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ABSTRACT

Motivated by image recovery in magnetic resonance imaging

(MRI), we propose a new approach to solving linear inverse

problems based on iteratively calling a deep neural-network,

sometimes referred to as plug-and-play recovery. Our ap-

proach is based on the vector approximate message passing

(VAMP) algorithm, which is known for mean-squared error

(MSE)-optimal recovery under certain conditions. The for-

ward operator in MRI, however, does not satisfy these con-

ditions, and thus we design new damping and initialization

schemes to help VAMP. The resulting DD-VAMP++ algo-

rithm is shown to outperform existing algorithms in conver-

gence speed and accuracy when recovering images from the

fastMRI database for the practical case of Cartesian sampling.

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a non-invasive diag-

nostic tool that provides excellent soft-tissue contrast without

the use of ionizing radiation. The primary drawback of MRI

is that the data acquisition process is inherently slow. Be-

cause the scan time scales with the number of measurements,

there is a motivation to collect as few measurements as pos-

sible while still providing accurate image recovery. Although

our work focuses on MRI, it has applicability to other inverse

problems where the goal is to recover a richly structured sig-

nal from undersampled Fourier measurements.

In MRI, the Fourier-domain (or “k space”) measurements

y ∈ C
M can be modeled as

y = Ax0 +w with A = MF , (1)

where x0 ∈ C
N is the rasterized N -pixel image that we aim

to recover, F ∈ C
N×N is the unitary 2D discrete Fourier

transform (DFT) matrix, M ∈ C
M×N is a sampling mask

(containing rows of the identity matrix I ∈ R
N×N ), and w ∼

N (0, I/γw) is circularly symmetric additive white Gaussian

noise (AWGN) of precision γw (i.e., variance 1/γw). Typical

sampling masks are illustrated in Fig. 1. The ratio of pixels
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Fig. 1: Typical sampling masks for acceleration R = 4

to measurements, R , N/M , is known as the “acceleration

rate.” When R > 1, there are many x that lead to the same y,

and so it is essential to use prior knowledge of x in recovery.

Many methods have been proposed for MRI image re-

covery. As we describe in the next section, the classical ap-

proach is based on iterative optimization [1, 2]. Recently, it

has been proposed to train deep neural networks (DNNs) to

directly map compressed measurements y to image estimates

x̂, e.g., [3, 4]. Although such DNNs are capable of excel-

lent performance, training them requires huge fully-sampled

k-space datasets (which may be difficult or impossible to ob-

tain) and their performance can be degraded by changes in the

sampling mask M between training and testing [5].

For these reasons, we focus on a hybrid approach where

a DNN is iteratively called for image denoising. The DNN

denoiser can be trained using relatively few images (via

patches); no k-space data are needed. Furthermore, the train-

ing of the denoiser is divorced from the sampling mask. This

hybrid approach is often referred to as “plug-and-play” recov-

ery [5,6]. Our approach is based on the vector AMP (VAMP)

algorithm with two enhancements that lead to significant im-

provements in MRI image recovery: novel initialization and

damping schemes. Experiments with fastMRI [4] knee im-

ages show advantages over existing plug-and-play approaches

to MRI image recovery in speed and accuracy.

2. BACKGROUND

2.1. Optimization-based methods

The conventional approach to MRI image recovery [1,2] is to

pose and solve an optimization problem of the form

x̂ = argmin
x

{
γw

2 ‖y −Ax‖2 + φ(x)
}
, (2)
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where the regularizer φ : C
N → R+ aims to penalize x

that are not valid images. It is common to choose φ(x) =
λ‖Ψx‖1 with a suitable (e.g., wavelet) transform Ψ and care-

fully chosen λ > 0. In this case, the regularization encour-

ages sparsity in the wavelet coefficients Ψx.

Many algorithms have been designed to solve optimiza-

tion problems of the form (2) with convex φ(·) [2]. A fa-

mous one is the alternating directions method of multipliers

(ADMM) [7], which for (2) iterates

xt+1 = argmin
x

{
γw

2 ‖y −Ax‖2 + γ
2 ‖x− vt + ut‖2

}
(3a)

vt+1 = proxγ−1φ(x
t+1 + ut) (3b)

ut+1 = ut +
(
xt+1 − vt+1

)
, (3c)

for t = 0, 1, 2, . . . , starting from v0 = 0 = u0, where

proxρ(r) , argmin
x

{
ρ(x) + 1

2‖x− r‖2
}
. (4)

In (3), γ > 0 is a tunable stepsize that affects the speed of

ADMM’s convergence but not its fixed point.

