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Abstract

We propose a metric—Projection Norm—to pre-

dict a model’s performance on out-of-distribution

(OOD) data without access to ground truth la-

bels. Projection Norm first uses model predic-

tions to pseudo-label test samples and then trains

a new model on the pseudo-labels. The more

the new model’s parameters differ from an in-

distribution model, the greater the predicted OOD

error. Empirically, our approach outperforms ex-

isting methods on both image and text classifica-

tion tasks and across different network architec-

tures. Theoretically, we connect our approach to

a bound on the test error for overparameterized

linear models. Furthermore, we find that Pro-

jection Norm is the only approach that achieves

non-trivial detection performance on adversar-

ial examples. Our code is available at https:

//github.com/yaodongyu/ProjNorm.

1. Introduction

To reliably deploy machine learning models in practice, we

must understand the model’s performance on unseen test

samples. Conventional machine learning wisdom suggests

using a held-out validation set to estimate the model’s test-

time performance (Hastie et al., 2001). However, this fails

to account for distribution shift. For deep neural networks,

even simple distribution shifts can lead to large drops in

performance (Quiñonero-Candela et al., 2008; Koh et al.,

2021). Thus, it is crucial to understand, especially in safety-

critical applications, how a model might perform on out-

of-distribution (OOD) data. Finally, understanding OOD

performance helps shed light on the structure of natural

covariate shifts, which remain poorly understood from a

conceptual standpoint (Hendrycks et al., 2021a).

To this end, we propose Projection Norm, which uses unla-

beled test samples to help predict the OOD test error. Let θ̂

be the model whose test error we aim to predict. At a high
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level, the Projection Norm algorithm pseudo-labels the test

samples using θ̂ and then uses these pseudo-labels to train

a new model θ̃. Finally, it compares the distance between

θ̂ and θ̃, with a larger distance corresponding to higher test

error. We formally present this algorithm in Section 2.

Empirically, we demonstrate that Projection Norm predicts

test error more accurately than existing methods (Deng et al.,

2021; Guillory et al., 2021; Garg et al., 2022), across several

vision and language benchmarks and for different neural

network architectures (Section 3.1). Moreover, while the

errors of existing methods are highly correlated with each

other, the errors of Projection Norm are nearly uncorrelated

with those of existing methods (Section 3.3), so combining

Projection Norm with these methods results in even better

prediction performance. Finally, we stress test our method

against adversarial examples, an extreme type of distribution

shift, and we find that Projection Norm is the only method

that achieves non-trivial performance (Section 5).

Projection Norm also has a natural theoretical motivation.

We show for overparameterized linear models that Projec-

tion Norm measures the projection (hence the name) of a

“ground truth model” onto the overlap of the training and

test data (Section 4). In this linear setting, many common

methods focus only on the logits and thus cannot capture

information that is orthogonal to the training manifold. In

contrast, Projection Norm can, which explains why it pro-

vides information complementary to that of other methods.

We also connect Projection Norm to a mathematical bound

on the test loss, based on assumptions backed by empirical

studies on vision data (Section 4.3).

In summary, we propose a new metric for predicting OOD

error that provides a more accurate and orthogonal signal in

comparison to existing approaches. Our method is easy to

implement and is applicable to a wide range of prediction

tasks. In addition, our method connects naturally to the

theory of high-dimensional linear models and attains non-

trivial performance even for adversarial examples.

2. Our Method: Projection Norm

In this section, we formulate the problem of predicting OOD

performance at test time and then present the Projection

Norm algorithm.
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Table 3. Correlation of residuals of regressing test error against

different measurements with CIFAR100 and ResNet18.

Ent. ConfS. ATC Rota. Proj.

Agree.S. 0.85 0.87 0.84 0.80 0.05

Ent. - 0.98 0.93 0.67 -0.07

ConfS. - - 0.98 0.67 -0.14

ATC - - - 0.65 -0.19

Rota. - - - - 0.03

Reference model. We consider directly using θ̂ as the

reference model, rather than fine-tuning a new one. As

shown in Table 7 and Figure 16 in the appendix, using

θ̂ref = θ̂ achieves similar performance compared to the

default version of ProjNorm on CIFAR10.

