahale’s lemma originally appeared in the influential paper [ ] which showed that a
(d + 1)-regular graph G = (V, E) with all nontrivial eigenvalues bounded by 2 Vd + 0,,(1) must have
linear expansion at least (d + 1)/2 — 0,(1), where linear expansion is defined as:

N(S)
max ———,
scvsl=yvi |S|

for a small constant y > 0 (in fact, he showed a more general inequality relating the parameters). As
we discuss in Remark 4.1, this implies that our examples cannot have |A;| < 2 Vd + 0,(1) since our
gluing procedure produces a set with significantly smaller linear vertex expansion than (d + 1)/2.
Note that it is possible to prove Theorem 1.2 with a weaker bound of 3 Vd without using Kahale’s
lemma; however, since the bound we attain is quite close to optimal and we have not seen this
technique appear in the quantum ergodicity literature, we believe it is valuable to present it.

2 Pairing trees

Our goal is to construct high girth almost-Ramanujan expanders with one or many localized
eigenvectors. The starting point of the construction is the following lemma, improving the one
from [ ] and simplifying its proof. We refer to a finite tree in which all vertices except the leaves
have degree (d + 1) and every leaf is at distance D from the root as a d-ary tree of depth D.

Lemma 2.1 (Pairing of Trees). Suppose Ty and T, are two d—ary trees of depth D, each withn = (d +1)dP~!
leaf vertices V1 and V. Then there is a bijection 1t : Vi — V such that the graph obtained from the vertex
disjoint union of T1 and T, by identifying v and m(v) for all v has girth at least

[2log,,_1(n—1)] +2 (> 2log,,_, n).



Proof. We apply a variant of the method of Erd6s and Sachs [ ], (see also [ ] for a similar
argument). Let g be the maximum possible girth of a graph obtained as above, and let 7 : V| — V;
be a bijection for which the girth is g and the number of cycles of length exactly g is minimum. Note
that g is even, as the graph is bipartite. Let G be the graph with the identified leaves obtained by 7,
and let L denote the set of all n vertices of degree 2 in it, that is, all the identified leaves. Obviously
every cycle of G must contain vertices of L. Let x € L be a vertex contained in a shortest cycle C of G.

Claim: For every k > 0 the number of vertices y € L of distance at most 2k from x is at most (24 — 1)k,

Proof of claim: Any shortest path of length precisely 2s < 2k between x and another vertex y € L
is a concatenation of some number r of paths Py, P, ..., P,, where P; is a path from x,_; to x; with
Xo,X1,...,% € L, xo = x, x, = y, and either all even paths P; are in T; and all odd ones are in T or
vice versa. Let 2k; be the length of P;, then )._, k; = s < k. Let m(r, s) denote the number of paths as
above with these values of ¥ and s. We next show that foralll <r<s

7Mnﬁzzc:1yd—nw*f )

The factor 2 is for deciding if the first path P is in Ty or in T,. The factor (ij is the number of ways
to choose the subset of (r — 1) elements {ki,ky + ko, ... k1 +ky +--- + k,—1} in the set {1,2,...,s — 1}.
(This already determines k, = s — (k; + k2 + - - - + k,_1).) Once these choices are fixed, there is only
one way for the edges numbers 1,2, ..., k; of each path P;, given the previous paths, as these edges
go up the tree. There are d — 1 possibilities for the edge number ki1 of this path, and there are d%~!
choices for the remaining edges of P;. The product of all these terms gives the expression in (5) for
m(r,s). For each fixed s, summing over all 1 < 7 < s we conclude that the number m(s) of paths of
length exactly 2s starting in x is

S s—1
m@):Ezzc:iyd—nﬂkr=Zd—Dz%C;1yd—nu*Pj=md—DQd—D*?
p

r=1

Adding the trivial path of length 0 from x to itself and summing over all s from 1 to k we conclude
that the total number of paths as above of length at most 2k starting at x is

(2d - 1)k -1

k
1+z:md—ned—n*1=1+2w—1) s

s=1

= (2d - 1.

The number above provides an upper bound for the number of vertices y € L that lie within distance
2k of x (which may be smaller as several paths may lead to the same vertex). This completes the
proof of the claim.

