
Limitations of Post-Hoc Feature Alignment for Robustness

Collin Burns

UC Berkeley

Jacob Steinhardt

UC Berkeley

Abstract

Feature alignment is an approach to improving robust-

ness to distribution shift that matches the distribution of

feature activations between the training distribution and test

distribution. A particularly simple but effective approach to

feature alignment involves aligning the batch normalization

statistics between the two distributions in a trained neural

network. This technique has received renewed interest lately

because of its impressive performance on robustness bench-

marks. However, when and why this method works is not

well understood. We investigate the approach in more de-

tail and identify several limitations. We show that it only

significantly helps with a narrow set of distribution shifts

and we identify several settings in which it even degrades

performance. We also explain why these limitations arise by

pinpointing why this approach can be so effective in the first

place. Our findings call into question the utility of this ap-

proach and Unsupervised Domain Adaptation more broadly

for improving robustness in practice.

1. Introduction

A foundational assumption made in most of machine

learning is that the training distribution is identical to the test

distribution. However, this assumption is commonly violated

in practice, which can substantially decrease the performance

of models [11, 25]. This can be especially problematic in

high-stakes applications such as autonomous vehicles. One

way of improving robustness is to exploit unlabeled test data

to adapt the model to the new distribution. This process is

called Unsupervised Domain Adaptation (UDA) [35].

A common approach in UDA, known as feature align-

ment or domain alignment, is to align the feature acti-

vations between the source and target distributions [5–

8, 14, 18, 21, 27, 30, 33, 35]. Feature alignment has also

been applied beyond UDA in domains such as causal infer-

ence [16, 29]. Simple forms of feature alignment normalize

the features of a trained model so that the training set and

test set have the same first and second order statistics in

some feature space [20, 33], while other approaches match

distributions in more complicated ways, such as by being

indistinguishable to an adversarial discriminator [8, 21].

We focus on one simple feature alignment method: Adap-

tive Batch Normalization (AdaBN) [20]. Like many other

popular and effective feature alignment methods (e.g. Car-

iucci et al. [5], Roy et al. [27], Sun and Saenko [32], Sun

et al. [33], Wang et al. [36]), AdaBN is normalization-based,

meaning it matches first and second order statistics between

the two feature distributions. It is also a post-hoc method,

meaning it aligns features for a model that has already been

trained, making it particularly simple and applicable even for

unforseen distribution shifts. Given a neural network trained

on source data with Batch Normalization (BN) [15], AdaBN

re-estimates the BN statistics of that model using the target

data. In other words, AdaBN aligns the mean and variance

of each channel in the network across the two distributions.

Despite its simplicity, in recent work Nado et al. [22],

Schneider et al. [28] showed that aligning batch norm statis-

tics between the train and test distributions can be used to

achieve state-of-the-art accuracy on the robustness bench-

mark ImageNet-C [11]. Schneider et al. [28] argues that

we should therefore start using normalization-based feature

alignment methods whenever we evaluate robustness. Nado

et al. [22] additionally finds that aligning BN statistics does

not help as much for some other types of distribution shift.

However, neither paper describes why this method works

well on ImageNet-C or why it does not help as much with

other types of distribution shift.

We build on this work by investigating when and why

methods like AdaBN help. Our findings include:

• Showing that aligning BN statistics can actually de-

grade accuracy on several types of distribution shift,

both conceptually and in practice.

• Identifying implicit symmetry assumptions made by

these methods and showing how violations of these

assumptions can cause performance degradation.

• Demonstrating and explaining how aligning BN statis-

tics primarily helps with distribution shifts that involve

changes in local image statistics.

1

a
rX

iv
:2

1
0
3
.0

5
8
9
8
v
1

[c

s.
C

V
]

 1
0
 M

a
r

2
0
2
1

Our findings have several implications. While aligning

BN statistics is an effective method for improving robustness

in some settings, it only significantly helps on a narrow set of

distribution shifts and can even degrade performance. These

limitations may prevent it from being useful in practical ap-

plications. Furthermore, we find that existing justifications

of feature alignment are inadequate for explaining when

and why these methods work. Future work on UDA should

explicitly identify the properties of data distributions and

neural networks that these methods rely on in practice. Fi-

nally, some of our findings apply to UDA more broadly,

calling into question whether UDA is a strong approach to

improving the robustness of machine learning systems in the

first place. More work is therefore needed to make UDA

practical for improving robustness.

