Large cliques and independent sets all over the place
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Abstract

We study the following question raised by Erdés and Hajnal in the early 90’s. Over all n-vertex

graphs G what is the smallest possible value of m for which any m vertices of G contain both a clique

22(10g log n)1/2+0(1)

and an independent set of size logn? We construct examples showing that m is at most
obtaining a twofold sub-polynomial improvement over the upper bound of about /n coming from the
natural guess, the random graph. Our (probabilistic) construction gives rise to new examples of Ramsey
graphs, which while having no very large homogenous subsets contain both cliques and independent
sets of size logn in any small subset of vertices. This is very far from being true in random graphs.
Our proofs are based on an interplay between taking lexicographic products and using randomness.

1 Introduction

Ramsey theory refers to a large body of deep results, which roughly say that any sufficiently large structure
is guaranteed to have a large well-organised substructure. Its inception dates back to 1929 and the
celebrated theorem of Ramsey [30] which states that any sufficiently large graph must contain a clique or
an independent set of arbitrarily large size. In terms of quantitative results in 1935 Erd6s and Szekeres
[14] showed that any graph on n vertices contains a clique or an independent set of size 0.5logn. On the
other hand in what was one of the first applications of the now indispensable probabilistic method Erdés
[12] has shown that in a random graph G(n,1/2) w.h.p. there are no cliques or independent sets of size
2logn. Despite considerable effort [7, 9, 10, 16] there are still no known non-probabilistic constructions
which match the random graph.

We say a graph is k-Ramsey if it contains neither a clique nor an independent set of size k. In general
an n-vertex graph is said to be a Ramsey graph if it is k-Ramsey for some k “close” to logn. Over the
years there has been a wide body of work studying properties of Ramsey graphs. In particular, based
on the apparent difficulty of finding non-probabilistic Ramsey graphs, it is widely believed that with an
appropriate definition of “close” any Ramsey graph must be random-like. While there is a vast number of
results (see [2, 11, 15, 19, 24, 25, 29, 31] and references within) showing that indeed Ramsey graphs need
to satisfy, to an extent, various properties usually associated with random graphs, our understanding of
Ramsey graphs is still far from sufficient to consider this claim in any way settled.

Given an integer k let G be a k-Ramsey graph with the largest number of vertices. Observe that G must
contain both a clique and an independent set of size k — 1, as otherwise we can add a new vertex joined
to all or none of the vertices of G to find a larger k-Ramsey graph. This shows that if we have a good
Ramsey graph the largest clique and largest independent set should be of similar size. For example, if we
consider the random graph, which is the best known Ramsey graph, it will with high probability contain
both a clique and an independent set of size a 1 or 2 less than the largest k for which it is k-Ramsey.
Furthermore, Ramsey graphs satisfy a similar property locally as well. Given a k-Ramsey graph, since it
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has no clique or independent set of size k, we know that any subset consisting of R(k,£)! vertices contains
both a clique and an independent set of size /.

The so called local-global principle, stating that one can obtain global understanding of a structure from
having a good understanding of its local properties, or vice versa, has been ubiquitous in many areas of
mathematics and beyond for many years [5, 18, 20, 26, 32]. Keeping this in mind the following problem
of Erdés and Hajnal [13] seems to be very relevant to understanding Ramsey graphs. Given a k (which
might be a function of n) and an n-vertex graph G they ask what is the smallest m for which any m vertex
subset of G contains both a clique and an independent set of size k7 We denote the answer by mg(k)
and say that a graph is (m, k)-locally Ramsey if m > mg(k). To see the relation to Ramsey graphs first
observe that being (m, 2)-locally Ramsey is equivalent to being m-Ramsey. Secondly, more interestingly if
we can find an n > 3m vertex (m, k 4+ 1)-locally Ramsey graph it can contain at most k — 1 vertex disjoint
cliques of size m/k, as otherwise they would give us a set of m vertices in which there is no independent
set of size k 4+ 1. The same clearly applies for independent sets. So if we remove a maximal collection of
such cliques and independent sets we are left with a graph on at least n/3 vertices which is m/k-Ramsey
in addition to still being (m, k + 1)-locally Ramsey.