Returning to the proof of the lemma, define k = |log,, ,(n —1)]. Then (2d — 1)k < n and hence
there is a vertex y € L whose distance from x in G is larger than 2k (and hence at least 2k + 2). Let
u be the unique parent of x in T and let u’ be the unique parent of x in T,. Similarly, let v be
the unique parent of y in T and let v’ be the unique parent of y in T>. Change the bijection 7 to
the bijection 7’ obtained by swapping the images of x and y to get a graph G’ obtained from G
by removing the edges xu and yv and by adding the edges xv and yu. This swapping removes
the shortest cycle C of length g in G that contains x, and is not contained in G’. Every new cycle
contained in G” and not in G must include at least one of the new edges xv, yu. If it contains exactly
one of them, say xv, then it must also contain a path in G from x to v. The length of such a path is at
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least 2k + 1 (as the distance in G from x to y is at least 2k + 2) showing that in this case the length of
the new cycle is at least 2k + 2. If it contains both new edges xv and yu it must also contain either a
path in G from x to y (of length at least 2k + 2)) or a path in G from x to u (of length at least g — 1)
and a path in G from y to v (of length at least g — 1). Therefore, in this case the length of the new
cycle is either at least 2k + 2 + 2 = 2k + 4 (in fact larger) or at least 2g — 2 + 2 = 2g > g. It follows that
the only possibility to obtain a new cycle of length at most g is if g > 2k + 2. If the girth g is smaller
than G’ has girth at least g and the number of its cycles of length g is smaller than that number in G,
contradicting the choice of G. This shows that the girth g satisfies g > 2k + 2 = 2[log,, ;(n —1)] + 2,
completing the proof of the lemma. m]

Remark 2.1. For large fixed d, the above graph has girth close to 21log; N, where N is the number of
its vertices. This is strictly larger than the highest known girth of an N vertex (d + 1)-regular graph,
which is roughly 2 log; N (for some values of d). However, many of the vertices of our graph here
have degree 2, and suppressing them will not give graphs of girth larger than (1 + o(1))log, N.

3 The construction

Let d a prime and « € (0,1/6) be given. Let H = (V,E) be a (d + 1)-regular non-bipartite Ramanujan
graph with m vertices and girth larger than 2/31og,(m); by [ ] such graphs exist for infinitely
many m. Set r = |alog,(m)] and note that

2
3 log,m > 4r. (6)

Fix a vertex u of H. The induced subgraph on all vertices of distance at most r from u is a tree T;
rooted at u. Let n be the number of its leaves, let the set of leaves be L1 = {uy, .., u,,} and let V7 denote
the set of all non-leaves of T;. Take a matching from the set L; to the set of vertices L, = {vy, .., v},
all at distance exactly r + 1 from 1, and remove the matching u;v;. Note that all u; are far from each
other in the graph H — V since the girth is significantly larger than 2r. Similarly, all vertices v; are
far from each other in H — V; for the same reason. Now take another d-tree T isomorphic to T; on
new vertices, and let 1’ denote its root. Identify the leaves of T; with these of T, using Lemma 2.1.
Let V5, denote the set of all non-leaves of T>. As the vertices u; are far from each other in H — V;
the girth stays as large as guaranteed by the lemma. Finally add a third tree T3 with the same
parameters on new vertices, rooted at v/, identify its leaves with the vertices v; and let V3 denote
the set of its non-leaves. Call the resulting graph G.

The next sequence of lemmas will be needed to show that G satisfies the claims of Theorem 1.2.

Lemma 3.1. The girth of G is at least
2logy; 1 ((d + 1)d"™) (= 2alog,, ,(m) — O(1)).
Proof. Follows from the above definition, Lemma 2.1 and that % log, m > 4r. m]

We now discuss the eigenvectors of G. We begin by recording some facts about eigenvalues and
eigenvectors of rooted d—ary trees which also appear in [ ] and will be critical to our construction.
Recall that the eigenvalues of a d—ary tree are contained in the interval (=2 Vd,2 Vd) [ ’
Section 5]. For our purposes we will only consider eigenvalues corresponding to eigenvectors
which are radial, which means that they assign the same value to vertices in a given level. We will
refer to such eigenvalues as radial eigenvalues.



Lemma 3.2. (Radial Eigenvalues)[ , Lemma 3.1] For any positive integer D > 2, Ap the adjacency
matrix of Tp, a d—ary tree of depth D, has exactly D + 1 radial eigenvalues counting multiplicities.

Lemma 3.3. (Eigenvalues of d—ary Trees)[ , Lemma 3.2] The set of all radial eigenvalues of any infinite
sequence of distinct finite d—ary trees is dense in the interval (=2 Vd,2 V).