2. Related Work

We focus on feature alignment methods that work by

aligning the Batch Normalization statistics between the

source and target distributions for a trained neural network.

In this section, we describe how this relates to other feature

alignment methods, and we describe why existing justifica-

tions for feature alignment do not adequately explain their

practical success.

Feature Alignment Methods. Several UDA methods

closely resemble AdaBN by similarly aligning normaliza-

tion statistics of trained models. Sun et al. [33] whiten and

re-color the target distribution to match the mean and covari-

ance of the source distribution in the input. Sun and Saenko

[32] extend this by matching the mean and covariance in a

neural network layer, rather than in the input. Because these

are post-hoc methods based on normalization like AdaBN,

our findings directly apply to them as well.

Some UDA methods are normalization-based but require

modifying the training of neural networks as well. Cariucci

et al. [5] modify AdaBN by learning a linear combination

of source and target Batch Normalization statistics. Wang

et al. [36] introduce a new layer for UDA that uses domain-

specific Batch Normalization statistics and that automatically

adapts to the transferability of different channels. Some, but

not all, of our findings apply to these methods as well.

In a related vein, adversarial alignment methods such as

Ganin et al. [8], Long et al. [21] learn feature representations

for which a discriminator cannot distinguish source and tar-

get data. Unlike the normalization-based approaches that

we focus on in this work, adversarial methods aim to learn

feature representations that are completely indistinguishable

instead of only matching first and second order statistics,

and again modify the training of networks, which can be ex-

pensive. These methods can improve performance, but they

are also much less efficient than post-hoc feature alignment

methods.

Justifications of Feature Alignment are Inadequate.

Many papers that introduce feature alignment methods in-

tuitively suggest that matching feature distributions makes

the features more domain-invariant and consequently miti-

gates the effects of distribution shift [5, 7, 32, 33]. However,

aligning the features between two distributions is not suffi-

cient for good test performance in general because aligning

the marginal distributions pS(x) and pT (x) in some fea-

ture space may not align the class-conditional distributions

pS(x|y) and pT (x|y) [17, 39].

Some papers (e.g. Ganin et al. [8], Long et al. [21])

motivate aligning feature distributions by referring to Ben-

David et al. [3], which introduces generalization bounds for

UDA. For a given hypothesis class H and feature space, these

bounds guarantee good test performance as long as (i) the

two distributions are “indistinguishable” with respect to H,

and (ii) there is a hypothesis h ∈ H that simultaneously does

well on both distributions. However, Johansson et al. [17],

Zhao et al. [39] recently described problems with this theory,

and in Appendix C.1 we argue that these generalization

bounds are probably vacuous in practice. In contrast to this

work, we focus on empirically understanding when and why

aligning BN statistics works in practice.

Several impossibility theorems show that successful UDA

requires strong assumptions on the source and target distribu-

tions [2, 4]. Nevertheless, many feature alignment methods

are effective in practice. This raises the question: What

properties of distribution shifts and neural networks does

feature alignment exploit to improve robustness? We answer

this question for AdaBN in the process of investigating its

limitations.

3. Failure Modes of AdaBN

In this section, we characterize when normalization-based

methods hurt accuracy. Prior work showed that feature

alignment can degrade performance under label shift, i.e.

pS(y) 6= pT (y) [17, 26, 39]. We extend these earlier obser-

vations by showing that label shift also has a more severe

impact on deep layers than on shallow layers.

We then construct two additional failure modes that can

occur even when the label distribution doesn’t change, i.e.

pS(y) = pT (y), and even under the covariate shift assump-

tion, i.e. when pS(y|x) = pT (y|x). In particular, we show

that normalization-based alignment methods can fail when

either different examples or spatial locations are shifted in

qualitatively different ways, and we show that both types of

shift can arise in practice. This suggests that these methods

would be unreliable in safety-critical applications involving

unforeseen distribution shifts.

For each of the three failure modes we exhibit, we first

provide a simple conceptual example of why the failure

mode is possible, then demonstrate the failure on real data.