This means that understanding the behaviour of mg(k) very well could lead us to better understanding
of Ramsey graphs, as well as interesting new examples of Ramsey graphs. Let us first consider what
happens with mg (k) for the random graph G ~ G(n,1/2). If k is small compared to n we have that
w.h.p. mg(k) = ©(klogn) (see Section 4) which as we will see, and as one might expect since for k = 2
this is the standard Ramsey problem, is actually smallest possible among all graphs. On the other hand
we also have by Erdés’s results [12] that mq(k) > 2%/2 so as k becomes larger than loglogn the bound
deteriorates quickly. For example, one needs at least /n size sets to guarantee to be able to find both
cliques and independent sets of size logn.

A natural question is whether one can do better. In fact, Erdés [13] singled out the case of k = logn
and asked if such graphs exist with mg(k) = (logn). If the answer were positive this would give rise to
(log n)2-Ramsey graphs which are very different than G(n, 1/2), since they would still be ((log n)3, log n)—
locally Ramsey which is very far from being true in the random graph. This question remains open.
However, the first and the third author [4] show that mg(logn) > Q((logn)3/loglogn), which perhaps
validates Erdés’ intuition behind asking the question with the parameters he chose. The authors in fact
essentially resolve an analogous local Turan type problem which they use to obtain the above-mentioned
bound. This problem, for various choices of parameters was also studied in [8, 13, 22, 23, 27].

On the other hand, in terms of upper bounds nothing better than the one mentioned above, coming from
random graphs, namely that there is a graph G for which mg(logn) < O(y/n), was known, leaving the
possibility that no significantly different Ramsey graphs arise this way. Perhaps surprisingly our main
result shows this is not the case, giving a twofold sub-polynomial improvement over the above bound.

Theorem 1. There exists an n-vertex graph G for which

(log log n)1/2+0(1)
ma(logn) < 22

As discussed above this gives rise to Ramsey graphs which, while being worse than the random graph, are
significantly better than the classical explicit construction of Frankl and Wilson [16] and even the recent
breakthrough explicit construction of Barak, Rao, Shaltiel and Wigderson [7]. While unfortunately our
construction does use randomness, it still gives rise to somewhat weaker Ramsey graphs which are very

os log n)1/2+0(1)
different from G(n,1/2) in the sense that they are <22(1 glosn) ,log n> -locally Ramsey.

'R(k,£) denotes the off-diagonal Ramsey number, defined as the minimum number of vertices in a graph needed to
guarantee there is either a clique of order k or an independent set of order ¢.
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So far we have restricted attention to the case of k = logn for simplicity and to allow for easier comparison
between results. We do find examples in the general case as well.

Theorem 2. For any n > 4 and k > logn there exists an n-vertexr graph G with

loglog mg (k) < 6\/log log nloglog k.

Finally, we prove a simple proposition which determines m,,(k), defined as the minimum of mg(k) over
all n vertex graphs G, up to a constant factor, provided k is small enough compared to n.

Proposition 3. Provided n is sufficiently large compared to k > 2 we have my, (k) = ©(klogn).

Notation. We denote by K}, the complete graph on k vertices and by I the independent set of k vertices.
We denote by w(G) the clique number of G. All our logarithms are in base 2. When saying a graph G is
(m,r)-locally Ramsey we do not require either m or r to be integers, we want that any set of at least m
vertices contains a clique and an independent set of size at least 7.

2 Locally Ramsey graphs and lexicographic products

We begin with a proposition which provides us with a starting point for our further constructions.

Proposition 4. For any n there exists an n-vertexr graph which is (2"+8 log n,r) -locally Ramsey for all
T.

Proof. Let us first fix an r > 2 and set m = [27”“8 log nw The chance that an m vertex induced subgraph

of G(n,1/2) does not contain K, (or I,) is equal to the chance that w(G(m,1/2)) < r. Using Janson’s

inequality (as in Section 10.3 in [3]) implies that this probability is at most e_ﬂuuijm where 1 = (7)2_(;)

and A = 2 - 3021 (1) (7)26) /(7). n our case A < p2(7) () (M) - 230000 2271 < 20204 fm2. Tt is

easy to check that u > m?/r* and hence p+A < 2A. Thus, 2(/1“7-*1) > g”Ti and therefore P(w(G(m,1/2)) <
2

r) < e T Finally, by a union bound, the probability that there exists a set of m vertices in G(m, 1/2)
which does not have K, or I, is at most
n . 26_;:% < 2em(logn—m/(8r4)) < 2e—mlogn/8 < i
m - - —n?
Here in the second to last inequality we used 2"+t% > 9r4. Now taking a union bound over all » < logn we
deduce that the desired graph exists. O

Note that in fact we proved that G(n,1/2) is (2T+8 log n, r)—locally Ramsey with high probability. This
bound can be slightly improved (see Section 4) but we would gain little in our applications since mg(r)
is going to “go within a log” so we chose for simplicity to show the above bound.