Pseudo-labels. Finally, we investigate the role of pseudo-

labels in our method. We modify Step 2 of ProjNorm by

training θ̃ using the ground truth labels of the OOD data.

From Table 8 and Figure 17, we find that ProjNorm with

pseudo-label performs much better than ProjNorm with

ground truth label, which suggests that pseudo-labeling is

an essential component in ProjNorm.

3.3. Correlation analysis

In this section, we provide a short statistical analysis of using

different measurements to predict test error. We focus on

the CIFAR100 dataset and Resnet18 architecture. We show

that ProjNorm captures signal that existing methods fail

to detect, so that ensembling with the existing approaches

leads to even better performance.

For each method, we first compute residuals when predicting

the test error by performing simple linear regression. Then

we compute the correlation between the residual errors for

each pair of methods.

We see from Table 3 that the correlation among all existing

methods is high: strictly larger than 0.6. The correlations

among ConfScore, ATC and Entropy are especially high

(> 0.9) suggesting they are almost equivalent approaches.

This high correlation is unsurprising since these methods

are all different ways of manipulating the logits.

In contrast, the correlation between ProjNorm and existing

methods is always less than 0.05, and often negative. In-

triguingly, while the correlations among existing methods

are positive, ProjNorm sometimes has negative correlation

with existing methods. This means ProjNorm underesti-

mates the test error when other methods overestimate it.

The low correlation implies that ProjNorm provides very

different signal compared to existing methods and suggests

a natural ensembling approach for improving performance

further. Indeed, if we average ProjNorm and ATC (the

second best method), normalized by standard deviation, we

further improve R2 from 0.978 (using ProjNorm only) to

0.982 (averaging ProjNorm and ATC).

4. Insights from an Overparameterized

Linear Model

In this section, we provide some insights for Projection

Norm by studying its behavior on high-dimensional linear

models. We demonstrate an extreme example where Projec-

tion Norm has a qualitative advantage over other methods

such as Confidence Score. We also show that Projection

Norm is tied to an upper bound on the test loss under certain

assumptions, which we empirically validate on the CIFAR10

dataset.

We consider a linear model with covariates x ∈ R
d and

response y ∈ R. Let X ∈ R
n×d and y ∈ R

n denote

the training set Dtrain = {(xi, yi)}i=1,...,n. We focus on

the d � n regime and take θ̂ to be the minimum-norm

interpolating solution,

θ̂ = min
Xθ=y

‖θ‖2 = XT(XXT)−1y. (2)

Let X̃ ∈ R
m×d denote the out-of-distribution test covari-

ates and ỹ ∈ R
m the corresponding ground truth response

vector. Our goal is to estimate the test loss

TestLoss =
1

m
‖X̃θ̂ − ỹ‖22 (3)

using only X , y, and X̃—that is, without having access to

the ground truth response ỹ.

Note that most existing methods in Section 3 (such as the

Confidence Score) only look at the outputs of the model

θ̂. In this linear setting, this corresponds to the vector X̃θ̂.

We show (Section 4.1) that any method with this property

has severe limitations, while the linear version of Projection

Norm overcomes these. Then we present results connect-

ing this linear version of Projection Norm to the test loss

(Section 4.2).

4.1. Motivating Projection Norm

To analyze the linear setting, we assume that the responses

y and ỹ are noiseless and differ only due to covariate shift:

Assumption 4.1 (Covariate shift). There exists a ground

truth θ? ∈ R
d relating the covariates and responses such that

Xθ? = y and X̃θ? = ỹ, i.e., for both the in-distribution

training data and out-of-distribution test data.

By Assumption 4.1, the minimum-norm solution reduces to

θ̂ = XT(XXT)−1Xθ? = Pθ?, (4)

where P is defined as the orthogonal projection matrix onto

the row space of X , i.e., P = XT(XXT)−1X . Similarly,
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In other words, we assume the large eigenvectors of the

train and OOD test covariates span a common subspace,

while the small eigenvectors are orthogonal. Under these

assumptions, we show that the TestLoss is bounded by a

(constant) multiple of ProjNormLinear.