2

4.3. When Does AdaBN Help the Most?

Geirhos et al. [9] argue that most ImageNet classifiers

are overly reliant on the texture and style of images. This

finding implies that most hidden layers in modern ImageNet

classifiers capture low-level features such as texture or style

more than they capture high-level features such as shape.

Furthermore, AdaBN improves robustness by tweaking the

activations of a trained network. This suggests that it is

mostly “fixing” changes in style, since those are what activa-

tions mainly capture in the first place. Indeed, more abstract

shifts in the distribution might not even register in the activa-

tions of the model because it was not trained to detect those

sorts of features.

Relatedly, Li et al. [19] draw a connection between style

transfer methods and domain adaptation. They show that

simply aligning the Batch Normalization statistics between

two images can be used as an effective method for style

transfer. Similarly, AdaBN aligns the Batch Normalization

statistics between two distributions. This suggests that we

can also interpret AdaBN as doing style transfer between

two distributions, mapping the style of the shifted target

distribution back to that of the original source distribution.

These perspectives predict that AdaBN should improve

accuracy the most on distribution shifts involving changes in

style and local image statistics, at least for current models,

but should not substantially change performance on distri-

bution shifts that involve more high-level, abstract changes.

These predictions are supported by the observation that Ad-

aBN improves accuracy much more on ImageNet-C and

Stylized ImageNet than ImageNetV2. Table 1 shows that

AdaBN yields a relative accuracy improvement of 23% for

ImageNet-C and 43% for Stylized ImageNet, shifts that al-

most exclusively involve changes in the style or texture of

images, whereas it slightly degrades performance on Im-

ageNetV2, a recollected version of ImageNet that should

not have major differences in local image statistics. This

observation is further supported by the results in Schneider

et al. [28], which show that aligning BN statistics also does

not help much with ImageNet-A [12] or ObjectNet [1], two

other distribution shift benchmarks that, like ImageNetV2,

do not primarily involve changes in local image statistics.

These findings provide evidence for the idea that AdaBN

improves robustness because it performs a sort of neural

style transfer between the source and target distributions.

While this makes AdaBN particularly well suited for some

types of shift, such as ImageNet-C and Stylized ImageNet, it

also suggests that the lackluster performance of the method

on other types of distribution shifts is an inherent limitation

rather than one that can be easily fixed.

5. Conclusion

Unforeseen Distribution Shifts. Making systems robust

under distribution shift is important for a wide range of ap-

plications [11]. UDA is considered a promising approach

to this problem, but our results show that it must be used

with care. For applications like self-driving cars, UDA meth-

ods should work even when applied to general, unforeseen

distribution shifts. However, we find that aligning batch

normalization statistics may actually degrade robustness on

shifts that can arise in practice. These limitations call into

question the practical utility of aligning batch normaliza-

tion statistics to improve robustness, especially for use in

high-stakes applications.

Learning Representations. We also find that AdaBN dis-

proportionately improves robustness on distribution shifts

that mainly involve changes in local image statistics, such

as changes in style or texture. It cannot help as much on

distribution shifts involving changes in higher-level features

because it only tweaks the activations of a trained network,

which may not capture information about the high-level fea-

tures that changed. This limitation suggests that to improve

robustness for more general distribution shifts, it may be

necessary to focus on learning robust representations rather

than on modifying the activations of trained networks.

On the other hand, UDA methods that require additional

training typically do so at test time. This is too slow for

applications such as autonomous vehicles for which it is

necessary to make predictions efficiently. These drawbacks

may make typical UDA methods a less promising approach

to improving model robustness than other techniques that

train models to have broadly robust feature representations,

such as architectural changes [23] or data augmentation [13].

Future Work. To the best of our knowledge, there has

been limited work on investigating how distribution shifts

affect low-level network activations in a fine-grained way.

Building on our work by analyzing these effects in more

detail may yield additional insights into distribution shifts

and the learned feature representations, and may help us

develop better methods for improving robustness.

Furthermore, while there are theoretical justifications of

feature alignment, they do not adequately explain when or

why these methods work well in practice (Section 2). We

conceptually and empirically addressed this in detail in the

case of AdaBN, a particularly simple but effective method.

