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B
ig data can be a blessing: with very large training data sets 
it becomes possible to perform complex learning tasks with 
unprecedented accuracy. Yet, this improved performance 
comes at the price of enormous computational challenges. 

Thus, one may wonder: Is it possible to leverage the information 
content of huge data sets while keeping computational resources 
under control? Can this also help solve some of the privacy issues 
raised by large-scale learning? This is the ambition of compres-
sive learning, where the data set is massively compressed before 
learning. Here, a “sketch” is first constructed by computing care-
fully chosen nonlinear random features [e.g., random Fourier (RF) 
features] and averaging them over the whole data set. Parameters 
are then learned from the sketch, without access to the original 
data set. This article surveys the current state of the art in com-
pressive learning, including the main concepts and algorithms, 

their connections with established signal processing methods, 
existing theoretical guarantees on both information preservation 
and privacy preservation, and important open problems. For an 
extended version of this article that contains additional references 
and more in-depth discussions on a variety of topics, see [1].

Introduction to compressive learning
The overall principle of compressive learning is summarized 
in Figure 1. During the sketching phase, a potentially huge col-
lection of d-dimensional data vectors xi i

n
1=" ,  is summarized 

into a single m-dimensional vector zu  called the sketch. The 
sketch is constructed by transforming each data vector and 
then averaging the results:

: ( ) .z x
n
1

i

n

i
1

U=
=

u /  (1)

Next, during the learning phase, an estimate iu  of some essen-
tial statistical parameters i  of the data set are extracted from 
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the sketch .zu  These parameters are application dependent. For 
example, as illustrated in Figure 2, they could represent prin-
cipal data subspaces (in subspace fitting problems), prediction 
weights (in estimation and regression problems), distributional 
parameters (in density estimation problems), or centroids (in 
clustering problems); we give detailed examples in the fol-
lowing. Python notebooks that illustrate examples from the ar-
ticle are available at https://gitlab.inria.fr/SketchedLearning/ 
spm-notebook.

The transformation ( ),$U  known as the feature map, is 
generally nonlinear and randomized. Although the use 
of ( )$U  is related to “kernel methods” in machine learning 
(e.g., [2] and [3]), as will be discussed later, the act of sketching 
(1) also includes averaging over the n data samples. The advan-
tages of compressive learning are the following:
1)	 By choosing a sketch of dimension ,m nd%  the data get 

massively compressed. This has obvious advantages for 
storage and transfer.

2)	 Sketching can speed up the learning phase, whose com-
plexity becomes independent of the cardinality, n, of 
the original data set. This enables one to handle mas-
sive data sets while keeping computational resources 
under control.

3)	 Sketching can preserve privacy: the transformation ( )$U  
can be chosen so that individual user information is lost 
while aggregate user information is preserved.

4)	 The sketching mechanism in (1) is well matched to distrib-
uted implementations and streaming scenarios: the sketch 
of a concatenation of data sets is a simple mean of the 
sketches of those data sets.

Illustration using four  
worked examples
To illustrate the compressive learning framework and discuss the 
essential aspects of it, we now outline four canonical examples 
of machine learning tasks to which sketching can be readily 
applied. See Figure 2 and Table 1 for an illustration.

Principal component analysis
Principal component analysis (PCA) seeks to find the lin-
ear subspace of a fixed dimension k d1  that best fits 
the d-dimensional data x 1i i

n
=" ,  in the least-squares (LS) 

sense. In this case, we assume the data to be centered 
so that the target parameters i  can be described by a k-
dimensional orthonormal basis u k

1, ,=" ,  that maximizes 
.u x1 1

2k
i
n

iR R <
, ,= =
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FIGURE 1. An overview of sketching and parameter learning.

(a) (b) (c) (d)

FIGURE 2. A schematic representation of the four running examples covered by this article. In the four figures, each x i  is associated with a blue colored 
disk; hence, the training collection corresponds to a point cloud, and the orange color geometrically represents the learned parameters. (a) Principal 
component analysis (PCA) learns the principal k-dimensional subspace of the data set for some .k d#  (b) Linear regression fits observed data (the 
blue dot heights) as a linear model of the inputs (here, the 2D horizontal coordinates). For least squares, this amounts to minimizing the square of the 
differences between these data and the linear predictions. (c) In Gaussian mixture modeling, we learn the set of parameters (the mixture weight, mean, 
and covariance) characterizing each Gaussian term of the mixture; the probability-level sets are displayed here as orange ellipses. (d) Clustering methods 
(such as )k-means  learn a set of centroids (the orange squares) defining a Voronoi partition grouping together similar data samples.
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It is well known that one solution is given by the k prin-
cipal eigenvectors of the empirical autocorrelation matrix 

/ .x xR n1 i
n

i i1R= <
=

t ^ h  This Rt  can be interpreted as a sketch 
of the form (1) that uses the feature map ( )x xxvecU = =<^ h  

, , ,x x x x x xd d1 1 2 1 f <^ h  of dimension .m d2=  Here and in the 
sequel, the ( )vec $  operator vectorizes a matrix by stacking its 
columns. As soon as the cardinality n of the data set exceeds 
the dimension d, the dimension of this sketch is smaller 
than nd, the total size of the data set. Using techniques from 
matrix completion and compressive matrix sensing, the 
sketch dimension can be further reduced [4]. For example, 
one can sketch via (1) using , , ,x w x w xm1

2 2
fU = < <<^ ^^ ^h h h h  

where the d-dimensional vectors ,w j  j m1# #  are the rows 
of a tall random matrix W  of size .m d#  For m on the order 
of ,kd d21  low-rank matrix reconstruction techniques can 
estimate the k-dimensional principal subspace of Rt  with 
provable accuracy [5], [51].

LS linear regression
Suppose that the data vectors take the form , ,x x xi i i1 2= < <<6 @  
and our goal is to linearly predict the d -1 dimensional vector 
x i1  from the d -2 dimensional vector x i2  (with ).d d d1 2= +  
That is, we want to design a d d1 2#  weight matrix i  such that 
x xi i1 2. i  for all samples i. The LS approach to this supervised 
learning problem chooses .argmin x xi

n
i i1 1 2

2
i iR= -i =
t

Although it is possible to compute the LS solution using 
gradient descent, each iteration would involve the full data set 

.xi i
n

1=" ,  A well-known alternative is to first build the empiri-
cal autocorrelation matrix : / x xR n1 i ii

n
1R= <
=

t ^ h  and then 
compute it  in closed form as

	 ,
R
R

R
R

R R Rwith ,
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1
22i= =-t t t

t

t

t

t
te o � (2)

where each submatrix Rij
t  has dimension .d di j#  Here, we 

again use the sketch (1) with the feature map vecx xxU = <^ ^h h 
and extract the target parameter it  from (2).

Gaussian mixture modeling
Here, the objective is to find the parameters , , k

11i na R= , , , ,=" ,  
H  that best fit a k-term Gaussian mixture model (GMM) 

N ; ,x xp k
1i naR R= , , , ,=^ ^h h to the data .xi i

n
1=" ,  The pa-

rameter space H  demands that, for each :,  ,02a,  n,  is a d-
dimensional centroid, R,  is a d d#  positive definite matrix, 
and .1aR =, ,  Traditionally, expectation–maximization (EM) 
is used to approximate the maximum likelihood (ML) estimate 

,argmax log xpi
n

i1i iR= !i H =
t ^ h  but the EM algorithm pro-

cesses all n data samples xi i
n

1=" ,  at each iteration, which can be 
computationally burdensome when n is very large.

An alternative [6] is to compute a sketch zu  of the form (1) 
using RF features [7]:

	 j ,expx Wx2rU = -^ ^h h � (3)

where j 1= -  and W Rm d! #  is a realization of a random 
matrix [e.g., i.i.d. Gaussian]. Here, ( )exp $  is the component-
wise exponential, not the matrix exponential. We will have 
a lot to say about the RF feature map later in this article 
(for example, the connection between the RF map and the 
Gaussian kernel is discussed in the sidebar “Approxi-
mating Kernel Methods With Random Feature Maps”). 
The parameters can then be extracted by optimizing a cost 
function, as explained later. This approach has been ap-
plied to audio source separation as well as speaker verifi-
cation [6], where it was shown that 1,000 h of speech can 
be compressed down to a few kilobytes without loss 
of verification performance (see the sidebar “Compressive 
Clustering of Modified National Institute of Standards and 
Technology Digits”).

k-means clustering
The goal of clustering is to group together “similar” data sam-
ples from .xi i

n
1=" ,  In the k-means approach to clustering, one 

aims to find the set of k centroids c k
1, ,=" ,  that minimizes the 

average squared distance from each sample to its nearest cen-
troid; i.e., .min x ci

n
i1

2
R - ,,=  The famous Lloyd algorithm 

[8] is typically used in an attempt to solve this problem. When 
n is very large, however, Lloyd’s algorithm becomes compu-
tationally demanding. Instead, one could sketch the data set 
using (1) and extract the centroids from the sketch [9], [10]. 
For this purpose, one could use RF features (3) and (as ex-
plained in the sequel) solve for the centroids c k

1, ,=" ,  and the 
(nonnegative, sum-to-one) weights k

1a, ,=" ,  that minimize 

Table 1. The notations used in this article.

Notation

X { }x i i
n

1= = Data set of n  training samples x Ri
d!

zu (Empirical) sketch of the data set, a vector of 
dimension m

( )$U Sketching feature map, a function mapping Rd  to 
either Rm  or Cm

!i H Target parameters to learn, of dimension p  (e.g., 
principal component analysis matrix, centroids, 
and mixture model)

W Random matrix associated with certain feature maps

( )$U Usually drawn i.i.d. Gaussian

_ ( )$ Componentwise nonlinearity associated with cer-
tain feature maps ( )$U

w.h.p. With high probability, i.e., with exponentially 
decaying failure probability

i.i.d. Independent identically distributed

w.p.1 With probability 1

,$  , ··G H Euclidean norm of a vector, inner product between 
vectors

· 0

0,  “norm” of a vector, i.e., its number of nonzero 
entries

F$ Frobenius norm of a matrix

, , ··L L2 2$ G H L2  norm of a function, L2  inner product between 
functions.
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( ) .z ck
1aR U- ,, ,=u  In this setting, the weights allow us to 

model unbalanced clusters, yet only the centroids need to be 
recovered. On large data sets, this approach can be orders of 
magnitude better than Lloyd’s algorithm in memory and run-
time, provided that the sketch dimension m is large enough, 
i.e., that m is on the order of kd, where kd is the number of free 
parameters in c k

1, ,=" ,  [9], [10]. For example, this method 
allows us to cluster the Modified National Institute of Stan-
dards and Technology (MNIST) digit data set, of dimension 
d 784=  and cardinality , ,n 70 000=  using a complex-valued 
sketch of dimension m 400=  (see the sidebar “Compressive 
Clustering of MNIST Digits”).

Although this article focuses on these examples, the gen-
eral compressive learning framework extends beyond them. 
It has been applied to, for example, independent component 
analysis [11] (by sketching the cumulant tensor) and subspace 
clustering [12] (using a polynomial feature map). Extending the 
framework to a new task raises essential questions, such as: 
How do we choose the feature map ( )?$U  How do we learn the 
essential parameters i  from the sketch ?zu  Are there statisti-
cal learning guarantees? Can sketching and learning be made 
computationally efficient? Can we sketch while respecting pri-
vacy? This article sketches answers to these questions for the 
worked examples introduced in the preceding.

Historical background
The term sketch has different meanings depending on the field. 
Our use of the term comes from the literature on relational da-
tabases and more particularly from the subfield of approximate 
query processing (AQP) [13]. The goal of AQP is to build a 
short description of the content of a massive data set, called a 
synopsis, by analogy with the synopsis of a movie or a book, 

such that certain queries can be efficiently performed to return 
answers with a controlled error and/or probability of failure. 
Well-known queries include the frequency of occurrence of a 
particular element in a stream of data (taken from a discrete 
collection) and the minimum of several of these frequencies, 
yielding the celebrated count–min sketch [13, Sec. 5.3.1] syn-
opsis. In this context, the statistical parameters i  learned from 
a sketch are interpreted as the result of a particular query on 
the data set.

Despite the apparent similarities between AQP and com-
pressive learning, both data types and learning tasks differ 
significantly between the two fields. Typically, AQP focuses 
on (multi)sets of elements taken from a discrete collection of 
objects and considers database queries and related operations, 
while compressive learning focuses on continuous-valued 
signals (e.g., images or audio signals) and considers machine 
learning tasks, such as density estimation or regression.

