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Learning

Keeping only what you need

ig data can be a blessing: with very large training data sets

it becomes possible to perform complex learning tasks with

unprecedented accuracy. Yet, this improved performance

comes at the price of enormous computational challenges.
Thus, one may wonder: Is it possible to leverage the information
content of huge data sets while keeping computational resources
under control? Can this also help solve some of the privacy issues
raised by large-scale learning? This is the ambition of compres-
sive learning, where the data set is massively compressed before
learning. Here, a “sketch” is first constructed by computing care-
fully chosen nonlinear random features [e.g., random Fourier (RF)
features] and averaging them over the whole data set. Parameters
are then learned from the sketch, without access to the original
data set. This article surveys the current state of the art in com-
pressive learning, including the main concepts and algorithms,

Digital Object Identifier 10.1109/MSP.2021.3092574
Date of current version: 27 August 2021

12 IEEE SIGNAL PROCESSING MAGAZINE | September 2021 |

their connections with established signal processing methods,
existing theoretical guarantees on both information preservation
and privacy preservation, and important open problems. For an
extended version of this article that contains additional references
and more in-depth discussions on a variety of topics, see [1].

Introduction to compressive learning

The overall principle of compressive learning is summarized
in Figure 1. During the sketching phase, a potentially huge col-
lection of d-dimensional data vectors {x;}/_, is summarized
into a single m-dimensional vector Z called the sketch. The
sketch is constructed by transforming each data vector and
then averaging the results:

n
=LY o). )
iz
Next, during the learning phase, an estimate @ of some essen-
tial statistical parameters @ of the data set are extracted from
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the sketch z. These parameters are application dependent. For
example, as illustrated in Figure 2, they could represent prin-
cipal data subspaces (in subspace fitting problems), prediction
weights (in estimation and regression problems), distributional
parameters (in density estimation problems), or centroids (in
clustering problems); we give detailed examples in the fol-
lowing. Python notebooks that illustrate examples from the ar-
ticle are available at https:/gitlab.inria.fr/SketchedLearning/
spm-notebook.

The transformation ® (), known as the feature map, is
generally nonlinear and randomized. Although the use
of ®(-) is related to “kernel methods” in machine learning
(e.g., [2] and [3]), as will be discussed later, the act of sketching
(1) also includes averaging over the n data samples. The advan-
tages of compressive learning are the following:

1) By choosing a sketch of dimension m < nd, the data get
massively compressed. This has obvious advantages for
storage and transfer.

2) Sketching can speed up the learning phase, whose com-
plexity becomes independent of the cardinality, n, of
the original data set. This enables one to handle mas-
sive data sets while keeping computational resources
under control.

3) Sketching can preserve privacy: the transformation ®(-)
can be chosen so that individual user information is lost
while aggregate user information is preserved.

4) The sketching mechanism in (1) is well matched to distrib-
uted implementations and streaming scenarios: the sketch
of a concatenation of data sets is a simple mean of the
sketches of those data sets.

lllustration using four

worked examples

To illustrate the compressive learning framework and discuss the
essential aspects of it, we now outline four canonical examples
of machine learning tasks to which sketching can be readily
applied. See Figure 2 and Table 1 for an illustration.

Principal component analysis

Principal component analysis (PCA) seeks to find the lin-
ear subspace of a fixed dimension k <d that best fits
the d-dimensional data {x;}'_, in the least-squares (LS)
sense. In this case, we assume the data to be centered
so that the target parameters 6 can be described by a k-
dimensional orthonormal basis {u}{_, that maximizes
215:1):7:1|uz;xi‘2.
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FIGURE 1. An overview of sketching and parameter learning.

(d)

FIGURE 2. A schematic representation of the four running examples covered by this article. In the four figures, each x; is associated with a blue colored
disk; hence, the training collection corresponds to a point cloud, and the orange color geometrically represents the learned parameters. (a) Principal
component analysis (PCA) learns the principal k-dimensional subspace of the data set for some k < d. (b) Linear regression fits observed data (the
blue dot heights) as a linear model of the inputs (here, the 2D horizontal coordinates). For least squares, this amounts to minimizing the square of the
differences between these data and the linear predictions. (c) In Gaussian mixture modeling, we learn the set of parameters (the mixture weight, mean,
and covariance) characterizing each Gaussian term of the mixture; the probability-level sets are displayed here as orange ellipses. (d) Clustering methods
(such as k-means) learn a set of centroids (the orange squares) defining a Voronoi partition grouping together similar data samples.
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It is well known that one solution is given by the k prin-
cipal eigenvectors of the empirical autocorrelation matrix
R=(1/n)Z/—\ xix]. This R can be interpreted as a sketch
of the form (1) that uses the feature map ®(x)= vec(xx")=
(x1x1, X2X1,..., xdxd)T of dimension m = d°. Here and in the
sequel, the vec(-) operator vectorizes a matrix by stacking its
columns. As soon as the cardinality n of the data set exceeds
the dimension d, the dimension of this sketch is smaller
than nd, the total size of the data set. Using techniques from
matrix completion and compressive matrix sensing, the
sketch dimension can be further reduced [4]. For example
one can sketch via (1) using ®(x)= ((wlx) (wmx)z)
where the d-dimensional vectors w;, 1< j <m are the rows
of a tall random matrix W of size m X d. For m on the order
of kd < d? low-rank matrix reconstruction techniques can
estimate the k-dimensional principal subspace of R with
provable accuracy [5], [51].

LS linear regression
Suppose that the data vectors take the form x;= [xlTi, x;,-]T,
and our goal is to linearly predict the di-dimensional vector
x1; from the d»-dimensional vector xo; (with d=d+ d>).
That is, we want to design a d1 X d> weight matrix 6 such that
X 1; = Ox2; for all samples i. The LS approach to this supervised
learning problem chooses 6 = argmine X/~ | || X1i— 0x2; H2
Although it is possible to compute the LS solution using
gradient descent, each iteration would involve the full data set

Table 1. The notations used in this article.

Notation

X ={x:}i- Data set of 1 training samples x; € R*

z (Empirical) sketch of the data set, a vector of
dimension m

D() Sketching feature map, a function mapping R* fo
either R" or C"

6coO Target parameters to learn, of dimension p (e.g.,
principal component analysis matrix, centroids,
and mixture model)

w Random matrix associated with certain feature maps

@) Usually drawn i.i.d. Gaussian

o() Componentwise nonlinearity associated with cer-
tain feature maps @ ()

w.h.p. With high probability, i.e., with exponentially
decaying failure probability

i.id. Independent identically distributed

w.p.1 With probability 1

0L ) Euclidean norm of a vector, inner product between
vectors

I, (° “"norm” of a vector, i.e., its number of nonzero
entries

I Frobenius norm of a matrix

e (e )i I’ norm of a funcfion, I* inner product between

functions.

{xi}_ . A well-known alternative is to first build the empiri-
cal autocorrelation matrix R:=(1/n)Z/— xx] and then
compute @ in closed form as
Ri R\ .
6= Ri:R:!, with <R21 R22) R, 2)
where each submatrix i?,y has dimension d; X d;. Here, we
again use the sketch (1) with the feature map ®(x)= vec(xx")
and extract the target parameter 6 from (2).

Gaussian mixture modeling
Here, the objective is to find the parameters 6 = { o, £e, Lo }i_, C
O that best fit a k-term Gaussian mixture model (GMM)
p(x]0)=Zi—1aiN(x; te, Xo) to the data {x;}/_,. The pa-
rameter space © demands that, for each {: a¢>0, ¢ is a d-
dimensional centroid, X is a d X d positive definite matrix,
and X o¢=1. Traditionally, expectation—-maximization (EM)
1s used to approximate the maximum likelihood (ML) estimate
= argmaxeco X/ logp(x;|0), but the EM algorithm pro-
cesses all n data samples {x;}/, at each iteration, which can be
computationally burdensome when 7 is very large.
An alternative [6] is to compute a sketch z of the form (1)
using RF features [7]:
®(x)=exp(—j2zWx), 3)
where j= V=1 and W € R™* is a realization of a random
matrix [e.g., i.i.d. Gaussian]. Here, exp () is the component-
wise exponential, not the matrix exponential. We will have
a lot to say about the RF feature map later in this article
(for example, the connection between the RF map and the
Gaussian kernel is discussed in the sidebar “Approxi-
mating Kernel Methods With Random Feature Maps”).
The parameters can then be extracted by optimizing a cost
function, as explained later. This approach has been ap-
plied to audio source separation as well as speaker verifi-
cation [6], where it was shown that 1,000 h of speech can
be compressed down to a few kilobytes without loss
of verification performance (see the sidebar “Compressive
Clustering of Modified National Institute of Standards and
Technology Digits”).

k-means clustering

The goal of clustering is to group together “similar” data sam-
ples from {x;}_,. In the k-means approach to clustering, one
aims to find the set of k centroids {c¢}{_, that minimizes the
average squared distance from each sample to its nearest cen-
troid; i.e., Z?:lmingH Xi— Cy H2 The famous Lloyd algorithm
[8] is typically used in an attempt to solve this problem. When
n is very large, however, Lloyd’s algorithm becomes compu-
tationally demanding. Instead, one could sketch the data set
using (1) and extract the centroids from the sketch [9], [10].
For this purpose, one could use RF features (3) and (as ex-
plained in the sequel) solve for the centroids {c¢};_, and the
(nonnegative, sum-to-one) weights {otg}]j:l that minimize
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HZ— Zio10e®(co) ” In this setting, the weights allow us to
model unbalanced clusters, yet only the centroids need to be
recovered. On large data sets, this approach can be orders of
magnitude better than Lloyd’s algorithm in memory and run-
time, provided that the sketch dimension m is large enough,
i.e., that m is on the order of kd, where kd is the number of free
parameters in {c¢}_, [9], [10]. For example, this method
allows us to cluster the Modified National Institute of Stan-
dards and Technology (MNIST) digit data set, of dimension
d =784 and cardinality n= 70,000, using a complex-valued
sketch of dimension m = 400 (see the sidebar “Compressive
Clustering of MNIST Digits”).

Although this article focuses on these examples, the gen-
eral compressive learning framework extends beyond them.
It has been applied to, for example, independent component
analysis [11] (by sketching the cumulant tensor) and subspace
clustering [12] (using a polynomial feature map). Extending the
framework to a new task raises essential questions, such as:
How do we choose the feature map ® (") ? How do we learn the
essential parameters @ from the sketch z? Are there statisti-
cal learning guarantees? Can sketching and learning be made
computationally efficient? Can we sketch while respecting pri-
vacy? This article sketches answers to these questions for the
worked examples introduced in the preceding.

Historical background

The term sketch has different meanings depending on the field.
Our use of the term comes from the literature on relational da-
tabases and more particularly from the subfield of approximate
query processing (AQP) [13]. The goal of AQP is to build a
short description of the content of a massive data set, called a
synopsis, by analogy with the synopsis of a movie or a book,

Data Stream

such that certain queries can be efficiently performed to return
answers with a controlled error and/or probability of failure.
Well-known queries include the frequency of occurrence of a
particular element in a stream of data (taken from a discrete
collection) and the minimum of several of these frequencies,
yielding the celebrated count-min sketch [13, Sec. 5.3.1] syn-
opsis. In this context, the statistical parameters 6 learned from
a sketch are interpreted as the result of a particular query on
the data set.

Despite the apparent similarities between AQP and com-
pressive learning, both data types and learning tasks differ
significantly between the two fields. Typically, AQP focuses
on (multi)sets of elements taken from a discrete collection of
objects and considers database queries and related operations,
while compressive learning focuses on continuous-valued
signals (e.g., images or audio signals) and considers machine
learning tasks, such as density estimation or regression.

