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Abstract

An (n, d, λ)-graph is a d regular graph on n vertices in which the absolute value of

any nontrivial eigenvalue is at most λ. For any constant d ≥ 3, ε > 0 and all sufficiently

large n we show that there is a deterministic poly(n) time algorithm that outputs an

(n, d, λ)-graph (on exactly n vertices) with λ ≤ 2
√
d− 1+ε. For any d = p+2 with p ≡

1 mod 4 prime and all sufficiently large n, we describe a strongly explicit construction

of an (n, d, λ)-graph (on exactly n vertices) with λ ≤
√

2(d− 1) +
√
d− 2 + o(1)(<

(1 +
√

2)
√
d− 1 + o(1)), with the o(1) term tending to 0 as n tends to infinity. For

every ε > 0, d > d0(ε) and n > n0(d, ε) we present a strongly explicit construction

of an (m, d, λ)-graph with λ < (2 + ε)
√
d and m = n + o(n). All constructions are

obtained by starting with known ones of Ramanujan or nearly Ramanujan graphs,

modifying or packing them in an appropriate way. The spectral analysis relies on the

delocalization of eigenvectors of regular graphs in cycle-free neighborhoods.

1 Introduction

An (n, d, λ)-graph is a d-regular graph on n vertices in which the absolute value of every

nontrivial eigenvalue is at most λ. This notation was introduced by the author in the

early 90s motivated by the fact that such graphs in which λ is much smaller than d exhibit

strong expansion and quasi-random properties, see [1], [2], [14].

It is well known (see [1], [22], [9]) that if an (n, d, λ)-graph exists then λ ≥ 2
√
d− 1−

O(1/ log2 n). An (n, d, λ)-graph is called (two-sided) Ramanujan if λ ≤ 2
√
d− 1.

Lubotzky, Phillips and Sarnak [16], and independently Margulis [17] proved that for

every prime p which is 1 modulo 4 there are infinite families of d-regular Ramanujan

graphs. Friedman [10] (see also [6] for a simpler proof) proved the existence of near
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Ramanujan graphs of every degree and every (large) admissible size. Indeed, establishing

a conjecture of the present author he proved that a random d-regular graph on n vertices

is, with high probability, an (n, d, λ)-graph for λ = 2
√
d− 1 + o(1), where the o(1)-term

tends to zero as n tends to infinity.

For applications, however, (see, e.g., [12] and its references for many of those) it is

desirable to have explicit constructions of such graphs. It is also sometime desirable to have

explicit constructions with specified degrees and number of vertices, (see, for example, [21]

for a recent example). A construction is called explicit if there is a deterministic polynomial

time algorithm that, given n and d, produces an (n, d, λ)-graph (or an (n(1 + o(1)), d, λ)-

graph). It is strongly explicit if the adjacency list of any given vertex can be produced

in time polylog(n). The construction of [16], and that of [17] are strongly explicit 1,

providing Cayley graphs of SL(2, Fq), but work only for degrees that are p+ 1 for primes

p ≡ 1 mod 4 and for numbers of vertices that are of the form q(q2 − 1)/2 for primes q

which are 1 modulo 4 so that p is a quadratic residue modulo p. Morgenstern [19] gave

a strongly explicit construction for every degree which is a prime power plus 1, but the

possible numbers of vertices obtained are sparser. An observation in [7] provides strongly

explicit families of (n, d, λ)-graphs with λ ≤ O(d0.525) for infinitely many values of n (but

not for every n). Similarly, the method in [23] and its improvement in [5] provide strongly

explicit families with λ ≤ O(d1/2+o(1)) (for infinitely many, but not for all n). The results

of [20] together with those of [8] and an observation of Srivastava (cf. [18]) give explicit,

but not strongly explicit (n, d, λ)-graphs for all admissible d and n with λ ≤ 4
√
d− 1. In a

recent work of Mohanty, O’Donnell and Paredes [18] the authors describe an explicit (but

not strongly explicit) construction of (n, d, λ)-graphs for every d, where λ = 2
√
d− 1+o(1)

and the o(1)-term tends to 0 as n tends to infinity. This, again, works for infinitely many

values of n, but not for all n.