Proposition 4.4. Under Assumptions 4.1, 4.2, and 4.3,

λm

m
≤

TestLoss

ProjNormLinear
2
≤

λk+1

m
,

where λm, λk+1 are the m-th and (k + 1)-th eigenvalue of

the covariance matrix X̃
T

X̃/m.

This offers mathematical intuition for the effectiveness of

Projection Norm that we observed in Section 3.

4.3. Checking assumptions on linearized

representations

In this subsection, we check Assumptions 4.2 and 4.3 on

linear representations derived from the CIFAR datasets. To

construct the linear representation, consider an image in-

put ximg and a neural network f( · ;θ). The behavior of

the network can be locally approximated by its linearized

counterpart (Jacot et al., 2018; Lee et al., 2019), i.e.,

f(ximg;θ) ≈ f(ximg;θ0) + 〈∇θf(ximg;θ0),θ − θ0〉.

Under this approximation, we can replace the neural net-

work training on the raw data ximg by linear regression on

its Neural Tangent Kernel (NTK) representation xntk:

xntk = ∇θf(ximg;θ0) ∈ R
d. (15)

We therefore test the assumptions from Section 4.2 on these

NTK representations.

In the most of our experiments, we derive NTK represen-

tations from a pretrained ResNet18, which has dimension

d = 500, 000 (we randomly subsample 500,000 parameters

from a total of 11,177,025 parameters). See Appendix D for

more details.

Justification of Assumption 4.2 and 4.3. We first compute

the NTK representations of the training data and OOD data

on CIFAR10 with sample size n = m = 5, 000. Then we

evaluate ‖P̃ θ?‖2 on each OOD datasets in CIFAR10-C and

compare with ‖Pθ?‖2. As shown in Figure 19, ‖P̃ θ?‖2
and ‖Pθ?‖2 are within a multiplicative factor of 2 on most

of the OOD datasets.

Next, we compute the eigenvalues and top-K (K =
300) eigenvectors of Σntk = XT

ntkXntk/n and Σ̃ntk =

X̃
T

ntkX̃ntk/m. As shown in Figure 5(a), the top-k (k ≤ 200)

eigenvectors of in-distribution and OOD covariance ma-

trices align well with each other. When k is large, the

in-distribution and OOD eigenvectors become more orthog-

onal to each other. This suggests that our assumptions on

covariance matrices (i.e., Assumption 4.3) approximately

align with real data.

We also visualize the eigenvalues of Σntk and Σ̃ntk in Fig-

ure 5(b). We find that the eigenvalues of both the in-

distribution and OOD covariance matrices approximately

follow power-law scaling relations with respect to the index

of the eigenvalue.

Linear representations predict nonlinear OOD error.

To check that our linear analysis actually captures nonlin-

ear neural network behavior, we use ProjNormLinear on

the NTK representation to predict the error of the original,

nonlinear neural network (i.e. fine-tuned Resnet18 on CI-

FAR10). We display the results in Figure 5(c). We find

that ProjNormLinear computed on NTK representations

predicts the OOD error of its nonlinear counterpart trained

by SGD (R2 = 0.914). Compared to results in the first

row of Table 1, ProjNormLinear is less accurate than Pro-

jNorm (R2 = 0.962), but still more accurate than all exist-

ing methods in terms of R2.

5. Stress Test: Adversarial Examples

Finally, we construct a “stress test” to explore the limits

of our method. We test our method against adversarial

examples, optimized to fool the network into misclassifying,

but not specifically optimized to evade detection.

In more detail, we consider white-box `∞ attacks on the

CIFAR10 dataset, with adversarial perturbation budget ε
ranging from 0.25 to 8.0. We generate attacks using 20
steps of projected gradient descent (PGD), using the untar-

geted attack of Kurakin et al. (2017). The adversarial OOD

test distribution is obtained by computing an adversarial

example from each image in the CIFAR10 test set.