Sketches for streaming and distributed methods
In AQP, a popular class of synopses is that of linear sketches 
[13, Ch. 5]. A linear sketch, which maps a data set to a 
vector, must satisfy the single condition that the sketch of 
the concatenation of two data sets equals the sum of their 
sketches. In mathematical terms, if we denote by Xzu^ h 
the sketch of a data set X ,xi i

n
1= =" ,  then it is required that 

X XXz z z1 2= +u u u^ ^ ^h h h whenever X  is the concatenation 
of X1  and X .2  It thus follows that a linear sketch must be 
of the form Xz xi

n
i1R U= =u^ ^h h for some possibly nonlin-

ear feature map ( ).$U  That is the same definition that we 
adopt in (1) except that we normalize by the number of 
elements n. Linear sketches are popular in AQP mainly be-
cause they are well suited to streaming scenarios. That is, 

Data Stream

Data Sample
at Time t

Mean Sketch
at Time t

Sketch of the
Whole Data Set

Sketch of
the Local
Data Set

Distributed Data Set

(a) (b)

Device 1 Device 2 Device 3 Device 4

Sketch on
the Fly

Sketch By Batches

xt

Φ
 (x

t)

zt
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z1
∼ z2
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∼ z4

∼

z∼zt
∼

–1

FIGURE 3. (a) A streaming scenario, where the data samples are sketched one by one and the mean sketch is updated at each time. (b) A distributed 
scenario, where each device computes a local sketch and a centralized entity further averages these local sketches.
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inserting or deleting an element xi  from the data set cor-
responds to adding or subtracting xiU^ h from the sketch, 
respectively (see Figure 3). Note that some very simple 
sketches are not linear: for instance, it is easy to sketch 
the maximum running value in a stream of scalar data by 
computing the maximum of the current sketch and each 
new data point, but this sketching procedure is not linear 
[13, Ch. 5.2.1]. In particular, this “max” sketch facilitates 

the insertion of a new element in the database but not the 
deletion of an existing one.

In the sections that follow, we describe linear sketches 
from other points of view. Before doing that, however, we 
want to clarify that the terms sketching and linear sketching 
appear in many other fields, although with meanings that dif-
fer considerably from ours. For instance, sketching is often 
used to indicate linear dimensionality reduction in n or d, as 

Given a fragment of speech and a candidate speaker, the 
goal of speaker verification is to assess whether the frag-
ment was indeed spoken by that person. A classic 
approach to speaker verification is the Gaussian mixture 
model (GMM)–universal background model (UBM) [S1].  

There, the idea is to train a model of a “universal” speaker 
from unlabeled training data and then compare it to a spe-
cialized model for the candidate speaker. Using the 
speech fragment, the likelihood ratio between the spe-
cialized and universal models is computed, and a positive 

Compressive Mixture Modeling for Speaker Verification

Decentralized, Privacy-Aware Data Collecting

Device 1 Device 2 Device 3 Device 4

Speech Signal

Time–Frequency
Representation

Local Sketches

Local Preprocessing

Compressed
Clustering

Global Sketch

UBM (GMM)z∼

z∼1 z∼2 z∼4z∼3

FIGURE S1. Speaker verification via compressive learning. Unlabeled training speech data are collected in a decentralized manner, preprocessed, 
and locally sketched. The local sketches are then merged into a global sketch, from which a UBM is learned.
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attained by multiplying the data matrix , ,x x Rn
n d

1 f ! #<6 @  
by a random matrix on the left or the right [14]–[17]. Sketch-
ing may also refer to the use of sampling-based approaches 
[18], such as core sets [19] or the Nyström method [20]. These 
latter methods differ from linear sketches in AQP, which is 
our notion of sketching, in that these latter methods gener-
ally do not respect the concatenation condition described 
earlier and are therefore less directly amenable to streaming 

scenarios. Moreover, these methods typically do not involve 
a nonlinear feature map ( ),$U  which is a key component of 
our sketch.

Sketches as (randomized) generalized moments
In signal processing and machine learning, the data samples 
xi  generally live in the vector space Rd  and are often modeled 
as i.i.d. random vectors having a probability distribution with  

decision is made if the ratio exceeds a certain threshold. In 
the GMM–UBM, the data are modeled using a GMM. 
That is, ( )xp ;i  are multivariate Gaussian distributions 
applied to a suitable time–frequency transform of the raw 
audio signal [S1] (see Figure S1).

The training of the UBM is computationally demanding 
since it must be done on a large corpus of speech data. 
Moreover, the latter must be collected in a wide range of 
situations so that the final model may be as universal as 
possible. For this reason, the data collecting process is 
best performed in a decentralized manner. Finally, speech 
data collected in real-life situations is known to be sensitive 
information. For all of these reasons, compressive learning 
is well suited to speaker verification.

In [6], using a random Fourier feature map ( ),$U  the 
authors compressed 1,000 h of speech data (50 giga-

bytes) into a sketch of a few kilobytes on a single lap-
top. Subsequently, they performed GMM estimation, 
i.e., learning, using a greedy algorithm, thereby tackling 
the optimization problem (15) introduced in the main 
text. They compared this compressive learning approach 
to the expectation–maximization (EM) algorithm, which, 
on the same laptop, could only be trained using 5 h of 
speech given the available random-access memory. 
They observed that by enabling the use of more data 
within a fixed memory budget, sketching produced bet-
ter results despite the tremendous compression factor 
(see Figure S2).

Reference
[S1] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification 
using adapted gaussian mixture models,” Dig. Sig. Proc., vol. 10, no. 1, 
pp. 1–3, 2000.
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FIGURE S2. A detection error tradeoff curve (the false-positive/false-negative tradeoff obtained by varying the decision threshold) and an equal error 
rate (EER). On a single laptop, the EM was trained on 5 h of speech; the compressive GMM estimation used (a) 5 h and (b) 1,000 h for different 
sketch dimensions .m
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Clustering is a classic machine learning task and a compo-
nent of many machine learning pipelines. The most popular 
method is Lloyd’s algorithm [8], which aims to solve the 
k-means problem. In many cases, the raw features are con-
verted to a spectral embedding before clustering. As a 
proof of concept, the authors in [9] applied this technique 
to handwritten digits from the Modified National Institute of 

Standards and Technology (MNIST) data set but used com-
pressive k-means clustering in place of Lloyd’s algorithm 
(see Figure S3). Using an n 107=  sample augmentation of 
the MNIST, they found that compressive k-means clustering 
gave approximately the same accuracy as Lloyd’s algo-
rithm but reduced the time and memory complexity by 1.5 
and four orders of magnitude, respectively (see Figure S4).

Compressive Clustering of MNIST Digits

FIGURE S3. The clustering of handwritten digits via compressive .k-means  First, scale-invariant feature transform descriptors are extracted from 
each image. Then, a similarity graph is constructed to obtain a so-called spectral embedding of the data set (using the first eigenvectors of the 
Laplacian of the graph). The spectral features are aggregated into a sketch, from which centroids are extracted.

Handwritten Digits Spectral Embedding
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FIGURE S4. The (a) memory, (b) runtime, and (c) error of compressive k-means clustering relative to Lloyd’s algorithm for various sample cardinali-
ties n  and sketch lengths ,m  using k 10=  centroids and d 10=  dimensional spectral features. Figure from [9].
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density .pX  Consider what happens when the number of sam-
ples n goes to infinity. The strong law of large numbers says that

	 ,lim x x x x
n

X p1 dE
n

i
i

n

X
1

w.p.1
U UU= =

"3
=

^ ^ ^^h h hh6 @/ # � (4)

where ,[ ]E $  denotes expectation with respect to the probabil-
ity density .pX  If we consider the simple case of dimension 
d 1=  and the scalar transformation x xkU =^ h  (so that ),m 1=  
then XE U^ h6 @ is the (uncentered) kth moment of the random 
variable X, a quantity that has a long history in statistics. By 
analogy, with a generic vector-valued feature map ( )$U  and in 

dimension ,d 12  quantities of the form XE U^ h6 @ are known 
as generalized moments of the random vector .X Rd!

Performing inference from generalized moments is often 
referred to as the generalized method of moments (GeMM) 
[21]. This method to “learn from a sketch” is very popular in, 
e.g., the field of econometrics [21, Ch. 1]. The GeMM can be 
seen as an alternative to ML estimation that avoids the need to 
work with the full likelihood function, which can have com-
putational benefits. Indeed, for many classes of probability 
distributions, such as heavy-tailed -a stable distributions, the 
likelihood function is not given in closed form, but generalized 
moments are given in closed form for appropriately chosen  

In compressive sensing, one observes a linear measure-
ment y Ax Rm!=  of signal x Rd!  with ,m d%  i.e., with 
significantly reduced dimension. (For simplicity, we focus 
on the noiseless case for now.) To distinguish between dif-
ferent signals x  in a given signal class, one desires that 
the distances between all signals in that class are pre-
served by the measurement operator .A  For the class of 
k-sparse signals ,kR  i.e., signals with at most k  nonzero 
entries, this property is satisfied up to a tolerance 

[ , )0 1!d  when A obeys the restricted isometry property 
(RIP) [4], [22]

	
,

, .

x x Ax Ax x x

x x

1 1

k

2 2 2

6

# #

!

d d

R

- - - + -l l l

l

^ ^h h
�

(S1)

One way to create a RIP-satisfying A  is to draw it ran-
domly. For example, if the coefficients of A  are drawn as 
an i.i.d. zero-mean Gaussian, then A  will satisfy the RIP 
with high probability when the sketch dimension m  is at 
least on the order of ( / )logk d k  [4].

To recover k-sparse  x  from ,y  one might attempt to 
search for the sparsest signal among all of those that 
agree with the measurements, i.e., within the set 

{ : }.u Au yC y|= =  The complexity of this search, howev-
er, grows exponentially in .k  Fortunately, when A  satis-
fies the RIP, one can provably recover the true x  using 
polynomial complexity methods [4]. One approach is to 
solve the convex problem of finding the signal with the 
smallest 1,  norm within .C y  Another is to use a greedy 
algorithm, like orthogonal matching pursuit, which esti-
mates x  by progressively removing from y  the k  
columns of A  that best “align” with it, using a least-
squares fit.

The RIP also provides guarantees on robust recovery. 
Suppose that we have noisy measurements ,y Ax e= +  
with noise e  of bounded norm .e # f  In addition, sup-
pose that x  is only approximately ,k-sparse  and use xk  
to denote the best k-sparse approximation of x.  Finally, 
consider recovering an estimate xt  of x  by searching for 

the signal with the smallest 1,  norm that agrees with the 
measurements up to a tolerance of ,f  i.e., within the set 

{ : }.u Au yC ,y | < <#f= -f  Then, if the RIP (S1) holds, the 
estimation error x x-t  satisfies [4]

	 ,x
x x

x C
k

D
k 1# f-

-
+t � (S2)

where constants ,C D 02  depend only on the value of d  
that appears in (S1). Thus, the estimation error increases 
linearly with the noise level f  and the deviation x xk 1< <-  
from perfect sparsity. Please see Figure S5.

Compressive Sensing and the Restricted Isometry Property
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FIGURE S5. (a) A geometrical interpretation of the RIP. (b) A 2D illustra-
tion of the recoverability of x  from y Ax=  by finding the vector xt  
in C y  with the smallest 1,  norm.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 06,2022 at 19:33:50 UTC from IEEE Xplore.  Restrictions apply. 



20 IEEE SIGNAL PROCESSING MAGAZINE   |   September 2021   |

feature maps ( )$U  (see the sidebar “Compressive Mixture 
Modeling for Speaker Verification”).

The GeMM differs from compressive learning in several 
aspects. In the GeMM, the feature map ( )$U  is typically con-
structed to make the parameter estimates computable in closed 
form. This narrows the range of learning tasks that the GeMM 
can handle. In compressive learning, ( )$U  is designed with infor-
mation preservation in mind. Consequently, the range of learn-
ing tasks is much broader in compressive learning, although 
the estimation procedure (i.e., learning from a sketch) may be 
algorithmic in nature. Another difference is that in compressive 
learning, ( )$U  is typically randomized. This results in random-
ized generalized moments, which are rarely seen in the GeMM.

Compressive learning and compressive sensing
As we will show in this section, the sketching mechanism (1) 
can be interpreted as a dimensionality-reducing linear “pro-
jection” of the probability distribution underlying the data set 

.xi i
n

1=" ,  This differs from the traditional approach in signal 
processing, where dimensionality reduction is performed on 
the features x Ri

d!  themselves rather than the distribution 
that generates them. Still, many of the intuitions, analyses, and 
tools designed for feature-based dimensionality reduction can 
be extended to distribution-based dimensionality reduction.