In the present short paper we describe improved explicit and strongly explicit con-

structions of near Ramanujan graphs of all degrees and (large) number of vertices. The

first result is a (slightly improved version of an) observation I mentioned in several lectures

in the 90s that, as far as I know, has never appeared in print. Although it is very simple,

the parameters it provides are far better than the ones obtained from the constructions in

[7], [23], [5], and I therefore decided to include it here.

Proposition 1.1. For every degree d there is a strongly explicit constructions of (n, d, λ)-

graphs where λ ≤ (2 + od(1))
√
d, the od(1)-term tends to zero as d tends to infinity, and

1Though they require to find a large prime in a prescribed range. This can be done efficiently using

randomization, but can also be avoided. More details appear in Section 2
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the possible values of n form a sequence in which the ratio between consecutive terms tends

to 1.

Note that this means that for every desired number of vertices n and any desired

degree d, there is a strongly explicit construction of an (n(1 + on(1)), d, λ)-graph with

λ ≤ (2 + od(1))
√
d. Here the term on(1) tends to zero as n tends to infinity and the

od(1)-term tends to zero as d tends to infinity.

The next result provides strongly explicit constructions of (n, d, λ) graphs for degrees

d = p + 2 with p being a prime congruent to 1 modulo 4, for any desired (large) number

of vertices.

Theorem 1.2. For any prime p ≡ 1 mod 4 and every sufficiently large n there is a

strongly explicit construction of an (n, d, λ)-graph (on exactly n vertices), where d = p+ 2

and λ ≤
√

2(d− 1) +
√
d− 1 + o(1) < (1 +

√
2)
√
d− 1 + o(1), and the o(1)-term tends to

zero as n tends to infinity.

It is worth noting that here we allow to have at most one loop in every vertex, with the

convention that a loop adds one to the degree (otherwise we must have an even number

of vertices as the degree of regularity is odd). For even n we can replace the loops by a

matching with no loss in the spectral estimate.

If an explicit, rather than strongly explicit construction suffices, we can combine a

variant of our method with the new result of [18] to get the following.

Theorem 1.3. For every degree d, every ε and all sufficiently large n ≥ n0(d, ε), where

nd is even, there is an explicit construction of an (n, d, λ)-graph with λ ≤ 2
√
d− 1 + ε.

The construction in the proof of Proposition 1.1 is a simple packing of known Ramanu-

jan graphs on the same set of vertices. A crucial point is that these constructions are all

Cayley graphs of the same group, so one can simply take a union of the corresponding

generating sets. The proofs of Theorem 1.2 and 1.3 require more work. Here too the idea

is to start from a known Ramanujan or nearly Ramanujan graph and modify it in an ap-

propriate way. In the proof of Theorem 1.2 we add vertices connected to arbitrary disjoint

sets of neighbors, adding loops (or a matching) to keep the graph regular. The eigenvalues

are then estimated by their variational definition. In the construction for Theorem 1.3 we

omit carefully chosen vertices from a given near-Ramanujan graph and add a matching

between their neighbors to maintain regularity. A crucial point in the spectral analysis

here is the delocalization of the eigenvectors of the graphs obtained, which is based on the

absence of short cycles in the neighborhoods of the omitted vertices.
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The rest of this paper is organized as follows. In Section 2 we describe the strongly

explicit constructions, including the proofs of Proposition 1.1 and Theorem 1.2. In Section

3 we present the proof of Theorem 1.3. The final Section 4 contains some concluding

remarks and open problems.

2 Strongly explicit constructions

The basic construction we describe here requires the ability to find efficiently a large prime

in a prescribed range. It is well known that this can be done efficiently by a randomized

algorithm, and can also be done deterministically assuming some standard (open) number-

theoretic conjectures about the gap between consecutive primes. Since this is the only

non-deterministic part of the construction, we call it a p-strongly explicit construction

(where p stands for prime). This construction is described in the first subsection. We then

show how it can be replaced by a totally strongly explicit construction. To do so, we first

include a subsection presenting the (known) description of the construction of [16], [17] as

Cayley graphs of Quaternions over Zm. We proceed with a proof of Theorem 1.2 with a

p-strongly explicit construction, followed by its modification to a strongly explicit one.

