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ABSTRACT

Motivated by image recovery in magnetic resonance imaging
(MRI), we propose a new approach to solving linear inverse
problems based on iteratively calling a deep neural-network,
sometimes referred to as plug-and-play recovery. Our ap-
proach is based on the vector approximate message passing
(VAMP) algorithm, which is known for mean-squared error
(MSE)-optimal recovery under certain conditions. The for-
ward operator in MRI, however, does not satisfy these con-
ditions, and thus we design new damping and initialization
schemes to help VAMP. The resulting DD-VAMP++ algo-
rithm is shown to outperform existing algorithms in conver-
gence speed and accuracy when recovering images from the
fastMRI database for the practical case of Cartesian sampling.

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a non-invasive diag-
nostic tool that provides excellent soft-tissue contrast without
the use of ionizing radiation. The primary drawback of MRI
is that the data acquisition process is inherently slow. Be-
cause the scan time scales with the number of measurements,
there is a motivation to collect as few measurements as pos-
sible while still providing accurate image recovery. Although
our work focuses on MRI, it has applicability to other inverse
problems where the goal is to recover a richly structured sig-
nal from undersampled Fourier measurements.

In MRI, the Fourier-domain (or “k space’”) measurements
y € CM can be modeled as

where @y € C¥ is the rasterized N-pixel image that we aim
to recover, F € CN*N ig the unitary 2D discrete Fourier
transform (DFT) matrix, M € CM*N is a sampling mask
(containing rows of the identity matrix I € RY*N) and w ~
N (0, I/~,) is circularly symmetric additive white Gaussian
noise (AWGN) of precision 7,, (i.e., variance 1/7,,). Typical
sampling masks are illustrated in Fig. 1. The ratio of pixels
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Fig. 1: Typical sampling masks for acceleration R = 4

to measurements, B £ N /M, is known as the “acceleration
rate.” When R > 1, there are many « that lead to the same y,
and so it is essential to use prior knowledge of x in recovery.

Many methods have been proposed for MRI image re-
covery. As we describe in the next section, the classical ap-
proach is based on iterative optimization [1,2]. Recently, it
has been proposed to train deep neural networks (DNNs) to
directly map compressed measurements y to image estimates
Z, e.g., [3,4]. Although such DNNs are capable of excel-
lent performance, training them requires huge fully-sampled
k-space datasets (which may be difficult or impossible to ob-
tain) and their performance can be degraded by changes in the
sampling mask M between training and testing [5].

For these reasons, we focus on a hybrid approach where
a DNN is iteratively called for image denoising. The DNN
denoiser can be trained using relatively few images (via
patches); no k-space data are needed. Furthermore, the train-
ing of the denoiser is divorced from the sampling mask. This
hybrid approach is often referred to as “plug-and-play” recov-
ery [5,6]. Our approach is based on the vector AMP (VAMP)
algorithm with two enhancements that lead to significant im-
provements in MRI image recovery: novel initialization and
damping schemes. Experiments with fastMRI [4] knee im-
ages show advantages over existing plug-and-play approaches
to MRI image recovery in speed and accuracy.

2. BACKGROUND

2.1. Optimization-based methods

The conventional approach to MRI image recovery [1,2] is to
pose and solve an optimization problem of the form

ly — Az|* + ¢(x) }, )

T = argmin { L
x
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where the regularizer ¢ : CN¥ — R, aims to penalize x
that are not valid images. It is common to choose ¢(x) =
M| x|, with a suitable (e.g., wavelet) transform ¥ and care-
fully chosen A > 0. In this case, the regularization encour-
ages sparsity in the wavelet coefficients Wzx.