2.2. Plug-and-play methods

It can be useful to interpret the optimization (2) as maximum

a posteriori (MAP) estimation of x. This can be seen using

Bayes rule, p(x|y) = p(y|x)p(x)/p(y), as follows,

x̂MAP , argmax
x

p(x|y) (5)

= argmin
x

{
− ln p(y|x)− ln p(x)

}
, (6)

and confirming that (6) matches (2) under the prior p(x) ∝
e−φ(x) and likelihood p(y|x) = N (y;Ax, I/γw). Simi-

larly, ADMM’s prox step (3b) can be interpreted as MAP de-

noising, i.e., MAP estimation of x ∼ p(x) ∝ e−φ(x) from the

noise-corrupted measurement r=x+w with w∼N (0, I/γ).
Leveraging this MAP denoising interpretation, Bouman et

al. [6] proposed to replace proxγ−1φ in line (3b) with a call to

a black-box image denoiser f : CN → C
N like BM3D [8] or

DnCNN [9], and coined the approach “plug-and-play” (PnP)

ADMM. In MRI, PnP methods tend to significantly outper-

form [5] the conventional optimization approach (2) to image

recovery. Note, however, that when (3b) is replaced with a

denoising step of the form vt+1 = f(xt+1+ut), the stepsize

γ does affect the fixed-point and thus must be tuned.

2.3. Approximate message passing

Approximate message passing (AMP) [10] is another iterative

approach to computing the solution of (2) or (6), i.e., the MAP

estimate of x from y. But it can also [11] be used to approx-

imate x̂MMSE , E{x |y}, the minimum mean-squared error

(MMSE) estimate of x from y. In general, AMP iterates

vt+1 = β ·
(
y −Axt + 1

M
vt tr{∇f t(xt−1+AHvt)}

)
(7a)

τ t+1 = 1
M
‖vt+1‖2 (7b)

xt+1 = f t+1(xt +AHvt+1) (7c)

over t = 0, 1, 2, . . . , starting from v0 = 0 = x0, where

f t(·) is a Lipschitz denoising function, tr{∇f t(r)} is the

trace of the Jacobian of f t at r, and β = N/‖A‖2F . When

configured for MAP estimation, AMP uses the MAP denoiser

f t
MAP(r) = proxτtφ(r). When configured for MMSE esti-

mation, AMP instead uses the MMSE denoiser f t
MMSE(r) =

E{x | r} for r = x+w with w ∼ N (0, τ tI).
When the forward operator A is large and i.i.d. sub-

Gaussian, the macroscopic behavior of AMP is rigorously

characterized by a scalar state-evolution for any Lipschitz

f t [12, 13]. When f t is the MMSE denoiser and the state-

evolution has a unique fixed point, AMP provably converges

to the MMSE-optimal estimate x̂MMSE [12, 13]. Although

an exact MMSE denoiser for images is unknown, one could

instead use a black-box approximation (like BM3D) within

AMP, as proposed in [14] and called “denoising-AMP” (D-

AMP). In that setting, the Jacobian term in (7a) is typically

approximated using the approach from [15],

tr{∇f t(r)} ≈ ǫ−1qH
[
f t(r + ǫq)− f t(r)

]
, (8)

for random q ∼ N (0, I) and small positive ǫ.
For AMP to behave as expected, the forward operator A

should resemble a typical realization of a large, i.i.d. sub-

Gaussian matrix. To expand the applicability of AMP, a varia-

tion called “vector AMP (VAMP)” was proposed [16]. VAMP

has essentially the same desirable properties of AMP (e.g.,

rigorous state evolution and provable MMSE denoising) but

they hold for a much larger class of random matrices: right or-

thogonally invariant (ROI) ones [16, 17]. An ROI matrix has

a singular value decomposition of the form USV H, where U

is unitary, S is diagonal, and V is Haar (i.e., uniformly dis-

tributed over the set of unitary matrices). A denoising VAMP

(D-VAMP) was proposed in [18] that uses a black-box image

denoiser f t together with the Jacobian approximation (8).