Future work should more carefully identify when and why

other methods for robustness are effective in practice.

Finally, we identified numerous drawbacks of current

approaches to UDA. Future work should address these short-

comings to make these methods more useful and reliable for

important applications.

8

Acknowledgements. We thank Dan Hendrycks and the

anonymous reviewers for valuable feedback on earlier ver-

sions of this paper.

References

[1] A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfre-

und, J. Tenenbaum, and B. Katz. Objectnet: A large-scale

bias-controlled dataset for pushing the limits of object recog-

nition models. In NeurIPS, 2019. 8

[2] S. Ben-David and R. Urner. On the hardness of domain

adaptation and the utility of unlabeled target samples. In ALT,

2012. 2

[3] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira,

and J. W. Vaughan. A theory of learning from different do-

mains. In Machine learning, 2010. 2, 11

[4] S. Ben-David, T. Lu, T. Luu, and D. Pál. Impossibility theo-

rems for domain adaptation. In AISTATS, 2010. 2, 10

[5] F. M. Cariucci, L. Porzi, B. Caputo, E. Ricci, and S. R. Bulo.

Autodial: Automatic domain alignment layers. In ICCV, 2017.

1, 2

[6] Z. Deng, Y. Luo, and J. Zhu. Cluster alignment with a teacher

for unsupervised domain adaptation. In ICCV, 2019.

[7] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation

by backpropagation. In ICML, 2015. 2

[8] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,

F. Laviolette, M. Marchand, and V. Lempitsky. Domain-

adversarial training of neural networks. JMLR, 2016. 1, 2

[9] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wich-

mann, and W. Brendel. Imagenet-trained cnns are biased

towards texture; increasing shape bias improves accuracy and

robustness. In ICLR, 2019. 3, 8

[10] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibra-

tion of modern neural networks. In ICML, 2017. 10

[11] D. Hendrycks and T. Dietterich. Benchmarking neural net-

work robustness to common corruptions and perturbations. In

ICLR, 2019. 1, 3, 8, 10

[12] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and

D. Song. Natural adversarial examples. arXiv preprint

arXiv:1907.07174, 2019. 8

[13] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and

B. Lakshminarayanan. Augmix: A simple data processing

method to improve robustness and uncertainty. In ICLR, 2020.

8

[14] H. Huang, Q. Huang, and P. Krahenbuhl. Domain transfer

through deep activation matching. In ECCV, 2018. 1

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 1

[16] F. Johansson, U. Shalit, and D. Sontag. Learning representa-

tions for counterfactual inference. In ICML, 2016. 1

[17] F. D. Johansson, R. Ranganath, and D. Sontag. Support and

invertibility in domain-invariant representations. In AISTATS,

2019. 2, 3, 11

[18] A. Kumar, P. Sattigeri, K. Wadhawan, L. Karlinsky, R. Feris,

B. Freeman, and G. Wornell. Co-regularized alignment for

unsupervised domain adaptation. In NeurIPS, 2018. 1

[19] Y. Li, N. Wang, J. Liu, and X. Hou. Demystifying neural

style transfer. In IJCAI, 2017. 8

[20] Y. Li, N. Wang, J. Shi, X. Hou, and J. Liu. Adaptive batch

normalization for practical domain adaptation. Pattern Recog-

nition, 2018. 1

[21] M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional

adversarial domain adaptation. In NeurIPS, 2018. 1, 2

[22] Z. Nado, S. Padhy, D. Sculley, A. D’Amour, B. Lakshmi-

narayanan, and J. Snoek. Evaluating prediction-time batch

normalization for robustness under covariate shift. arXiv

preprint arXiv:2006.10963, 2020. 1, 7

[23] X. Pan, P. Luo, J. Shi, and X. Tang. Two at once: Enhancing

learning and generalization capacities via ibn-net. In ECCV,

2018. 8

[24] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. In NIPS-W, 2017. 3

[25] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do ima-

genet classifiers generalize to imagenet? In ICML, 2019. 1,

3

[26] I. Redko, N. Courty, R. Flamary, and D. Tuia. Optimal trans-

port for multi-source domain adaptation under target shift. In

AISTATS, 2019. 2, 3

[27] S. Roy, A. Siarohin, E. Sangineto, S. R. Bulo, N. Sebe, and

E. Ricci. Unsupervised domain adaptation using feature-

whitening and consensus loss. In CVPR, 2019. 1

[28] S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel,

and M. Bethge. Improving robustness against common cor-

ruptions by covariate shift adaptation. In NeurIPS, 2020. 1,

7, 8

[29] U. Shalit, F. D. Johansson, and D. Sontag. Estimating individ-

ual treatment effect: generalization bounds and algorithms.