In the field of inverse problems and compressive sensing (CS) 
[4], [22], a signal of interest is modeled as a high-dimensional 
vector ,x Rd!  and a physical measurement of that signal 
is approximated by a linear transformation plus additive 
noise: y Ax e Rm!= +  (see the sidebar “Compressive Sensing  
and the Restricted Isometry Property”). Here, the linear  
measurement operator is represented by the m d#  matrix .A  In 
many applications, there is a great motivation to make the mea-
surement dimension much less than the signal dimension; i.e., 

.m d%  In this case, the recovery of x from y is generally ill posed. 
Still, it is possible to accurately recover x from y when both  
x and A obey certain properties and the noise is small enough.

The celebrated Johnson–Lindenstrauss (JL) lemma and its 
variations specify, for instance, that with high probability one 
can nearly preserve the pairwise distances between N features 
in Rd  by linearly projecting them in a logO N -^ h dimensional 
domain. This is used, for instance, to accelerate nearest-neigh-
bor searches in large databases. An important extension is 
to CS: if x  is sparse, in that relatively few of its coefficients 
deviate significantly from zero, and if A satisfies the restrict-
ed isometry property (RIP)—an extension of the JL lemma 
to the continuous set of sparse signals—then one can pose a 
regularized inverse problem whose solution is close to the true 
x  (see the sidebar “Compressive Sensing and the Restricted 
Isometry Property”). 

Now that CS has been described, we can clearly connect it 
to compressive learning. Recall that the sketch (1) zu  converges 
to the generalized moment : yz xx xX p dE X UU= = ^ ^^ h hh6 @  
as the number of data samples n tends to infinity, as per (4).

A crucial observation is the following: due to the linearity 
of integration, the sketch z  depends linearly on the probability 
density .pX  To see it another way, consider a mixture of two 

densities, .p p p1X X X1 2a a= + -^ h  The corresponding expec-
tation satisfies

,X X X1E E E~ ~ ~X p X p X p1 2X X X1 21 2a aU U U= + -^ ^ ^ ^h h h h6 6 6@ @ @ � (5)

which implies that the generalized moment z  is linear in .pX  
With this understanding, we can write

	 :A ,z p XE ~X X pX U= = ^^ hh 6 @ � (6)

where A  is a linear operator mapping the probability distribu-
tion pX  to the m-dimensional sketch vector z.

Although A  is a linear function of pX, we emphasize that the 
feature map ( )xU  is generally not a linear function of x. This 
makes compressive learning concretely very different from the 
vast majority of existing “sketching” mechanisms, which 
use random linear projections of the data for dimensional-
ity reduction.

With a small modification of the preceding arguments, 
we can handle the finite sample case. Consider the difference 
between the true generalized moment z  and the empirical 
moment z;u  i.e.,

	 :x e
n

X1 .Ei
i

n

1

U U- =
=

^ ^h h6 @/ � (7)

As we discussed earlier, e converges to zero as n tends to in-
finity by the law of large numbers. Combining (1), (6), and (7), 
we obtain

	 A ,z epX= +u ^ h � (8)

which shows that the sketch (1) can be interpreted as a “noisy” 
observation of the data distribution pX  through the linear mea-
surement operator A. Under mild conditions the central limit 
theorem can be used to show that e  decays as / n1  with 
high probability [4, Ch. 8]. From the assumed independence of 
the data samples, this happens, for instance, if X tP $U^ h6 @ 
decays exponentially fast when t increases. With the preceding 
interpretation of compressive learning, one recovers all of the 
traditional ingredients of CS:

■■ The measurement operator A  is linear.
■■ The measurements zu  are drastically dimension reduced. In 

mathematical terms, probability distributions pX  belong to 
the infinite–dimensional vector space of so-called finite 
measures [23]. The operator A  maps these infinite–dimen-
sional objects to vectors of finite dimension m.

■■ The measurement operator A  is typically designed using 
randomness. This is accomplished by choosing an appro-
priate randomized feature map ( ),$U  such as one based on 
RF features, as in (3).

■■ The measurements zu  are noisy, as per (6).
The analogy between compressive learning and CS is illustrat-
ed in Figure 4. The CS analog to the sketching phase (1) is the 
signal sensing phase, where the signal x  is linearly mapped to 
the observation vector y. The analog to sparse recovery, where 
an estimate of x  is computed from the observation y by solv-
ing an optimization problem, is to learn from a sketch, where 
an estimate of the data distribution pX  (or of distributional  

Authorized licensed use limited to: The Ohio State University. Downloaded on July 06,2022 at 19:33:50 UTC from IEEE Xplore.  Restrictions apply. 



21IEEE SIGNAL PROCESSING MAGAZINE   |   September 2021   |

parameters i  of interest) is computed from the sketch z.u  Its ex-
pression as an optimization problem will be further discussed 
in the “Learning From a Sketch” section.

RF sampling and superresolution recovery
In this section, we consider the specific case of compressive 
clustering, which allows us to forge a concrete connection be-
tween CS and compressive learning using RF sampling and 
superresolution recovery.

We begin by considering the goal of recovering k cen-
troids c k

1, ,=" ,  in Rd  with Euclidean norm r#  that are sepa-
rated from each other in Euclidean distance by .$ f  A naive 
approach would be to discretize the d-dimensional cube of side 
length 2r with a grid spacing of ,e  leading to /N r2 d

e= ^ h  bins. 
A valid sketch of the data X  is obtained by simply computing 
the histogram p RN! +t  over these bins (i.e., by using the “bin-
ning” feature map). However, the dimension of this sketch, N, 
grows exponentially in the feature dimension, d. To construct a 
smaller sketch, one might reason that if the data clusters tightly 
around k points, then pt  is close to a k-sparse vector. In this 
case, ideas from CS can be directly exploited. In particular, 
one could use a sketched histogram [13] of the form ,z Ap=u t  
where matrix A Rm N! #  is randomly drawn with i.i.d. Gauss-
ian components. Here, learning from a sketch means recover-
ing the centroids. For this, one would first search for the best 
nonnegative, k-sparse, sum-to-one vector using

	 ,argminp Apz
p

2

k

= -
! R+

u u � (9)

(or a convex or greedy relaxation of this problem) where kR
+  

here denotes the set of k-sparse, nonnegative, sum-to-one vec-
tors. Then, one would identify the k grid locations in Rd  cor-
responding to the nonzero indices of .pu  CS theory [4] says 
that the support of pu  will be accurate for sketch dimensions 
m at least on the order of ,logk N  i.e., at least on the order 
of / .logkd r e^ h  Although this latter approach substantially 
reduces the dimension of the sketch, practical challenges 
remain when the feature dimension d is large. For example, 
the number of columns, N, in the compression matrix A 
grows exponentially in d, making storage and multiplication 
by A impractical.

An alternative approach could be to construct A using m 
rows of the (d-dimensional, in this case) discrete Fourier trans-
form (DFT) matrix, i.e., by sampling the DFT at m (d-dimen-
sional) frequencies. In this case, multiplication by A could be 
implemented by the fast Fourier transform (FFT) algorithm, 
and thus the matrix A would not need to be explicitly stored. 
Fourier domain sampling is a familiar operation in the context 
of signal processing, as it forms the cornerstone for radar, medi-
cal imaging, and radio interferometry; see, e.g., [24] and [25]. 
When the m frequencies are drawn uniformly at random, CS 
theory [4], [22] has established that accurate recovery of an 
N-length k-sparse signal can be accomplished (with high prob-
ability) when m is on the order of ( )log logk k N3  [4, Corollary 
12.38]. Since /N r2 d

e= ^ h  here, this would mandate sketch 

dimensions m at least on the order of /( ) ( ) .log logkd k r3 e  
Although the FFT avoids the need to store A as an explicit 
matrix and allows efficient computation of the sketch, the cost 
of solving the optimization problem (9) using existing convex 
relaxations or greedy approaches is impractical due to the need 
to manipulate N-dimensional vectors, where N grows exponen-
tially in d.

Until now, we considered discretizing the d-dimensional 
feature space on an -e spaced hypergrid within a 2r-sidelength 
hypercube but found that this requires manipulating vectors 
(e.g., a histogram )pt  whose dimension grows exponentially in 
d. We can avoid this discretization (i.e., take 0"e  and )r "3  
by replacing the DFT with the continuous Fourier transform 
(CFT), in which case we are Fourier transforming the empiri-
cal distribution : /( )x x xnp 1X i

n
i1dR= -=t ^ ^h h rather than its 

N-bin histogram .pt  The sketch zu  then has components

	 jexpx w x xz p 2 dXj j
Rd

r= - <u t ^ ^h h# � (10)

	 j , , ,exp w x
n

j m21 1ij
i

n

1

fr= - =<

=

^ h/ � (11)

where w j j
m

1=" ,  are d-dimensional frequencies that are drawn 
at random. Typically, w j  are drawn i.i.d. Gaussian, but other 
distributions can be used, as discussed in the sections “The 
Challenge of Designing a Feature Map Given a Learning 
Task” and “Sketching With Structured Random Matrices.” 
Note that (11) corresponds precisely to the sketch (1) with the 
RF feature map ( )$U  from (3). Taking a statistical perspective, 
the components z ju  in (10) can also be recognized as samples 
of the characteristic function of .pXt  Recall that for a density p, 
the characteristic function pW  is defined as

	
: j

j

( )

.

exp

exp

w x w x x

w

p

X
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2

d

E

p

X p

Rd
r
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=
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h
h
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�
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Intuitively, when a probability distribution p has a “sim-
ple” structure, one can recover it (with high probability) from 
enough randomly chosen samples of its CFT. Centroid recov-
ery from the sketch (10) is premised on the empirical distribu-
tion pXt  being well approximated by a mixture of k Diracs; 

Compressive Learning CS

Random
Matrix

Randomized
Generalized

Moments

Is recovery
possible?

pX x

z = A(pX) + e∼ y = Ax  + e

FIGURE 4. The analogy between compressive learning, which uses the 
dimensionality-reducing linear measurement A ( ) [ ( )]p XEX U=  of a 
distribution ,pX  and CS, which uses the dimensionality-reducing linear 
measurement Ax  of a signal .x
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i.e., ( ).x x cpX k
1. a dR -, , ,=t ^ h  In this case, centroid recovery 

parallels the “superresolution” recovery problem (see the side-
bar “Superresolution Recovery”) through an optimization 
problem that is the continuous analog to (9) (or a convex or 
greedy relaxation for the continuous case) and will be further 
elaborated in the next section.

In both problems, recovery guarantees are possible when 
the frequencies w j  are randomly drawn. For example, when 
the centroids c k

1, ,=" ,  are e-separated and r-bounded, centroid 
recovery guarantees have been established provided the sketch 
dimension m is on the order of / ,logk d r2 e^ h  omitting for 
simplicity some log factors involving k and d [5], [51]. Similar 
guarantees hold when pXt  is approximately a sum of spatially 
localized components (e.g., in compressive GMM) [5], [51].

Learning from a sketch
Until now, we have primarily focused on the first stage of the 
compressive learning pipeline (see Figure 1), where the data set 
X  is sketched down to ,zu  a compressed and noisy representa-
tion of the underlying data-generating distribution .pX  We now 
discuss the second stage of the pipeline, where the distributional 
parameters of interest, ,i  are recovered from the sketch .zu  The 
close analogy between sketching and CS allows us to cast this 
“parameter learning” stage as an optimization problem; i.e.,

	 ,argmin zCi i=
i

u u^ h � (13)

where the cost function zC $ u^ h is adapted to the considered 
learning task. As in CS, many candidate distributions pX  
(and hence many candidate parameters )i  can yield the same 
sketch .zu  Thus, to make the inverse problem well posed, one 
needs to employ concrete modeling assumptions and regular-

ization, both of which can take several forms. As in CS, 
we will assume that the sketched quantity pX  is of low intrin-
sic complexity, i.e., close to some family of “simple” probabil-
ity distributions.

As a first example, we consider the problem of learning 
a mixture model from a sketch. Similar to a sparse vector x, 
which is a linear combination of a few elements of the stan-
dard basis, a mixture model pX  is a linear combination of a 
few “simple” densities .p k

1,i =," ,  Concretely, ,p pX
k

1aR= , , i= ,  
where the mixture weights k

1a, ,=" ,  are nonnegative and sum to 
one. For example, with a GMM, we have that N , ,p n R= , ,i, ^ h  
where ,i n R= , ,, ^ h contains the mean n,  and covariance .R,  
If pX  is well approximated by the mixture model ,pk

1aR, , i= ,  
then, according to (8), the sketch zu  is well approximated by the 
linear combination A .pk

1aR, , i= ,^ h  Hence, one could try to 
extract the mixture parameters, , ,k

1i ia= , , ,=" ,  from the sketch 
zu  by solving the (nonconvex) optimization problem (13) with

	 : A .zzC p
k

1

2

i a= - ,

,

i

=
,uu^ ^h h/ � (14)

The cost zC i u^ h can be interpreted as the negative log likeli-
hood (up to a shift and scale) of i  given the sketch ,zu  under the 
classic modeling assumption of i.i.d. Gaussian measurement 
noise e in (8).