2.1 The basic construction

We start with the simple proof of Proposition 1.1, with a p-strongly explicit construction.

It is based on the fact that if Gi = (V,Ei), i ∈ I, are graphs on the same set of vertices

V , where Gi is an (n, di, λi)-graph, then their union G = (V,∪iEi) (considered as a

multigraph in case the sets Ei are not pairwise disjoint), is an (n,
∑

i di,
∑

i λi) graph. This

is a simple consequence of the variational definition of the eigenvalues. The Ramanujan

graphs in [16] or [17] are Cayley graphs of the group SL(2, Fq) of the two by two matrices

with determinant 1 over the finite field Fq, modulo its normal subgroup consisting of the

identity I and −I. The degree can be 1 plus any prime p congruent to 1 modulo 4, where

q is also a prime congruent to 1 modulo 4, and p is a quadratic residue modulo q. Note

that by quadratic reciprocity this is equivalent to q being a quadratic residue modulo p.

Given a desired degree d = d1, let p1 be the largest prime congruent to 1 modulo 4 and

satisfying p1+1 ≤ d1. Put d2 = d1−p1−1. If d2 > 4 let p2 be the largest prime congruent

to 1 modulo 4 which satisfies p2 + 1 ≤ d2 and put d3 = d2 − p2 − 1. Continuing in this

manner we get primes p1, . . . , ps as above so that (p1 + 1) + (p2 + 1) + · · ·+ (ps + 1) ≤ d

where y = d − ((p1 + 1) + (p2 + 1) + · · · + (ps + 1)) ≤ 4. Let q be a prime congruent

to 1 modulo 4 which is a quadratic residue modulo each pi (for example, any q which is
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1 modulo each pi will do). Let V be the set of elements of SL(2, Fq). For each i let Gi

be the (pi + 1)-regular Ramanujan Cayley graph of SL(2, Fq) described in [16], and let

Xi be its (symmetric) set of generators. Let G′ be the Cayley graph of SL(2, Fq) whose

set of generators consists of the union of all sets Xi. Then G′ is (d − y)-regular, where

0 ≤ y ≤ 4. If y = 0 let G be G′. If y = 1 add to the set of generators the matrix M with

rows (0, 1) and (−1, 0) (which is of order 2). If y = 2 add an arbitrary generator and its

inverse, if y = 3 add such a generator, its inverse and M , and if y = 4 add an arbitrary

set of two generators and their inverses. In each of these cases the resulting graph G is

a d-regular Cayley graph of SL(2, Fq). By the known results about the distribution of

primes in arithmetic progressions each prime pi is much smaller than pi−1 as long as pi−1

is large. In fact, by [4] it follows that pi = O(p0.525i−1 ). Therefore, the resulting graph G

is an (n, d, λ)-graph for n = q(q2 − 1/2 with λ ≤ (2 + od(1))
√
d, where the o(1)-term

tends to zero as d tends to infinity. Note that it is not difficult to ensure, if so desired,

that the graph G is simple: we just have to ensure the chosen primes are distinct. This

is automatically the case whenever di is still large, and if needed we can stop when di

becomes small and add arbitrary additional generators and their inverses, together with

M if d is odd. Alternatively, if we have to repeat the same prime several times, we can

take the corresponding generating set for this prime and conjugate it to get an isomorphic

graph with different generators. The known results about the distribution of primes in

arithmetic progressions imply also that for each choice of the primes pi the possible choices

for the prime q suffice to ensure that the sequence of possible values for the number of

vertices n of the graph is one in which the ratio between consecutive terms tends to 1 as

n tends to infinity. This completes the proof of the proposition (with a p-strongly explicit

construction resulting from the need to find the required large prime q). �

2.2 Ramanujan graphs as Cayley graphs of quaternions

In this subsection we present the known description of the LPS Ramanujan graphs as

Cayley graphs of quaternions. The proof these are Ramanujan graphs appears (somewhat

implicitly) in [15].