In ICML, 2017. 1

[30] R. Shu, H. H. Bui, H. Narui, and S. Ermon. A dirt-t approach

to unsupervised domain adaptation. In ICLR, 2018. 1

[31] J. Snoek, Y. Ovadia, E. Fertig, B. Lakshminarayanan,

S. Nowozin, D. Sculley, J. Dillon, J. Ren, and Z. Nado. Can

you trust your model’s uncertainty? evaluating predictive

uncertainty under dataset shift. In NeurIPS, 2019. 10

[32] B. Sun and K. Saenko. Deep coral: Correlation alignment for

deep domain adaptation. In ECCV, 2016. 1, 2

[33] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy

domain adaptation. In AAAI, 2016. 1, 2

[34] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normal-

ization: The missing ingredient for fast stylization. arXiv

preprint arXiv:1607.08022, 2016. 10

[35] M. Wang and W. Deng. Deep visual domain adaptation: A

survey. Neurocomputing, 2018. 1

[36] X. Wang, Y. Jin, M. Long, J. Wang, and M. I. Jordan. Trans-

ferable normalization: Towards improving transferability of

deep neural networks. In NeurIPS, 2019. 1, 2

[37] Y. Wu and K. He. Group normalization. In ECCV, 2018. 10

[38] S. Zagoruyko and N. Komodakis. Wide residual networks. In

BMVC, 2016. 3

[39] H. Zhao, R. T. d. Combes, K. Zhang, and G. J. Gordon. On

learning invariant representation for domain adaptation. In

ICML, 2019. 2, 3, 11

9

A. Additional Experimental Results

A.1. Uncertainty

Recent work has found that models become increasingly

less calibrated under distribution shift [31]. Motivated by

this problem, we also test whether AdaBN helps with cali-

bration error on the target distribution. We use a simple and

popular measure of calibration: the Expected Calibration

Error (ECE) [10]. In Table 4 we show the ECE for AdaBN

on each dataset. We find that AdaBN substantially reduces

calibration error on the corruption benchmarks and Stylized

ImageNet, even cutting it in half in most cases.

Table 4: Expected Calibration Error (ECE) of AdaBN and

variants on each shifted dataset. AdaBN substantially re-

duces the ECE on the corruption datasets [11] and Stylized

ImageNet.

METHOD C-10-C TIN-C IN-C INV2 SIN

ORIGINAL 21.5 25.0 12.0 10.6 30.9

ADABN 11.3 15.2 5.2 10.3 12.9

ADABN + AUG 11.7 16.9 6.0 10.9 14.4

A.2. AdaBN on subsets of classes

We now provide additional results showing that applying

AdaBN to subsets of classes can hurt accuracy, but that this

is mitigated when one does not update the Batch Norm statis-

tics in some of the final layers. In Figure 7 we show the same

experiment as in Section 4.1, but this time for TinyImageNet

and TinyImageNet-C. The results are qualitatively similar

to those for CIFAR-10-C, though the difference between

excluding the first layers vs the last layers is less dramatic

for TinyImageNet-C.

A.3. The importance of batch information

A natural question is whether one can adapt feature align-

ment methods like AdaBN to a more restricted robustness

setting where we do not have access to more than a single

example at test time. A simple approach is to use normal-

ization methods other than Batch Norm to align the fea-

ture distributions, but which do not use batch information.