2.4. AMP for MRI

While the PnP-ADMM algorithm requires manual tuning of

both the ADMM parameter γ and the noise variance assumed

by the denoiser f , the AMP algorithm (7) is self-tuning; it es-

timates the denoiser-input variance τ t at each iteration t. This

motivates the application of AMP to MRI image recovery.

Unfortunately, neither AMP nor VAMP works as ex-

pected in MRI because A in (1) is neither i.i.d. nor ROI.

In fact, MRI applications of AMP or VAMP often diverge.

For this reason, several MRI-specific variations of AMP have

been proposed. For example, [19] used D-AMP with β = 1
instead of the default value β = N/‖A‖2F = N/M , which

acts to slow down the algorithm to help convergence but

degrades the fixed points. A refinement based on a matrix-

valued β was proposed in [20]. In [21], a hybrid between

AMP and VAMP was proposed for the special case of point

sampling (recall Fig. 1), called variable density (VD)-AMP.

We numerically investigate these approaches in the sequel.
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3. PROPOSED APPROACH

3.1. Damped Denoising VAMP

The proposed damped D-VAMP (DD-VAMP) algorithm is

summarized in Alg. 1. Note that, in the absence of damping

(i.e., θ=1= ζt), DD-VAMP reduces to D-VAMP from [18].

An explanation of each step is now provided.

Line 3 of Alg. 1 computes the MMSE/MAP estimate of

x under the likelihood function N (y;Ax, I/γw) and the

pseudo-prior x ∼ N (x; rt2, I/γ
t
2) via

g(r; γ) , argmin
x

{
γw

2 ‖y −Ax‖2 + γ
2 ‖x− r‖2

}
(9)

= F H(γwM
TM + γI)−1(γFr + γwM

Ty), (10)

where (9) holds for general A and (10) holds under (1). Be-

cause M is a masking matrix, the computational complexity

of (10) is dominated by two FFTs. Line 4 computes the sen-

sitivity of this linear estimator g as

tr{∇g(r; γ)}/N = γ tr{(γwA
HA+ γI)−1}/N (11)

=
(
(1− M

N
)γw + γ

)
/
(
γw + γ

)
, (12)

where (11) holds for general A and (12) holds under (1).

Lines 5–6 perform “Onsager cancellation,” which produces

the (rt1, γ
t
1) passed on to the denoising stage. If f t is Lips-

chitz and A is large and ROI, then these latter terms obey the

statistical model rt1 = x0 +N (0, I/γt
1) [17].

Lines 8–12 of Alg. 1 comprise the denoising stage,

which calls the denoiser f t and approximates its sensitiv-

ity tr{∇f t(rt1)}/N in a manner similar to D-AMP (see (8)).

Note that the denoiser can leverage knowledge of the noise

variance τ t = 1/γt
1. Lines 11–12 perform Onsager cancella-

tion, producing (rt+1
2 , γt+1

2 ) for use by the linear stage.

Before (rt+1
2 , γt+1

2 ) are passed on, however, they are

damped in lines 15–16 using the damping factor ζt ∈ (0, 1]
chosen in line 14; with ζt = 1 there would be no damping,

and as ζt decreases there would be more damping. A similar

form of damping is performed on αt
1 in line 10 using the

factor θ. Intuitively, the goal of damping is to slow down

VAMP without changing its fixed points. The rt2-damping in

line 15 was shown to be sufficient to ensure the convergence

of a double-loop version of VAMP in the strongly convex

scenario [22]. But additional damping of γt
2 and αt

1 is needed

to stabilize D-VAMP for MRI image recovery.

Although γi-damping was suggested in [16, eq.(27)], the

approach here is different in that damped quantities are first

converted to amplitudes. That is, for a variance term like α1

we damp the square-root, and for a precision term like γ2 we

damp the inverse square root. The α1-damping is new and

motivated by the fact that the Jacobian approximation in line 9

can be very “noisy,” especially in the first iterations. Although

it could be improved using more averaging, i.e.,

tr{∇f(r)} ≈ 1
K

∑K

k=1 ǫ
−1qH

k

[
f(r + ǫqk)− f(r)

]
, (13)

Algorithm 1 Damped Denoising-VAMP (DD-VAMP)

Require: r02 ∈ C
N , γ0

2 > 0, θ ∈ (0, 1], q ∼ N (0, I)
1: for t = 0, . . . , Tmax do

2: Linear Stage:

3: xt
2 = g(rt2; γ

t
2)