Let p be a prime congruent to 1 modulo 4, and let A = A(p) be the set of all integral

solutions (a0, a1, a2, a3) of the equation a20 +a21 +a22 +a23 = p where a0 is positive odd, and

all other ai are even. By a well known result of Jacobi there are exactly p+1 such vectors.

Let m be odd, relatively prime to p, and assume further that p is a square in Z∗m. let Q(m)

be the factor group of the multiplicative group of the quaternions over Zm whose norm
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is a square in Z∗m, modulo its normal subgroup consisting of the scalars Z∗m. Thus the

elements of Q(m) are all quaternions x0 +x1i+x2j+x3k where x20 +x21 +x22 +x23 ∈ (Z∗m)2

and two such elements are identified if one is a multiple of the other by a scalar. Finally,

let H = H(p,m) be the Cayley graph of Q(m) with the generating set

{a0 + a1i+ a2j + a3k : (a0, a1, a2, a3) ∈ A(p)}.

The following result is proved (somewhat implicitly) in [15], see pages 95-97.

Theorem 2.1 ([15]). For every p and m as above H = H(p,m) is a non-bipartite (p+1)-

regular Ramanujan graph, that is, the absolute value of each of its eigenvalues besides the

top one is at most 2
√
p.

2.3 The proof of Proposition 1.1

In the construction here we will start with the graphs Q(p,m) with p ≡ 1 mod 4 a prime

and m = qs1q
t
2, where s, t ≥ 1 and q1, q2 are distinct primes, each being 1 mod 4p. For

each fixed p as above, the known results about the Linnik problem (see [11]) imply that

there are q1, q2 as above, each being at most a polynomial in p. It is not difficult to check,

using Hensel’s Lemma and the Chinese Remainder Theorem, that the number of vertices

of H(p, qs1q
t
2) is

Q(q1, q2, s, t) = q
3(s−1)
1 q

3(t−1)
2

q1(q1 − 1)(q1 + 1)

2

q2(q2 − 1)(q2 + 1)

2
.

Indeed, by Hensel’s Lemma, for elements x0, x1, x2, x3 of Zm the norm x20 + x21 + x22 + x23
is a square in Z∗m if and only if it is a square in Z∗q1 and in Z∗q2 . Since each qi is 1 mod 4,

−1 is a quadratic residue implying that the number of solutions of y21 + y22 = 0 in Zqi is

2qi − 1. For each nonzero b in Zqi the number of solutions of y21 + y22 = b (in Zqi) is the

same as the number of solutions of y2 − z2(= (y − z)(y + z)) = b , which is qi − 1. This

shows that the number of solutions of x20 + x21 + x22 + x23 = b for any nonzero b ∈ Zqi is

2(2qi − 1)(qi − 1) + (qi − 2)(qi − 1)2 = (qi − 1)qi(qi + 1).

(These include (2qi−1)(qi−1) solutions with x20 +x21 = 0 and x22 +x23 = b, (2qi−1)(qi−1)

ones with x20 + x21 = b and x22 + x23 = 0, and (qi − 1)2 solutions for each of the qi − 2

possibilities x20 + x21 = b1 and x22 + x23 = b2 with b1 + b2 = b and b1, b2 6∈ {0, b}.) Therefore,

the number of elements over Zqi whose norm is a nonzero square in Zqi is

qi − 1

2
(qi − 1)qi(qi + 1) =

qi(qi − 1)2(qi + 1)

2
.
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By the Chinese remainder Theorem there are

q1(q1 − 1)2(q1 + 1)

2

q2(q2 − 1)2(q2 + 1)

2
.

elements (x0, x1, x2, x3) in Zq1q2 so that x20 + x21 + x22 + x23 is a square in Z∗q1q2 , and by

Hensel’s Lemma each of them provides q
4(s−1)
1 q

4(t−1)
2 quaternions over Zqs1qt2 whose norm

is a square in Z∗
qs1q

t
2
. To get the number of vertices of the graph we just have to divide by

the cardinality of Z∗
qs1q

t
2

which is qs−11 qt−12 (q1−1)(q2−1), obtaining the required number of

vertices. Note also that by this description it is easy to number the vertices of the graph.