As already mentioned in the introduction, the random graph performs close to best possible when 7 is
very small. Our next construction already does much better when r > logn, it serves as a basis and an
illustration for our main construction presented in the following section.

Lemma 5. For any integer N > 4 there exists an N-vertex (m,r)-locally Ramsey graph for any m,r
(logm)?
29log N *

which satisfy logr <



Upon inverting we obtain a graph G for which mg(r) < 216v2loe Nlogr T particular, when » = log N this
is already significantly better compared to about v/ N in case of the random graph.

The example we use to prove the lemma is the lexicographic product of a random graph G(n,1/2) with
itself multiple times. The lexicographic product G x H of two graphs G and H is defined as the graph on
the vertex set V(G) x V(H) in which two vertices (v,u) and (z,y) are adjacent iff v ~g x or v = x and
u ~p y. We write G for the lexicographic product of G with itself ¢ times. The main property of the
lexicographic product which makes them natural candidates for our graphs is that clique and independence
numbers are multiplicative (see [17]). Let us give some intuition as to why this is useful. Let G ~ G(n,1/2)
and let us compare G* with the random graph on the same number of vertices G’ ~ G(nf,1/2). If we
take an induced subgraph H of G' on m vertices then H* gives us a subset of m! vertices of G* which by
the multiplicative property above contains both a clique and an independent set of size about (2logm)*.
On the other hand a subset of m! vertices of G’ w.h.p. does not have cliques (or independent sets) of
size 2log(m’) = 2¢logm. This means that, at least if we restrict our attention to subsets of G* arising
in this product fashion, G* is a much better (m,r)-locally Ramsey graph than G’ for most choices of the
parameters. Of course one may not just restrict attention to such sets. The following lemma allows one
to show that even in arbitrary subsets of G¥ it is possible to find big cliques (and independent sets).

The statement of the next lemma is somewhat technical, one of the reasons for this is that we want to
state it in a very general form since we want to use it twice with very different choices of parameters.
Second reason is that we believe it might be useful in improving other constructions people might come-up
with in the future, as well as possibly for other problems involving subgraphs of lexicographic products.

Let us sketch the proof idea. The lemma starts with a graph G on n vertices in which for some 2 <
rg < rg < ... < rr we know that any m; vertices contain both K,, and I, for all ¢t > 2. We now take
a subset S of GY in which we want to find a big clique (the argument for an independent set will be
analogous). For every vertex v € G we denote by S, the subset of S consisting of all elements having
v as their first coordinate. We then look at m; vertices with highest |S,|. For some ¢ all these vertices
need to actually have a reasonably large |S,|, say at least m/, as we know that > - [S,| = [S|. We now
use the information that any m; vertices in G have a clique of size 74, so in particular among our top
my vertices some r; make a clique, say 1,...,r;. Now for any two elements of S if their first coordinates
are adjacent in G then they are also adjacent in G¢. So if we look at the sets S;,i < 74 all the edges
between S; and S; for ¢ # j exist. In particular, if we find a clique in each of S; we may take a union
of these cliques to obtain a clique in S. Since all vertices in S; share the first vertex and |S;| > m/,
finding a clique reduces to finding a clique in a subset of size m’ of G*~! for which we may use induction.
For an example, if we work with the assumption that G is (2logn,2)-locally Ramsey, which we can get
from the random graph, then ro = 2, mo = 2logn and let |S| = m. We split in 2 cases, either some
vertex has |S,| > m/(4logn) or there are 2logn vertices which all have |S,| > m/(2n), since otherwise
S| = veq |Sul < (2logn) - m/(4logn) +n-m/(2n) = m. In the former case we take a vertex v with
|Sy| > m/(4logn) and look for a clique in S,. This reduces the task to looking for a clique in a subset
of size m/(4logn) of G*~' which we do by induction. In the latter case by our assumption on G' among
2logn vertices there must exist an edge vu of G. This means that we can find a clique of twice the size
we are guaranteed in a subset of size m/(2n) of G, which we once again do by induction. Optimising
the choice of parameters will already bring us close to the bound in Lemma 5.