Lemma 3.4 (Eigenvectors of d—ary Trees). [ , Lemma 3.3] Assume d > 2 and let T be a d—ary tree of
depth D with root r. Let So = {r},S1,...,Sp C T be the vertices at levels 0,1, ..., D of the tree and let v be a

radial eigenvector of its adjacency matrix with eigenvalue A = 2 Vd cos 0 € (=2 Vd,2 Vd). Then every pair
of adjacent levels has approximately the same total £3 mass as the root:
l[vsl3 + llvs,,, 113

lo(r)I12

Given the above we have the following lemma about how radial tree eigenvectors can be used
to construct eigenvectors of G.

Q(sin? 0) = = O(1/ sin? 6).

Lemma 3.5. For any radial eigenvalue A of the adjacency matrix of a tree of depth r — 1, there exists an
eigenvector v supported on V1 U V3 such that

Agv = Av.

Proof. For completeness we include the arguments that essentially appear in [ , Proof of
Theorem 1.6]. Consider any such eigenvalue A and its corresponding radial eigenvector f. Now
construct the function v that equals f on the top  — 1 levels of Ty, i.e., V1 and correspondingly —f
on V3, and is zero elsewhere. We claim that v is an eigenvector of G with eigenvalue A. To see this,
note that the eigenvector equation is trivially satisfied on V; and V; because all new neighbors of
those vertices are assigned a value of 0 in v. The remaining vertices where the eigenvector equation
needs to be checked are the ones obtained by gluing L; to the leaves of T>. Now every such vertex v,
satisfies v(v) = 0 and there exists two neighbors of v, say u € Vi and w € V, with v(u) = —v(w) and
furthermore v is 0 on every remaining neighbor, clearly implying the eigenvector equation atv. O

We next show that G is nearly Ramanujan.

4 The spectrum of G

Proposition 4.1. For every fixed ¢ > 0, if m is sufficiently large then the absolute value of every nontrivial
eigenvalue of G is at most

(?’d—_1 +¢€) V.
dd -1)

Remark 4.1. For every fixed d, the number \/f;(ngl—l) is smaller than % =2.12132.. For d = 2 (cubic
graphs) the number is 5/ V6 = 2.04124... Therefore, the graph G is close to being Ramanujan.

However, for all » > 1 it is not quite Ramanujan. Indeed, it contains a set of vertices Y, namely the
set of all vertices in levels r — 1,7 — 3,r — 5, ... of the two trees T4, T, that expands by a factor of less

than (d + 1)/2. By Theorem 4.1 in [ ] such a graph must contain a nontrivial eigenvalue of
absolute value bigger than 2 Vd + 6(d, r) for some positive 6(d, r).

To prove Proposition 4.1, we need the following simple lemma about the spectrum of finite
d-ary trees.



Lemma 4.1. Let T be a finite d-ary tree, that is, a tree with a root r of degree d + 1 in which every non-leaf
has d children. Let At denote the adjacency matrix of T, let W be the set of its non-leaves and let L be the set
of its leaves. Then for any vector f supported on WU L,

fTATfl<2Vd Y f@?+ Vd ) f@?

weW veL

Proof. Orient all edges towards the root . Then

fTArfl = ) 21f)lif @)l

u—v
_ If (@) .
= Z 2t f ()] . for any choice of t > 0
u—v
1
<Y (PPw+5r0)
u—v
d+1 d
WU WL )
u€eL ueW-{r}
<2Vd Z fz(u) + \/EZfz(u) by choosing 2= Vd
ueW uelL
]
We also need the following lemma of Kahale about growth rate of eigenfunctions.
Lemma 4.2. ([ , Lemma 5.1]) Consider a graph on a vertex set U, and let A denote its adjacency

matrix. Let X be a set of vertices. Let h be a positive integer and let s be a function on U. Let X; be the set of
all vertices at distance i from X, and assume that the following conditions hold.

1. For h—1<1i,j < hall vertices in X; have the same number of neighbors in X;.
2. The function s is constant on Xj_1 and on Xj,.

3. The function s is positive and As(v) < |uls(v) for every v of distance at most h — 1 from X, where 1 is a
nonzero real.