Sketches for streaming and distributed methods

In AQP, a popular class of synopses is that of linear sketches
[13, Ch. 5]. A linear sketch, which maps a data set to a
vector, must satisfy the single condition that the sketch of
the concatenation of two data sets equals the sum of their
sketches. In mathematical terms, if we denote by z2(Xx)
the sketch of a data set X' = {x;}/_,, then it is required that
2(X)=7(X1)+ z(X2) whenever X is the concatenation
of X1 and X». It thus follows that a linear sketch must be
of the form z(X)= X/, ®(x;) for some possibly nonlin-
ear feature map ® (). That is the same definition that we
adopt in (1) except that we normalize by the number of
elements n. Linear sketches are popular in AQP mainly be-
cause they are well suited to streaming scenarios. That is,

Distributed Data Set

Device 4

Data Sample
at Time ¢

Sketch on
the Fly

Mean Sketch
at Time ¢

(a)

'_1 Device 1 PT Device 2 '_1 Device SU
. __v_ - ==

Batches

Sketch of
the Local

Data Set

_ | Sketch of the
% | Whole Data Set

(b)

FIGURE 3. (a) A streaming scenario, where the data samples are sketched one by one and the mean sketch is updated at each time. (b) A distributed
scenario, where each device computes a local sketch and a centralized entity further averages these local sketches.
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inserting or deleting an element x; from the data set cor-
responds to adding or subtracting ®(x;) from the sketch,
respectively (see Figure 3). Note that some very simple
sketches are not linear: for instance, it is easy to sketch
the maximum running value in a stream of scalar data by
computing the maximum of the current sketch and each
new data point, but this sketching procedure is not linear
[13, Ch. 5.2.1]. In particular, this “max” sketch facilitates

the insertion of a new element in the database but not the
deletion of an existing one.

In the sections that follow, we describe linear sketches
from other points of view. Before doing that, however, we
want to clarify that the terms sketching and linear sketching
appear in many other fields, although with meanings that dif-
fer considerably from ours. For instance, sketching is often
used to indicate linear dimensionality reduction in # or d, as

Compressive Mixture Modeling for Speaker Verification

Given a fragment of speech and a candidate speaker, the
goal of speaker verification is to assess whether the frag-
ment was indeed spoken by that person. A classic
approach to speaker verification is the Gaussian mixture

model (GMM)-universal background model (UBM) [S1].

There, the idea is to train a model of a “universal” speaker
from unlabeled training data and then compare it to a spe-
cialized model for the candidate speaker. Using the
speech fragment, the likelihood ratio between the spe-
cialized and universal models is computed, and a positive

Decentralized, Privacy-Aware Data Collecting
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FIGURE $1. Speaker verification via compressive learning. Unlabeled training speech data are collected in a decentralized manner, preprocessed,
and locally sketched. The local sketches are then merged into a global sketch, from which a UBM is learned.
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attained by multiplying the data matrix [x1,..., x,]" € R"*¢
by a random matrix on the left or the right [14]-[17]. Sketch-
ing may also refer to the use of sampling-based approaches
[18], such as core sets [19] or the Nystrom method [20]. These
latter methods differ from linear sketches in AQP, which is
our notion of sketching, in that these latter methods gener-
ally do not respect the concatenation condition described
earlier and are therefore less directly amenable to streaming
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scenarios. Moreover, these methods typically do not involve
a nonlinear feature map ® (), which is a key component of
our sketch.

Sketches as (randomized) generalized moments

In signal processing and machine learning, the data samples
x: generally live in the vector space R and are often modeled
as i.i.d. random vectors having a probability distribution with
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FIGURE $2. A detection error tradeoff curve (the false-positive/false-negative tradeoff obtained by varying the decision threshold) and an equal error
rate (EER). On a single laptop, the EM was trained on 5 h of speech; the compressive GMM estimation used (a) 5 h and (b) 1,000 h for different

sketch dimensions m.

decision is made if the ratio exceeds a certain threshold. In
the GMM-UBM, the data are modeled using a GMM.
That is, p(x|@) are multivariate Gaussian distributions
applied to a suitable time—frequency transform of the raw
audio signal [S1] (see Figure S1).

The training of the UBM is computationally demanding
since it must be done on a large corpus of speech data.
Moreover, the latter must be collected in a wide range of
situations so that the final model may be as universal as
possible. For this reason, the data collecting process is
best performed in a decentralized manner. Finally, speech
data collected in realife situations is known to be sensitive
information. For all of these reasons, compressive learning
is well suited to speaker verification.

In [6], using a random Fourier feature map ®(), the
authors compressed 1,000 h of speech data (50 giga-
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bytes) into a sketch of a few kilobytes on a single lap-
top. Subsequently, they performed GMM estimation,
i.e., learning, using a greedy algorithm, thereby tackling
the optimization problem (15) introduced in the main
text. They compared this compressive learning approach
to the expectation-maximization (EM) algorithm, which,
on the same laptop, could only be trained using 5 h of
speech given the available random-access memory.
They observed that by enabling the use of more data
within a fixed memory budget, sketching produced bet-
ter results despite the tremendous compression factor
(see Figure S2).

Reference

[S1] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted gaussian mixture models,” Dig. Sig. Proc., vol. 10, no. 1,
pp- 1-3, 2000.
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Compressive Clustering of MNIST Digits

Clustering is a classic machine learning task and a compo-
nent of many machine learning pipelines. The most popular
method is Lloyd's algorithm [8], which aims to solve the
k-means problem. In many cases, the raw features are con-
verted to a spectral embedding before clustering. As a
proof of concept, the authors in [?] applied this technique
to handwritten digits from the Modified National Institute of

FIGURE S3. The clustering of handwritten digits via compressive k-means. First, scale-invariant feature transform descriptors are extracted from
each image. Then, a similarity graph is constructed to obtain a so-called spectral embedding of the data set (using the first eigenvectors of the

Handwritten Digits

2(0]o]6[0]/]3]0]S]0]
EaSEHERE RS _
anAaERARNREGE Preprocessing
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Standards and Technology (MNIST) data set but used com-
pressive kmeans clustering in place of Lloyd’s algorithm
(see Figure S3). Using an n= 10" sample augmentation of
the MNIST, they found that compressive k-means clustering
gave approximately the same accuracy as Lloyd's algo-
rithm but reduced the time and memory complexity by 1.5
and four orders of magnitude, respectively (see Figure S4).

Spectral Embedding
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Laplacian of the graph). The spectral features are aggregated into a sketch, from which centroids are extracted.

Relative Memory

FIGURE $4. The (a) memory, (b) runtime, and (c) error of compressive k-means clustering relative to Lloyd’s algorithm for various sample cardinali-
ties n and sketch lengths m, using k& = 10 centroids and 4 = 10 dimensional spectral features. Figure from [9].
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Compressive Sensing and the Restricted Isometry Property

In compressive sensing, one observes a linear measure-
ment y = Ax € R" of signal x € R with m <4, i.e., with
significantly reduced dimension. (For simplicity, we focus
on the noiseless case for now.) To distinguish between dif-
ferent signals x in a given signal class, one desires that
the distances between all signals in that class are pre-
served by the measurement operator A. For the class of
k-sparse signals Z,, i.e., signals with at most k nonzero
entries, this property is satisfied up to a tolerance
8 €[0,1) when A obeys the restricted isometry property
(RIP) [4], [22]

(1=8)x—x']
Vx,x €L,

2

" <||Ax—Ax’

|ZS(1+5)||x—x’

9

(1)

One way to create a RIP-satisfying A is to draw it ran-
domly. For example, if the coefficients of A are drawn as
an i.i.d. zero-mean Gaussian, then A will satisfy the RIP
with high probability when the sketch dimension m is at
least on the order of klog(d/k) [4].

To recover ksparse x from y, one might attempt to
search for the sparsest signal among all of those that
agree with the measurements, i.e., within the set
C,:={u:Au=y}. The complexity of this search, howev-
er, grows exponentially in k. Fortunately, when A satis-
fies the RIP, one can provably recover the true x using
polynomial complexity methods [4]. One approach is to
solve the convex problem of finding the signal with the
smallest ¢, norm within C,. Another is to use a greedy
algorithm, like orthogonal matching pursuit, which esti-
mates x by progressively removing from y the &
columns of A that best “align” with it, using a least
squares fit.

The RIP also provides guarantees on robust recovery.
Suppose that we have noisy measurements y =Ax +e,
with noise e of bounded norm | e[ < é&. In addition, sup-
pose that x is only approximately k-sparse, and use x.
to denote the best k-sparse approximation of x. Finally,
consider recovering an estimate % of x by searching for

density px. Consider what happens when the number of sam-
ples n goes to infinity. The strong law of large numbers says that

p.1

Jim 1 3 0(x) 2 ELOO)= [ pr(0)@x)dx. (@

where [E[-], denotes expectation with respect to the probabil-
ity density px. If we consider the simple case of dimension
d =1 and the scalar transformation ®(x)= x* (so that m= 1),
then [E[®(X)] is the (uncentered) kth moment of the random
variable X, a quantity that has a long history in statistics. By
analogy, with a generic vector-valued feature map ®(-) and in

oAx'

R" , ,

‘ lax —ax’]| =[x -
(@)

C L A g Ba

(b)

FIGURE $5. (a) A geometrical interpretation of the RIP. (b) A 2D illustra-
tion of the recoverability of x from y = Ax by finding the vector %
in C, with the smallest ¢, norm.

the signal with the smallest ¢, norm that agrees with the
measurements up to a tolerance of &, i.e., within the set
C,.:={u:|Au—y|<g}. Then, if the RIP (S1) holds, the
estimation error & —x satisfies [4]

el ,

t—x|=c

(52)

where constants C,D > 0 depend only on the value of §
that appears in (S1). Thus, the estimation error increases
linearly with the noise level € and the deviation |x —x. |
from perfect sparsity. Please see Figure S5.

dimension d > 1, quantities of the form E[®(X)] are known
as generalized moments of the random vector X € R?.
Performing inference from generalized moments is often
referred to as the generalized method of moments (GeMM)
[21]. This method to “learn from a sketch” is very popular in,
e.g., the field of econometrics [21, Ch. 1]. The GeMM can be
seen as an alternative to ML estimation that avoids the need to
work with the full likelihood function, which can have com-
putational benefits. Indeed, for many classes of probability
distributions, such as heavy-tailed o-stable distributions, the
likelihood function is not given in closed form, but generalized
moments are given in closed form for appropriately chosen
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feature maps ®(-) (see the sidebar “Compressive Mixture
Modeling for Speaker Verification”).

The GeMM differs from compressive learning in several
aspects. In the GeMM, the feature map ® (') is typically con-
structed to make the parameter estimates computable in closed
form. This narrows the range of learning tasks that the GeMM
can handle. In compressive learning, ® (') is designed with infor-
mation preservation in mind. Consequently, the range of learn-
ing tasks is much broader in compressive learning, although
the estimation procedure (i.e., learning from a sketch) may be
algorithmic in nature. Another difference is that in compressive
learning, ®(-) is typically randomized. This results in random-
ized generalized moments, which are rarely seen in the GeMM.

Compressive learning and compressive sensing

As we will show in this section, the sketching mechanism (1)
can be interpreted as a dimensionality-reducing linear “pro-
jection” of the probability distribution underlying the data set
{xi},. This differs from the traditional approach in signal
processing, where dimensionality reduction is performed on
the features x; € R themselves rather than the distribution
that generates them. Still, many of the intuitions, analyses, and
tools designed for feature-based dimensionality reduction can
be extended to distribution-based dimensionality reduction.

In the field of inverse problems and compressive sensing (CS)
[4], [22], a signal of interest is modeled as a high-dimensional
vector x € RY, and a physical measurement of that signal
is approximated by a linear transformation plus additive
noise: y= Ax + e € R" (see the sidebar “Compressive Sensing
and the Restricted Isometry Property”). Here, the linear
measurement operator is represented by the m X d matrix A. In
many applications, there is a great motivation to make the mea-
surement dimension much less than the signal dimension; i.e.,
m < d. Inthis case, therecovery of x from y is generally ill posed.
Still, it is possible to accurately recover x from y when both
x and A obey certain properties and the noise is small enough.