It will be more convenient to work with the inverse of mge(r). So, let Sg(m,¢) denote the largest r such
that in any m-vertex subset of G* we can always find both K, and I,.

Lemma 6. Let G be an n-vertex graph. Suppose that for some 2 < ro < ... < 1 we know that



ma(re) < my, for 2 <t <k. Then

logm — £log(2my)

>
log f(m. () = loB(me1 /ma) 1

log r+

, (1)
o )

for any choice of myy1 > min(n,m) + 1.

Proof. First note that if for some ¢ < j we have m; > m; we may decrease m; to be equal to m;, since
r; < r; implies m; > mg(rj) > mq(r;) and doing this can only increase the target function. So we may
assume that m; is increasing.

We will prove the claim by induction on ¢ for every m satisfying min(n,m) + 1 < my41 (where we are
treating G, r;’s and m;’s as fixed parameters). For the base case of £ = 1 since G* = G we have m < n so
mi+1 > m~+ 1. We also have m > 2mgy as otherwise §(m,f) < 0 and the claim is trivial. So there exists
some 2 < t < k such that m; < m < my41. Since my > mg(ry) it is sufficient to show that Sg(m, 1) < ry.
This indeed holds since log m — log(2mg) < log my+1 — log ma = log(my41/ma).

Now assume ¢ > 2 and that the claim holds for £ — 1 and any m for which min(n,m) + 1 < my41. Let
S be a set of m vertices in G¢. For any vertex v € G let us denote by s(v) the number of elements in S
which have v as their first coordinate. Let us also set m; = mg(1) = 1 and r1 = 1 for convenience.

Claim. For some 1 <t <k there are m; vertices v € G with |S,| > m/(2'my11).

Proof. Let v1,...,vs be the vertices of G which have s(v;) > 0 ordered so that s(v;) is decreasing in
i. Note that s < min(|G|,|S]) < mip1 — 1. If s(vm,) > m/(2'myy1) for some i < k we may take
t = i and {v1,...,vm,} all have s(v;) > m/(2'mys1) so we are done. Hence, we may assume that

$(vm,) < m/(2'm;y1) for all i < k. But this implies that

s k mijp1—1 k k
1
|S|=ZS(U1;)=Z Z s( Z mip1 —my) -m/(2° mz+1)<m2—<m
i=1 i=1 j=m; i=1 i=1
which is a contradiction. O

Since my > mg(r;) among the m; vertices given by the claim there must be r; forming a K, in G. Let
us denote by Si,...,S5,, C S the sets of elements in S whose first coordinate is the i-th vertex of this
clique. By definition of the lexicographic product if 2 elements in S have adjacent first coordinates they
are adjacent in G* as well. This means that we can combine the cliques we find in each of S; into a single
clique in S. Furthermore, since all elements in S; have the same first coordinate we can delete their first
coordinate when looking for a clique, which leaves us with a subset of at least m’ = m/(2!m;y1) elements
of G*~! to which we can apply induction? to find a clique. This means we can find a clique in G* of size
at least ry - Bg(m’,£ — 1). Repeating the argument for independent sets we can find an independent set
of this size as well. Therefore:
/
log 5(m, £) > log (rt - B (m’,ﬁ — 1)) =logr: + logm” — (£ ;1) log(2m2)
_ Clogr 4 logm —log(2'my11) — £log(2ms) + log(2ms)
C

S logm — £log(2my)
- C

*Note that m’ < m so min(n,m’) < min(n,m) < mg41 — 1 as required by the assumption.
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where C' = C(ma,...,My1,72,...,Tk) = Juax (%%) and the last inequality follows since we
<t<

get an equality if £ = 1 and since C'logr; > logmy11 —logme + ¢ if ¢ > 2. As this is precisely the RHS of

(1) this completes the proof. O

Lemma 5 now follows as a corollary upon making the appropriate choice for the parameters.