We present scatter plots of the performances of ProjNorm,

ATC, and ConfScore in Figure 6. For large adversarial

perturbation budgets, ATC and ConfScore perform trivially

(assigning a minimal score even though the test error is

maximal). While ProjNorm also struggles, underpredicting

the test error significantly, it stands apart by making non-

trivial predictions even for large budgets.

To quantify this numerically, we convert each method to an

OOD error estimate by calibrating on CIFAR10-C (i.e. run-

ning linear regression on the blue circles in Figure 6). For

ε = 8, ProjNorm predicts an error of 28.1% when the

true error is 100.0%, whereas predictions of other methods

are smaller than 0.0%. Full results for all methods are in

Table 10.

Such a stress test could be an interesting target for future

work. While detecting adversarial examples is notoriously

difficult (Carlini & Wagner, 2017), this setting may be more

tractable because an entire distribution of data points is

observed, rather than a single point.
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performance. Other work utilizes pre-trained models to im-

prove OOD detection performance (Hendrycks et al., 2020;

Xu et al., 2021). Our method can potentially be extended to

perform OOD detection.

Domain adaptation. A large body of work studies how to

learn representations that transfer from a source domain to a

target domain during training (Ben-David et al., 2007; 2010;

Pan et al., 2010; Long et al., 2015; Ganin et al., 2016; Tzeng

et al., 2017; Zhao et al., 2019). The goal of domain adap-

tation is to improve model performance on a target (OOD)

domain, whereas we focus on predicting performance of a

fixed model on OOD data. An interesting direction for fu-

ture work would be to explore the application of ProjNorm

in domain adaptation.

NTK and overparameterized linear models. A recent

line of theoretical work tries to connect deep neural network

training to neural tangent kernels (NTK) (Jacot et al., 2018;

Lee et al., 2019; Du et al., 2019; Allen-Zhu et al., 2019; Zou

et al., 2019), showing that infinite-width networks converge

to a limiting kernel. Several recent works study the be-

nign overfitting phenomenon in deep learning through over-

parameterized linear models (Bartlett et al., 2020; Tsigler

& Bartlett, 2020; Koehler et al., 2021). Tripuraneni et al.

(2021) computes the exact asymptotics of generalization

error for random feature models under certain assumptions

of distribution shift.

7. Discussion

Thus far, we have focused on the advantages of Projection

Norm in terms of empirical performance and theoretical

interpretability. We now briefly discuss limitations of Pro-

jection Norm and future directions. One limitation is that it

needs sufficiently many samples (because of the fine-tuning

step) to make accurate predictions on the OOD test dataset.

It would be useful to reduce the sample complexity of this

method, with the ideal being a one-sample version of Pro-

jNorm. Another issue is that ProjNorm sometimes does

poorly on “easy” shifts, as it looks for all differences be-

tween two distributions, including those that might make

the problem easier. We illustrate this in Figure 18 of the

appendix, where ProjNorm typically overpredicts the er-

ror under label shifts. A final limitation is ProjNorm’s

performance on adversarial examples, which suggests an

interesting avenue for future work.

Beyond predicting OOD error, ProjNorm provides a gen-

eral way to compute distances between distributions. For in-

stance, it could be used to choose sample policies for active

learning or exploration policies for reinforcement learning.

We see ProjNorm as a particularly promising approach for

addressing “novelty” in high-dimensional settings.
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A. Experimental Details

Details on ProjNorm. Algorithm 1 provides a detailed description of the ProjNorm algorithm.

Algorithm 1 ProjNorm

1: Input: Classifier C(·; θ̂) to be evaluated, initialization θ0, training data Dtrain = {(xi, yi)}
n
i=1, OOD unlabeled test

data x̃1:m = {x̃j}
m
j=1.

2: Parameters: Number of training steps T , initial learning rate η.

3: Step 1: Pseudo-label OOD data with C(·; θ̂), i.e., ỹ p
j = C(x̃j ; θ̂), j ∈ [m].