The celebrated Johnson—Lindenstrauss (JL) lemma and its
variations specify, for instance, that with high probability one
can nearly preserve the pairwise distances between N features
in R? by linearly projecting them in a O(log N)-dimensional
domain. This is used, for instance, to accelerate nearest-neigh-
bor searches in large databases. An important extension is
to CS: if x is sparse, in that relatively few of its coefficients
deviate significantly from zero, and if A satisfies the restrict-
ed isometry property (RIP)—an extension of the JL lemma
to the continuous set of sparse signals—then one can pose a
regularized inverse problem whose solution is close to the true
x (see the sidebar “Compressive Sensing and the Restricted
Isometry Property”).

Now that CS has been described, we can clearly connect it
to compressive learning. Recall that the sketch (1) Z converges
to the generalized moment z:=[E[®(X)]= [px(x)®(x)dx
as the number of data samples » tends to infinity, as per (4).

A crucial observation is the following: due to the linearity
of integration, the sketch z depends linearly on the probability
density px. To see it another way, consider a mixture of two

densities, px = opx,+ (1— a)px,. The corresponding expec-
tation satisfies

EX~PX[(I>(X)] = alix,px, [(I)(Xl >]+ ( 1= o) Ex,pr, [‘I)(X2)]7 ()

which implies that the generalized moment z is linear in px.
With this understanding, we can write

2= A(px) = Exp[®(X)], ©)

where A is a linear operator mapping the probability distribu-
tion px to the m-dimensional sketch vector z.

Although A is a linear function of px, we emphasize that the
feature map ® (x) is generally not a linear function of x. This
makes compressive learning concretely very different from the
vast majority of existing “sketching” mechanisms, which
use random linear projections of the data for dimensional-
ity reduction.

With a small modification of the preceding arguments,
we can handle the finite sample case. Consider the difference
between the true generalized moment z and the empirical
moment Z; i.e.,

%2@@,)— E[®(X)]=:e. (7)

As we discussed earlier, e converges to zero as n tends to in-
finity by the law of large numbers. Combining (1), (6), and (7),
we obtain

z=A(px)+e, (8)

which shows that the sketch (1) can be interpreted as a “noisy”

observation of the data distribution px through the linear mea-

surement operator .A. Under mild conditions the central limit
theorem can be used to show that | e || decays as 1/y/n with
high probability [4, Ch. 8]. From the assumed independence of

the data samples, this happens, for instance, if P[||®(X)||> 1]

decays exponentially fast when 7 increases. With the preceding

interpretation of compressive learning, one recovers all of the
traditional ingredients of CS:

B The measurement operator A is linear.

® The measurements z are drastically dimension reduced. In
mathematical terms, probability distributions px belong to
the infinite—dimensional vector space of so-called finite
measures [23]. The operator A maps these infinite—dimen-
sional objects to vectors of finite dimension .

m The measurement operator A is typically designed using
randomness. This is accomplished by choosing an appro-
priate randomized feature map ®(-), such as one based on
RF features, as in (3).

m The measurements z are noisy, as per (6).

The analogy between compressive learning and CS is illustrat-

ed in Figure 4. The CS analog to the sketching phase (1) is the

signal sensing phase, where the signal x is linearly mapped to
the observation vector y. The analog to sparse recovery, where
an estimate of x is computed from the observation y by solv-
ing an optimization problem, is to learn from a sketch, where
an estimate of the data distribution px (or of distributional

20 IEEE SIGNAL PROCESSING MAGAZINE | September 2021 |

Authorized licensed use limited to: The Ohio State University. Downloaded on July 06,2022 at 19:33:50 UTC from IEEE Xplore. Restrictions apply.



parameters O of interest) is computed from the sketch Zz. Its ex-
pression as an optimization problem will be further discussed
in the “Learning From a Sketch” section.

RF sampling and superresolution recovery

In this section, we consider the specific case of compressive
clustering, which allows us to forge a concrete connection be-
tween CS and compressive learning using RF sampling and
superresolution recovery.

We begin by considering the goal of recovering k cen-
troids {c¢}t_, in R with Euclidean norm <r that are sepa-
rated from each other in Euclidean distance by = €. A naive
approach would be to discretize the d-dimensional cube of side
length 27 with a grid spacing of €, leading to N = (2r/€)" bins.
A valid sketch of the data X is obtained by simply computing
the histogram p € RY over these bins (i.e., by using the “bin-
ning” feature map). However, the dimension of this sketch, N,
grows exponentially in the feature dimension, d. To construct a
smaller sketch, one might reason that if the data clusters tightly
around k points, then p is close to a k-sparse vector. In this
case, ideas from CS can be directly exploited. In particular,
one could use a sketched histogram [13] of the form z= Ap,
where matrix A € R™*" is randomly drawn with i.i.d. Gauss-
ian components. Here, learning from a sketch means recover-
ing the centroids. For this, one would first search for the best
nonnegative, k-sparse, sum-to-one vector using

2
B

p=argmin|z— Ap ©)

PEL

(or a convex or greedy relaxation of this problem) where Xi
here denotes the set of k-sparse, nonnegative, sum-to-one vec-
tors. Then, one would identify the k grid locations in R? cor-
responding to the nonzero indices of p. CS theory [4] says
that the support of p will be accurate for sketch dimensions
m at least on the order of klog N, i.e., at least on the order
of kdlog(r/€). Although this latter approach substantially
reduces the dimension of the sketch, practical challenges
remain when the feature dimension d is large. For example,
the number of columns, N, in the compression matrix A
grows exponentially in d, making storage and multiplication
by A impractical.

An alternative approach could be to construct A using m
rows of the (d-dimensional, in this case) discrete Fourier trans-
form (DFT) matrix, i.e., by sampling the DFT at m (d-dimen-
sional) frequencies. In this case, multiplication by A could be
implemented by the fast Fourier transform (FFT) algorithm,
and thus the matrix A would not need to be explicitly stored.
Fourier domain sampling is a familiar operation in the context
of signal processing, as it forms the cornerstone for radar, medi-
cal imaging, and radio interferometry; see, e.g., [24] and [25].
When the m frequencies are drawn uniformly at random, CS
theory [4], [22] has established that accurate recovery of an
N-length k-sparse signal can be accomplished (with high prob-
ability) when m is on the order of klog® (k) log N [4, Corollary
12.38]. Since N = (2r/€)’ here, this would mandate sketch

dimensions m at least on the order of kd logs(k) log(r/e).
Although the FFT avoids the need to store A as an explicit
matrix and allows efficient computation of the sketch, the cost
of solving the optimization problem (9) using existing convex
relaxations or greedy approaches is impractical due to the need
to manipulate N-dimensional vectors, where N grows exponen-
tially in d.

Until now, we considered discretizing the d-dimensional
feature space on an e-spaced hypergrid within a 2r-sidelength
hypercube but found that this requires manipulating vectors
(e.g., a histogram p) whose dimension grows exponentially in
d. We can avoid this discretization (i.e., take € — 0 and r — o0)
by replacing the DFT with the continuous Fourier transform
(CFT), in which case we are Fourier transforming the empiri-
cal distribution px(x):=(1/n)Z{=18(x — x;) rather than its
N-bin histogram p. The sketch z then has components

2,-=lelj:X(x)exp(—j2ﬂw_,Tx)dx (10)

(In

= %Z exp(—2zwjxi)  j=1,...m,

i=1
where {w;}"_, are d-dimensional frequencies that are drawn
at random. Typically, w; are drawn i.i.d. Gaussian, but other
distributions can be used, as discussed in the sections “The
Challenge of Designing a Feature Map Given a Learning
Task” and “Sketching With Structured Random Matrices.”
Note that (11) corresponds precisely to the sketch (1) with the
RF feature map ®(-) from (3). Taking a statistical perspective,
the components z; in (10) can also be recognized as samples
of the characteristic function of px. Recall that for a density p,
the characteristic function ¥, is defined as

Y,(w)= '[de(x)exp(jZﬂwa) dx

= Ex-plexp(j2zw' X)]. (12)

Intuitively, when a probability distribution p has a “sim-
ple” structure, one can recover it (with high probability) from
enough randomly chosen samples of its CFT. Centroid recov-
ery from the sketch (10) is premised on the empirical distribu-
tion px being well approximated by a mixture of k Diracs;

Compressive Learning CS
Dx L) X OCECITEMCTITITET
Randomized / Is recovery — B
Generalized possible? Matrix
Moments /
A A
B ECEE T = ]
E=VA(pX)+e y=Ax +e

FIGURE 4. The analogy between compressive learning, which uses the
dimensionality-reducing linear measurement A(px) = E[®(X)] ofa
distribution px, and CS, which uses the dimensionality-reducing linear
measurement Ax of a signal x.

IEEE SIGNAL PROCESSING MAGAZINE | September 2021 |

Authorized licensed use limited to: The Ohio State University. Downloaded on July 06,2022 at 19:33:50 UTC from IEEE Xplore. Restrictions apply.

Al



ie., pa(x)=Zi1ad(x — co). In this case, centroid recovery
parallels the “superresolution” recovery problem (see the side-
bar “Superresolution Recovery”) through an optimization
problem that is the continuous analog to (9) (or a convex or
greedy relaxation for the continuous case) and will be further
elaborated in the next section.

In both problems, recovery guarantees are possible when
the frequencies w; are randomly drawn. For example, when
the centroids {c¢}}_, are e-separated and r-bounded, centroid
recovery guarantees have been established provided the sketch
dimension m is on the order of k*dlog(r/€), omitting for
simplicity some log factors involving k and d [5], [51]. Similar
guarantees hold when px is approximately a sum of spatially
localized components (e.g., in compressive GMM) [5], [51].

Learning from a sketch

Until now, we have primarily focused on the first stage of the
compressive learning pipeline (see Figure 1), where the data set
X is sketched down to z, a compressed and noisy representa-
tion of the underlying data-generating distribution px. We now
discuss the second stage of the pipeline, where the distributional
parameters of interest, 0, are recovered from the sketch z. The
close analogy between sketching and CS allows us to cast this
“parameter learning” stage as an optimization problem; i.e.,

6=argminC(0|z), (13)
]

where the cost function C(-|z) is adapted to the considered
learning task. As in CS, many candidate distributions px
(and hence many candidate parameters 6) can yield the same
sketch z. Thus, to make the inverse problem well posed, one
needs to employ concrete modeling assumptions and regular-

ization, both of which can take several forms. As in CS,
we will assume that the sketched quantity px is of low intrin-
sic complexity, i.e., close to some family of “simple” probabil-
ity distributions.

As a first example, we consider the problem of learning
a mixture model from a sketch. Similar to a sparse vector x,
which is a linear combination of a few elements of the stan-
dard basis, a mixture model pyx is a linear combination of a
few “simple” densities {po.}i_,. Concretely, px= Zi—iaipe.
where the mixture weights {aa}ﬁzl are nonnegative and sum to
one. For example, with a GMM, we have that pe, = N (e, Xo),
where 6,= (., X¢) contains the mean g and covariance X.
If px is well approximated by the mixture model -, apeo.,
then, according to (8), the sketch z is well approximated by the
linear combination Z¢—;a¢.A(pe.). Hence, one could try to
extract the mixture parameters, 6 = {ay, 0¢}+_,, from the sketch
Z by solving the (nonconvex) optimization problem (13) with

2

c(oelz)= (14)

2 - i alZ.A(pO@)

=1

The cost C(@]z) can be interpreted as the negative log likeli-
hood (up to a shift and scale) of 6 given the sketch z, under the
classic modeling assumption of ii.d. Gaussian measurement
noise e in (8).