Proof of Lemma 5. Let G be the n-vertex graph which is (2”8 logn, t)—locally Ramsey for all ¢ provided
by Proposition 4. This implies we can apply Lemma 6 with r; = ¢t and m; := 2*®logn > mg(t) for
2 <t < k < logn, where k is the largest integer such that my < n, and mpy; := 2¥9logn > n. The

lemma implies that
logm — floglogn — 114

log /BG’(m7€) > (2)

2logn/loglogn
since log my = 10 + log logn, log(m¢41/ma) =t — 1 and (2t — 1)/logt is increasing in t.

We claim that G with an appropriate choice of parameters n and ¢ (in terms of N and m) provides
us with the desired graph. Note that we may assume that m < N (as otherwise the claim is vacuous)
and that logm > 24,/2Tog N > 2%loglog N as otherwise the claimed bound holds trivially. Let n be the
smallest integer for which logn/loglogn > 32log N/logm and let ¢ := [logm/(32loglogn)]|. With this
choice of n and ¢ we get a graph on n® > N vertices, since

logm 32log Nloglogn

at >
08T = 32loglogn logm

log N.

Furthermore, by (2) any set of size m contains both cliques and independent sets of size at least 2 to the
power
logm — 12¢1loglogn - logm — 12 logm _ (logm)?
2logn/loglogn — 2-33log N/logm  33-8log N

where in the denominator we used that logn/loglogn < 33log N/ log m (which holds since log n/ loglogn
grows slower than n and log N/logm > 1) and in the numerator ¢ < logm/(16loglogn) (which holds
since logm/(32loglogn) > 1/2 and [z] < 2z for any x > 1/2). O

3 Locally Ramsey graphs and scrambling

It might be tempting to try to reiterate the argument used in the previous section by starting with our
better construction in place of the random graph. Notice however, that all our examples are in fact already
powers of the random graph so doing this would only provide us with higher powers of the random graph
which are already considered by our argument. This idea however has some merit when combined with a
further twist. If we start with a high power of the random graph it will be a much better (m,r)-locally
Ramsey than the random graph for some fixed value of r but perform comparatively poorly for small
values of r. If we now scramble this graph a little bit, in the sense that we flip every edge and non-edge
with some small probability this will improve the performance of our graph when r is small while only
slightly decreasing performance for larger r. Taking the lexicographic powers of this graph in place of the
random graph is how we obtain our improved construction.

Let us define the p-scramble G(G, p) of a graph G to be the graph obtained by independently removing
every edge of G and adding every non-edge of G with probability p. The following lemma makes formal
the above idea that by taking a p-scramble of an (m, r)-locally Ramsey graph G we obtain a graph which
is close to being as good a Ramsey graph as G(n,p), meaning it has no cliques or independent sets of
size about logn/p or in other words is (logn/p,2)-locally Ramsey but is in addition still close to being
(m, r)-locally Ramsey.



Lemma 7. If there exists an n-vertex (m,r)-locally Ramsey graph then there exists a graph which is both

(m, m) -locally Ramsey and (r/2,2)-locally Ramsey, provided r > 16logn.

Proof. Let G be an (m,r)-locally Ramsey graph on n vertices. Let G' ~ G(G, p) with p := 81(’% <1/2.

By an immediate coupling, the probability that G’ contains a K, /2 (or I, /2) is at most the probability

that G(n,1 — p) contains a K, . This probability is, by a union bound, at most ( /2)(1 - )(Tf) <

or/2logn—pr?/8 — p-r/2 < 1 since % = dlogn g4 @' contains neither K, 5 nor I,/5, or in other words is
(r/2,2)-locally Ramsey with probability more than 1/2.

Given a set of r vertices forming a clique in G the probability that in G’ this set still contains a clique
of size t is equal to the probability that G(r,1 — p) has a K;. Note that the expected number of missing
edges is pn = ()p = 4(r — 1)logn so by Chernoff’s inequality (see Appendix A of [3]) the probability
that there are more than 2p edges is at most e "3 If we have less edges then by Turan’s theorem

(see [3]) there is a clique of size at least 4u+r > 16rlogn+r > 1712gn

This means that with probability

1-— (:f)e_“/?’ >1- n"=5(=1) > 1/4 any clique of size r in G contains a clique of size at least in G.

l7logn

Repeating for the independent sets we conclude that G’ is (m )—locally Ramsey with probability

T
’ 171logn
at least 1/2. Therefore, with positive probability the desired graph exists. ]

to O (12%;) but not more (since w(G(r,1 —p)) = O (1057’)

w.h.p.) However, this improvement seems to be negligible in our applications so we opted for the above
simpler argument. The following lemma gives our main construction. We obtain it by starting with

Being more careful one can improve gmo— on

our construction from the previous section, scrambling it using Lemma 7 then taking an appropriate
lexicographic power using Lemma 6 and repeating with this new graph. The parameter ¢ will control the
number of iterations that we do. We also, for now, add an assumption that the clique/independent set
size r we are looking for is not too small.