Many algorithms have been designed to solve optimiza-
tion problems of the form (2) with convex ¢(-) [2]. A fa-
mous one is the alternating directions method of multipliers
(ADMM) [7], which for (2) iterates

it — arg%n{% y — Ax|® + Z|o — o' + |2} Ba)
v = prox, 1, (2 + ) (3b)
wttl =t 4 (xt—i-l _ ,Ut+1) ’ (3¢)
fort =0,1,2,..., starting from v° = 0 = u”, where

prox, (r) £ argmin {p(x) + 3l —r|*}. @)

In (3), v > 0 is a tunable stepsize that affects the speed of
ADMM’s convergence but not its fixed point.

2.2. Plug-and-play methods

It can be useful to interpret the optimization (2) as maximum
a posteriori (MAP) estimation of @. This can be seen using

Bayes rule, p(x|y) = p(y|z)p(x)/p(y), as follows,
Tyap = arg m3XP($|y) ®)
= arg mgjn { —Inp(ylz) — lnp(a:)}, 6)

and confirming that (6) matches (2) under the prior p(x)
e~?®) and likelihood p(y|x) = N(y; Az, I/v,). Simi-
larly, ADMM’s prox step (3b) can be interpreted as MAP de-
noising, i.e., MAP estimation of & ~ p(x) oc e~?(*) from the
noise-corrupted measurement r = z+w with w~N (0, /7).

Leveraging this MAP denoising interpretation, Bouman et
al. [6] proposed to replace ProX. -1, in line (3b) with a call to
a black-box image denoiser f : CN — C¥ like BM3D [8] or
DnCNN [9], and coined the approach “plug-and-play” (PnP)
ADMM. In MRI, PnP methods tend to significantly outper-
form [5] the conventional optimization approach (2) to image
recovery. Note, however, that when (3b) is replaced with a
denoising step of the form v'*1 = f(x!*!+ul), the stepsize
v does affect the fixed-point and thus must be tuned.

2.3. Approximate message passing

Approximate message passing (AMP) [10] is another iterative
approach to computing the solution of (2) or (6), i.e., the MAP
estimate of o from y. But it can also [11] be used to approx-
imate Zymse = E{x |y}, the minimum mean-squared error
(MMSE) estimate of « from y. In general, AMP iterates

ot = 5. (y_Awt+ ﬁvttr{vft(wt—l_’_AHvt)}) (7a)

overt = 0,1,2,..., starting from v® = 0 = x°, where
fi(-) is a Lipschitz denoising function, tr{V f(r)} is the
trace of the Jacobian of f* atr, and 3 = N/| A||%. When
configured for MAP estimation, AMP uses the MAP denoiser
Jiap(r) = prox .4(r). When configured for MMSE esti-
mation, AMP instead uses the MMSE denoiser fiyse () =
E{z |7} forr = & + w with w ~ N(0,7'I).

When the forward operator A is large and i.i.d. sub-
Gaussian, the macroscopic behavior of AMP is rigorously
characterized by a scalar state-evolution for any Lipschitz
ft[12,13]. When f! is the MMSE denoiser and the state-
evolution has a unique fixed point, AMP provably converges
to the MMSE-optimal estimate Zyysg [12, 13].  Although
an exact MMSE denoiser for images is unknown, one could
instead use a black-box approximation (like BM3D) within
AMP, as proposed in [14] and called “denoising-AMP” (D-
AMP). In that setting, the Jacobian term in (7a) is typically
approximated using the approach from [15],

tr{Vfi(r)} = e 'q"[fi(r +eq) — fi(r)], (8

for random q ~ N (0, I') and small positive e.

For AMP to behave as expected, the forward operator A
should resemble a typical realization of a large, i.i.d. sub-
Gaussian matrix. To expand the applicability of AMP, a varia-
tion called “vector AMP (VAMP)” was proposed [16]. VAMP
has essentially the same desirable properties of AMP (e.g.,
rigorous state evolution and provable MMSE denoising) but
they hold for a much larger class of random matrices: right or-
thogonally invariant (ROI) ones [16, 17]. An ROI matrix has
a singular value decomposition of the form U SV, where U
is unitary, S is diagonal, and V' is Haar (i.e., uniformly dis-
tributed over the set of unitary matrices). A denoising VAMP
(D-VAMP) was proposed in [18] that uses a black-box image
denoiser f! together with the Jacobian approximation (8).