When the RF feature map ® () is used to compute the sketch
Z and the component densities pe, are Gaussian or « stable,
there exist analytic expressions for A (pe,) and for the gradi-
ent of A(pe,) with respect to the mixture parameters in 6¢ [6].
These expressions are convenient when numerically optimizing
(14). For instance, greedy approaches, similar to the orthogonal
matching pursuit (OMP) algorithm for CS (recall the sidebar

22

Superresolution Recovery

Superresolution is a general class of techniques to
enhance the resolution of a sensing system, e.g., to
observe subwavelength features in astronomy or medical
imaging [23]. The problem addressed by superresolution
is fo recover a continuoustime (when dimension d=1) or
continuous-space (when dimension d>2) sparse signal
s@) from a few, possibly noisy, Fourier measurements
{y;}/=i. This amounts to recovering a weighted sum
s@t) =Xt ab@—t) of k Diracs with amplitudes @, and
locations ¢, € R? from
y,:A‘rs(t)exp(—ﬂﬂw;t)dt-ke,, j=1,...m,  (S3)
with measurement noise e; and frequency vectors {w,}7-,
in R’. Recovery of s(-) can be posed as an infinite—
dimensional convex problem on measures [23]. However,
most reconstruction algorithms involve nonconvex steps
[26]. When the frequencies w, are drawn randomly, the

signal can be accurately recovered with high probability
when m is of the order of at least kd’, up to log factors.
Proving this usually requires additional assumptions, such
as a minimal separation between the locations # [S2] or
positivity of the amplitudes . [26].

The link between superresolution and compressive cluster-
ing follows from rewriting (10) as

2 :/wpx(x)exp(—jZﬂw,Tx)dx+ej, j=1,...m, (S4)
where ¢, captures the “noise” due to finite-sample effects
[recall (7)]. Comparing (S4) to (S3), we see that they are
mathematically equivalent when px(x) = Zt a8 (x —¢)
except for the fact that, in the case of compressive cluster-
ing, a. are nonnegative and sum to one.

Reference
[S2] C. Poon, N. Keriven, and G. Peyré, “The geometry of offthe-grid com-
pressed sensing,” 2020. arXiv: 1802.08464.
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“Compressive Sensing and the Restricted Isometry Property”),
can be used [6] to estimate the parameters {o¢, O¢}s_ . These
approaches sequentially estimate and subtract, from z, each
of the k components o A(pe,) that best align with it, where
“best” is measured via the correlation between z and A(po,).
As another example, an iterative approach [10] was proposed
that exploits the log likelihood interpretation of C(0z) in (14)
and the i.i.d. random nature of the linear transform W in the
RF map (3). In [6], applications of compressive mixture mod-
eling are demonstrated on speaker verification (see the sidebar
“Compressive Mixture Modeling for Speaker Verification”) and
source separation.

As a second example, we consider compressive k-means
clustering. Here, the goal is to recover, from the sketch z the
centroids @ = {c¢}{-1 that minimize the average squared
Euclidean distance from each sample to its nearest centroid,
ie., (I/n)X/= mingllx;—coll*>. To tackle this k-means prob-
lem, we view it as an approximation of a particular GMM fitting
problem. In particular, suppose that the probability distribution
px is a GMM with weights oy, mean vectors ¢¢, and covari-
ance matrices X. Then, in the special case that o = 1/k and
Y= oI forall components 1 < ¢ < k, we can write the likeli-
hood as T/~ p (xil0) oc TT{— 1 2 exp(—(1/262) llx; — 1 11%),
and so the negative log likelihood becomes — X7 ;log Zf-;
exp(—(1/26) llx; —¢;1I*) up to an additive constant. We can
then use the log—sum—exp approximation log X¢exp (fi(x)) =
maxfi(x) to approximate this latter expression as (126%)Zi-,
ming ll x; — ¢ ll?, which agrees with the k-means cost up to a
scaling. If we furthermore consider the case of a vanishing
variance o2 — 0, then the component density pe, reduces to
a point mass; i.e., pe.(x) — &(x —c¢). In this limiting case,
the linear measurement of the point mass pe, is A(pec) =
Ex-po [®(X)] = S (x) po.(x)dx = ®(cy), according to (6).

Thus, with these justifications, the cost function (14) for the
compressive GMM would change to

2

C@Ol7) = (15)

k
2—%2 D(co)
-1

for compressive k-means. If we do not want to assume that
¢ = 1/k for each ¢, we could instead estimate {a¢}f=; from
the sketch, leading to the cost function suggested in [9]:

2

C(01%) = min . (16)

k
72— > au®(co)
=1

Similar to the compressive GMM problem described earlier,
minimization of the cost function (16) for compressive k-
means can be tackled by greedy approaches, as described in
[9]. Despite the fact that (16) does not directly minimize the
k-means cost, it has been shown empirically [9] that the cen-
troids estimated by such greedy algorithms nearly minimize
this cost; see, e.g., the sidebar “Compressive Clustering of
MNIST Digits” for an example on MNIST data. This claim
is also supported by theoretical results guaranteeing that the
minimizer of (16) is endowed with statistical learning guar-

antees with respect to the original k-means cost [5], [51]. Such
guarantees will be discussed shortly.

Depending on the choice of parameters 6 and the feature
map P (-), the form of the optimization problem posed to learn
from a sketch can differ considerably from that for GMMs in
(14) and that for the k-means in (15) and (16). Consider, for
example, learning from a sketch for PCA. As described ear-
lier, the parameter 6 of interest is the k-dimensional sub-
space that best fits the d-dimensional data {x;}{= in an LS
sense. It is well known that this subspace is spanned by k
principal eigenvectors of the empirical autocorrelation matrix
R= (I/n)Zi- \xixi, or, equivalently, the column space of the
(positive semidefinite symmetric) matrix Ry that is closest to
R in the Frobenius norm:

2

(17

Ry = argmin Hl} —R||F = argmin H vec(R) — vec(R) ||
)<k

R:rank(R) <k R:rank(R) <

When sketching using quadratic features ® (x) = (wix)2 ...,
(whx)?) with random w; € R? the jth component of the
sketch becomes z; = (1/n)Z/— 1w, xix{w;=w] Rw;. Impor-
tantly, this Z; is a linear function of i?, and so there exists an
m X d* matrix A such that Z = A vec(R). Thus, by analogy
with (17), one could first fit a positive semidefinite symmetric
low-rank matrix to the sketch zZ via

R=  argmin  [z-Avec® | (18)

Rerank(R)<k,RT=R.R>0
and then set the parameter estimate 6 equal to the column
space of R. While the optimum of (17) is automatically sym-
metric and positive semidefinite, this property needs to be en-
forced explicitly in (18).

The low-rank matrix recovery problem (18) has been thor-
oughly investigated by the signal processing and machine
learning communities (e.g., [27]). It arises, for example, in
applications such as collaborative filtering for recommender
systems and signal reconstruction from phaseless measure-
ments. Early approaches to solving the nonconvex problem (18)
involved convex relaxation via nuclear norm regularization [4,
Ch. 4]. More recent approaches exploit the nonconvex geom-
etry of (18) [28].

Compressive learning with theoretical guarantees
In the previous section, learning from a sketch was posed as
the optimization problem (13), repeated here for convenience:

6= argmin c(61z). (19)
The quantity C(-|z) is a real-valued cost function whose
minimizer 6 is the “best” (in some sense) estimate of 6
from the sketch z. This approach contrasts with traditional
statistical learning [29], [30], which computes the param-
eter estimate

6 :=argminR(0|X) with R(O\X):%Zn: L(6]x:), (20)
2]

i=1
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where R(-|X) is the “empirical risk” and L(-| x;) is the “loss
function” for the ith sample. Table 2 presents typical loss func-
tions for our four running examples. In most cases, performing
the minimization in (20) involves querying the full training
data set A’ many times, e.g., for stochastic gradient descent.
In compressive learning, the cost C (-1%2), which depends only
on the low-dimensional sketch z, is used as a surrogate for
the empirical risk. Because the dimension of the sketch is so
much smaller than the cardinality of the full data set X, the
minimization in (13) can be made much more efficient than
that in (20).

Of course, the estimate 6, which minimizes the cost C(-|%),
is not, in general, the same as 6, which minimizes the empiri-
cal risk R(-|X’). Both, however, are approximations of the
ideal estimate

0" :=argminR*(0) with R (@) =E[L@O]|X)], (21)
o

where R*(0) is known as the “true risk.” Indeed, the feature

map ® () and cost C(-|z) are designed precisely to ensure

that the surrogate minimization (19) approximates the true risk

minimization (21).

Excess risk guarantees

To establish a guarantee on the goodness of an estimate 6, one
must prove that the “excess risk” R"(0) —R"(0") = 0 is small.
Indeed, the true risk can be interpreted as the expected loss on
test samples that have the same generating distribution px as
the training samples X but that are drawn independently and
not accessible at training time. In statistical learning tasks, the
true risk R"(-) is the primary metric by which one judges the
quality of an arbitrary estimate 6. Note that controlling the
excess risk is different from proving that 6 is close to the ideal
estimate @ in, e.g., the Euclidean distance | © — 0" |. Consid-
er, for example, the problem of fitting a 1D linear subspace to
a data set (i.e., PCA with k£ = 1). When the two largest eigen-
values of the autocorrelation matrix R are equal, any nontrivial
linear combination of the corresponding eigenvectors gener-
ates a 1D subspace 6 with minimum true risk. The problem
of estimating a subspace “close to the optimal one” is thus ill
defined, yet finding a subspace with close-to-optimal perfor-
mance is well defined and achievable, both by classic PCA and
compressive PCA.

Table 2. The loss functions for our four running examples.

Running Example  Parameters © Loss Function L(O]x;)

PCA Orthonormal basis

k
TR

9={u;}f:| ;|x.ua|
LS linear A weight matrix @ || x,, — Ox |, x.:= (x1, x1)
regression
Gaussian mixture ~ GMM parameters L
modeling 9:{a¢,,u[,):[}2:1 —IOg;anN(x:;ﬂz,Zf)
kmeans A set of centroids ming||x, —e.|]
clustering 0= {c}i

Despite the fact that the estimates 0,0, and 6" mini-
mize different objective functions, they often yield similar
true risks; i.e., the excess risks of 6 and 6 are provably small.
For 6, the proofs use classic results from statistical learning
[29], [30], under assumptions that we will briefly discuss in
the sequel. For 6, with an appropriately designed feature map
®(-) and cost function C(-|z), the proofs informally follow
from the fact that C(-|z) and R"(-) have a similar shape.
This fact is illustrated in the sidebar “Traditional Statistical
Learning Versus Compressive Learning” for a toy example of
compressive clustering. There it can be seen that, with a prop-
erly designed feature map ®(-), a well-chosen cost function
C(-1z),and a sufficiently large sketch dimension m, the mini-
mizer 6 of the cost yields a nearly minimal true risk R*(8)
and lives in a large basin of attraction in C (-1%). If the sketch
dimension m is chosen too small, however, then the excess risk
R*(6) — R*(©") increases.

A theory of compressive learning [5], [51] has been devel-
oped to better understand how (random) feature maps ®@(-)
and cost functions C(-|Z) can be designed to ensure that the
sketch z captures sufficient information to control the excess
risk on 6. In the following four sections, we aim to summarize
the key aspects of this theory using broadly accessible lan-
guage. For those interested, the full technical details can be
found in [5], [51].

In a nutshell, the theory relies on interpreting 6 as the mini-
mizer of the risk attributed to a surrogate probability distribu-
tion p with the following properties:
®m p is “close” to the distribution px, as measured by a task-

driven distance d(p, px).

® p is a “simple” distribution (e.g., for the compressive
GMM, p is a Gaussian mixture).

® ) minimizes || Z — A(p) | among all simple distributions p.

For example, in the compressive GMM, this holds when

D = pé, i.e., the Gaussian mixture distribution parameterized

by 6. Given such a p, the theory can be explained in the fol-

lowing step-by-step manner:

m Just as in traditional statistical learning, excess risk bounds
can be established if the task-driven distance d(p, px) is
controlled (see the section “Task-Driven Distances and
Excess Risk Bounds™).

m Given a family of “simple” probability distributions (see
the section “Exploiting Simplified Models to Learn From a
Sketch”), this distance can indeed be controlled provided a
certain “lower RIP” (LRIP) holds (see the section “The
LRIP and Excess Risk Control”). This is analogous to tra-
ditional CS, where the RIP allows one to control the per-
formance of sparse signal recovery.

m To establish the LRIP for random feature maps ®(-), one
can build on connections between kernel methods and the
JL lemma (see the section “Establishing the LRIP via
Kernels and the JL. Lemma”).