Theorem 8. For any t > 2 there exists a (m,r)-locally Ramsey graph on N > 4 wvertices, provided
logm > t?(logr)*(log N)'/* and logr > tloglog N.

Proof. Let us define logm (N, r,t) := t*(logr)*(log N)'/*. We will prove by induction on t that for any
N >4 and logr > tloglog N there exists an (m(N,r,t),r)-locally Ramsey graph on N vertices. The base
case of induction for ¢t = 2 follows (with room to spare) from Lemma 5.

Let us take an (m/,r’)-locally Ramsey graph G on n > 4 vertices (with parameters 7/, n satisfying ' >
16logn, logr’ > tloglogn and n > 4, to be chosen later) given by the inductive assumption for some
t > 2, so with m’ := m(n,r’,t). Let G’ be the scrambled graph given by Lemma 7 applied to G. So in
particular G’ is (1//2, 2)-locally Ramsey and (m/, r”")-locally Ramsey where we write v/ := [r//(17logn)],
note that we are using r’ > 16logn so that the lemma applies.

We now take lexicographic products of G’. Lemma 6 allows us to use these locally Ramsey properties of
G’ to give bounds on the locally Ramsey properties of G’¢ which will be our actual example for iteration
t. So in particular we may apply Lemma 6 with ro = 2,mo =1'/2 > mq/(2);r3 = 1", mg =m’ > me (r")
and my4 = m + 1. The lemma implies

logm — Llogr’

log BG’ (m7£) > (3)

max (log m/, logm/logr)’

since log(2m//r") + 2 < logm/ (since r’ > 8) and log(2(m + 1)/r") + 3 < m (since ' > 16logn > 32).



We note that at this point what remains to be done is to choose the parameters and use (3) to show the
induction step holds. The rest of the proof is somewhat technical and it might help the reader to at first
ignore various constants and floors and ceils. Let us now choose all our parameters in terms of N, and
t. Let

2 logm log N
m:=m(N,r,t+1), logr = <1+t>logr, 0= {(t—i—l)logr’J and logn::[ / —‘

Our goal is to show that with this choice of parameters the RHS of (3) is at least log r. This would give
us a graph on n’ > N (by definition of n) vertices which is (m, r)-locally Ramsey so we obtain the desired
graph by taking a subgraph consisting of exactly IV vertices. We first show the following easy inequalities.

Claim. We have 16 <n < N, ¢ > 64 and logr’ > (1 + 1/t)(logr + log(17logn)).

Proof. Note that since logm = logm(N,r,t+1) = (t41)2¢+D (log )+ (log N)V/ D > (¢ 4-1)24+D Jog

so in particular ¥ = Bl > (64 1)2FD71/(1 4 2/t) > 64, which in twrn implies

(= L%J > 64. This together with N > 4 and the definition of n imply n < N. If m > N then

there are no subsets of size at least m in G’* so the induction step is vacuously true, therefore we may
assume m < N. Using this we get logn > logeN > logN'l(s;;) logr” (t+1)logr’ > 3, (where we used 7’ > 1
and ¢t > 2). This in particular implies that logn > 4 and logn < 4/3 -log N/¢ < log N/32 (using ¢ > 64).
This in turn implies logr’ = (14 2/t)logr > (14 1/t)logr + loglog N > (1 + 1/t)logr + log(17logn),
where we are using 1/t - logr > loglog N > log(32logn). O

This immediately implies the required inequalities on n,r’ and ¢, indeed ' > 17logn and n > 4 while
logr > (t + 1)loglog N implies logr’ > logr > (t 4+ 1) loglog N > tlogn.