4: Step 2: From initialization θ0, train a new model θ̃ on pseudo-labeled OOD data {(x̃j , ỹ
p
j )}

m
j=1 by performing T steps

of stochastic gradient descent updates with learning rate η.

5: Step 2+: From initialization θ0, train a reference model θ̂ref on training data {(xi, yi)}
n
i=1 by performing T steps of

stochastic gradient descent updates with learning rate η.

6: Step 3: Output ProjNorm(Dtrain, x̃1:m) := ‖θ̂ref − θ̃‖2.

Additional implementation details. For the CIFAR datasets, we fine-tune the pre-trained model on in-distribution training

data for 20 and 50 epochs for CIFAR10 and CIFAR100, respectively. For MNLI, we fine-tune the pre-trained model for 4

epochs on in-distribution training data.

A.1. Details of existing methods

Rotation. The Rotation Prediction (Rotation) (Deng et al., 2021) metric is defined as

Rotation =
1

m

m∑

j=1





1

4

∑

r∈{0◦,90◦,180◦,270◦}

1 {Cr(x̃j ; θ̂) 6= yr}



 , (16)

where yr is the label for r ∈ {0◦, 90◦, 180◦, 270◦}, and Cr(x̃j ; θ̂) predicts the rotation degree of an image x̃j .

ConfScore. The Averaged Confidence (ConfScore) is defined as

ConfScore =
1

m

m∑

j=1

max
k

Softmax(f(x̃j ; θ̂))k, (17)

where Softmax(·) is the softmax function.

Entropy. The Entropy metric is defined as

Entropy =
1

m

m∑

j=1

Ent (Softmax(f(x̃j ; θ̂))) , (18)

where Ent(p) = −
∑K

k=1
pk · log(pk).

AgreeScore. The Agreement Score (AgreeScore) is defined as

AgreeScore =
1

m

m∑

j=1

1 {C(x̃j ;θ1) 6= C(x̃j ;θ2)} , (19)

where C(x̃j ;θ1) and C(x̃j ;θ2) are two classifiers that are trained on in-distribution training data independently.

ATC. The Averaged Threshold Confidence (ATC) (Garg et al., 2022) is defined as

ATC =
1

m

m∑

j=1

1 {s(Softmax(f(x̃j ; θ̂))) < t} , (20)
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F. Proof of Proposition 4.4

Proof. Recall that we decompose the empirical covariance of training and test set as

Σ =
1

n
XTX =

1

n

n∑

i=1

µiuiu
T

i ,

Σ̃ =
1

m
X̃

T

X̃ =
1

m

m∑

j=1

λjvjv
T

j .

Then given k from Assumption 4.3, we define the projection matrices

P 0 =

k∑

i=1

uiu
T

i =

k∑

j=1

vjv
T

j ,

P⊥ = P − P 0 =

n∑

i=k+1

uiu
T

i ,

P̃⊥ = P̃ − P̃ 0 =

m∑

j=k+1

vjv
T

j .

The test loss can be written as

TestLoss =
1

m
‖X̃(I − P )θ?‖

2
2 =

1

m
‖X̃P̃ (I − P )θ?‖

2
2.

Under Assumption 4.3,

P̃ (I − P ) = (P 0 + P̃⊥)(I − P 0 − P⊥) = P̃⊥.

This allows us to simply write the test loss as

TestLoss =
1

m
‖X̃P̃⊥θ?‖

2
2 =

1

m

m∑

j=k+1

λj〈vj ,θ?〉
2.

Since λj is a the decreasing sequence of eigenvalues

λm

m

m∑

j=k+1

〈vj ,θ?〉
2 ≤ TestLoss ≤

λk+1

m

m∑

j=k+1

〈vj ,θ?〉
2.

Note that with Assumption 4.2

m∑

j=k+1

〈vj ,θ?〉
2 = ‖P̃⊥θ?‖

2
2 = ‖P⊥θ?‖

2
2 = ‖Pθ?‖

2
2 − ‖P 0θ?‖

2
2 = ‖Pθ?‖

2
2 − ‖P̃Pθ?‖

2
2 = ProjNormLinear

2.

This completes the proof of Proposition 4.4.