= Finally, to design task-specific feature maps ®(-), one can
appeal to the problem of kernel design (see the section
“The Challenge of Designing a Feature Map Given a
Learning Task”).
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Task-driven distances and excess risk bounds

In traditional statistical learning, it is common to define a dis-
tance between the true distribution px and an arbitrary sur-
rogate px as

, (22)

d(px, px) = sgp|R'(6|p'x)—R'(9\px)

where R' (@] p):=Ex-,[L(0] X)] denotes the risk under an
arbitrary distribution p. This distance is task specific since the
loss function L(:|-) depends on the estimation task. The utility
of d(p%, px) for assessing the goodness of parameter estima-
tion follows from the inequalities

R'(6"| px) =R (0"| px) =R (6" | pX) +d(pX, px)

S RY(O"| px) +d(pk, px)
<R(0"| px) +2d(px, px), (23)

where " = argmingR" (6 | px) and 0" := argming R (0| p).
In particular, these inequalities yield the following bounds on
the excess risk of 8"':

0<R(0"|px)—R (O | px) < 2d(px, px). (24)

For example, if px equals the empirical distribution
px(x)=(1/n)Li=18(x —x;), then (24) bounds the “general-
ization error” of empirical risk minimization, i.e., the error
incurred when training with X = {x;}7= but testing with
independent samples drawn from px. This is the reasoning
behind many classic statistical learning guarantees, where so-
called uniform convergence results establish that, under appro-
priate conditions, d(px, px) = O(1/ V/n) with high probability
on the draw of i.i.d. training samples X = {x;}7=1. The term
uniform convergence stems from the analogy between the dis-
tance (22) and the (. norm.

Traditional Statistical Learning Versus Compressive Learning

In statistical learning, the ideal parameter 6 minimiz-
es the true risk R(0) = Ex.,.[L(O]X)]. The performance of
any estimate © is measured according fo its excess risk,
i.e., R(©)—R(0). In compressive learning, one obtains
6 by minimizing a cost function C(@]z), where the sketch
z is a compressed version of a finite-size data set X with
samples drawn from distribution py.

To gain intuition into how these quantities manifest in com-
pressive learning, Figure S6 shows a simple example: com-

<« 60— <« 6, — Moderate
Sketch

pressive kmeans clustering of 1D data X = {x,}-, with
two centroids, @, and 0,. The true risk R*() and the cost
C(-|z) are plotted versus 6 = (6,,0.) and versus a 1D slice
in the @ plane. As the sketch dimension m increases, it can
be seen that the excess risk R (@) —R'(0) decreases.
Moreover, although the cost function C(:|z) is nonconvex, it
is approximately quadratic in a large basin of attraction
around its global minimizer, suggesting that gradient descent
algorithms will behave well when properly initialized.

1R*(6) - R*(6*)

e argmin c(8lz2)
0* = argn}in R*(8)

150
141
132
123

114
105
t

FIGURE S6. The &-means clustering of 1D data X, showing cost function C(0|z), risk R*(0), ideal estimate ©°, compressive learning estimate
0, and excess risk R'(0) —R'(0"), for a sketch of a small-dimension = (top) and for a sketch of a moderate-size m (bottom).
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Similarly, excess risk bounds for compressive learning
are achieved by interpreting the minimizer 6 of (19) as the
minimizer of the risk R"(0 | p) for some “simple” probability
distribution p that minimizes |z — A (p) | and by controlling
the distance d(p, px). To control this distance, key geometric
intuitions exploit the connections between compressive learn-
ing and CS, as illustrated in Figure 4.

Exploiting simplified models to learn from a sketch

Recall that in CS, the goal is to recover the best k-sparse ap-
proximation of an unknown vector xo € R? given the noisy
linear measurement y = Axo+ e € R"”, where m < d. Ideally,
recovery aims to find the k-sparse vector whose (noiseless)
measurement is closest to the observed y; i.e.,

% = argmin| y — Ax H2 (25)
z

XE Lk

In practice, convex or greedy approximations of this combi-
natorial approach are often used. Recovery guarantees can be
established using the RIP in (S1), which says that the Euclidean
distance | Ax — Ax’| between the (noiseless) measurements of
two k-sparse vectors is almost the same as the Euclidean dis-
tance | x — x’| between the vectors themselves (see the sidebar
“Compressive Sensing and the Restricted Isometry Property™).
These guarantees require that the sparsity k is sufficiently
small for a given m and d.

To connect compressive learning to CS, we first reframe
the goal of learning from a sketch as that of recovering a
parametric model distribution pe € Xe from the sketch Z
rather than recovering the model parameters 6 € © them-
selves. Here, e :'={po:6 € O} denotes some set of admis-
sible distributions pe. For example, in the compressive
GMM, the goal becomes that of recovering a k-term GMM
po=Xi—i100/N (s, Xo) rather than the GMM parameters
0 = {oy, w, 20}15:1. Likewise, in compressive PCA, the
goal becomes that of recovering a distribution pe whose
autocorrelation matrix has a rank of at most k, rather than a
k-dimensional orthonormal basis € for the column space of
that autocorrelation matrix. Then, mirroring the CS recovery
approach (25), compressive learning recovery aims to find a
parametric distribution pe € e whose (noiseless) sketch is
closest to the observed sketch z; i.e.,

- . = 2

P =pe:=argmin|z— A(po) " (26)
ZISD )

The construction of Le implies that the parameters 6 defining

pé minimize a certain cost function; i.e.,

0= ar;grr(l)in C@1]2) with C@O|2)=]z—A(po)|*>. 27
s
Note the similarity between (27) and (13) and (14). Moreover,
6 also minimizes the risk R* (0| p) [5], [51].

From the preceding description, we see that a central theme
of both CS and compressive learning is that measurement
compression makes it impossible to recover the full object of
interest (i.e., xo in CS or px in compressive learning) with-

out additional side information. For this reason, both seek to
recover the parameters of a simplified model of the object of
interest. In CS, this is accomplished by seeking to recover
the best k-sparse approximation to xo rather than xo itself.
In compressive learning, this is accomplished by seeking to
recover the best model distribution pe € Xe rather than the
true distribution px. In both cases, if the linear operator [i.e., A
in CS or A(") in compressive learning] is well designed, then
the model parameters (in X for CS or in X for compressive
learning) can be accurately recovered.

The LRIP and excess risk control
Recovery guarantees can be established using a tool analogous
to the RIP (S1) in CS.

Take, for example, the case of compressive PCA. As
discussed around (18), one could use a sketch of the form
z=Avec(R) € R, where R = (1/n)Z/= xix] is the d X d
empirical autocorrelation matrix and m < d?, and then search
for R, the symmetric matrix with a rank of at most k that mini-
mizes the cost C(R|Z)=|Z —Avec(R) |*. Recovery guaran-
tees can be established using a RIP of the form

2

" <] Avec(R) — Avec(R')
<(+8)|R-R|;, VR,R X (28)

(1-8)|R-FR

where & € (0, 1) is a tolerance and X is now the set of d X d
symmetric rank-k matrices. It is known [4, Ch. 9] that the i.i.d.
Gaussian A satisfies the RIP (28) with high probability when m
is on the order of kd times a constant that depends on the toler-
ance 8. Furthermore, the cost-minimizing R is near optimal
in the sense of minimizing the excess risk, even when a convex
relaxation of the cost is used [5], [51].

These compressive PCA guarantees hold even under model
mismatch: although X constrains R to have a rank of at most
k, the empirical autocorrelation matrix R used to construct Z
tends to have a full-rank d in practice. To explore this idea in
more detail, suppose for the moment that the data X lie in a
rank-k subspace. In this case, R would have a rank of at most
k, and there exists a symmetric R with a rank of at most k that
drives the cost C(R|Z)=| Avec (R) — Avec(R) I> to zero.
Furthermore, when A satisfies the RIP (28), the left inequal-
ity in (28) implies that this cost-minimizing R must equal R.
When the data X do not lie in a rank-k subspace, the minimal
cost will be nonzero. In this case, an upper bound on the error
IR—R|r of the cost-minimizing estimate R as well as an
upper bound on the excess risk of the principal subspace 6 of
R can both be obtained as a consequence of the RIP (28).

In place of the RIP, compressive learning uses the so-called
LRIP,

, (29)

d(pe. pe) < Co| A(pe)— A(pe)

assumed to be valid for each pair pe,pe € Lo, where Co is a
positive constant. The LRIP says that the Euclidean distance
| A(pe) — A(pe)| between the (noiseless) sketches of two

IEEE SIGNAL PROCESSING MAGAZINE | September 2021 |

Authorized licensed use limited to: The Ohio State University. Downloaded on July 06,2022 at 19:33:50 UTC from IEEE Xplore. Restrictions apply.



distributions is—up to a scaling—controlling the distance
d(pe, pe) between the distributions themselves (22). Note that
the lower bound d(-,-) in (29) is task specific and not Euclid-
ean as in the CS case (S1).

The first main theoretical guarantee about compressive
learning [5], [51] is that when the LRIP (29) holds, the estimate
6 obtained by minimizing (27) automatically has controlled
excess risk. In particular, using 6 = argmineR (6| ps) [5],
[51], the excess risk bound (24) can be combined with the LRIP
(29) and the definition of 6 (27) as follows:

R (61 px)—R (6" | px) < 2d(ps, px)

<2[d(ps, pe +d(p9 px)]

<2[Co| A(ps) = A(pe) |+ d(pe. px)]

<2[Co| A(pe)—z[+ Col z— A(po) |+ d(po. px)]
<2[2Co[ A(pe) ~z [+ d(pe, px)]

SZ[ZCO”A (px) zH+2CoH.A(p9’ —.A(px)H

+d(pe, px)], (30)
for any distribution pe in Xe [because d(-,-) is a valid
distance metric; i.e., d(p1, p2) < d(p1, p3) +d(p3, p2) Vp3l.
One option is to choose pe = pe:, in which case the term
2Co | A(pe) — A(px) |+ d(pe, px) in the upper bound re-
flects the excess risk due to modeling and 2Co | A (px) —Z |

reflects the excess risk due to sketching from a finite data set
A For a tighter bound, we could choose pe as the distribution
in Xe that minimizes the right side of (30). These approaches
and more refined variants have been applied to analyze various
learning tasks in, e.g., [5], [11], [12], and [51].

It should be emphasized that recovery guarantees based on
the RIP (S1) or LRIP (29) hold even in the presence of mea-
surement noise e and/or modeling errors. In CS, measurement
noise arises due to, e.g., thermal noise or interference, while
modeling errors arise when xo is not truly k-sparse. Many
sparse recovery techniques are provably robust to such noise
and modeling errors; see (S2) in the sidebar “Compressive
Sensing and the Restricted Isometry Property.” In compressive
learning, measurement noise arises due to the finite cardinal-
ity of the data set X’ [recall (7)], while modeling errors arise
when px & Le. For example, GMM recovery guarantees can
be established even when px is not truly a GMM.

Establishing the LRIP via kernels and the JL lemma

In light of the fact that the LRIP (29) yields statistical learn-
ing guarantees (30) for compressive learning, a key question
becomes: How can we choose the sketch dimension m so that
the LRIP (29) holds? Similar to how the RIP is proven in CS
(see, e.g., [4, Lemma 9.33]), refinements of a mathematical tool
called the JL lemma [31] can be used to obtain a value of m

Kernel Methods and Kernel Embeddings of Probability Distributions

Sketching shares connections with kernel methods [3], a
family of machine learning techniques that produces deci-
sions or insights using a kernel function, K(x,x") € R,
which measures the “similarity” between x and x". A ker-
nel is said to be “positive definite” if the nxn matrix K,
constructed with entries K(x,,x;) for 1 <i,j<n, is posi-
tive semidefinite for every possible {x}/-.. The celebrated
“kernel trick” states that any positive definite kernel implic-
itty amounts to an inner product in some higher-dimension-
al (and potentially infinite—dimensional) feature space H
and vice versa. That is, K(x,x") = (®(x), ®(x’)) for some
(not necessarily explicitly known) mapping ®() from the
signal space to . Any machine learning method that
relies only on the evaluation of inner products—such as
ridge regression, support vector machine classification,
PCA [29], and dictionary learning [S3]—can be “kernel-
ized” by using a kernel in place of the inner product.
Kernelizing a method is thus tantamount to applying that
method in a transformed, higher-dimensional feature
space. In this way, more complex estimation and/or deci-
sion functions can be implemented.