When the RF feature map ( )$U  is used to compute the sketch 
zu  and the component densities pi,  are Gaussian or a  stable, 
there exist analytic expressions for A pi,^ h and for the gradi-
ent of A pi,^ h with respect to the mixture parameters in i,  [6]. 
These expressions are convenient when numerically optimizing 
(14). For instance, greedy approaches, similar to the orthogonal 
matching pursuit (OMP) algorithm for CS (recall the sidebar 

Superresolution is a general class of techniques to 
enhance the resolution of a sensing system, e.g., to 
observe subwavelength features in astronomy or medical 
imaging [23]. The problem addressed by superresolution 
is to recover a continuous-time (when dimension )d 1=  or 
continuous-space (when dimension )d 2$  sparse signal 

( )ts  from a few, possibly noisy, Fourier measurements 
{ } .y j j

m
1=  This amounts to recovering a weighted sum 

( ) ( )t t ts k
1a dR= -, , ,=  of k  Diracs with amplitudes a,  and 

locations t Rd!,  from

	 ( ) ( ) , , , ,expt w t ty s e j m2 1j dj j j
Rd

fr= - + =<# � (S3)

with measurement noise e j  and frequency vectors { }w j j
m

1=  
in .Rd  Recovery of (·)s  can be posed as an infinite–
dimensional convex problem on measures [23]. However, 
most reconstruction algorithms involve nonconvex steps 
[26]. When the frequencies w j  are drawn randomly, the 

signal can be accurately recovered with high probability 
when m  is of the order of at least ,kd3  up to log factors. 
Proving this usually requires additional assumptions, such 
as a minimal separation between the locations t,  [S2] or 
positivity of the amplitudes a,  [26].

The link between superresolution and compressive cluster-
ing follows from rewriting (10) as

	 j( ) ( ) , , , ,expx w x xz p e j m2 1dj j jX
Rd

fr= - + =<u # � (S4)

where e j  captures the “noise” due to finite-sample effects 
[recall (7)]. Comparing (S4) to (S3), we see that they are 
mathematically equivalent when ( ) ( )x x cpX

k
1a dR= -, , ,=  

except for the fact that, in the case of compressive cluster-
ing, a,  are nonnegative and sum to one.

Reference
[S2] C. Poon, N. Keriven, and G. Peyré, “The geometry of off-the-grid com-
pressed sensing,” 2020. arXiv: 1802.08464.

Superresolution Recovery
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“Compressive Sensing and the Restricted Isometry Property”), 
can be used [6] to estimate the parameters , .k

1ia, , ,=" ,  These 
approaches sequentially estimate and subtract, from ,zu  each 
of the k components A pa, i,^ h that best align with it, where 
“best” is measured via the correlation between zu  and A pi,^ h.  
As another example, an iterative approach [10] was proposed 
that exploits the log likelihood interpretation of zC i u^ h in (14) 
and the i.i.d. random nature of the linear transform W  in the 
RF map (3). In [6], applications of compressive mixture mod-
eling are demonstrated on speaker verification (see the sidebar 
“Compressive Mixture Modeling for Speaker Verification”) and 
source separation.

As a second example, we consider compressive k-means 
clustering. Here, the goal is to recover, from the sketch zu  the 
centroids { }c k

1i = , ,=  that minimize the average squared 
Euclidean distance from each sample to its nearest centroid; 
i.e., 2.( / ) || ||min x cn1 i i

n
1R -, ,=  To tackle this k-means prob-

lem, we view it as an approximation of a particular GMM fitting 
problem. In particular, suppose that the probability distribution 
pX is a GMM with weights ,,a  mean vectors , ,c  and covari-
ance matrices .R,  Then, in the special case that /k1a =,  and 

I2vR =,  for all components ,k1 ,# #  we can write the likeli-
hood as ),2( | ) || ||( ( / )expx x cp 21i

n
i i

n
i l

k
1 1 1

2?i vP P R - -,= = =  
and so the negative log likelihood becomes logi

n k
1 1R R- ,= =

)2( ( / ) || ||exp x c1 2 i l
2v- -  up to an additive constant. We can 

then use the log–sum–exp approximation ( ( ))log exp xf .R, ,

( )max xf, ,  to approximate this latter expression as ( / )1 2 i
n2

1v R =
,2|| ||min x ci - ,,  which agrees with the k-means cost up to a 

scaling. If we furthermore consider the case of a vanishing 
variance ,02 "v  then the component density pi ,  reduces to 
a point mass; i.e., ( ) ( ) .x x cp " d - ,i ,  In this limiting case, 
the linear measurement of the point mass pi ,  is A( )p =i ,

[ ( )] ( ) ( ) ( ),x x x cX p dE ~X p 8U U U= = ,i ,i,  according to (6).
Thus, with these justifications, the cost function (14) for the 

compressive GMM would change to

	 =( | ) ( )z czC
k
1 k

1

2

i U-
,

,

=

:u u / � (15)

for compressive k-means. If we do not want to assume that 
/k1a =,  for each ,,  we could instead estimate { } k

1a, ,=  from 
the sketch, leading to the cost function suggested in [9]:

	 .=( | ) ( )minz z cC
k

1

2

i a U- ,

,

,
a

=

:u u / � (16)

Similar to the compressive GMM problem described earlier, 
minimization of the cost function (16) for compressive k-
means can be tackled by greedy approaches, as described in 
[9]. Despite the fact that (16) does not directly minimize the 
k-means cost, it has been shown empirically [9] that the cen-
troids estimated by such greedy algorithms nearly minimize 
this cost; see, e.g., the sidebar “Compressive Clustering of 
MNIST Digits” for an example on MNIST data. This claim 
is also supported by theoretical results guaranteeing that the 
minimizer of (16) is endowed with statistical learning guar-

antees with respect to the original k-means cost [5], [51]. Such 
guarantees will be discussed shortly.

Depending on the choice of parameters i  and the feature 
map ( ),$U  the form of the optimization problem posed to learn 
from a sketch can differ considerably from that for GMMs in 
(14) and that for the k-means in (15) and (16). Consider, for 
example, learning from a sketch for PCA. As described ear-
lier, the parameter i  of interest is the k-dimensional sub-
space that best fits the d-dimensional data { }xi i

n
1=  in an LS 

sense. It is well known that this subspace is spanned by k 
principal eigenvectors of the empirical autocorrelation matrix 

,( / ) x xR n1 i i
n

i1R= <
=

t  or, equivalently, the column space of the 
(positive semidefinite symmetric) matrix Rk

t  that is closest to 
Rt  in the Frobenius norm:

( ) ( ) .argmin argminR R R R Rvec vec
: ( ) : ( )R R R R

k
k

F
k

2

rank rank
= - = -

# #

:t t t  
� (17)

When sketching using quadratic features ( ) (( ) , ,x w x1
2 fU = <

( ) )w xm
2<  with random ,w Rj

d!  the jth component of the 
sketch becomes .( / ) w x x w w wRz n1j j i i j j ji

n
1R= =< <<
=u t  Impor-

tantly, this z ju  is a linear function of ,Rt  and so there exists an 
m d2#  matrix A such that ( ) .z A Rvec=u t  Thus, by analogy 
with (17), one could first fit a positive semidefinite symmetric 
low-rank matrix to the sketch zu  via

	 ( )argminR A Rz vec
: ( ) , ,R R R R Rk

2

0rank
= -

# *=<

u u � (18)

and then set the parameter estimate iu  equal to the column 
space of .Ru  While the optimum of (17) is automatically sym-
metric and positive semidefinite, this property needs to be en-
forced explicitly in (18).

The low-rank matrix recovery problem (18) has been thor-
oughly investigated by the signal processing and machine 
learning communities (e.g., [27]). It arises, for example, in 
applications such as collaborative filtering for recommender 
systems and signal reconstruction from phaseless measure-
ments. Early approaches to solving the nonconvex problem (18) 
involved convex relaxation via nuclear norm regularization [4, 
Ch. 4]. More recent approaches exploit the nonconvex geom-
etry of (18) [28].

Compressive learning with theoretical guarantees
In the previous section, learning from a sketch was posed as 
the optimization problem (13), repeated here for convenience:

	 .argmin zCi i=
i

u u^ h � (19)

The quantity zC $ u^ h is a real-valued cost function whose 
minimizer iu  is the “best” (in some sense) estimate of i  
from the sketch z.u  This approach contrasts with traditional 
statistical learning [29], [30], which computes the param-
eter estimate

X X ,argmin xR R
n

L1with
i

n

i
1

| |i i i i= =
i =

t ^ ^ ^h h h/ � (20)
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where XR $^ h is the “empirical risk” and xL i$ ;^ h is the “loss 
function” for the ith sample. Table 2 presents typical loss func-
tions for our four running examples. In most cases, performing 
the minimization in (20) involves querying the full training 
data set X  many times, e.g., for stochastic gradient descent. 
In compressive learning, the cost ,zC $ u^ h  which depends only 
on the low-dimensional sketch z,u  is used as a surrogate for 
the empirical risk. Because the dimension of the sketch is so 
much smaller than the cardinality of the full data set X, the 
minimization in (13) can be made much more efficient than 
that in (20).

Of course, the estimate ,iu  which minimizes the cost ,zC $ u^ h  
is not, in general, the same as ,it  which minimizes the empiri-
cal risk X .R $^ h  Both, however, are approximations of the 
ideal estimate

	 ( ) ( ) [ ( )],argmin R R L Xwith E| | ;i i i i= =* **

i
� (21)

where ( )R i*  is known as the “true risk.” Indeed, the feature 
map ( )$U  and cost zC $ u^ h are designed precisely to ensure 
that the surrogate minimization (19) approximates the true risk 
minimization (21).

Excess risk guarantees
To establish a guarantee on the goodness of an estimate ,i  one 
must prove that the “excess risk” ( ) ( )R R 0$i i- * **  is small. 
Indeed, the true risk can be interpreted as the expected loss on 
test samples that have the same generating distribution pX  as 
the training samples X  but that are drawn independently and 
not accessible at training time. In statistical learning tasks, the 
true risk ( )R $*  is the primary metric by which one judges the 
quality of an arbitrary estimate .i  Note that controlling the 
excess risk is different from proving that i  is close to the ideal 
estimate i*  in, e.g., the Euclidean distance .< <i i- *  Consid-
er, for example, the problem of fitting a 1D linear subspace to 
a data set (i.e., PCA with ).k 1=  When the two largest eigen-
values of the autocorrelation matrix R are equal, any nontrivial 
linear combination of the corresponding eigenvectors gener-
ates a 1D subspace i  with minimum true risk. The problem 
of estimating a subspace “close to the optimal one” is thus ill 
defined, yet finding a subspace with close-to-optimal perfor-
mance is well defined and achievable, both by classic PCA and 
compressive PCA.

Despite the fact that the estimates , ,i iu t  and i*  mini-
mize different objective functions, they often yield similar 
true risks; i.e., the excess risks of iu  and it  are provably small. 
For ,it  the proofs use classic results from statistical learning 
[29], [30], under assumptions that we will briefly discuss in 
the sequel. For ,iu  with an appropriately designed feature map 

( )$U  and cost function ,zC $ u^ h  the proofs informally follow 
from the fact that zC $ u^ h and ( )R $*  have a similar shape. 
This fact is illustrated in the sidebar “Traditional Statistical 
Learning Versus Compressive Learning” for a toy example of 
compressive clustering. There it can be seen that, with a prop-
erly designed feature map ( ),$U  a well-chosen cost function 

,zC $ u^ h  and a sufficiently large sketch dimension m, the mini-
mizer iu  of the cost yields a nearly minimal true risk ( )R i* u  
and lives in a large basin of attraction in .zC $ u^ h  If the sketch 
dimension m is chosen too small, however, then the excess risk 

( ) ( )R Ri i- * ** u  increases.
A theory of compressive learning [5], [51] has been devel-

oped to better understand how (random) feature maps ( )$U  
and cost functions zC $ u^ h can be designed to ensure that the 
sketch zu  captures sufficient information to control the excess 
risk on .iu  In the following four sections, we aim to summarize 
the key aspects of this theory using broadly accessible lan-
guage. For those interested, the full technical details can be 
found in [5], [51].

In a nutshell, the theory relies on interpreting iu  as the mini-
mizer of the risk attributed to a surrogate probability distribu-
tion pu  with the following properties:

■■ pu  is “close” to the distribution ,pX  as measured by a task-
driven distance ( , ).d p pXu

■■ pu  is a “simple” distribution (e.g., for the compressive 
GMM, pu  is a Gaussian mixture).