2.4. AMP for MRI

While the PnP-ADMM algorithm requires manual tuning of
both the ADMM parameter -y and the noise variance assumed
by the denoiser f, the AMP algorithm (7) is self-tuning; it es-
timates the denoiser-input variance 7 at each iteration ¢. This
motivates the application of AMP to MRI image recovery.
Unfortunately, neither AMP nor VAMP works as ex-
pected in MRI because A in (1) is neither i.i.d. nor ROI.
In fact, MRI applications of AMP or VAMP often diverge.
For this reason, several MRI-specific variations of AMP have
been proposed. For example, [19] used D-AMP with =1
instead of the default value 3 = N/|A||% = N/M, which
acts to slow down the algorithm to help convergence but
degrades the fixed points. A refinement based on a matrix-
valued 8 was proposed in [20]. In [21], a hybrid between
AMP and VAMP was proposed for the special case of point

Tt"rl _ i||vt+1||2 (7b)
M sampling (recall Fig. 1), called variable density (VD)-AMP.
= (! 4 AHvt“) (7c)  We numerically investigate these approaches in the sequel.
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3. PROPOSED APPROACH

3.1. Damped Denoising VAMP

The proposed damped D-VAMP (DD-VAMP) algorithm is
summarized in Alg. 1. Note that, in the absence of damping
(i.e., # =1="), DD-VAMP reduces to D-VAMP from [18].
An explanation of each step is now provided.

Line 3 of Alg. 1 computes the MMSE/MAP estimate of
« under the likelihood function N (y; Az, I/v,) and the
pseudo-prior & ~ N (x;rh, I /%) via

Hx—r|?} 9
(vFr +~v,M'y),  (10)

g(riy) 2 argmin { ||y — A|? +
= FM(y,M™M +4I)7!

where (9) holds for general A and (10) holds under (1). Be-
cause M is a masking matrix, the computational complexity
of (10) is dominated by two FFTs. Line 4 computes the sen-
sitivity of this linear estimator g as

tr{Vg(r;N}/N = vtr{(vA"A+4)7'}/N (1)
= (1= )y, +9) /(7w +7), (12)

where (11) holds for general A and (12) holds under (1).
Lines 5-6 perform “Onsager cancellation,” which produces
the (r,~%) passed on to the denoising stage. If f* is Lips-
chitz and A is large and ROI, then these latter terms obey the
statistical model 7 = xq + N (0, I /4%) [17].

Lines 8-12 of Alg. 1 comprise the denoising stage,
which calls the denoiser f? and approximates its sensitiv-
ity tr{V ()} /N in a manner similar to D-AMP (see (8)).
Note that the denoiser can leverage knowledge of the noise
variance 7% = 1/~%. Lines 11-12 perform Onsager cancella-
tion, producing (7 t“, o 1) for use by the linear stage.

Before (rgﬂ,wgﬂ) are passed on, however, they are
damped in lines 15-16 using the damping factor ¢* € (0,1]
chosen in line 14; with ¢! = 1 there would be no damping,
and as ¢! decreases there would be more damping. A similar
form of damping is performed on «! in line 10 using the
factor 0. Intuitively, the goal of damping is to slow down
VAMP without changing its fixed points. The r}-damping in
line 15 was shown to be sufficient to ensure the convergence
of a double-loop version of VAMP in the strongly convex
scenario [22]. But additional damping of 4 and o is needed
to stabilize D-VAMP for MRI image recovery.