(For our application here it is in fact enough to number a constant fraction of them. For

fixed q1, q2 this can be done, for example, by numbering all vectors (1, x1, x2, x3) ∈ Zqs1qt2
with x1, x2, x3 divisible by q1q2, lexicographically).

We next show that for every fixed distinct primes q1, q2, the ratio between consecutive

elements in the set of integers {Q(q1, q2, s, t) : s, t ≥ 1} tends to 1 as the elements grow.

Lemma 2.2. Let q1, q2 be distinct primes. Then for every large integer n there are positive

integers s, t so that n ≤ Q(q1, q2, s, t) ≤ n+ o(n).

Proof: The constant α = log q1
log q2

is irrational. Therefore, by the equidistribtion theorem

(in fact, by a special case that follows easily from the pigeonhole principle), for every δ > 0

there is an integer k1 = k1(α) so that 0 < k1α mod 1 < δ. It follows that for every µ > 0

there are integers k1, k2 such that

1 ≤ qk11
qk22
≤ qδ2 ≤ (1 + µ).

This implies that for every s, t ≥ max{k1, k2} the ratio betweenQ(q1, q2, s, t) andQ(q1, q2, s−
k1, t− k2) is between 1 and (1 + µ)3, implying the desired result. �

The proof of Proposition 1.1 now proceeds exactly as in subsection 2.1, using the descrip-

tion of the LPS graphs serving as the building blocks as given in subsection 2.2. Since

here q1, q2 are constants, there is no need to find any large primes for the construction,

providing a strongly explicit construction for every fixed degree.

2.4 The proof of Theorem 1.2

We first describe a p-strongly-explicit construction, starting, again, with the graphs of

[16]. Recall that the vertex sets of these graphs is the set of matrices in SL(2, Fq) where

each matrix A is identified with −A. It is easy to number the vertices starting with the
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matrices (aij) with a11 6= 0 and ordering them according to the lexicographic order of the

elements (a11, a12, a13) where a14 is chosen to ensure that the determinant is 1 (which is

always possible as a11 6= 0). Here 1 ≤ a11 ≤ (q − 1)/2, as we identify each matrix A

with −A. The first matrices are the q2 matrices with a11 = 1, then those with a11 = 2,

and so on. (The remaining q(q − 1)/2 matrices with a11 = 0 can appear last in our order

according to the lexicographic order of (a12, a24), but this will play no real role in the

construction.)

Given the desired number n of vertices, and given the degree d = p + 2 with p as

in the theorem, let q be the largest prime which is 1 modulo 4, is a quadratic residue

modulo p and satisfies |SL(2, Fq)| = mq = q(q2 − 1)/2 ≤ n. Put m = mq, let H be

the Ramanujan (p + 1) = (d − 1)-regular graph of [16] whose vertex set V is the set

of elements of SL(2, Fq) numbered as described above. By the known results about the

distribution of primes in progressions n −m = o(m). Put r = n −m and let R be a set

of r additional vertices u1, u2, . . . , ur. Connect each vertex ui to the vertices numbered

(i− 1)d+ 1, (i− 1)d+ 2, . . . , id of H. Finally add a loop to each remaining vertex of H to

make the graph regular. This is the desired graph G. It is clearly d = p+ 2-regular. (If n

is even and we do not want loops we can replace them by a matching between consecutive

pairs of vertices, saturating all non-neighbors of the r new vertices).

It is clear that the construction above is strongly explicit. To complete the proof

it remains to show that the absolute value of any nontrivial eigenvalue of G is at most√
2(p+ 1) +

√
p+o(1). We proceed with a proof of this fact. By the variational definition

of the nontrivial eigenvalues of G this is equivalent to showing that for every real function

f(u) on the set of vertices U = V ∪R of G satisfying ‖f‖22 = 1 and
∑

u∈U f(u) = 0

|f tAGf | ≤
√

2(p+ 1) +
√
p+ o(1) (1)

where AG is the adjacency matrix of G. Let W ⊂ V denote the set of all (p+2)r neighbors

of R, put L = V −W , and let ER denote the set of all edges between R and W . Thus ER

is a collection of pairwise vertex disjoint stars, each having (p+ 2) leaves. The adjacency

matrix of G can be written as a sum AG = AH + AR + AL, where AH is the adjacency

matrix of the Ramanujan graph H (with the additional isolated vertices of R), AR is the

adjacency matrix of the graph (U,ER), and AL is the adjacency matrix of the graph on