■■ pu  minimizes A ( )z p< <-u  among all simple distributions p.
For example, in the compressive GMM, this holds when 

,p p= iu u  i.e., the Gaussian mixture distribution parameterized 
by .iu  Given such a ,pu  the theory can be explained in the fol-
lowing step-by-step manner:

■■ Just as in traditional statistical learning, excess risk bounds 
can be established if the task-driven distance ( , )d p pXu  is 
controlled (see the section “Task-Driven Distances and 
Excess Risk Bounds”).

■■ Given a family of “simple” probability distributions (see 
the section “Exploiting Simplified Models to Learn From a 
Sketch”), this distance can indeed be controlled provided a 
certain “lower RIP” (LRIP) holds (see the section “The 
LRIP and Excess Risk Control”). This is analogous to tra-
ditional CS, where the RIP allows one to control the per-
formance of sparse signal recovery.

■■ To establish the LRIP for random feature maps ( ),$U  one 
can build on connections between kernel methods and the 
JL lemma (see the section “Establishing the LRIP via 
Kernels and the JL Lemma”).

■■ Finally, to design task-specific feature maps ( ),$U  one can 
appeal to the problem of kernel design (see the section 
“The Challenge of Designing a Feature Map Given a 
Learning Task”).

Table 2. The loss functions for our four running examples.

Running Example Parameters i Loss Function ( )xL i;i

PCA Orthonormal basis 
{ }u k

1i= , ,=
x ui

k

1

2

,

<
,

=

|

LS linear  
regression

A weight matrix i , ,x x x x xi i i i i1 2
2

1 2|i- = < <<^ h

Gaussian mixture  
modeling

GMM parameters 
{ , , } k

1i na R= , , , ,=
N ; ,log x

k

i

1

na R- ,

,

, ,

=

^ h|

k-means  
clustering

A set of centroids 
{ }c k

1i = , ,=

min x ci
2

-, ,
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Task-driven distances and excess risk bounds
In traditional statistical learning, it is common to define a dis-
tance between the true distribution pX  and an arbitrary sur-
rogate pXl  as

	 ( , ) ,supd p p R p R pX X X Xi i= - **

i

l l^ ^h h � (22)

where ( ) [ ( )]R p L XE ~X p|; ;i i=*  denotes the risk under an 
arbitrary distribution p. This distance is task specific since the 
loss function ( )L $ $;  depends on the estimation task. The utility 
of ( , )d p pX Xl  for assessing the goodness of parameter estima-
tion follows from the inequalities

	

( ) ( ) ( ) ( , )

( ) ( , )

( ) ( , ),

R p R p R p d p p

R p d p p

R p d p p2

X X X X X

X X X

X X X

; # ; # ;

# ;

# ;

i i i

i

i

+

+

+

* * * * * *

* *

* *

l l

l l

l

l l

�

(23)

where ( )argmin R pX| ;i i= **
i  and ( ).argmin R pX| ;i i= **

i ll  
In particular, these inequalities yield the following bounds on 
the excess risk of :i*l

	 ( ) ( ) ( , ).R p R p d p p0 2X X X X# ; ; #i i- ** * * ll � (24)

For example, if pXl  equals the empirical distribution 
( ) ( ),( / )x x xnp 1X i i

n
1| dR= -=t  then (24) bounds the “general-

ization error” of empirical risk minimization, i.e., the error 
incurred when training with X { }xi i

n
1= =  but testing with 

independent samples drawn from .pX  This is the reasoning 
behind many classic statistical learning guarantees, where so-
called uniform convergence results establish that, under appro-
priate conditions, ( , ) ( / )d p p O n1X X =t  with high probability 
on the draw of i.i.d. training samples X { } .xi i

n
1= =  The term 

uniform convergence stems from the analogy between the dis-
tance (22) and the ,3  norm.

In statistical learning, the ideal parameter i*  minimiz-
es the true risk ( ) [ ( )].R L XE ~X pX ;i i=*  The performance of 
any estimate i  is measured according to its excess risk, 
i.e., ( ) ( ).R Ri i- * **  In compressive learning, one obtains 
iu  by minimizing a cost function ( ),zC ;i u  where the sketch 
zu  is a compressed version of a finite-size data set X  with 
samples drawn from distribution .pX

To gain intuition into how these quantities manifest in com-
pressive learning, Figure S6 shows a simple example: com-

pressive k-means clustering of 1D data X { }x i i
n

1= =  with 
two centroids, 1i  and .2i  The true risk ( )R $*  and the cost 

( )zC $ ; u  are plotted versus ( , )1 2i i i=  and versus a 1D slice 
in the i  plane. As the sketch dimension m  increases, it can 
be seen that the excess risk ( ) ( )R Ri i-* * *u  decreases. 
Moreover, although the cost function ( )zC $ ; u  is nonconvex, it 
is approximately quadratic in a large basin of attraction 
around its global minimizer, suggesting that gradient descent 
algorithms will behave well when properly initialized.

Traditional Statistical Learning Versus Compressive Learning

pX
X

θ1

θ1
θ2

θ2

θ1
θ2

Small
Sketch
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Sketch

C (θ | z)∼

C (θ | z)∼

Rw(θ )

Rw(θ )

Rw(θ )

1D Slice

t
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t

Rw(θ ) – Rw(θw)
∼

C (θ | z)∼

∼C (θ | z)θ = argmin 
θ

∼

Rw(θ )θw = argmin
θ

FIGURE S6. The k-means clustering of 1D data ,X  showing cost function ( ),zC ;i u  risk ( ),R i*  ideal estimate ,i*  compressive learning estimate 
,iu  and excess risk ( ) ( ),R Ri i- * ** u  for a sketch of a small-dimension m  (top) and for a sketch of a moderate-size m  (bottom).
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Similarly, excess risk bounds for compressive learning 
are achieved by interpreting the minimizer iu  of (19) as the 
minimizer of the risk ( )R p;i* u  for some “simple” probability 
distribution pu  that minimizes A ( )z p< <-u u  and by controlling 
the distance ( , ).d p pXu  To control this distance, key geometric 
intuitions exploit the connections between compressive learn-
ing and CS, as illustrated in Figure 4.

Exploiting simplified models to learn from a sketch
Recall that in CS, the goal is to recover the best k-sparse ap-
proximation of an unknown vector x Rd

0 !  given the noisy 
linear measurement ,y Ax e Rm

0 != +  where .m d%  Ideally, 
recovery aims to find the k-sparse vector whose (noiseless) 
measurement is closest to the observed y; i.e.,

	 .argminx y Ax
x

2

k

= -
!R

t � (25)

In practice, convex or greedy approximations of this combi-
natorial approach are often used. Recovery guarantees can be 
established using the RIP in (S1), which says that the Euclidean 
distance Ax Ax< <- l  between the (noiseless) measurements of 
two k-sparse vectors is almost the same as the Euclidean dis-
tance x x< <- l  between the vectors themselves (see the sidebar 
“Compressive Sensing and the Restricted Isometry Property”). 
These guarantees require that the sparsity k is sufficiently 
small for a given m and d.

To connect compressive learning to CS, we first reframe 
the goal of learning from a sketch as that of recovering a 
parametric model distribution p ! Ri H  from the sketch zu  
rather than recovering the model parameters !i H  them-
selves. Here, { : }p| !iR H= iH  denotes some set of admis-
sible distributions .pi  For example, in the compressive 
GMM, the goal becomes that of recovering a k-term GMM 

N ( , )p k
1 naR R= , , , ,i =  rather than the GMM parameters 

{ , , } .k
1i na R= , , , ,=  Likewise, in compressive PCA, the 

goal becomes that of recovering a distribution pi  whose 
autocorrelation matrix has a rank of at most k, rather than a 
k-dimensional orthonormal basis i  for the column space of 
that autocorrelation matrix. Then, mirroring the CS recovery 
approach (25), compressive learning recovery aims to find a 
parametric distribution p ! Ri H  whose (noiseless) sketch is 
closest to the observed sketch ;zu  i.e.,

	 A ( ) .argmin zp p p
p

2
|= = -

!
i i

Ri H

u uu � (26)

The construction of RH  implies that the parameters iu  defining 
piu  minimize a certain cost function; i.e.,

	 A(( ) ( ) ) .argmin z z zC C pwith 2; ; < <i i i= = -
!i

i
H

u u u u � (27)

Note the similarity between (27) and (13) and (14). Moreover, 
iu  also minimizes the risk ( )R p;i* u  [5], [51].

From the preceding description, we see that a central theme 
of both CS and compressive learning is that measurement 
compression makes it impossible to recover the full object of 
interest (i.e., x0  in CS or pX  in compressive learning) with-

out additional side information. For this reason, both seek to 
recover the parameters of a simplified model of the object of 
interest. In CS, this is accomplished by seeking to recover 
the best k-sparse approximation to x0  rather than x0  itself. 
In compressive learning, this is accomplished by seeking to 
recover the best model distribution p ! Ri H  rather than the 
true distribution .pX  In both cases, if the linear operator [i.e., A 
in CS or A ( )$  in compressive learning] is well designed, then 
the model parameters (in kR  for CS or in RH  for compressive 
learning) can be accurately recovered.

The LRIP and excess risk control
Recovery guarantees can be established using a tool analogous 
to the RIP (S1) in CS.

Take, for example, the case of compressive PCA. As 
discussed around (18), one could use a sketch of the form 

( ) ,z A Rvec Rm!=u t  where ( / )R x xn1 i
n

i i1R= <
=

t  is the d d#  
empirical autocorrelation matrix and ,m d2%  and then search 
for ,Ru  the symmetric matrix with a rank of at most k that mini-
mizes the cost ( ) ( ) .R z z A RC vec 2; < <= -u u  Recovery guaran-
tees can be established using a RIP of the form

	
( ) ( ) ( )

( ) , , ,

R R A R A R

R R R R

1

1

vec vecF

F k

2 2

2
6

#

# !

d

d R

- - -

+ -

l l

l l
�

(28)

where ( , )0 1!d  is a tolerance and kR  is now the set of d d#  
symmetric rank-k matrices. It is known [4, Ch. 9] that the i.i.d. 
Gaussian A satisfies the RIP (28) with high probability when m 
is on the order of kd times a constant that depends on the toler-
ance .d  Furthermore, the cost-minimizing Ru  is near optimal 
in the sense of minimizing the excess risk, even when a convex 
relaxation of the cost is used [5], [51].

These compressive PCA guarantees hold even under model 
mismatch: although kR  constrains Ru  to have a rank of at most 
k, the empirical autocorrelation matrix Rt  used to construct zu  
tends to have a full-rank d in practice. To explore this idea in 
more detail, suppose for the moment that the data X  lie in a 
rank-k subspace. In this case, Rt  would have a rank of at most 
k, and there exists a symmetric R with a rank of at most k that 
drives the cost ( ) ( ) ( )R z A A RRC vec vec 2; < <= -u t  to zero. 
Furthermore, when A satisfies the RIP (28), the left inequal-
ity in (28) implies that this cost-minimizing Ru  must equal R.t  
When the data X  do not lie in a rank-k subspace, the minimal 
cost will be nonzero. In this case, an upper bound on the error 

R R F< <-t u  of the cost-minimizing estimate Ru  as well as an 
upper bound on the excess risk of the principal subspace iu  of 
Ru  can both be obtained as a consequence of the RIP (28).

In place of the RIP, compressive learning uses the so-called 
LRIP,

	 A A, ,d p p C p p0# -i i i il l^ ^ ^h h h � (29)

assumed to be valid for each pair , ,p p ! Ri i Hl  where C0  is a 
positive constant. The LRIP says that the Euclidean distance 
A( A) ( )p p< <-i il  between the (noiseless) sketches of two 
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distributions is—up to a scaling—controlling the distance 
( , )d p pi il  between the distributions themselves (22). Note that 

the lower bound (·, ·)d  in (29) is task specific and not Euclid-
ean as in the CS case (S1).

The first main theoretical guarantee about compressive 
learning [5], [51] is that when the LRIP (29) holds, the estimate 
iu  obtained by minimizing (27) automatically has controlled 
excess risk. In particular, using ( )argmin R p;i i= *

i iu u  [5], 
[51], the excess risk bound (24) can be combined with the LRIP 
(29) and the definition of iu  (27) as follows:
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(30)

for any distribution pil  in RH  [because (·, ·)d  is a valid 
distance metric; i.e., ( , ) ( , ) ( , )  ].d p p d p p d p p p1 2 1 3 3 2 36# +  
One option is to choose ,p p=i i*l  in which case the term 

A A( ) ( ) ( , )C p p d p p2 X X0 < <- +i i* *  in the upper bound re-
flects the excess risk due to modeling and A ( ) zC p2 X0 < <- u  

reflects the excess risk due to sketching from a finite data set 
X. For a tighter bound, we could choose pil as the distribution 
in RH  that minimizes the right side of (30). These approaches 
and more refined variants have been applied to analyze various 
learning tasks in, e.g., [5], [11], [12], and [51].