Given a positive definite kernel K(x,x’) operating on
signals x and x’ in some set, it is possible to “lift” Kk(:,-)
to a positive definite kernel operating on probability distri-
butions over this set by defining the so-called mean kernel

k(p.q) = Expx-o[K(X, X)) (S5)
This defines an embedding of probability distributions into
a kernel space, which is analogous to the finite-dimension-
al embedding A(p) of probability distribution p from

(6). The maximum mean discrepancy (MMD) [S4], [S5]

MMD (p, q) = k(p, p) + k(q.9) — 2k(p,q)

is the Euclidean metric naturally induced by the mean ker-
nel. It is analogous to the Euclidean distance between
sketches, | A(@)—.A(q)|. The MMD, originally introduced
in the context of two-sample hypothesis testing [S4], is now
well known in machine learning. When the MMD behaves
as a true metric, i.e., when MMD(p,q) =0 p=gq, the
mean kernel k(-,-) is said to be “characteristic.” In R,
many classic kernels K(-,), such as the Gaussian and
Laplace kernels, yield characteristic mean kernels [S5].

(S6)
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sufficient for the LRIP to hold with high probability on the
draw of the random feature map ®(-). We now summarize
this approach.

To begin, we establish connections to kernel methods
(see the sidebar “Kernel Methods and Kernel Embeddings
of Probability Distributions” for a brief review of kernels).
Some key observations are that any feature map explicitly
defines a positive definite kernel and that the expectation of
this kernel defines another useful positive definite kernel.
To see why, consider, for example, the RF feature map (3).
First, for a fixed set of frequency vectors {w;}=1, we have,
for all x, x,

<ﬁ¢<x), ﬁ<1><x’>> = %jzl exp(—j2aw] (x —x')),
31)

where (-,- ) is the standard Euclidean inner product in R™ or
C™. The left-hand side defines a positive definite ker-
nel according to the terminology reviewed in the sidebar
“Kernel Methods and Kernel Embeddings of Probability
Distributions.” This kernel is also “shift-invariant” in that
it depends only on the difference x —x’. Next, imagine
that the d-dimensional frequency vectors w, which consti-
tute the m rows of the random matrix W, are drawn i.i.d.
from some probability distribution pw. In the limit of large
sketch dimension m, the law of large numbers combined
with (31) says

<ﬁ‘1’<x>, ﬁ%')> "2 Ewexp(—2aW x—x). (32)

The right-hand side of (32) is the CFT of the probability den-
sity pw evaluated at x —x’, i.e., the characteristic function
¥, (x" —x) using the notation from (12). Because ¥, (-)
is the CFT of a nonnegative function, it is a so-called posi-
tive definite function, which means that for any {x;}{=1, the
nxn matrix ¥ defined with elements ¥; =¥, (xi—x))
for 1 < i, j < n will be positive semidefinite. Thus, if we con-
struct a kernel as k(x, x") =¥, (x" — x), then it will be a pos-
itive definite kernel. When pw = N/(0, o2l 4), this approach
yields the familiar Gaussian kernel (a particular type of “radial
basis function™); i.e., ks (x, X') :=exp(— | x —x' |*/20?), here
of width o = 1/o .

More generally, by considering any parametric feature map
of the form ® (x |W), where the parameter W is drawn at ran-
dom according to some probability distribution, one can define
[in many papers, the 1/ Jm scaling in (31)—(33) is subsumed in
the feature map ® ()] the “expected kernel”

k(x,x) IZEw<ﬁ<I>(xIW),ﬁ<D(x’IW)>, (33)
not to be confused with the “mean kernel” defined in (S5)
(see the sidebar “Kernel Methods and Kernel Embeddings of
Probability Distributions”). This setting includes RF features
(3) with i.i.d. frequencies w; (as in the preceding) or with a

frequency matrix W that includes structured blocks of rows, as
we will soon discuss.

Now that the kernel connections have been established,
we return to our original objective of understanding when the
LRIP (29) holds. Importantly, the law of large numbers shows
that, in the limit of large sketch dimension m, the right side of
(29) is related to the maximum mean discrepancy (MMD) from
(S6), which is a kernel-based distance between distributions
(see the sidebar “Kernel Methods and Kernel Embeddings of
Probability Distributions”). Indeed, for arbitrary probability
distributions p and ¢, we have

Jim L Ap) - A2 'MMD(p,q, (34
m
where the maximum mean discrepancy is implicitly the one
obtained from the kernel used to build the sketching operator
A. Thus, when the LRIP (29) holds, it must also be true that,
for a sufficiently large sketch dimension m,
d(pe, pe) = CoMMD (pe, po), forall pe, pe € Lo, (35)
where Co is a positive constant. Property (35) connects two
different metrics on probability distributions: the left-hand side
of (35) is defined by the learning task [recall (22)], while the
right-hand side of (35) is defined by the expected kernel «,
from (33), associated with the randomized feature map. Note
that (35) is a deterministic property; it does not depend on the
draw of the randomized feature map, unlike the LRIP (29). In
the literature, (35) is called the kernel LRIP (5], [51] because it
is a kernel-based analog to the LRIP. Being deterministic, the
expected kernel is often easier to manipulate than the random
feature map, and thus it eases the proof of the kernel LRIP.
This is important because, if the kernel LRIP (35) holds, then,
using arguments based on the JL lemma, one can also establish
[5], [51] the LRIP (29), as we show in the following.

The JL lemma [31] is a precursor of the RIP that is special-
ized to finite sets (S1). It states that given N arbitrary d-dimen-
sional vectors x;, there exists an m X d matrix A, with m on the
order of log N, such that Il Ax; — Ax;ll=Ilx; — x|l for all i, j.

To illustrate how the JL lemma is useful in the context of
compressive learning, let us momentarily restrict our attention
to a learning problem where the collection Xe of parametric
distributions is of finite cardinality, noting that we can extend
this approach to continuous families of parametric distribu-
tions through discretization arguments involving the notion of
covering numbers [4, Appendix C], as described in the follow-
ing. As a concrete example, let us consider a discretized vari-
ant of the compressive GMM using the RF feature map (3).
As in [5], [6], and [51], we assume that the d-dimensional fre-
quency vectors w; are drawn i.i.d. from the normal distribution
N0, O'ﬁ,-ld), and we consider learning a mixture of Gauss-
ian components pe,= J\/(ﬂa, I) for 0=1,...,k, with equal
weights o¢ = 1/k for each ¢, where the means ¢ are assumed
to be bounded, separated, and discretized on a regular grid. In
this setting, there exists a finite number, N, of possible para-
metric mixture distributions pe € Xe. As long as the MMD
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is a true metric (as defined in the sidebar “Kernel Methods and
Kernel Embeddings of Probability Distributions”), the ratio
d(pe,pe’)/IMMD (pe,pe) is finite for pe # pe; hence, when-
ever Lo is a finite collection, as in this concrete example, the
kernel LRIP (35) holds (for a sufficiently large Cp). Moreover,
specializing to an arbitrary pair of mixtures pe,pe € Lo and a
given sketch dimension m, refinements of (34) (using measure
concentration) enable one to show that the lower bound

ﬁMMD (Po.po) < ﬁll A@pe)— Ao |

(36)
holds with a probability of at least 1 — exp(—com), where co
is a positive concentration constant. Since there are only N*
pairs of parametric mixtures pe,pe € Lo, the lower bound
(36) is valid uniformly for all of them, except with a prob-
ability of at most N?exp(—com). This failure probability
can be made smaller than any € > 0 by choosing an m larger
than 2¢" log (N/ /E ). Combining (35) and (36) using a union
bound, it can be shown [5], [51] that the LRIP (29) holds with
high probability when Co is on the order of Cjy/m and the
sketch dimension m grows logarithmically with &V, the number
of parametric distributions in the finite set Xe.

For infinite collections Xe, proving the kernel LRIP (35),
and eventually the LRIP (29), is more technical and can require
some additional assumptions. As an example, for compressive
clustering with RF features, it can be proven that there is a
constant Co such that (35) holds, provided that the centroids
are sufficiently separated and bounded [5], [51]. The JL lemma
can be extended by refining techniques used to establish the
RIP (S1). The main idea is to first prove the LRIP on some
finite collection X' C Xg of N probability distributions and
then to extrapolate it (with slightly worse constants) to Xe.
Technically, this involves the notion of covering numbers,
and the cardinality N =1X'| is typically exponential in the
number of parameters needed to describe Xe. For example,
for the GMM, one needs kd parameters to describe the means
e RU1 <0<k of the mixture po = Zb—1 (1/k) N (e D),
and log N essentially depends linearly on kd. The dimension
m of the sketch for which the LRIP holds with high probability
is thus on the order of kd/co, up to some additional factors due
to the proof technique [5], [51].

Empirical studies of compressive clustering [9], [10] and the
compressive GMM [6] suggest that a sketch dimension m on
the order of kd (the number of parameters in these settings)
is sufficient to yield accurate learning performance. The best-
known bounds on provably good sketch dimensions [5], [51]
remain pessimistic compared to these empirically validated
sketch dimensions. This is most likely related to suboptimal
bounds for the concentration constant c¢o and/or shortcomings
in the techniques used to extend the LRIP from a finite collec-
tion X’ to an infinite collection Xe.

The challenge of designing a feature
map given a learning faskq

In the existing literature, the LRIP has been established [5],
[51] for randomized feature maps ® () (e.g., RF features and

random quadratic features) that mimic related constructions
from CS, developed either for sparse vector recovery or low-
rank matrix recovery.

When sketching with RF features (e.g., for compressive
clustering and the compressive GMM), the main design choice
for ® () is the distribution from which to draw the random
frequencies w; [i.e., the rows of W in (3)]. In light of the con-
nections to shift-invariant kernels [recall (31)], this design task
is a particular instance of the difficult problem of kernel design
[3, Sec. 4.4.5].

For example, when the rows of W are drawn i.i.d. N(0, o),
the choice of the variance o7 determines the choice of the
width o = 1/0 of the corresponding Gaussian kernel Ko (-, -).
Indeed, from a signal processing standpoint, the correspond-
ing mean kernel ko(:,-) [recall (S5)] acts to low-pass-filter
the underlying data distributions. To see why, observe that
Ko(x,x") = go(x,x") with go(x) = ¢ ¥1°29° and so

ko(p,q) = EX~1J.X'~11 [Ko(X,X")]
:j]' eiuX*X'Hzlzdzdp(X)dq(X')
=(go*p.q) 2 =(gs*p, g+ q) 1%

(37
(3%)

where  denotes convolution and ¢ = o/ ﬁ . Hence, the asso-
ciated MMD (S6) satisfies MMD (p,q) =l g6 p — g& * q ll1.
Recall that learning from a sketch is often performed by minimizing
a “sketch matching” cost 1z — A (po)lI* = 1A (px) —A(po)ll,
as in (26), where px denotes the empirical distribution of the
data X. In the limit of large sketch dimension m, this cost com-
pares the smoothed versions of the probability distributions
px and pe since (1/m) 1z — A(po)l* = g5 * px — &5 * Poll7,.
Similarly, when using a greedy algorithm to learn a mixture
model (or cluster centroids) from a sketch, the normalized in-
ner product (1/m){z,.A(pe.) ) approximates the correlation
(go*Px, g5 * po, )1, between the low-passed versions of the
empirical data distribution px and the candidate mixture
component pe,, respectively.