4: αt
2 = tr{∇g(rt2; γ

t
2)}/N

5: rt1 = (xt
2 − αt

2r
t
2)/(1− αt

2)
6: γt

1 = γt
2(1− αt

2)/α
t
2

7: Denoising:

8: xt
1 = f t(rt1)

9: αt
1 = ǫ−1qH

[
f t(rt1 + ǫq)− f t(rt1)

]

10: αt
1 = {θ(αt

1)
1

2 + (1− θ)(αt−1
1 )

1

2 }2 (damping)

11: rt+1
2 = (xt

1 − αt
1r

t
1)/(1− αt

1)
12: γt+1

2 = γt
1(1− αt

1)/α
t
1

13: Damping:

14: Choose damping factor ζt ∈ (0, 1]
15: rt+1

2 = ζtrt+1
2 + (1− ζt)rt2

16: γt+1
2 = {ζt(γt+1

2 )−
1

2 + (1− ζt)(γt
2)

−
1

2 }−2

17: end for

with i.i.d. {qk}
K
k=1 and large K, this would require K+1

denoiser-calls per VAMP iteration and thus be too expensive.

There are several ways to choose the damping factor ζt in

line 14. One is to use the rule

ζt =
2

1 +max{γt
1/γ

t+1
2 , γt+1

2 /γt
1}

= 2min{αt
1, α

t
2}, (14)

which is sufficient in the double-loop strongly convex sce-

nario [22]. Another is to chose some fixed ζt=ζ for all t.

3.2. ADMM-PR and DD-VAMP++

Empirically, we find that DD-VAMP converges to fixed points

that are similar or better than those of PnP-ADMM. However,

we find that it can converge somewhat slowly as a result of

damping. To circumvent this issue, we propose a carefully

initialized version called “DD-VAMP++.” The challenge with

initializing DD-VAMP, i.e., choosing (r02 , γ
0
2), is that the two

values must be consistent. That is, if r02 is very good (i.e., ≈
x0) but γ0

2 is not matched to r02 , then DD-VAMP will initially

move rt2 away from r02 while adjusting γt
2, and finally return

rt2 to the neighborhood of r02 .

The proposed initialization approach exploits the fact that

VAMP is closely related to the Peaceman-Rachford (PR) vari-

ant [23] of ADMM, which is the iteration (3) with an addi-

tional u-update of the form (3c) between (3a) and (3b). In

particular, when VAMP is run with fixed γ1 = γ2 = γ for all

iterations t, it reduces to ADMM-PR [22].

For DD-VAMP++, we first run PnP-ADMM-PR for Tswi

iterations, starting from u0 = 0 = v0 and a well-chosen

value of γ, and then switch to DD-VAMP, simply by allow-

ing the values of γ1 and γ2 to update according to Alg. 1.
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DD-VAMP++’s two adjustable parameters, Tswi and γ, can

be tuned using training data, as described in the next section.

4. NUMERICAL EXPERIMENTS

We now present numerical experiments that compare the pro-

posed DD-VAMP and DD-VAMP++ algorithms to the exist-

ing PnP-ADMM [6], VD-AMP [21], and BM3D-AMP-MRI

[19] algorithms for MRI image recovery. For completeness,

we also test the PnP-ADMM-PR algorithm, which is run dur-

ing the initialization phase of DD-VAMP++.

For the DD-VAMP, DD-VAMP++, PnP-ADMM, and

PnP-ADMM-PR algorithms, we used the DNN-based de-

noiser DnCNN [9]. (The BM3D denoiser [8] yields similar

image quality but runs significantly slower.) Our D-VAMP

algorithms used the DnCNN implementation in the D-AMP

toolbox https://github.com/ricedsp/D-AMP Toolbox,

which calls an instance of DnCNN trained with a noise vari-

ance close to the requested one, τ t = 1/γt
1. VD-AMP

and BM3D-AMP-MRI were both implemented using the

respective groups’ code. To denoise, VD-AMP uses SURE-

tuned wavelet thresholding while BM3D-AMP-MRI uses a

modified BM3D. All experiments used mid-slice, non-fat-

suppressed, 128×128 knee images from fastMRI [4]. We

focused on the Cartesian mask (see Fig. 1) at acceleration

R = N/M = 4. The variance of the AWGN w in (1) was

adjusted to achieve an SNR, ‖Ax‖2/‖w‖2, of 40 dB.