Two such methods are Group Norm [37] and Instance Norm

[34]. Group Norm [37] normalizes over spatial locations and

groups of multiple channels within a given layer. Instance

Normalization (IN) [34] was introduced for faster styliza-

tion. It normalizes over spatial locations over each channel

separately, but unlike Group Norm and Batch Norm does not

typically include learned affine parameters. We compared

models trained using these different normalization schemes

on CIFAR-10-C and TinyImageNet-C, along with the corre-

sponding uncorrupted validation sets, and show the results

in Table 5. In each case, we use the same architecture and

hyperparameters as before, with the only difference being

which normalization layer is used. For Group Norm, we test

different numbers of groups ranging from 1 to 16, and for

Instance Norm we test both with and without learned affine

parameters.

We find that the default robustness of the Batch Norm

model was much lower on CIFAR-10-C than the default

Instance Norm and Group norm models. However, after

applying AdaBN to the Batch Norm model, its robustness

ended up being higher than the other normalization meth-

ods, especially with the augmented version of AdaBN. The

results for TinyImageNet are more difficult to interpret be-

cause the validation accuracy for Group Norm and especially

Instance Norm are worse than for Batch Norm. Still, these

results suggest that batch information can be important for

improving robustness.

Table 5: Comparing normalization methods on standard

robustness benchmarks. Group Norm and Instance Norm

both do worse than Batch Norm under distribution shift, even

when the standard test accuracy is comparable.

METHOD C-10 C-10-C TIN TIN-C

ORIGINAL MODEL 94.82 72.31 63.80 24.77

ADABN 92.84 83.63 60.32 40.11

ADABN + AUG 94.84 86.78 64.05 41.80

IN (NO AFFINE) 92.68 81.52 29.54 11.04

IN (AFFINE) 93.51 81.43 45.32 17.04

GN (1 GROUP) 92.53 76.76 56.45 22.14

GN (4 GROUPS) 93.32 78.15 59.34 23.18

GN (16 GROUPS) 93.85 81.68 58.11 22.91

B. Further Discussion

Covariate Shift Researchers have attempted to identify

assumptions that are sufficient for successful unsupervised

domain adaptation. One assumption that has been considered

is covariate shift, i.e. pS(y|x) = pT (y|x). Ben-David et al.

[4] showed that covariate shift is not sufficient for UDA,

even when paired with either (i) the assumption that pS(x) ≈
pT (x) or (ii) the assumption that there is a classifier in the

hypothesis class with low error on both domains.

The failures we present can occur even under the covariate

shift assumption and even assuming there is no label shift

(also known as prior shift or target shift). For shifted spatial

locations, this is immediately true because we just made

x2 = 0, when x2 didn’t depend on the label in the first

place. These two assumptions can also hold for the shifted

10

examples failure; in the simplest case, this is is true when

p(y = −1) = 1.

The covariate shift assumption is less clear with our fail-

ure modes on real data. Nevertheless, it should at least

approximately hold in these cases, and can be modified to

exactly hold. In particular, while both real shifts (black

border and data augmentation) can cut out some relevant

features, they rarely change the ground truth label.

C. Theoretical results

C.1. Target error bounds can be uninformative

Denote the target and source classification errors by εT (h)
and εS(h) respectively, and denote the optimal joint error

by λ := minh∈H εT (h) + εS(h). Ben-David et al. [3] show

that for any h ∈ H,

εT (h) ≤ εS(h) + λ+ |εT (h, h∗)− εS(h, h
∗)| , (3)

where εS(h, h
∗) = Prx∼DS

[h(x) 6= h∗(x)] and

εT (h, h
∗) = Prx∼DT

[h(x) 6= h∗(x)]. Ben-David et al.

[3] also upper bound |εT (h, h∗) − εS(h, h
∗)| in terms of a

distance dH∆H(DS , DT) between DS and DT ,

dH∆H(DS , DT) = sup
h∈H

|εT (h, h∗)− εS(h, h
∗)| . (4)

Many methods aim to minimize εS(h) and

dH∆H(DS , DT). In practice λ is an unknown quan-

tity that depends on the true target labeling function, so most

feature alignment methods ignore it. However, this makes it

unclear whether this bound provides much of a guarantee

even for methods that were directly inspired by it.