This latter idea is illustrated for compressive clustering in
Figure 5. There, since the mixture component associated to
a candidate centroid ¢ is the Dirac p¢(x) = §(x —c) [recall
the discussion before (15)], we have that (Zo, Ac(pe))=(Zo,
®,;(c)), where the dependence on the kernel width o = 1/0,,
has been made explicit. Meanwhile,

(g5 + . 85+ pe)e = (g0 0@ = L gole —x). (39)
i=1

In (39), we recognize a Parzen window density estimator
[32], whose computation for a given ¢ requires access to the
n training samples x;. In contrast, its surrogate (Zo,®s(c))
only requires access to the m-dimensional sketch z. In a
large-scale setting, this can save huge amounts of memory
and computation. As can be seen when comparing the top
and bottom rows in Figure 5, (Z5, ®s(c)) well approximates
(go*px)(c) for a sufficiently large kernel width o. By
comparing the different columns of Figure 5, it can also be
seen that the kernel width o should be chosen compatible
with the cluster width and separation. This choice involves
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a tradeoff between smoothing the unwanted gaps between
data samples and oversmoothing the (desired) gaps between
clusters. Existing theory [5], [51] identifies sufficient condi-
tions on the choice of o related to the number & of candidate
clusters and their minimum separation.

Although i.i.d. Gaussian frequencies w; were used with the
RF map in the preceding, one may also consider the use of
ii.d. non-Gaussian frequencies. Such designs, as proposed in
[7], can yield improved empirical behavior. As we will see in
the next section, it is also possible to deviate from the RF map,
with the goal of improving computational efficiency. Such
constructions also yield non-Gaussian expected kernels (33).
Although they work well in practice, there is currently no proof
that these latter kernels satisfy the kernel LRIP.

While existing theory focuses on proving the LRIP for
a given random feature map and learning task, an impor-
tant open question is: How should one design the feature
map to best match a given learning task? In particular, can
we design a random feature map that satisfies the LRIP
(29) for a given learning task defined by a loss function
L(61x;) and embodied by a task-driven distance (22)? A
promising yet still challenging avenue would be to first
identify a positive definite kernel ko(x,x’) for which the
corresponding MMD satisfies the kernel LRIP (35) and
then use Bochner’s theorem or Mercer’s theorem (see the
sidebar “Approximating Kernel Methods With Random

Feature Maps™) to design a random feature map ®(-) whose
expected kernel (33) is precisely Ko.

Sketching with reduced computational resources
The computational cost of sketching via (1) is heavily depen-
dent on the feature map ® ( - ). The computational cost of pa-
rameter estimation via (13) is also heavily dependenton ®@ (- ),
since it often involves iterative application of @ (- ).

Often, the feature map is constructed as a randomized lin-
ear operation followed by a componentwise nonlinear opera-
tion; 1.e.,

@ (x) = o (Wx), (40)

where W is a (randomly drawn) matrix of size m x d and o( - )
applies a scalar nonlinear function identically to each element
of the vector Wx. For example, the feature maps described ear-
lier for compressive PCA, the GMM, and clustering all have
this form. Reducing the computational cost of each stage has
been the goal of several studies. For example, using a fast trans-
form for W drastically reduces the memory and computational
complexity demands relative to an explicit matrix. Also, quan-
tized versions of the nonlinearity o( -) are much more easily
implemented in hardware than, say, the complex exponential
nonlinearity orr(-):=exp(—j27-) used in the RF map (3).
We discuss such constructions of Wand o( - ) in the following.

(52 P5(0))

(go' * ?7/’\{‘)(0)

FIGURE 5. The criterion (z., ®.(c)) used by greedy parameter estimation algorithms in compressive clustering with RF features (top row) versus its
expected value (go * px)(c) (bottom row) as a function of the centroid hypothesis location ¢ = [c,,c.]". The data set (in blue) consists of n =100
points drawn according to a mixture of k= 3 isotropic Gaussians. The frequencies w; used to define the feature map ®.(-) = exp(—j27W-) are
drawn according to a standard Gaussian N(0,0:1) with o, = 1/0. The sketch z. is computed with the feature map ®.(-). With o= 1/500 (left),
there is insufficient smoothing, and the criterion displays many spurious local maxima; with o* = 1/10 (middle), there is appropriate smoothing, and
local maxima are in good correspondence with the true cluster centers; with o> =1 (right), there is oversmoothing, and the criterion displays only

a single maximum.
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Sketching with structured random matrices

In most of our previous examples, we constructed W by draw-
ing its m rows i.i.d. from the normal distribution N(0,6%1 d)
with some variance o2 > 0. Recall that, with the RF map
ore( ), the rows of W correspond to the (d-dimensional) fre-
quencies used when sampling the CFT of the (empirical) data
distribution. In any case, when W is an explicit matrix, the
computational complexity of computing ® (x) of the form (40)
is dominated by the matrix—vector product Wx. Thus, it is on
the order of md, which is also the order of the memory needed
to store W.

As an alternative to these approaches, it has been suggested
to construct W as a structured random matrix with a fast imple-
mentation that mimics an i.i.d. Gaussian matrix. Multiple ways
of accomplishing this goal have been proposed in the litera-
ture. We focus on the approach suggested in [33], which was
successfully applied to compressive learning in [34]. There, the
idea is to construct W as a vertical concatenation of b =[m/d |
blocks {B ,-}?: 1» €ach of size d x d. These blocks have the form

B;j=DYHD\"HD'?HDY’, where H is the Walsh-Hadamard
matrix and D§k> are random diagonal matrices. In particular,
the diagonal elements of D;l), D§2>, and D_(,-3) are drawn i.i.d.
from the uniform distribution over {— 1,1} and the diagonal
elements of D;O) are drawn i.i.d. from the X distribution with
d degrees of freedom, which is the distribution of the norm
of a d-variate Gaussian vector. This construction is depicted
in Figure 6. The fast Walsh-Hadamard transform offers an
order dlogd-complexity implementation of the matrix—vector
multiplication Hx and prevents the need to explicitly store H.
With this structured and fast incarnation of W, the sketching
complexity shrinks from order md to order mlog d. Moreover,
since only the diagonal matrices need to be stored, the storage
cost shrinks from order md to order m.

Sketching with quantized contributions

With the RF map (3), which is commonly used in compres-
sive clustering and the GMM, the nonlinear operation o(+)
in (40) becomes Err( ) := exp(—j27 ). Since implementing

While each random feature map ®() implicitly defines
a positive definite kernel by taking the expectation (33),
the converse is also true. For shiftinvariant kernels, i.e.,
kernels for which K(x,x") = k(x —x’,0) only depends on
the difference x —x’ (such as the Gaussian kernel), this is
a consequence of Bochner’s theorem [7], which states
that if k is a positive definite kernel such that k(x,x) =1
for all x, then its CFT yields a probability distribution
pv(w) = | K(x,0)exp(—j2w x)dx. Conversely, the kernel
can be obtained by the inverse CFT, which can also be
phrased as an expectation:

K(x,x')= fexp(jZﬂwT(x—x’))pw(w)dw
=Ew-pexp(2ZW (x —x")).

Where B, iid.

| I ————
Diagonal Matrix
With y Entries

Diagonal With
+1 Entries

Hence, drawing i.i.d. frequency vectors w, according to
pw yields a random Fourier feature map (3) whose
expected kernel is precisely k. For instance, a Laplace
kernel can be approximated if the rows of W are drawn
i.i.d. from the Cauchy distribution [S6].

More generally, under mild assumptions on a posi-
tive definite kernel k, one can invoke Mercer's theo-
rem [S7] to similarly show the existence of a random
feature map whose expected kernel, in the sense of
(33), matches k.

References

[S6] P. T. Boufounos, S. Rane, and H. Mansour, “Representation and cod-
ing of signal geometry,” Inform. Inference, vol. 6, p. 4, Dec. 2017.

[S7] F. Bach, “On the equivalence between Kernel quadrature rules and ran-

dom feature expansions,” J. Mach. Learning Res., vol. 18, no. 1, pp. 714~
751,2017.

Hadamard
(Deterministic)

FIGURE 6. The structured random matrix design from [40]. Each block is a composition of several Hadamard and diagonal matrices. For convenience, we

draw W' instead of W.
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orr(-) with high accuracy is somewhat costly and not ame-
nable to easy hardware acceleration, one might consider quan-
tizing it. For example, dropping the imaginary part of orr( -)
and quantizing the real part to 1 bit of
precision yields the 2z-periodic function
04(+) :=sign(cos (27 -)) which is simply
a “square wave.”

To alleviate the effects of quantization,
one can apply dithering [8] to the input.

A common way to
preserue privacy is to
have a trusted data holder
(or “curator”) corrupt the

stant ¢ from (41). Indeed, thanks to (41), the resulting cost
function C(0z,) = ” Zo-Zi- 100 ARF (Poy) H2 is, in expectation
over &, exactly the same (up a constant additive bias term) as
the nonquantized cost function C(6|Zrr)
[35]. The similarity between C(0]%;) and
C(6]zrr), even for a single realization of
the m-dimensional dither vector &, is sug-
gested by comparing the right two panels
in Figure 7.

In this case, the feature map becomes response 1o ea'_:h query Empirical results [35] suggest that, when
®,(x)=0,(Wr+ & e {—1,+1}" withiid. [ Of the datasetina the sketch dimension is inflated by about
dither components &; drawn uniformly over controlied manner. 25%, this quantized compressive learning

[0,1). The effect of dithering is to make the

quantized ®, behave similarly to the nonquantized ®rr, on
average. For instance, it was shown in [35] that for each
W, x,x’, and &,

(®y(x), Prr(x") ) = Ee ( @y (x), Pre(x’) )
= ¢ (®rr(x), Prr(x) ), (41)

where ¢ is a constant. The approximation in the preceding is
accurate for a typical draw of the m-dimensional dither vec-
tor & when the sketch dimension m is large enough [36]. Note
that, when this dithered quantizer is used to compute a sketch
Zg=(1/mE=1®y(x)=(1/n)Ei=1 0(Wxi + &), it is im-
portant to use the same dither realization & for all samples .

The question then arises: When estimating parameters
6 via (27), how should we account for quantization in the sketch?
Simply replacing the A (pe,) term with A, (pe,) := E x-pe, [®4(X)]
may sound appealing. For example, with the compressive
GMM (14) or compressive clustering (16), this would mean
minimizing || Z,— Lt oAy (o) ||2 However, the optimi-
zation problem (27) would become more challenging, as
suggested by comparing the left two panels to the right two
panels in Figure 7, which plots the centroid selection criterion
(z,®(c) )=(z,A(pc) ) used by greedy algorithms. Also, this
approach would not inherit the theoretical guarantees that were
carefully established using the LRIP (29), which does not eas-
ily translate to the quantized case.

Instead, we suggest to use Arr(po,) = E x-p,, [Prr(X)] for
the A (po,) term in (14) and to rescale zZ; = Z4/c with the con-

f—\ 4
0.2

@, @,(0)

procedure yields the same performance as
the nonquantized procedure. Moreover, accurate probabilistic
bounds for approximation (41), established in [36], allow one to
extend the theoretical compressive learning guarantees in (30)
to this new cost function.

Privacy preservation

In addition to its efficient use of computational resources, sketch-
ing is a promising tool for privacy-preserving machine learn-
ing. In numerous applications, such as when working with
medical records, online surveys, or measurements coming
from personal devices, data samples contain sensitive personal
information, and data providers ask that individuals’ contribu-
tions to the data set remain private, i.e., not publicly discover-
able. Learning from such data collections while protecting the
privacy of individual contributors has become a crucial chal-
lenge [37], [38], [39].

A common way to preserve privacy is to have a trust-
ed data holder (or “curator”) corrupt the response to each
query of the data set [37] in a controlled manner. A query
may ask for something as simple as counting the number
of times a given event occurred, or it may ask for more
sophisticated information that requires the data holder to
run an inference algorithm. As the corruption becomes
more significant, the privacy guarantee gets stronger, but
the quality of the response to the query (called the utility)
degrades. This can be conceptualized by a privacy—utility
tradeoff [37], [39].