U whose edges are the loops on the vertices of L (or the added matching on them, if we

have chosen not to add loops). Therefore

f tAGf = f tAHf + f tARf + f tALf. (2)

We proceed to bound each of these terms.
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By Cauchy-Schwarz

|
∑
u∈R

f(u)|2 ≤ |R|
∑
u∈R

f2(u) ≤ |R| = o(m).

Since
∑

u∈U f(u) = 0, this implies that |
∑

u∈V f(u)|2 = |
∑

u∈R f(u)|2 = o(m)

Let g be the trivial normalized eigenvector of H, that is, the vector given by g(v) =

1/
√
m for all v ∈ V . Expressing the restriction f ′ of f to V as a linear combination of g and

a unit vector h orthogonal to it, we get f ′ = bg+ch, where
∑

v∈V h(v) = 0, b2+c2 = 1 and

b2 = |
∑

u∈V f(u)|2/m = o(1). Since H is a Ramanujan graph, |htAHh| ≤ 2
√
p. Therefore

|f tAHf | = |(f ′)tAHf ′| ≤ b2(p+ 1) + c22
√
p ≤ 2

√
p+ o(1). (3)

Clearly

|f tALf | ≤
∑
v∈L

f2(v). (4)

Indeed this is an equality if there are loops and an inequality in case a matching has been

added.

For bounding the absolute value of f tARf observe that for every positive x

|f tARf | = 2|
∑

uv∈ER

f(u)f(v)|

≤
∑

u∈R,v∈W,uv∈ER

(
f2(u)

x
+ xf2(v)) =

p+ 2

x

∑
u∈R

f2(u) + x
∑
v∈w

f2(v). (5)

Combining (2),(3),(4) and (5) we conclude that for every positive real x

|f tAGf | ≤ (2
√
p+ 1)

∑
v∈L

f2(v) + (2
√
p+ x)

∑
v∈W

f2(v) +
p+ 2

x

∑
v∈R

f2(v) + o(1). (6)

Choosing x =
√

2p+ 2−√p (which is at least 1) and substituting in (6) we finally get

|f tAGf | ≤ (
√

2p+ 2 +
√
p)

∑
u∈U

f2(u) + o(1) = (
√

2p+ 2 +
√
p) + o(1).

This establishes (1) and completes the proof (with a p-strongly explicit construction). The

conversion to a strongly explicit construction proceeds just as in the proof of Proposition

1.1, based on the results in subsection 2.2. Note that as mentioned in that subsection

the description there provides a simple efficient way to number enough vertices of each

graph H(p, qs1q
t
2) and by Lemma 2.2 we can start by finding efficiently appropriate s, t

using binary search. �
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3 Explicit constructions

In this section we present the proof of Theorem 1.3. We start with some preliminary

lemmas.

Lemma 3.1. Let G = (V,E) be a d-regular graph on n vertices, where d ≥ 3, and

suppose that the 2r+ 4-neighborhood of any vertex in it contains at most one cycle, where

r ≤ logd−1 n. Then there is a subset U ⊂ V of vertices of G satisfying the following.

1. |U | ≥ n
2d2r+3

2. The (r + 1)-neighborhood of any vertex in U contains no cycle.

3. The distance between any two vertices in U is at least 2r + 3.

Such a set U can be found in polynomial time.