We now show that even if one does make λ small, such

as by using a flexible class H of neural networks, then the

bound proved by Ben-David et al. [3] can be uninformative

for a different reason. In particular, when λ = 0 the bound

is equivalent to the triangle inequality. Specifically, when

λ = 0, this means that εT (h, h
∗) = εT (h) and εS(h, h

∗) =
εS(h). Hence, the bound in Equation (3) reduces to

εT (h) ≤ εS(h) + |εT (h)− εS(h)| , (5)

which is always true. Upper bounding this in terms of

dH∆H(DS , DT) is then equivalent to:

εT (h) ≤ εS(h) + sup
h∈H

|εT (h)− εS(h)| , (6)

which is still uninformative.

Other generalization bounds have been proven, such as

by Johansson et al. [17], Zhao et al. [39], but these also

don’t explain why aligning the feature distributions helps in

practice. Zhao et al. [39] essentially replace λ with a term

that captures the difference between the true source and tar-

get labeling functions. Johansson et al. [17] prove a bound

based on the support of the source and target distributions

that explicitly accounts for the non-invertibility of the fea-

ture representation. However, both bounds still include an

unobservable quantity that feature alignment methods ignore.

Neither paper explains why these unobservable terms should

be small in practice for such methods.

C.2. AdaBN for approximately affine shifts

We saw that AdaBN exactly removes shifts that are char-

acterized by a particular type of affine transformation. We

now bound how well it removes a shift that is only approxi-

mately characterized by such a transformation. For simplic-

ity we focus on the one dimensional setting.

Theorem C.1. Suppose DS is some source distribution. De-

fine DT by sampling x ∼ DS and letting x̃ = ax + b + ε,
where a > 0 and b are constant, and ε is an arbitrary

zero-mean random variable. Let µ̂ and σ̂2 be the mean and

variance of x̃. Define x̂ = (x̃− µ̂) · (σ/σ̂)+µ, where µ and

σ are the mean and standard deviation of x. Assume |ε| ≤ r
and define δ = 1

aσ

√

2ar|x|+ r2. If δ < 1, then:

|x̂− x| ≤ 2|x|δ + r

a
(1 + 2δ) (7)

Moreover, if we additionally assume that E[εx] = 0 (ε and x
are uncorrelated), then Equation (7) holds for δ = r

aσ
.

Proof. Assume without loss of generality that µ = 0. Then

we can easily estimate and subtract E[x̃] = b, so we may

also assume that b = 0. Hence, x̃ = ax+ ε has mean zero,

so

σ̂2 = E[x̃2] = a2σ2 + 2aE[xε] + E[ε2] (8)

By assumption, |ε| ≤ r, so |E[xε]| ≤ r|x|. Hence:

a2σ2 − 2ar|x| ≤ σ̂2 ≤ a2σ2 + 2ar|x|+ r2 (9)

This implies:

|x̂− x| = |(ax+ ε) · σ
σ̂
− x| = |x(aσ

σ̂
− 1) + ε

σ

σ̂
| (10)

≤ |x||aσ/σ̂ − 1|+ r|σ/σ̂| (11)

But by eq. (9), we have:

σ̂/aσ ∈
√

1± 1

a2σ2
(2ar|x|+ r2) (12)

Let δ := 1

a2σ2 (2ar|x| + r2). By assumption, δ ∈ [0, 1).

Hence, 1 −
√
δ ≤

√
1− δ and

√
1 + δ ≤ 1 +

√
δ. This

implies

σ̂/aσ ∈ 1±
√
δ (13)

Finally, using that for z ∈ [0, 1], 1

1+z
≥ 1− z and 1

1−z
≤

1 + 2z, this implies

aσ/σ̂ ∈ 1± 2
√
δ (14)

11

Combining this with eq. (11) yields

|x̂− x| ≤ 2|x|
√
δ +

r

a
(1 + 2

√
δ) (15)

Replacing
√
δ with δ yields the desired result. When x and ε

are uncorrelated, the 2arx term becomes zero and everything

else remains the same, so this term just disappears from

δ.

The theorem bounds the difference between a shifted but

normalized input x̂ and the original unshifted input x. The

bound suggests two things. First, r

a
should be small. In

other words, the scale of the error, r, should not be too large

relative to the magnitude of rescaling, a, since otherwise

the error terms will dominate the “signal” after rescaling.

Moreover, it precisely describes in what sense the errors ε
should be well-behaved. The bound becomes tighter when

both ε and x are decorrelated, and when the scale of ε is

small.

12