It should be emphasized that recovery guarantees based on 
the RIP (S1) or LRIP (29) hold even in the presence of mea-
surement noise e and/or modeling errors. In CS, measurement 
noise arises due to, e.g., thermal noise or interference, while 
modeling errors arise when x0  is not truly k-sparse. Many 
sparse recovery techniques are provably robust to such noise 
and modeling errors; see (S2) in the sidebar “Compressive 
Sensing and the Restricted Isometry Property.” In compressive 
learning, measurement noise arises due to the finite cardinal-
ity of the data set X  [recall (7)], while modeling errors arise 
when .pX " RH  For example, GMM recovery guarantees can 
be established even when pX  is not truly a GMM.

Establishing the LRIP via kernels and the JL lemma
In light of the fact that the LRIP (29) yields statistical learn-
ing guarantees (30) for compressive learning, a key question 
becomes: How can we choose the sketch dimension m so that 
the LRIP (29) holds? Similar to how the RIP is proven in CS 
(see, e.g., [4, Lemma 9.33]), refinements of a mathematical tool 
called the JL lemma [31] can be used to obtain a value of m 

Sketching shares connections with kernel methods [3], a 
family of machine learning techniques that produces deci-
sions or insights using a kernel function, ( , ) ,x x R!l l  
which measures the “similarity” between x  and .xl  A ker-
nel is said to be “positive definite” if the n n#  matrix ,K  
constructed with entries ( , )x xi jl  for , ,i j n1 # #  is posi-
tive semidefinite for every possible { } .x i i

n
1=  The celebrated 

“kernel trick” states that any positive definite kernel implic-
itly amounts to an inner product in some higher-dimension-
al (and potentially infinite–dimensional) feature space H  
and vice versa. That is, ( , ) ( ), ( )x x x xG Hl U U=l lr r  for some 
(not necessarily explicitly known) mapping ( )$Ur  from the 
signal space to .H  Any machine learning method that 
relies only on the evaluation of inner products—such as 
ridge regression, support vector machine classification, 
PCA [29], and dictionary learning [S3]—can be “kernel-
ized” by using a kernel in place of the inner product. 
Kernelizing a method is thus tantamount to applying that 
method in a transformed, higher-dimensional feature 
space. In this way, more complex estimation and/or deci-
sion functions can be implemented.

Given a positive definite kernel ( , )x xl l  operating on 
signals x  and xl  in some set, it is possible to “lift” (·, ·)l  
to a positive definite kernel operating on probability distri-
butions over this set by defining the so-called mean kernel

	 ( , ) [ ( , )].k p q X XE ~ , ~X p X q| l= ll � (S5)

This defines an embedding of probability distributions into 
a kernel space, which is analogous to the finite-dimension-
al embedding A ( )p  of probability distribution p  from 
(6). The maximum mean discrepancy (MMD) [S4], [S5]

	 ( , ) ( , ) ( , ) ( , )p q k p p k q q k p q2MMD |= + - � (S6)

is the Euclidean metric naturally induced by the mean ker-
nel. It is analogous to the Euclidean distance between 
sketches, A A( ) ( ) .p q< <-  The MMD, originally introduced 
in the context of two-sample hypothesis testing [S4], is now 
well known in machine learning. When the MMD behaves 
as a true metric, i.e., when ( , ) ,p q p q0MMD += =  the 
mean kernel (·, ·)k  is said to be “characteristic.” In ,Rd  
many classic kernels (·, ·),l  such as the Gaussian and 
Laplace kernels, yield characteristic mean kernels [S5].
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sufficient for the LRIP to hold with high probability on the 
draw of the random feature map ( ).$U  We now summarize 
this approach.

To begin, we establish connections to kernel methods 
(see the sidebar “Kernel Methods and Kernel Embeddings 
of Probability Distributions” for a brief review of kernels). 
Some key observations are that any feature map explicitly 
defines a positive definite kernel and that the expectation of 
this kernel defines another useful positive definite kernel. 
To see why, consider, for example, the RF feature map (3). 
First, for a fixed set of frequency vectors { } ,w j j

m
1=  we have, 

for all , ,x xl

	 j( ), ( ) ( ( )),expx x w x x
m m m
1 1 1 2 j

j

m

1

rU U = - -<

=

l l/  
�

(31)

where ·, ·G H is the standard Euclidean inner product in Rm  or 
.Cm  The left-hand side defines a positive definite ker-

nel according to the terminology reviewed in the sidebar 
“Kernel Methods and Kernel Embeddings of Probability 
Distributions.” This kernel is also “shift-invariant” in that 
it depends only on the difference .x x- l  Next, imagine 
that the d-dimensional frequency vectors ,w j  which consti-
tute the m rows of the random matrix W, are drawn i.i.d. 
from some probability distribution .pW  In the limit of large 
sketch dimension m, the law of large numbers combined 
with (31) says

	 j( ), ( ) ( ( )).expx x x x
m m

W1 1 2EW
1w.p.
" rU U - -<l l � (32)

The right-hand side of (32) is the CFT of the probability den-
sity pW  evaluated at ,x x- l  i.e., the characteristic function 

( )x xpWW -l  using the notation from (12). Because (·)pWW  
is the CFT of a nonnegative function, it is a so-called posi-
tive definite function, which means that for any { } ,xi i

n
1=  the 

n n#  matrix W  defined with elements ( )x xij p i jWW W= -  
for ,i j n1 # #  will be positive semidefinite. Thus, if we con-
struct a kernel as ( , ) ( ),x x x xpW|l W= -l l  then it will be a pos-
itive definite kernel. When N ( , ),Ip 0W w d

2v=  this approach 
yields the familiar Gaussian kernel (a particular type of “radial 
basis function”); i.e., ( , ) ( / ),expx x x x 22 2| < <l v= - -v l l  here 
of width / .1 wv v=

More generally, by considering any parametric feature map 
of the form W( | ),xU  where the parameter W is drawn at ran-
dom according to some probability distribution, one can define 
[in many papers, the / m1  scaling in (31)–(33) is subsumed in 
the feature map ( )]$U  the “expected kernel”

	 ( , ) ( | ), ( | ) ,x x x W x W
m m
1 1EWl U U=:l l � (33)

not to be confused with the “mean kernel” defined in (S5) 
(see the sidebar “Kernel Methods and Kernel Embeddings of 
Probability Distributions”). This setting includes RF features 
(3) with i.i.d. frequencies w j  (as in the preceding) or with a 

frequency matrix W that includes structured blocks of rows, as 
we will soon discuss.

Now that the kernel connections have been established, 
we return to our original objective of understanding when the 
LRIP (29) holds. Importantly, the law of large numbers shows 
that, in the limit of large sketch dimension m, the right side of 
(29) is related to the maximum mean discrepancy (MMD) from 
(S6), which is a kernel-based distance between distributions 
(see the sidebar “Kernel Methods and Kernel Embeddings of 
Probability Distributions”). Indeed, for arbitrary probability 
distributions p and q, we have

	 A A( ) ( ) ( , ),lim
m

p q p q1 MMD
m

w.p.1
- =

"3
� (34)

where the maximum mean discrepancy is implicitly the one 
obtained from the kernel used to build the sketching operator 
A. Thus, when the LRIP (29) holds, it must also be true that, 
for a sufficiently large sketch dimension m,

	 ( , ) ( , ), , ,d p p C p p p pMMD for all  0# ! Ri i i i i i Hll l l � (35)

where C0l  is a positive constant. Property (35) connects two 
different metrics on probability distributions: the left-hand side 
of (35) is defined by the learning task [recall (22)], while the 
right-hand side of (35) is defined by the expected kernel ,l  
from (33), associated with the randomized feature map. Note 
that (35) is a deterministic property; it does not depend on the 
draw of the randomized feature map, unlike the LRIP (29). In 
the literature, (35) is called the kernel LRIP [5], [51] because it 
is a kernel-based analog to the LRIP. Being deterministic, the 
expected kernel is often easier to manipulate than the random 
feature map, and thus it eases the proof of the kernel LRIP. 
This is important because, if the kernel LRIP (35) holds, then, 
using arguments based on the JL lemma, one can also establish 
[5], [51] the LRIP (29), as we show in the following.

The JL lemma [31] is a precursor of the RIP that is special-
ized to finite sets (S1). It states that given N arbitrary d-dimen-
sional vectors ,xi  there exists an m d#  matrix A, with m on the 
order of ,log N  such that || || || ||Ax Ax x xi j i j.- -  for all i, j.

To illustrate how the JL lemma is useful in the context of 
compressive learning, let us momentarily restrict our attention 
to a learning problem where the collection RH  of parametric 
distributions is of finite cardinality, noting that we can extend 
this approach to continuous families of parametric distribu-
tions through discretization arguments involving the notion of 
covering numbers [4, Appendix C], as described in the follow-
ing. As a concrete example, let us consider a discretized vari-
ant of the compressive GMM using the RF feature map (3). 
As in [5], [6], and [51], we assume that the d-dimensional fre-
quency vectors wj  are drawn i.i.d. from the normal distribution 
N ( , ),I0 w d

2v  and we consider learning a mixture of Gauss-
ian components N( , )Ip n= ,i ,  for , , ,k1 f, =  with equal 
weights /k1a =,  for each ,,  where the means n,  are assumed 
to be bounded, separated, and discretized on a regular grid. In 
this setting, there exists a finite number, N, of possible para-
metric mixture distributions .p ! Ri H  As long as the MMD 
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is a true metric (as defined in the sidebar “Kernel Methods and 
Kernel Embeddings of Probability Distributions”), the ratio 

( , ) / ( , )d p p p pMMDi i i il l  is finite for ;p p!i il  hence, when-
ever RH  is a finite collection, as in this concrete example, the 
kernel LRIP (35) holds (for a sufficiently large ) .C0l  Moreover, 
specializing to an arbitrary pair of mixtures ,p p ! Ri i Hl  and a 
given sketch dimension m, refinements of (34) (using measure 
concentration) enable one to show that the lower bound

	 A A( , ) ( ) ( )p p
m

p p
2

1 1MMD # -i i i il l � (36)

holds with a probability of at least ( ),exp c m1 0- -  where c0  
is a positive concentration constant. Since there are only N2  
pairs of parametric mixtures , ,p p ! Ri i Hl  the lower bound 
(36) is valid uniformly for all of them, except with a prob-
ability of at most ( ) .expN c m2

0-  This failure probability 
can be made smaller than any 02e  by choosing an m larger 
than ( / ).logc N2 0

1 e-  Combining (35) and (36) using a union 
bound, it can be shown [5], [51] that the LRIP (29) holds with 
high probability when C0  is on the order of C m0l  and the 
sketch dimension m grows logarithmically with N, the number 
of parametric distributions in the finite set .RH

For infinite collections ,RH  proving the kernel LRIP (35), 
and eventually the LRIP (29), is more technical and can require 
some additional assumptions. As an example, for compressive 
clustering with RF features, it can be proven that there is a 
constant C0l  such that (35) holds, provided that the centroids 
are sufficiently separated and bounded [5], [51]. The JL lemma 
can be extended by refining techniques used to establish the 
RIP (S1). The main idea is to first prove the LRIP on some 
finite collection 1R RHl  of N probability distributions and 
then to extrapolate it (with slightly worse constants) to .RH  
Technically, this involves the notion of covering numbers, 
and the cardinality | |N R= l  is typically exponential in the 
number of parameters needed to describe .RH  For example, 
for the GMM, one needs kd parameters to describe the means 

, k1Rd ,! # #n,  of the mixture N( / ) ( , ),Ikp 1k
1 nR= , ,i =  

and log N  essentially depends linearly on kd. The dimension 
m of the sketch for which the LRIP holds with high probability 
is thus on the order of / ,kd c0  up to some additional factors due 
to the proof technique [5], [51].

Empirical studies of compressive clustering [9], [10] and the 
compressive GMM [6] suggest that a sketch dimension m on 
the order of kd (the number of parameters in these settings) 
is sufficient to yield accurate learning performance. The best-
known bounds on provably good sketch dimensions [5], [51] 
remain pessimistic compared to these empirically validated 
sketch dimensions. This is most likely related to suboptimal 
bounds for the concentration constant c0  and/or shortcomings 
in the techniques used to extend the LRIP from a finite collec-
tion Rl to an infinite collection .RH

The challenge of designing a feature  
map given a learning task
In the existing literature, the LRIP has been established [5], 
[51] for randomized feature maps ( )$U  (e.g., RF features and 

random quadratic features) that mimic related constructions 
from CS, developed either for sparse vector recovery or low-
rank matrix recovery.