Although ~;-damping was suggested in [16, eq.(27)], the
approach here is different in that damped quantities are first
converted to amplitudes. That is, for a variance term like o
we damp the square-root, and for a precision term like 2 we
damp the inverse square root. The a;-damping is new and
motivated by the fact that the Jacobian approximation in line 9
can be very “noisy,” especially in the first iterations. Although
it could be improved using more averaging, i.e.,

tr{VF(r)} ~ £ S e 'l [f(r +eqr) — f(r)]. (13)

Algorithm 1 Damped Denoising-VAMP (DD-VAMP)

Require: 79 € CV, 19 >0, 6 €(0,1], ¢ ~N(0,1)
1: fort =0,...,Thax do
2: Linear Stage:
3 m% = g(r5;73)
4 a2 =tr{Vg(rs;~3)}/N
5: 7’1 (x5 — abrh) /(1 — ab)
6: =51 —ab)/a
7. Denoising:
& xy=fi(r)
9 aj=e'qg" [ft(m +eq) — f(r))]

10 ol = {9(&’{) +(1-0)(a!"")2}2 (damping)

1 EARES (acﬁ ajri)/(1—af)

12: Y5t =1t —af)/al

13:  Damping:

14 Choose damping factor ¢* € (0, 1]

15: bt =gtEhtt 4 (1- ¢tyrs 1

6 2 = )+ (= gy
17: endfor

with i.i.d. {g;}X | and large K, this would require K + 1
denoiser-calls per VAMP iteration and thus be too expensive.

There are several ways to choose the damping factor ¢* in
line 14. One is to use the rule

2

— = 2min{a},ab}, (14)
1+ max{~{ /75", 757 /7}

Ct

which is sufficient in the double-loop strongly convex sce-
nario [22]. Another is to chose some fixed ¢! = for all ¢.

3.2. ADMM-PR and DD-VAMP++

Empirically, we find that DD-VAMP converges to fixed points
that are similar or better than those of PnP-ADMM. However,
we find that it can converge somewhat slowly as a result of
damping. To circumvent this issue, we propose a carefully
initialized version called “DD-VAMP++.” The challenge with
initializing DD-VAMP, i.e., choosing (79,49), is that the two
values must be consistent. That is, if rg is very good (i.e., ~
xo) but 73 is not matched to 79, then DD-VAMP will initially
move 74 away from 79 while adjusting 74, and finally return
% to the neighborhood of 9.

The proposed initialization approach exploits the fact that
VAMP is closely related to the Peaceman-Rachford (PR) vari-
ant [23] of ADMM, which is the iteration (3) with an addi-
tional u-update of the form (3c) between (3a) and (3b). In
particular, when VAMP is run with fixed v, = o =~y for all
iterations t, it reduces to ADMM-PR [22].

For DD-VAMP++, we first run PnP-ADMM-PR for T,
iterations, starting from u° = 0 = v° and a well-chosen
value of v, and then switch to DD-VAMP, simply by allow-
ing the values of v, and 7, to update according to Alg. 1.
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DD-VAMP++’s two adjustable parameters, T,; and 7, can
be tuned using training data, as described in the next section.

4. NUMERICAL EXPERIMENTS

We now present numerical experiments that compare the pro-
posed DD-VAMP and DD-VAMP++ algorithms to the exist-
ing PnP-ADMM [6], VD-AMP [21], and BM3D-AMP-MRI
[19] algorithms for MRI image recovery. For completeness,
we also test the PnP-ADMM-PR algorithm, which is run dur-
ing the initialization phase of DD-VAMP++.