The PnP-ADMM, PnP-ADMM-PR, DD-VAMP, and DD-

VAMP++ algorithms (all initialized at zero) have tuning pa-

rameters that must be optimized for best performance. For

PnP-ADMM and PnP-ADMM-PR we tuned γ in (3), for DD-

VAMP we tuned γ0
2 , and for DD-VAMP++ we tuned γ and

the switching time Tswi. In all cases, these parameters were

tuned over a grid using the following procedure. For each hy-

pothesized value, the algorithm was used to recover 30 train-

ing images, the recovery-NMSE was averaged over iterations

Tmeas = 35 to Tmax = 150, and the median was taken over the

training images (to reduce the effect of outlier images). Fi-

nally, the parameter value that minimized the median NMSE

was selected.

Figure 2 shows NMSE , ‖x̂ − x0‖2/‖x0‖2 versus

iteration with a Cartesian mask, which is the mask most

commonly used in clinical practice. The top subplot shows

median NMSE over the 30 training images for the tuned

version of each algorithm. There, DD-VAMP++ converged

fastest and to the best NMSE. DD-VAMP achieved the 2nd-

best NMSE at 150 iterations, but converged slowly. The two

versions of PnP-ADMM showed similar behavior, although

PnP-ADMM-PR was less smooth and its final NMSE was

slightly worse. The bottom subplot of Fig. 2 shows median

NMSE over the 19 remaining fastMRI mid-slice non-fat-

suppressed images, which were used as a test set. Here

too, we see that DD-VAMP++ converged fastest to the best

NMSE, with PnP-ADMM and PnP-ADMM-PR close behind.

0 50 100 150
10

-3

10
-2

10
-1

PnP-ADMM

PnP-ADMM-PR

DD-VAMP++

DD-VAMP

0 50 100 150
10

-3

10
-2

10
-1

PnP-ADMM

PnP-ADMM-PR

DD-VAMP++

DD-VAMP

VD-AMP

BM3D-AMP-MRI

iteration

iteration

median NMSE on training set

median NMSE on test set

N
M

S
E

N
M

S
E

Fig. 2: Image recovery NMSE versus iteration.

original ADMM: -24.443, 0.928 ADMM-PR: -24.694, 0.927

BM3D-AMP-MRI: -19.263, 0.857 DD-VAMP: -25.097, 0.936 DD-VAMP++: -25.475, 0.939

Fig. 3: Image recovered after 150 iterations. Subplot titles

identify algorithm, NMSE (dB), and SSIM.

After 150 iterations, DD-VAMP is still converging to what

seems to be an excellent terminal NMSE. BM3D-AMP-MRI

converged to a significantly worse NMSE; we conjecture that

this was due to its heuristic β modification and the mismatch

between Cartesian-masked A and typical i.i.d. sub-Gaussian

matrices. Finally, VD-AMP (which was designed specifically

for point masks) diverged; it is apparently not compatible

with Cartesian masks. In experiments that we conducted with

point masks (not shown here for reasons of space), VD-AMP

converged very quickly to an NMSE >10 dB worse than DD-

VAMP++ and PnP-ADMM, but consistent with the results

in [21]. Evidently, VD-AMP’s wavelet-thresholding denoiser

is no match for BM3D or DnCNN.

Figure 3 shows example image recoveries after 150 it-

erations, along with NMSE (dB) and SSIM values. DD-

VAMP++ achieved the best recovery in NMSE and SSIM.
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“Approximate message passing with a colored aliasing

model for variable density Fourier sampled images,”

arXiv:2003.02701, 2020.

[22] A. K. Fletcher, M. Sahraee-Ardakan, S. Rangan,

and P. Schniter, “Expectation consistent approxi-

mate inference: Generalizations and convergence,”

arXiv:1602.07795, Feb. 2016.

[23] D. Gabay, “Applications of the method of multipliers

to variational inequalities,” in Augmented Lagrangian

Methods: Applications to the Numerical Solution of

Boundary-Value Problems, M. Fortin and R. Glowinski,

Eds. Elsevier, 1983, pp. 299–331.

8112

Authorized licensed use limited to: The Ohio State University. Downloaded on July 06,2022 at 19:29:44 UTC from IEEE Xplore.  Restrictions apply. 


		2021-04-30T23:50:30-0400
	Preflight Ticket Signature