When sketching with RF features (e.g., for compressive 
clustering and the compressive GMM), the main design choice 
for ( )$U  is the distribution from which to draw the random 
frequencies wj  [i.e., the rows of W in (3)]. In light of the con-
nections to shift-invariant kernels [recall (31)], this design task 
is a particular instance of the difficult problem of kernel design 
[3, Sec. 4.4.5].

For example, when the rows of W are drawn i.i.d. N ( , ),I0 w
2v  

the choice of the variance w
2v  determines the choice of the 

width /1 wv v=  of the corresponding Gaussian kernel (·, ·) .lv  
Indeed, from a signal processing standpoint, the correspond-
ing mean kernel (·, ·)kv  [recall (S5)] acts to low-pass-filter 
the underlying data distributions. To see why, observe that 

( , ) ( , )x x x xgl =v vl l  with x( ) ,xg e || || /22 2

=v
v-:  and so

	
( , ) [ ( , )]

( ) ( )

k p q X X

e p X q Xd d

E ~ , ~

|| || /

X p X q

X X 22 2

l=

=

v v

v- -

l

l

l

l## � (37)

	 , , ,g p q g p g qL L2 2* * *G H G H= =v v vr r � (38)

where * denotes convolution and / .2v v=r  Hence, the asso-
ciated MMD (S6) satisfies .g p g q-( , ) || ||p qMMD L2* *= v vr r  
Recall that learning from a sketch is often performed by minimizing 
a “sketch matching” cost ,2A A A|| ( || || ||) ) )( (z p p pX

2- = -i iu t  
as in (26), where pXt  denotes the empirical distribution of the 
data X. In the limit of large sketch dimension m, this cost com-
pares the smoothed versions of the probability distributions 
pXt  and pi  since .g g p* *-A( / ) || ( )|| || ||zm pp1 X L

2 2
2.- i iv vu tr r  

Similarly, when using a greedy algorithm to learn a mixture 
model (or cluster centroids) from a sketch, the normalized in-
ner product A( / ) , ( )zm p1 G Hi ,u  approximates the correlation 

,g p g pX L2* *G Hiv v ,
tr r  between the low-passed versions of the 

empirical data distribution pXt  and the candidate mixture 
component ,pi ,  respectively.

This latter idea is illustrated for compressive clustering in 
Figure 5. There, since the mixture component associated to 
a candidate centroid c is the Dirac ( ) ( )x x cpc d= -  [recall 
the discussion before (15)], we have that A, ( ) ,z zpcG H G=v v vu u  

( ) ,c HUv  where the dependence on the kernel width /1 wv v=  
has been made explicit. Meanwhile,

	 , ( ) ( ) ( ) .c c xg p g p g p
n

g1
X Xc L

i

n

i
1

2* * *G H = = -v v v v

=

t tr r / � (39)

In (39), we recognize a Parzen window density estimator 
[32], whose computation for a given c requires access to the 
n training samples .xi  In contrast, its surrogate , ( )czG HUv vu  
only requires access to the m-dimensional sketch .zu  In a 
large-scale setting, this can save huge amounts of memory 
and computation. As can be seen when comparing the top 
and bottom rows in Figure 5, , ( )czG HUv vu  well approximates 
( ) ( )cg pX*v t  for a sufficiently large kernel width .v  By 
comparing the different columns of Figure 5, it can also be 
seen that the kernel width v  should be chosen compatible 
with the cluster width and separation. This choice involves 
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a tradeoff between smoothing the unwanted gaps between 
data samples and oversmoothing the (desired) gaps between 
clusters. Existing theory [5], [51] identifies sufficient condi-
tions on the choice of v  related to the number k of candidate 
clusters and their minimum separation.

Although i.i.d. Gaussian frequencies w j  were used with the 
RF map in the preceding, one may also consider the use of 
i.i.d. non-Gaussian frequencies. Such designs, as proposed in 
[7], can yield improved empirical behavior. As we will see in 
the next section, it is also possible to deviate from the RF map, 
with the goal of improving computational efficiency. Such 
constructions also yield non-Gaussian expected kernels (33). 
Although they work well in practice, there is currently no proof 
that these latter kernels satisfy the kernel LRIP.

While existing theory focuses on proving the LRIP for 
a given random feature map and learning task, an impor-
tant open question is: How should one design the feature 
map to best match a given learning task? In particular, can 
we design a random feature map that satisfies the LRIP 
(29) for a given learning task defined by a loss function 

( | )xL ii  and embodied by a task-driven distance (22)? A 
promising yet still challenging avenue would be to first 
identify a positive definite kernel ( , )x x0l l  for which the 
corresponding MMD satisfies the kernel LRIP (35) and 
then use Bochner’s theorem or Mercer’s theorem (see the 
sidebar “Approximating Kernel Methods With Random 

Feature Maps”) to design a random feature map ( )$U  whose 
expected kernel (33) is precisely .0l

Sketching with reduced computational resources
The computational cost of sketching via (1) is heavily depen-
dent on the feature map $U ^ h. The computational cost of pa-
rameter estimation via (13) is also heavily dependent on $U ^ h, 
since it often involves iterative application of $U ^ h.

Often, the feature map is constructed as a randomized lin-
ear operation followed by a componentwise nonlinear opera-
tion; i.e.,

	 _( ) ( ),x WxU = � (40)

where W is a (randomly drawn) matrix of size m × d and _ $^ h 
applies a scalar nonlinear function identically to each element 
of the vector Wx. For example, the feature maps described ear-
lier for compressive PCA, the GMM, and clustering all have 
this form. Reducing the computational cost of each stage has 
been the goal of several studies. For example, using a fast trans-
form for W drastically reduces the memory and computational 
complexity demands relative to an explicit matrix. Also, quan-
tized versions of the nonlinearity _ $^ h are much more easily 
implemented in hardware than, say, the complex exponential 
nonlinearity j_ : exp 2RF $ $r= -^ ^h h used in the RF map (3). 
We discuss such constructions of W and _ $^ h in the following.
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FIGURE 5. The criterion , ( )z cG HUv vu  used by greedy parameter estimation algorithms in compressive clustering with RF features (top row) versus its 
expected value ( ) ( )cg pX*v t  (bottom row) as a function of the centroid hypothesis location [ , ] .c c c1 2= <  The data set (in blue) consists of n 100=  
points drawn according to a mixture of k 3=  isotropic Gaussians. The frequencies w j  used to define the feature map ( ) ( )exp W2j$ $rU = -v  are  
drawn according to a standard Gaussian N ( , )I0 w

2v  with / .1wv v=  The sketch zvu  is computed with the feature map ( ).$Uv  With /1 5002v =  (left), 
there is insufficient smoothing, and the criterion displays many spurious local maxima; with /1 102v =  (middle), there is appropriate smoothing, and  
local maxima are in good correspondence with the true cluster centers; with 12v =  (right), there is oversmoothing, and the criterion displays only  
a single maximum.
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Sketching with structured random matrices
In most of our previous examples, we constructed W by draw-
ing its m rows i.i.d. from the normal distribution N( , )I0 w d

2v  
with some variance .0>w

2v  Recall that, with the RF map 
_ ,RF $^ h  the rows of W correspond to the (d-dimensional) fre-
quencies used when sampling the CFT of the (empirical) data 
distribution. In any case, when W is an explicit matrix, the 
computational complexity of computing ( )xU  of the form (40) 
is dominated by the matrix–vector product Wx. Thus, it is on 
the order of md, which is also the order of the memory needed 
to store W.

As an alternative to these approaches, it has been suggested 
to construct W as a structured random matrix with a fast imple-
mentation that mimics an i.i.d. Gaussian matrix. Multiple ways 
of accomplishing this goal have been proposed in the litera-
ture. We focus on the approach suggested in [33], which was 
successfully applied to compressive learning in [34]. There, the 
idea is to construct W as a vertical concatenation of /b m d= ^ h  
blocks ,B j j

b
1=" ,  each of size d × d. These blocks have the form  

,B HD HDD HD( ) ( ) ( )(0)
j j jjj

2 31
=  where H is the Walsh–Hadamard 

matrix and D( )
j
k  are random diagonal matrices. In particular, 

the diagonal elements of ,,D D( ) ( )
j j
1 2  and D( )

j
3  are drawn i.i.d. 

from the uniform distribution over ,1 1-" , and the diagonal 
elements of D( )

j
0  are drawn i.i.d. from the X distribution with 

d degrees of freedom, which is the distribution of the norm 
of a d-variate Gaussian vector. This construction is depicted 
in Figure 6. The fast Walsh–Hadamard transform offers an 
order logd d -complexity implementation of the matrix–vector 
multiplication Hx and prevents the need to explicitly store H. 
With this structured and fast incarnation of W, the sketching  
complexity shrinks from order md to order mlog d. Moreover, 
since only the diagonal matrices need to be stored, the storage 
cost shrinks from order md to order m.

Sketching with quantized contributions
With the RF map (3), which is commonly used in compres-
sive clustering and the GMM, the nonlinear operation _ $^ h 
in (40) becomes j_ : exp 2RF $ $r= -^ ^h h. Since implementing 

While each random feature map ( )$U  implicitly defines 
a positive definite kernel by taking the expectation (33), 
the converse is also true. For shift-invariant kernels, i.e., 
kernels for which ( , ) ( , )x x x x 0l l= -l l  only depends on 
the difference x x- l  (such as the Gaussian kernel), this is 
a consequence of Bochner’s theorem [7], which states 
that if l  is a positive definite kernel such that ( , )x x 1l =  
for all ,x  then its CFT yields a probability distribution 

j( ) ( , ) ( ) .expw x w x xp 0 2 dW l r= - <#  Conversely, the kernel 
can be obtained by the inverse CFT, which can also be 
phrased as an expectation:

j
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Hence, drawing i.i.d. frequency vectors w j  according to 
pW  yields a random Fourier feature map (3) whose 
expected kernel is precisely .l  For instance, a Laplace 
kernel can be approximated if the rows of W  are drawn 
i.i.d. from the Cauchy distribution [S6].

More generally, under mild assumptions on a posi-
tive definite kernel ,l  one can invoke Mercer’s theo-
rem [S7] to similarly show the existence of a random 
feature map whose expected kernel, in the sense of 
(33), matches .l
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Approximating Kernel Methods With Random Feature Maps
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⊥
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FIGURE 6. The structured random matrix design from [40]. Each block is a composition of several Hadamard and diagonal matrices. For convenience, we 
draw W<  instead of W.
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_RF $^ h with high accuracy is somewhat costly and not ame-
nable to easy hardware acceleration, one might consider quan-
tizing it. For example, dropping the imaginary part of _RF $^ h 
and quantizing the real part to 1 bit of 
precision yields the 2r-periodic function 
_ : sign cos 2q $ $r=^ ^ ^h hh which is simply 
a “square wave.”

To alleviate the effects of quantization, 
one can apply dithering [8] to the input. 
In this case, the feature map becomes 

_( ) ( ) { , } ,x Wx 1 1q q
m!pU = + - +  with i.i.d.  

dither components jp  drawn uniformly over 
[ , ) .0 1  The effect of dithering is to make the 
quantized qU  behave similarly to the nonquantized ,RFU  on 
average. For instance, it was shown in [35] that for each 
W, , ,x xl  and ,p

	
( ), ( ) ( ), ( )

( ), ( ) ,

x x x x

x xc

ERF RF

RF RF

q q.G H G H
G H

U U U U

U U=

pl l

l � (41)

where c is a constant. The approximation in the preceding is 
accurate for a typical draw of the m-dimensional dither vec-
tor p  when the sketch dimension m is large enough [36]. Note 
that, when this dithered quantizer is used to compute a sketch 

_: ( ) ( ),( ) ( )z x Wxn n1 1 qqi
n

i
n

q i i1 1 pR RU= = += =u  it is im-
portant to use the same dither realization p  for all samples i.

The question then arises: When estimating parameters 
i  via (27), how should we account for quantization in the sketch? 
Simply replacing the A( )pi ,  term with A ( ) : [ ( )]p XE ~q X p qU=i , i,  
may sound appealing. For example, with the compressive 
GMM (14) or compressive clustering (16), this would mean 
minimizing A .( )z pk

q q1
2

aR- , , i= ,u  However, the optimi-
zation problem (27) would become more challenging, as 
suggested by comparing the left two panels to the right two 
panels in Figure 7, which plots the centroid selection criterion 

A(, ( ) , )z c z pcG H G HU =u u  used by greedy algorithms. Also, this 
approach would not inherit the theoretical guarantees that were 
carefully established using the LRIP (29), which does not eas-
ily translate to the quantized case.