For the DD-VAMP, DD-VAMP++, PnP-ADMM, and
PnP-ADMM-PR algorithms, we used the DNN-based de-
noiser DnCNN [9]. (The BM3D denoiser [8] yields similar
image quality but runs significantly slower.) Our D-VAMP
algorithms used the DnCNN implementation in the D-AMP

toolbox https://github.com/ricedsp/D-AMP_Toolbos.

which calls an instance of DnCNN trained with a noise vari-
ance close to the requested one, ¢ = 1/9{. VD-AMP
and BM3D-AMP-MRI were both implemented using the
respective groups’ code. To denoise, VD-AMP uses SURE-
tuned wavelet thresholding while BM3D-AMP-MRI uses a
modified BM3D. All experiments used mid-slice, non-fat-
suppressed, 128x128 knee images from fastMRI [4]. We
focused on the Cartesian mask (see Fig. 1) at acceleration
R = N/M = 4. The variance of the AWGN w in (1) was
adjusted to achieve an SNR, ||Az||?/||w||?, of 40 dB.

The PnP-ADMM, PnP-ADMM-PR, DD-VAMP, and DD-
VAMP++ algorithms (all initialized at zero) have tuning pa-
rameters that must be optimized for best performance. For
PnP-ADMM and PnP-ADMM-PR we tuned + in (3), for DD-
VAMP we tuned ~9, and for DD-VAMP++ we tuned « and
the switching time T;. In all cases, these parameters were
tuned over a grid using the following procedure. For each hy-
pothesized value, the algorithm was used to recover 30 train-
ing images, the recovery-NMSE was averaged over iterations
Tineas = 35 to Tinax = 150, and the median was taken over the
training images (to reduce the effect of outlier images). Fi-
nally, the parameter value that minimized the median NMSE
was selected.

Figure 2 shows NMSE = ||Z — xl|?/||xo|? versus
iteration with a Cartesian mask, which is the mask most
commonly used in clinical practice. The top subplot shows
median NMSE over the 30 training images for the tuned
version of each algorithm. There, DD-VAMP++ converged
fastest and to the best NMSE. DD-VAMP achieved the 2nd-
best NMSE at 150 iterations, but converged slowly. The two
versions of PnP-ADMM showed similar behavior, although
PnP-ADMM-PR was less smooth and its final NMSE was
slightly worse. The bottom subplot of Fig. 2 shows median
NMSE over the 19 remaining fastMRI mid-slice non-fat-
suppressed images, which were used as a test set. Here
too, we see that DD-VAMP++ converged fastest to the best
NMSE, with PnP-ADMM and PnP-ADMM-PR close behind.

median NMSE on training set

PnP-ADMM

— - —- PnP-ADMM-PR
DD-VAMP++
DD-VAMP

10-3 1 I
0 50 100 150

iteration
median NMSE on test set

PnP-ADMM

— - —- PnP-ADMM-PR
DD-VAMP++
DD-VAMP
VD-AMP -
BM3D-AMP-MRI |

0 50 100 150
iteration

Fig. 2: Image recovery NMSE versus iteration.

original ADMM: -24.443, 0.928 ADMM-PR: -24.694, 0.927

BM3D-AMP-MRI: -19.263, 0.857  DD-VAMP: -25.097, 0.936 DD-VAMP++: -25.475, 0.939

Fig. 3: Image recovered after 150 iterations. Subplot titles
identify algorithm, NMSE (dB), and SSIM.

After 150 iterations, DD-VAMP is still converging to what
seems to be an excellent terminal NMSE. BM3D-AMP-MRI
converged to a significantly worse NMSE; we conjecture that
this was due to its heuristic 3 modification and the mismatch
between Cartesian-masked A and typical i.i.d. sub-Gaussian
matrices. Finally, VD-AMP (which was designed specifically
for point masks) diverged; it is apparently not compatible
with Cartesian masks. In experiments that we conducted with
point masks (not shown here for reasons of space), VD-AMP
converged very quickly to an NMSE >10 dB worse than DD-
VAMP++ and PnP-ADMM, but consistent with the results
in [21]. Evidently, VD-AMP’s wavelet-thresholding denoiser
is no match for BM3D or DnCNN.

Figure 3 shows example image recoveries after 150 it-
erations, along with NMSE (dB) and SSIM values. DD-
VAMP++ achieved the best recovery in NMSE and SSIM.
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