Let us now turn to the main inequalities. Observe that

J— / —
logm — £logr - (logm IOgm/(t+1)>logr”2(

t+1

1
1——— ) (logr’ —log(171 >1 4
logm/log " logm > (logr’ —log(17logn)) > logr,  (4)

where in the last inequality we used the main inequality from the claim. This shows that one of the
two desired inequalities that we need to show to conclude that RHS of (3) is at least logr holds. The
second inequality we need is equivalent to logm — £logr’ > logm/logr and is implied by logm > (1 +
1/t)logm’logr (since £ < logm/((t + 1)log7r’)). Let us now show this inequality holds (recall that we
have chosen m' = m(n, 7’ t)):

(1+1/t)logrlogm’ = (14 1/t)logr - t*(logr')! (log n)*/*

log N L/t
logm

< (t 4 1)20H) (log )1t (log N)VE - (logm) 1/
< (logm)'™/*- (logm) /" = logm,

< (t+ 1)t logr - (logr' )Yt 2 <

!
%%N < 4(t+1§ igg:ﬂlog]\[ (following since n > 16 so logn > 4

and definitions of n and £) and (4(t + 1)/3)"/* < 2 (since t > 2). In the second inequality we used
log 7’ = (142/t)logr and (14 2/t)"F1/t < (141/t)20+F1/D < (141/t)%+1. The third inequality follows as
m =m(N,r,t+1) = (t+1)2ED (log )+ (log N)V/ D since (t 4+ 1+ 1/t)-t/(t+1) = t+1/(t+1) < t+1.
Together with (4) this shows that the RHS of (3) is at least log r completing the proof. O

where in the first inequality we used logn < 4l

We were relatively lax with various estimates in the argument above for the sake of simplifying the
inequalities as much as possible. For example, the optimal exponent of log 7 (which one may obtain using
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exact same parameters as we did above) is (¢t +1)/2 — 2/t. We also note that the assumption 7 > (logn)®
was also made for the sake of simplicity, since for smaller values of r the above argument would give
barely any improvement over just using the above bound with r = (logn)? and monotonicity of mg(r) in
r. Let us now optimise over ¢ and obtain Theorem 2 as a corollary. Recall the statement of Theorem 2.

Theorem 2. For any n > 4 and k > logn there exists an n-vertex graph G with

loglogmg(k) < 6\/1og log n loglog k.

Proof. If logN < k < (logN)! we use Theorem 8, with r = (logN)! to obtain a graph G with
logma(k) < logma((logN)t) < t3(loglog N)*(log N)Y/t < t3(log k)*(log N)Y/t. If k > (log N)* we
may use Theorem 8 directly with » = k to conclude that for any k > log IV there is a graph G with
log mg (k) < t3(log k)t (log N)V/t.

log log N
loglog k

the claim vacuous. Hence the above inequality gives us

We now choose t = L J If t < 2 we obtain that the desired inequality requires m > N making

1 1
loglogmg(k) < 3tlogt + tloglogk + 7 loglog N < 4tloglogk + 7 loglog N < 6\/10glogNloglogk:

where we used t < loglog N <logk and t > 2. O

Theorem 1 follows by simply plugging in k¥ = log N in Theorem 2.

Remark. By following the argument used in Proposition 4 it is not hard to show that G(n,p) is w.h.p.
((1/19)”+8 logn, r)—locally Ramsey for all r, assuming p < 1/2. Using this in Lemma 7 would give us a
graph which is ((1 /p)"8logn, r)—locally Ramsey for all 7 in addition to being (m, %)—locaﬂy Ramsey,
provided 1/p > r/(8logn). We can then use this extra information for small values of r similarly as we did
in the proof of Lemma 5 to obtain an improvement in (3). Ultimately, this would lead to an improvement

in Theorem 8 in which we divide by roughly a (loglog N )(t_?’)/ 2 factor which would only slightly improve
the o(1) term in Theorem 1.

4 Small cliques and independent sets

In this section we show Proposition 3. We begin with the lower bound.

Proposition 9. Provided n > 4rlogn and r > 2 we have my(r) > (0.5 + o(1))rlogn.