Instead, we suggest to use A ( ) : [ ( )]p XERF ~ RFX p U=i, i,  for 
the A ( )pi,  term in (14) and to rescale /z z cq q=lu u  with the con-

stant c from (41). Indeed, thanks to (41), the resulting cost 
function A ( )z zC pRF

k
q q 1

2
i aR= , , i=- ,l lu u^ h  is, in expectation 

over ,p  exactly the same (up a constant additive bias term) as 
the nonquantized cost function zC RFi u^ h 
[35]. The similarity between zC qi lu^ h and 

zC RFi u^ h, even for a single realization of 
the m-dimensional dither vector ,p  is sug-
gested by comparing the right two panels 
in Figure 7.

Empirical results [35] suggest that, when 
the sketch dimension is inflated by about 
25%, this quantized compressive learning 
procedure yields the same performance as 

the nonquantized procedure. Moreover, accurate probabilistic 
bounds for approximation (41), established in [36], allow one to 
extend the theoretical compressive learning guarantees in (30) 
to this new cost function.

Privacy preservation
In addition to its efficient use of computational resources, sketch-
ing is a promising tool for privacy-preserving machine learn-
ing. In numerous applications, such as when working with 
medical records, online surveys, or measurements coming 
from personal devices, data samples contain sensitive personal 
information, and data providers ask that individuals’ contribu-
tions to the data set remain private, i.e., not publicly discover-
able. Learning from such data collections while protecting the 
privacy of individual contributors has become a crucial chal-
lenge [37], [38], [39].

A common way to preserve privacy is to have a trust-
ed data holder (or “curator”) corrupt the response to each 
query of the data set [37] in a controlled manner. A query 
may ask for something as simple as counting the number 
of times a given event occurred, or it may ask for more 
sophisticated information that requires the data holder to 
run an inference algorithm. As the corruption becomes 
more significant, the privacy guarantee gets stronger, but 
the quality of the response to the query (called the utility) 
degrades. This can be conceptualized by a privacy–utility 
tradeoff [37], [39].
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A common way to 
preserve privacy is to 
have a trusted data holder 
(or “curator”) corrupt the 
response to each query  
of the data set in a 
controlled manner.
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When sketching a data set via (1), there is a very sim-
ple way to preserve privacy in any subsequent learning 
task: simply add i.i.d. noise (with appropriate distribu-
tion) to the sketch. The privacy level can be adjusted by 
changing the variance of that noise, as described in the 
following. This one-time approach to privacy preserva-
tion (more generally known as privacy-preserving data 
publishing [37]) has several benefits over the query-
based approach to privacy preservation discussed in the 
previous paragraph (see also the sidebar “Potential of 
Sketching for Privacy-Aware Learning and Alterna-
tive Approaches”).

Sketching with differential privacy guarantees
Differential privacy [38] is a standard framework for priva-
cy preservation that has a precise mathematical definition 
and is well known in machine learning and signal process-
ing (e.g., [39]). When a given (randomized) learning pipe-
line is differentially private, its output depends negligibly 
on the presence or absence of any individual sample in the 
data set. Differential privacy is robust to many forms of 
attack, such as when the adversary can access side infor-
mation that nullifies privacy guarantees based on anony-
mization or mutual information measures (e.g., when the 
adversary can control some of the data vectors xi  or can 
access additional databases that are correlated with the pri-
mary database).

For compressive learning methods, enforcing differential 
privacy guarantees is as simple as adding well-calibrated noise 
v to the usual sketch ,zu  i.e., constructing

	 X) X( : ( ) ,s z v= +u u � (42)

where we find it helpful to explicitly denote the dependence 
of the data set X. We will assume that the realization $U ^ h 
of the random feature map is fixed and publicly known, in 
contrast to other approaches, like [40] and [41], that use lin-
ear mixing matrices as encryption keys to ensure privacy 
preservation. As a result, when we treat X)(su  as random, 
this is due to the randomness in v, not the randomness in 
$U ^ h or X.

Formally, the sketching mechanism s $u^ h is said to be e
-differentially private [38] if, for any data set X { }xi i

n
1= =  and 

“neighboring” data set X X { } { }x xj j= ,=l l  that replaces the 
individual sample x j  by another sample ,x jl  and for any pos-
sible sketch outcome s, we have that

	 .exp exp
s
s

p
p
X

X

s

s
# #e e-

lu

u^ ^
^ ^

^
^h h

h hh
h 	 (43)

Here, 02e  plays the role of a privacy level: a smaller e  im-
plies a stronger privacy guarantee. In words, (43) says that, 
when e  is small, the densities of X)(su  and Xs lu^ h are almost 
indistinguishable, as depicted in Figure 8.

Given a data set, privacy preservation can be achieved 
by asking a trusted data holder to corrupt all queries of the 
data set [37], [38] in a controlled manner. There are, how-
ever, challenges to this so-called interactive approach. For 
example, because the privacy-preserving effects of this cor-
ruption can often be diminished through the mining of mul-
tiple query responses (especially if the queries are 
adaptive), the per-query corruption levels must be 
designed with the type and total number of queries in 
mind. These corruption levels are often designed using a 
so-called privacy budget, which is expended over multiple 
queries to meet an overall privacy level. Once the entire 
privacy budget has been used up, the data can no longer 
be accessed by a given data user. Also, the data holder 
must ensure that responses to different data users cannot 
be combined in a way that circumvents the intended priva-
cy preservation.

In contrast, the noninteractive approach [37], [38] is to 
publish an intermediate privacy-preserving synopsis of the 
data set, to which the public is allowed unlimited access. 
For example, with a low-dimensional data set, one could 
publish a privacy-preserving histogram of the data [S8], 

from which aggregate statistics could be subsequently 
extracted. The noninteractive approach is attractive for sev-
eral reasons. For example, there is no need to formulate or 
allocate a privacy budget; it is sufficient to set an overall 
privacy level. Also, there is no need to worry about data 
users sharing/combining data.

By adding noise to a sketch of the form (1), one can easily 
generate a privacy-preserving synopsis of a data set. By con-
struction, such sketches capture the global statistics of the 
data set { }xX i i

n
1= =  while being relatively insensitive to 

each individual data sample ,x i  especially when the sample 
cardinality n  is large. Also, when the original data are dis-
tributed across multiple devices, a privacy-preserving global 
sketch can be constructed by first locally sketching at each 
device and then averaging those local sketches at a fusion 
center, as illustrated in the sidebar “Compressive Mixture 
Modeling for Speaker Verification.” In this scenario, the local 
sketches will themselves be privacy preserving, which allevi-
ates concerns about privacy leaks during data fusion.

Reference
[S8] W. Qardaji, W. Yang, and N. Li, “Differentially private grids for geospatial 
data,” in Proc. IEEE 29th Int. Conf. Data Eng. (ICDE), 2013, pp. 757–768.
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The condition (43) can be interpreted as bounding a “likeli-
hood ratio” [42], a familiar quantity in signal processing. Consid-
er two hypotheses: one that the data set equals X  (i.e., it includes 

)x j  and the other that the data set equals Xl (i.e., it includes x jl  
instead). Then, ( )sp X)(su  would be the likeli-
hood of observing private sketch s under the 
first hypothesis, while ( )sp Xs lu^ h  would be 
the same for the second hypothesis. Say an 
adversary wanted to detect whether or not the 
data set contains .x j  By appropriately thresh-
olding the likelihood ratio ( ) / ( ),s sp pX Xs s lu u^ ^h h  
one can obtain hypothesis tests that are opti-
mal from various perspectives (e.g., Bayes, 
minimax, and Neyman–Pearson) [42, Ch. 2]. Thus, when (43) 
holds with a small ,e  it is fundamentally difficult for an adver-
sary to determine whether x j  or x jl  was present in the sketch. 
Even if the adversary had nontrivial prior knowledge of the true 
hypothesis (as in so-called linkage attacks, which make use of a 
second public data set to which the target user contributed), (43) 
implies that—for any method—the probability of recovering the 
true hypothesis from the sketch is only slightly higher than that 
which is achievable without observing the sketch.

To ensure that the noisy sketch (42) is differentially pri-
vate, it is sufficient to draw the noise v as i.i.d. Laplacian with 
appropriate variance. The variance needed to achieve a given 
privacy level e  can be determined by analyzing the so-called 
sensitivity of the noiseless sketch, i.e., the biggest possible 
change that can result from removing one sample. When using 
the RF feature map (3), which generates a complex-valued 
X),(zu  it has been established [43], [44] that it is sufficient for 

the real and imaginary components of v to be i.i.d. Laplacian 
with a standard deviation of .n

m
v ?v e

A weaker form of privacy, known as approximate differen-
tial privacy or ( , )e d -differential privacy [38], can be attained 
by adding Gaussian noise v with a smaller variance. For exam-
ple, with RF features, it is sufficient for the real and imaginary 

components of v to be i.i.d. Gaussian with a 
standard deviation of .n

m
v ?v e

The privacy–utility tradeoff facilitates 
the comparison of different privacy-pre-
serving learning strategies. For example, 
given two strategies, one could match the 
privacy levels e  and compare utilities, or 
one could match utilities and compare pri-
vacy levels. For compressive learning, the 

utility of interest is the risk [recall (21)].
In this section, we focused on differential privacy. Other 

definitions of privacy exist in the literature, such as informa-
tion-theoretic ones [49]. Likewise, cryptographic methods, 
such as fully homomorphic encryption [50], can be used to 
transmit and manipulate data in a secure and private manner, 
although this notion of “privacy” is quite different from the 
former ones. Additional work is needed to understand wheth-
er compressive learning is “private” according to definitions 
other than differential privacy.

Perspectives and open challenges
By averaging well-chosen randomized feature transforma-
tions over large training collections, sketching significantly 
compresses data in a way that facilitates provably accurate yet 
scalable learning from huge and/or streaming data sets, while 
simultaneously preserving privacy.

In this article, we described several approaches to accelerate 
the sketching process, including feature quantization and the use 

X
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z (X )∼ s (X )∼
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FIGURE 8. When sketching with differential privacy, the output log density of the sketch s  remains close when changing one sample in the data set [since 
(49) is equivalent to ( ( )) ( ( ))log logs sp p XX( ( ))s s; ; #e- lu u  for all possible s].  An adversary with knowledge of ( )$U  and ,s  as symbolized by the red arrows, 
could then hardly decide whether a given sample x j  was used to compute the sketch or not.

Sketching significantly 
compresses data in a way 
that facilitates provably 
accurate yet scalable 
learning from huge and/or 
streaming data sets.
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of randomized fast transforms. Another approach is to randomly 
mask each feature vector ( )xiU  prior to averaging, i.e., setting a 
random subset of its components to zero. It has been established 
[44] that such random masking does not increase or decrease the 
differential privacy level .e  But it does reduce 
the need to compute all entries of each feature 
vector, and thus it reduces sketching complex-
ity. Another promising approach consists of 
mixed analog–digital sketches, where, e.g., 
optical processing units are used to signifi-
cantly improve the energy efficiency of the 
linear stage [45].

When discussing methods to learn from 
a sketch, we focused on optimization-based 
approaches. Although heuristics based on the OMP [6] and 
approximate message passing [10] have been proposed that yield 
promising empirical results, performance guarantees for these 
approaches have yet to be established. Alternatives, such as total 
variation minimization over the space of signed measures [23], 
[26], [46], principled greedy methods [47], and gradient flows on 
systems of particles [48], could be leveraged to make progress 
on this front, and black-box optimization could be used to learn 
from sketches computed by optical processing units.

As for applications of compressive learning, most of the 
current literature, and hence most of our article, has focused on 
unsupervised learning tasks. Further work is needed to develop 
compressive learning methods for supervised tasks like regres-
sion and classification [30]. For example, one approach to 
compressive classification was proposed in [49]: for each class 

, , ,k1, f=  one computes a sketch z,u  using only the training 
examples with label ,  (i.e., we sketch the k conditional distri-
butions of the data). From those sketches, one could estimate 
the conditional densities of each class (using a mixture model, 
for example), from which an ML or maximum a posteriori 
classifier could be derived. Another approach is to perform 
classification directly in the compressed domain: to an unseen 
example ,xl  we would assign the class ,  that maximizes the 
correlation , ( ) .z xG HU, lu  This strategy can be interpreted [49] 
as compressively evaluating a Parzen window classifier [32]. 
Further work is also needed on unsupervised matrix factoriza-
tion tasks like dictionary learning, low-rank matrix comple-
tion, and nonnegative matrix factorization [50].
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