Proof: Let C denote the collection of all cycles of length at most 2r + 4 in G. Note that

the distance between any two members C1, C2 of C is larger than 2r + 4, since otherwise

there is a vertex v within distance at most r + 2 of both cycles Ci, and then its 2r + 4-

neighborhood contains both cycles, contradiction. The r + 2 neighborhood of each cycle

C ∈ C contains no other cycle besides C, as it is contained in the 2r + 4 neighborhood of

any vertex on the cycle. Thus the number of edges spanned by each such neighborhood is

at most the number of vertices in it. As the neighborhoods are vertex disjoint, the total

number of edges in all these neighborhoods together is at most the number of vertices of

G which is n. It follows that by omitting all vertices in the (r + 1)-neighborhoods of all

members of C, at most n edges are omitted, and as G has nd/2 edges and d ≥ 3 at least

n/2 edges, and hence at least n/2d vertices have not been omitted. Let Z be the set of

non-omitted vertices. Note that the (r + 1)-neighborhood of any vertex in Z contains no

cycle (as if it contains a cycle, it contains a cycle of length at most 2r + 3 < 2r + 4 but

the vertex is not within distance r + 1 of any such cycle.) Starting with U = ∅ let v1 be

an arbitrary vertex of Z, add it to U and remove all vertices of Z within distance 2r + 2

of v1. Clearly at most d2r+2 vertices have been deleted. Let v2 be an arbitrary vertex left

in Z, add it to U and remove all vertices of U within distance 2r + 2 of v2. Continuing

in this manner we get a set U of at least n
2d2r+3 vertices. It is clear that this set satisfies

all the conclusions of the lemma. It is also clear that U can be computed in polynomial

time. �
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The next lemma about the delocalization of eigenvectors of regular graphs in cycle-free

neighborhood can be proved using the method of Kahale in [13] (see also [3] for a recent

application of this technique). Here we present a simple self contained proof.

Lemma 3.2. Let G = (V,E) be a d-regular graph where d ≥ 3, let uv be an edge of G and

suppose that the r-neighborhood of uv contains no cycle. For each i satisfying 0 ≤ i ≤ r

let Ni denote the set of all vertices of distance exactly i from {u, v}. (In particular,

N0 = {u, v}). Let f be a nonzero eigenvector of G with eigenvalue µ ≥ 2
√
d− 1. Then

for every 1 ≤ i ≤ r ∑
w∈Ni

f2(w) ≥
∑

w∈Ni−1

f2(w). (7)

Proof: We apply induction on i. Note that by assumption the induced subgraph of G

on the r-neighborhood of uv is a d-regular tree. Therefore |Ni| = 2(d − 1)i for all i ≤ r.

Let u1, u2, . . . , ud−1 denote the neighbors of u besides v, and let v1, v2, . . . , vd−1 denote the

neighbors of v besides u. Then

f(v) +
d−1∑
i=1

f(ui) = µf(u)

and

f(u) +
d−1∑
i=1

f(vi) = µf(v).

By Cauchy-Schwarz,

f2(v) +

d−1∑
i=1

f2(ui) ≥
µ2f2(u)

d
≥ 4d− 4

d
f2(u)

and similarly

f2(u) +

d−1∑
i=1

f2(vi) ≥
4d− 4

d
f2(v).

Summing, we conclude that

f2(u) + f2(v) +
∑
w∈N1

f2(w) ≥ 4d− 4

d
(f2(u) + f2(v)),

implying that∑
w∈N1

f2(w) ≥ 3d− 4

d
(f2(u) + f2(v)) ≥ f2(u) + f2(v) =

∑
w∈N0

f2(w).
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This proves (7) for i = 1.

Assuming it holds for i − 1 we prove it for i. For each vertex w ∈ Ni−1 let w′ be its

unique parent in Ni−2 and let x1, x2, . . . , xd−1 be its neighbors in Ni. Then

f(w′) +

d−1∑
i=1

f(xi) = µf(w).

Since f(w′) = (d− 1) · f(w
′)

d−1 , we get, by Cauchy-Schwarz,

f2(w′)

d− 1
+

d−1∑
i=1

f2(xi) ≥
µ2f2(w)

2d− 2
≥ 2f2(w).

Summing the above inequality for all w in Ni−1, each vertex w′ appears in the LHS exactly

d− 1 times, yielding ∑
w′∈Ni−2

f2(w′) +
∑
x∈Ni

f2(x) ≥ 2
∑

w∈Ni−1

f2(w).