Proof. Let us start with the lower bound. Given an n-vertex graph G, by the standard bound on Ramsey
numbers (see e.g. [14]), G must contain a clique or an independent set of size at least 0.5logn. If we
remove this set and repeat 2r — 3 times we get either r — 1 vertex disjoint cliques or r — 1 vertex disjoint
independent sets of size at least 0.5log(n/2) as at each step we are left with at least n — 2rlogn > n/2
vertices. The union of these sets give us a set of (0.5 4+ o(1))rlogn vertices in which we can not find a
clique (if the sets were independent) or an independent set (if the sets were cliques) of size r. This shows
that ma(r) > (0.5 + o(1))rlogn. O

Remark. The above bound applies for essentially the whole range but is beaten by the approach in [4]
as soon as r is bigger loglogn. They show that provided there is an I,. in every subset of size s then one
can find an independent set of size Q(rlog(n/s)/log(s/r)). Using this for our graphs and finding r copies
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of this big independent set as in the proof above would show m,,(r) > Q(r?logn/loglogn), provided r is
at most polylogarithmic in n which beats the bound in Proposition 9 when r > loglogn.

Let us now turn to the upper bound. Perhaps not too surprisingly since we are working with “small”
values of r the example is the random graph G ~ G(n,1/2). Since n is much bigger than r the argument
we used to prove Proposition 4, even when done more carefully, would only give us mg(r) < O(r*logn)
so we make use of a slightly different approach.

Proposition 10. Provided n is sufficiently large compared to r we have for G ~ G(n,1/2) that w.h.p.
ma(r) = O(rlogn).

Proof. The lower bound follows from the previous proposition. So we focus on the upper bound. It is
well-known (see [21]) that almost all graphs without K, are r — 1 colourable. Hence, provided m — oo
as n — 0o we have P(w(G(m,1/2)) < 7) < (1+0(1)P(x(G(m,1/2)) < ) < (1 + o(1))rm2-1+e())m?/(2r)
Here, the last inequality follows since there are (r — 1)™ many ways to assign r — 1 colours to m vertices
and given a colouring there are at least (r — 1)(m/ (5—1)) > (1+ o(1))m?/(2r) pairs of vertices assigned
the same colour which are not allowed to appear as edges. The same estimate holds for the probability
that a graph on m vertices contains no independent set of size r. Thus in G the expected number of sets
of size m which contain no clique of size r or no independent set of size r is at most

n 2
. 9(1 1 m2—(1+0(1))m /(2r)
(1) 20+ otwr
which tends to 0 for m = (2 + o(1))r logn, completing the proof. O

The fact that almost all m-vertex K,-free graphs are r — 1 colourable has recently been shown to be true
for r up to logm/(10loglogm) in [6]. Since our sets have size m which is roughly rlog n this means that
n sufficiently large in the above result may be replaced with r < O(loglogn/logloglogn).

5 Concluding remarks

In this paper we study the function me(r) with particular interest in how small it can be. The function
my(r) defined as the minimum of me(r) over all n-vertex graphs G was introduced by Erdés and Hajnal
almost 30 years ago. Combined with the lower bound obtained in [4] we obtain

(logn)®

loglogn 1/2+0(1)
< 22( g log 1) )
].Og logn

< my(logn)

In general it would be very interesting to get better bounds on m,,(logn) and in particular answer Erdds’
question of whether m,(logn) > (logn)3. In fact, the authors suspect that m,(logn) may be bigger
than any fixed power of logn. Our initial examples in Section 2 are essentially the classical examples
of explicit Ramsey graphs due to Naor [28], following-up on the idea of using lexicographic products to
build Ramsey graphs due to Abbott [1]. There has recently been some major progress on finding better
explicit Ramsey examples [7, 9, 10]. It would be interesting to see if one can combine these graphs with
our ideas to improve our upper bound.

Another possibly interesting perspective arises if we consider a colouring restatement of our problem.
Note that m,(r) — 1 may be defined as the largest number m such that in any 2-colouring of K,, we can
find m-vertices not containing a monochromatic K, in one of the colours. With this in mind one can
define the m-local Ramsey number LR,,(G) of a graph G as the smallest n for which in any 2-colouring
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of K, there are m vertices not containing a monochromatic copy of G in one of the colours. For example
if m is sufficiently larger than r Proposition 3 implies that LR,,(K,) = 20(m/7)  Natural generalisations
to more colours or asymmetric graphs might hold some interest as well.

Acknowledgements. We would like to thank David Conlon for useful conversations and remarks and
anonymous referees for their comments.
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