Then for any function g on U which satisfies |Ag(u)| = |ullg(w)| for all vertices u of distance at most h — 1
from X, we have:

ZUEX;, g(v)z > ZZ}EX;,,] g(v)z

ZDEX;, S(U)Z - ZveXh_l S(U)Z .

Equipped with the above lemma we now proceed to proving Proposition 4.1.

Proof of Proposition 4.1. The adjacency matrix Ag of G is the sum Ag = Ay — Am + At, + At,, where
Ap is the adjacency matrix of H, Ay is the adjacency matrix of the matching u;v; and Ar,, Ar, are
the adjacency matrices of the trees T, and T3, respectively. It is convenient to view all the graphs
H, T, T3, M as graphs on the set of all vertices of G, whichis U = V U V, U V3. Thus all the matrices
above have rows and columns indexed by the set U, and each of the corresponding graphs has
many isolated vertices.

Putb = :z?z_dl = We have to show that every nontrivial eigenvalue u of G has absolute value at

most (b + €) Vd for any ¢ > 0 provided m is sufficiently large. Let g : U — R be an eigenvector of

8



satisfying Y,y g()? = 1. As g is orthogonal to the top eigenvector, Y. ,c;; 9(v) = 0. The total number
of vertices in V» U V3 is smaller than 21, and therefore, by Cauchy-Schwartz, |} ,cy,uv, ()] < \V2n.

It thus follows that | ¥,y 9(v)] < V2n. Considering the projection of the restriction of g to V on the
all ones vector and its complement we conclude that

d
lg" Angl < 2 \/El;/ 7(0) + % (7)

Recall that L; is the set of leaves of T, (and T7). By Lemma 4.1
|gTATZg| <2Vd Z gz(v) +Vd Z gz(v). (8)
veV, veELy

Similarly
9" Argl <2V ) g0) + VA ) (o). ©)

veV3 v€ELy

The contribution of the omitted matching can be bounded as follows

97 Amgl = 1) 29)g@)l < Y. 4(0). (10)
i=1 UELlULz
Combining (7), (8), (9), (10) we conclude that
ul=1g"Agl <2V ) F@)+(Vi+1) ) )+ W, (11)
vel uel ULy

_ , - (d+1)2n
=2Vd+(Vd+1) Z () + .

uel ULy

In order to complete the proof, it thus suffices to show that if |u| > (b + ¢) Vd, then, as m tends to
infinity, the sum Y7, r, 9*(1) tends to zero. This is done using Lemma 4.2, as described next.

1. We first bound the sum Y, ¢y, g%(1). This is simple and works even if we only assume that

|| > 2 Vd. Indeed, starting with X = {v'}, let X; be the set of vertices of distance i from X.
Define s(v) = d/? for all v € X; for 0 <i < r + t, where r + t is the largest integer smaller than
half the girth of H. It is easy to check that the conditions of Lemma 4.2 hold. Thus by its
conclusion the sum Y. cx. 9%(v) is nondecreasing in i for all i > r. Since this sum for i = ris
exactly Y ,;, 9°(v) and f tends to infinity with 7, and since the sum over all r <i < r+tis at
most 1, it follows that the sum for i = r is negligible.

2. Bounding the sum Y1, g*(u) is harder. Here we use the assumption that |u| > (b + ¢) Vd
where b = —24=L_ Define X = X = {u, u’} and let X; denote the set of all vertices of G of

Vi
distance exactly i from X. Put ¢ = m and note that c + 1/c = b. Define a sequence
of reals so, 51,52, ... as follows. For0<i<r,s; =cd /2 Fori=r+1,5s41 = 1d"*D/2 and
foralli > 1, 5,414 = ad"*1*9/2 where the numbers «; are defined by setting ap = ¢'~! and

a;jf/ai—1 =x;fori>1withx; =1/c= +/d/(2d — 1) and fori > 1,

. 1
Xiy1 = min{b+ ¢ — —,c}.
i
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Using the sequence s; define a function s on the vertices in the union U;<,;X;, where r + t is
smaller than half the girth of H, by putting s(v) = s; for all v € X;. We proceed to show that for
every vertex v € Uj,4+X;,

As(v) < |uls(v). (12)

For v € X = Xj this is equivalent to

%(d +1) < Jul

which is certainly true as
1 c
ul > bVd = (c+ =) Vd > —(d +1).
¢ Y

For v € X; with 1 <i <7 — 1 the required inequality is

i \/— — l
which follows from the fact that 1/c + ¢ = b < b + ¢. For v € X, the inequality is