This gives ∑
x∈Ni

f2(x) ≥ 2
∑

w∈Ni−1

f2(w)−
∑

w′∈Ni−2

f2(w′) ≥
∑

w∈Ni−1

f2(w),

where the last inequality follows from the induction hypothesis. This completes the proof

of the induction step, establishing the assertion of the lemma. �

Finally, we need the main result of Mohanty, O’Donnell and Paredes in [18], which is

the following.

Theorem 3.3 ([18]). For every d, ε > 0 and (large) n there is an explicit construction

of an (n+ o(n), d, λ)-graph with λ ≤ 2
√
d− 1 + ε so that the s neighborhood of any vertex

contains at most one cycle, where s ≥ (log log n)2.

We note that the result is stated in [18] without the conclusion about the cycles, but

the version above follows from the proof as presented there.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3: Put r = d2/εe and s = 2r + 4. Let H = (V,E) be an explicit

(n+ u, d, λ)-graph with u = o(n) and λ ≤ 2
√
d− 1 + ε/2 in which the s-neighborhood of

any vertex contains at most one cycle. Such an H exists by Theorem 3.3. By Lemma 3.1

we can find efficiently a set U of u vertices in H satisfying the assertion of the lemma.

Omit these vertices from the graph to get a graph H ′ and add a matching M between

12



their neighbors retaining the degree of regularity d. Let G denote the resulting graph.

Clearly it is d-regular and has n vertices. Note that the r-neighborhood of any edge uv

of the added matching M contains no cycle. In order to complete the proof it remains to

show that every nontrivial eigenvalue of G has absolute value at most 2
√
d− 1 + ε. Let

AG be the adjacency matrix of G, AH′ the adjacency matrix of H ′ (on the set of vertices

V ) and AM the adjacency matrix of the graph on the set of vertices V whose edges are

those of the matching M . Note that AG = AH′ +AM . Let λ be a nontrivial eigenvalue of

G and let f be a corresponding eigenvector satisfying
∑

v∈V f
2(v) = 1. Then

λ = f tAGf = f tAH′f + f tAMf. (8)

Since H ′ is an induced subgraph of H and all nontrivial eigenvalues of H have absolute

value at most 2
√
d− 1 + ε/2 it follows, by eigenvalue interlacing, that

|f tAH′f | ≤ 2
√
d− 1 + ε/2. (9)

It is also clear that

|f tAMf | = |2
∑
uv∈M

f(u)f(v)| ≤
∑
uv∈M

f2(u) + f2(v). (10)

If |λ| ≤ 2
√
d− 1 there is nothing to prove, we thus assume that λ ≥ 2

√
d− 1. Since the

r-neighborhood of any edge of M contains no cycle, Lemma 2.2 implies that for every such

edge uv,

f2(u) + f2(v) ≤ 1

r

∑
w∈N(u,v,r)

f2(w),

where N(u, v, r) denotes the r-neighborhood of uv. Since all these neighborhoods are

pairwise disjoint it follows that∑
uv∈M

f2(u) + f2(v) ≤ 1

r

∑
w∈V

f2(v) ≤ ε

2
. (11)

The desired result follows by plugging (9) and (11) in (8) (using (10)). �

4 Concluding remarks

• Morgenstern [19] gave a strongly explicit construction of Ramanujan graphs for every

degree which is a prime power plus 1, but we cannot apply his construction in the

proof of Proposition 1.1 since his construction provides Cayley graphs of different

13



groups (and different sizes) for different degrees and hence one cannot pack the

graphs corresponding to several degrees. Similarly, we cannot use his construction

in the proof of Theorem 1.2 since for every fixed degree the sequence of possible

numbers of vertices in his construction for this degree is too sparse.

• The proof of Theorem 1.3 can be applied directly to high girth Ramanujan graphs

like those in [16], [17] in case the required degree is p+ 1 for a prime p congruent to

1 mod 4 to obtain near Ramanujan graphs of this degree with any required (large)

number of vertices.

• The problem of obtaining strongly explicit (two-sided) Ramanujan (and not nearly

Ramanujan) graphs for any degree and number of vertices remains open.

Acknowledgment I thank László Babai, Oded Goldreich, Ryan O’Donnell, Ori Parzanchevski

and Peter Sarnak for helpful discussions.
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