2Vd  d-1s;

—si+ ——=— < |ulsi.

c \/EC_

For this it suffices to check that i1
c dc
which holds as the left hand side is equal to b. For v € X, it suffices to check that

\/ESHl
X1

<b+c¢

+ Vs, < |lsra

which holds as x, < b+ ¢ — 1/x by its definition. Finally, for v € X,,14;,7 > 1 the required
inequality is equivalent to Vdai_1 + Vdaiq < < |ulaj, that is , \/E L 4 Vdxi;1 < b+ ¢) Vd
which again holds by the definition of x;;;. This completes the proof of (12). Next we
observe that x; = 1/c > 1/ V2, that xj.1 > x; for all i, and that if x; < ¢ — ¢ then xj41 > x; + €.
Indeed x1 = /d/(2d — 1) > 1/ V2, and xi41 < c for all i by the definition of x;,1. The function
g(x) = b—1/x is increasing and concave in the interval [1/c, c] and as g(x) = x at the endpoints
of the interval, g(x) > x for all x in the interval implying that x;,; = min{g(x;) + ¢, ¢} > x; for all
€[1/c,c] and that x4 > x; + €if x; < c —e.
By the above discussion it follows that x; is at least ¢ > v/3/2 for all i > 1/¢ implying that
the sequence IX]'ISJZ. is increasing exponentially for j > r + 1/¢. Between levels rand r + 1/¢

the terms of this sequence decrease by a factor larger than 1/c in each step, and it therefore
follows that the term number 7 of this sequence is negligible compared to any term number
r + w(1). This together with Lemma 4.2 completes the proof.

Using the above ingredients we now verify all the claims in Theorem 1.2.
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Proof of Theorem 1.2. By the construction with described in Section 3, there exists a graph G = (V,E)
with the following properties (with r = |« log ;(m)]):

L |V|=M:m+2nwheren:%:dr(l.p()(%))‘

2. By Lemma 3.1, and the choice of r, we have
girth(G) > 2log,, ,((d + 1)d"™!) > log,; ,(d") > 2alog,, ,(m) = 2alog,(m) - (1 — O(log™(d))).
Thus the second claim in the theorem is verified by observing that M = m + O(m*®).

3. By Proposition 4.1,
(Al < (3/ V2) Vd

for all nontrivial eigenvalues i # 1 of the adjacency matrix Ap.
4. The third claim follows by Lemmas 3.2, 3.3, and 3.5, and noticing that |V, UV>| = O(d") = O(m*).

The final claim in the statement of the theorem is an easy consequence of Lemma 3.3 which states

that the set of finite d—ary tree eigenvalues is a dense subset of (=2 Vd, 2 Vd). Furthermore, Remark
1.1 follows by choosing S to be the top | 7] levels of T;. m|

We conclude by explaining how to modify the construction to produce many localized eigen-
vectors.

Proof of Theorem 1.3. The proof follows from the observation that in the construction described in
Section 3, one can glue several trees to H ‘far away’ from each other to maintain high girth and
every other property mentioned in Theorem 1.2. More precisely, in the construction in Section 3,
instead of considering a tree T; rooted at u, consider trees Tgl), Tiz), .., T(lk)
and repeat the construction k times with the corresponding trees

rooted at uy, up, ..., ux

) ® e ®
(T, 12,..., 19 and (1, TP, ..., T¥)

rooted at {ui, U, ... ul’(} and {v1, vy, ..., v} respectively. The same arguments as before imply that
the girth condition in Theorem 1.2 is satisfied as long as the graph distance in H between any u;
and u; is at least 4r. Lemma 4.3 below shows that one can take k to be as large as m!'~4 where
r = lalog,(m)]. Finally the proof of Proposition 4.1 in this case follows in exactly the same way after
defining the set X to be {v1, vy, ..., v} and {uy, uy, up, us, . .. u, ul’{} in 1. and 2. respectively instead
of {v} and {u, u'}. O
m(d-1)
(d+1)ak

Lemma 4.3. Given any d + 1-regular graph G = (V, E) of size m, and any k, there are at least vertices

in V, all of whose mutual distances are at least k.

Proof. Consider a maximal set S of such vertices. Simple considerations imply that every other
vertex in V must be at distance at most k from the set S. Now the total number of such vertices is at
most |S|(d + 1)d*/(d — 1) which finishes the proof. O
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