(ZrF, PRr(c))

SZ.
+ % 2 4
€1

(@ Prr(0))

©000000000
CO==MNNNWW
S~ OOND HONOD

4

FIGURE 7. The criterion (z,®(c)) versus the centroid hypothesis ¢ = [c.,c.]" used by greedy parameter estimation algorithms in compressive cluster-
ing with k¥ =3 and a 2D data set (in blue), with and without quantization of the sketch z and/or feature map ®. The surface plot on the left highlights

the irregularity of ¢ — (z,, ®,(c)).
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When sketching a data set via (1), there is a very sim-
ple way to preserve privacy in any subsequent learning
task: simply add i.i.d. noise (with appropriate distribu-
tion) to the sketch. The privacy level can be adjusted by
changing the variance of that noise, as described in the
following. This one-time approach to privacy preserva-
tion (more generally known as privacy-preserving data
publishing [37]) has several benefits over the query-
based approach to privacy preservation discussed in the
previous paragraph (see also the sidebar “Potential of
Sketching for Privacy-Aware Learning and Alterna-
tive Approaches”).

Sketching with differential privacy guarantees

Differential privacy [38] is a standard framework for priva-
cy preservation that has a precise mathematical definition
and is well known in machine learning and signal process-
ing (e.g., [39]). When a given (randomized) learning pipe-
line is differentially private, its output depends negligibly
on the presence or absence of any individual sample in the
data set. Differential privacy is robust to many forms of
attack, such as when the adversary can access side infor-
mation that nullifies privacy guarantees based on anony-
mization or mutual information measures (e.g., when the
adversary can control some of the data vectors x; or can
access additional databases that are correlated with the pri-
mary database).

For compressive learning methods, enforcing differential
privacy guarantees is as simple as adding well-calibrated noise
v to the usual sketch Z, i.e., constructing

§(X)=z2(X)+v, (42)

where we find it helpful to explicitly denote the dependence
of the data set X. We will assume that the realization ® ( -)
of the random feature map is fixed and publicly known, in
contrast to other approaches, like [40] and [41], that use lin-
ear mixing matrices as encryption keys to ensure privacy
preservation. As a result, when we treat §(X) as random,
this is due to the randomness in v, not the randomness in
d()or X

Formally, the sketching mechanism 5(-) is said to be €
-differentially private [38] if, for any data set X = {x;}{=; and
“neighboring” data set X' =X\ {x,} U{x} that replaces the
individual sample x; by another sample x’, and for any pos-
sible sketch outcome s, we have that

exp(—€)<&)(s))éexp(e). 43)

~ psx)(s

Here, € > 0 plays the role of a privacy level: a smaller € im-
plies a stronger privacy guarantee. In words, (43) says that,
when € is small, the densities of §(X) and 5(X) are almost
indistinguishable, as depicted in Figure 8.

Given a data set, privacy preservation can be achieved
by asking a trusted data holder to corrupt all queries of the
data set [37], [38] in a controlled manner. There are, how-
ever, challenges to this so-called interactive approach. For
example, because the privacy-preserving effects of this cor-
ruption can often be diminished through the mining of mul-
tiple query responses (especially if the queries are
adaptive), the per-query corruption levels must be
designed with the type and total number of queries in
mind. These corruption levels are often designed using a
so<alled privacy budget, which is expended over multiple
queries to meet an overall privacy level. Once the entire
privacy budget has been used up, the data can no longer
be accessed by a given data user. Also, the data holder
must ensure that responses to different data users cannot
be combined in a way that circumvents the intended priva-
cy preservation.

In contrast, the noninteractive approach [37], [38] is to
publish an intermediate privacy-preserving synopsis of the
data set, to which the public is allowed unlimited access.
For example, with a low-dimensional data set, one could
publish a privacy-preserving histogram of the data [S8],

for Privacy-Aware Learning and Alternative Approaches

from which aggregate statistics could be subsequently
extracted. The noninferactive approach is aftractive for sev-
eral reasons. For example, there is no need to formulate or
allocate a privacy budget; it is sufficient to set an overall
privacy level. Also, there is no need to worry about data
users sharing/combining data.

By adding noise to a sketch of the form (1), one can easily
generate a privacy-preserving synopsis of a data set. By con-
struction, such sketches capture the global statistics of the
data set X = {x;}/-, while being relatively insensitive to
each individual data sample x;, especially when the sample
cardinality 7 is large. Also, when the original data are dis-
tributed across multiple devices, a privacy-preserving global
skefch can be constructed by first locally sketching at each
device and then averaging those local sketches at a fusion
center, as illustrated in the sidebar “Compressive Mixture
Modeling for Speaker Verification.” In this scenario, the local
skefches will themselves be privacy preserving, which allevi-
afes concerns about privacy leaks during data fusion.

Reference
[S8] W. Qardaiji, W. Yang, and N. Li, “Differentially private grids for geospatial
data,” in Proc. IEEE 2%th Int. Conf. Data Eng. (ICDE), 2013, pp. 757-768.
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The condition (43) can be interpreted as bounding a “likeli-
hood ratio” [42], a familiar quantity in signal processing. Consid-
er two hypotheses: one that the data set equals X (i.e., it includes
x ;) and the other that the data set equals X~ (i.e., it includes x’;
instead). Then, psx)(s) would be the likeli-
hood of observing private sketch s under the

Sketching significantly

A weaker form of privacy, known as approximate differen-
tial privacy or (€,68)-differential privacy [38], can be attained
by adding Gaussian noise v with a smaller variance. For exam-
ple, with RF features, it is sufficient for the real and imaginary
components of v to be i.i.d. Gaussian with a
standard deviation of o, oc -

first hypothesis, while ps(x)(s) Would be compresses data in a way The priV?cy—utilit.y tradeoff .facilitates
the same for the second hypothesis. Say an that facilitates provably the comparison of d1ffe.rent privacy-pre-
adversary wanted to detect whether or not the serving learning strategies. For example,
data set contains x ;. By appropriately thresh- accurate yet scalable given two strategies, one could match the
olding the likelihood ratio ps(x)(s)/ps(x)(s), learning from huge and/or privacy levels € and compare utilities, or
one can obtain hypothesis tests that are opti- streaming data sets. one could match utilities and compare pri-

mal from various perspectives (e.g., Bayes,

minimax, and Neyman—Pearson) [42, Ch. 2]. Thus, when (43)
holds with a small €, it is fundamentally difficult for an adver-
sary to determine whether x; or x’; was present in the sketch.
Even if the adversary had nontrivial prior knowledge of the true
hypothesis (as in so-called linkage attacks, which make use of a
second public data set to which the target user contributed), (43)
implies that—for any method—the probability of recovering the
true hypothesis from the sketch is only slightly higher than that
which is achievable without observing the sketch.

To ensure that the noisy sketch (42) is differentially pri-
vate, it is sufficient to draw the noise v as i.i.d. Laplacian with
appropriate variance. The variance needed to achieve a given
privacy level € can be determined by analyzing the so-called
sensitivity of the noiseless sketch, i.e., the biggest possible
change that can result from removing one sample. When using
the RF feature map (3), which generates a complex-valued
Z(X), it has been established [43], [44] that it is sufficient for
the real and imaginary components of v to be i.i.d. Laplacian

with a standard deviation of o, oc %

""""

vacy levels. For compressive learning, the
utility of interest is the risk [recall (21)].

In this section, we focused on differential privacy. Other
definitions of privacy exist in the literature, such as informa-
tion-theoretic ones [49]. Likewise, cryptographic methods,
such as fully homomorphic encryption [50], can be used to
transmit and manipulate data in a secure and private manner,
although this notion of “privacy” is quite different from the
former ones. Additional work is needed to understand wheth-
er compressive learning is “private” according to definitions
other than differential privacy.

Perspectives und open challenges
By averaging well-chosen randomized feature transforma-
tions over large training collections, sketching significantly
compresses data in a way that facilitates provably accurate yet
scalable learning from huge and/or streaming data sets, while
simultaneously preserving privacy.

In this article, we described several approaches to accelerate
the sketching process, including feature quantization and the use

¥ > — g Unable to Determine With High L
Sketching Noise ' Confidence Whether the Observed ;
Addition ' Sketch Includes x; or x/ '
Z(X) 5 (x) : |
Change any Sample x; - |
X’ > > Observed & 1
| Sketch )
7(x) 5 ()

(Deterministic)

(Random)

FIGURE 8. When sketching with differential privacy, the output log density of the sketch s remains close when changing one sample in the data set [since
(49) is equivalent to [log (psw(s)) —log(psa(s))| < € for all possible s]. An adversary with knowledge of ®(-) and s, as symbolized by the red arrows,
could then hardly decide whether a given sample x; was used to compute the sketch or not.
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of randomized fast transforms. Another approach is to randomly
mask each feature vector ® (x;) prior to averaging, i.e., setting a
random subset of its components to zero. It has been established
[44] that such random masking does not increase or decrease the
differential privacy level €. But it does reduce
the need to compute all entries of each feature

with Inria at Ecole Normale Supérieure de Lyon, Lyon, 69007,
France. His research, at the interface of mathematical signal
processing, machine learning, and approximation theory,
focuses on the versatile notion of sparsity and its applications,
with an emphasis on dimension reduction,
inverse problems, and high-dimensional sta-

vector, and thus it reduces sketching complex- Further work is neeﬂl_}d tistics. He founded the series of international
ity. Another promising approach consists of to develop compressive workshops Signal Processing With Adaptive/
mixed analog—digital sketches, where, e.g., learning methods Sparse Representations and received the 2011
optical processing units are used to signifi- for supervised tasks Blaise Pascal Award in Applied Mathematics
cantly improve the energy efficiency of the like regression and and Scientific Engineering from the Société
linear stage [45]. classification. de Mathématiques Appliquées et Industrielles

When discussing methods to learn from
a sketch, we focused on optimization-based
approaches. Although heuristics based on the OMP [6] and
approximate message passing [10] have been proposed that yield
promising empirical results, performance guarantees for these
approaches have yet to be established. Alternatives, such as total
variation minimization over the space of signed measures [23],
[26], [46], principled greedy methods [47], and gradient flows on
systems of particles [48], could be leveraged to make progress
on this front, and black-box optimization could be used to learn
from sketches computed by optical processing units.

As for applications of compressive learning, most of the
current literature, and hence most of our article, has focused on
unsupervised learning tasks. Further work is needed to develop
compressive learning methods for supervised tasks like regres-
sion and classification [30]. For example, one approach to
compressive classification was proposed in [49]: for each class
0=1,...,k, one computes a sketch zo using only the training
examples with label ¢ (i.e., we sketch the k conditional distri-
butions of the data). From those sketches, one could estimate
the conditional densities of each class (using a mixture model,
for example), from which an ML or maximum a posteriori
classifier could be derived. Another approach is to perform
classification directly in the compressed domain: to an unseen
example x’, we would assign the class { that maximizes the
correlation (Z¢, ®(x") ). This strategy can be interpreted [49]
as compressively evaluating a Parzen window classifier [32].
Further work is also needed on unsupervised matrix factoriza-
tion tasks like dictionary learning, low-rank matrix comple-
tion, and nonnegative matrix factorization [50].

Acknowledgments

The authors are grateful to Luc Giffon and the anonymous
reviewers for their comments on the manuscript. The authors
are funded, in part, by the Fonds de la Recherche Scientifique
(FNRS); FNRS Projet de Recherche grant T.0136.20 (Learn-
2Sense); Agence Nationale de la Recherche (ANR), under
grant ANR-19-CHIA-0009 (AllegroAssai); and National Sci-
ence Foundation, under grant CCF-1955587.

Authors

Rémi Gribonval (remi.gribonval @inria.fr) received his
Habilitation to Conduct Research in applied mathematics
from University of Rennes 1, France. He is a senior researcher

through the French National Academy of
Sciences. He is a Fellow of IEEE and the
European Association of Signal Processing.

Antoine Chatalic (antoine.chatalic@dibris.unige.it)
received his Ph.D. degree in signal processing in 2020 from
the University of Rennes 1, France. He is a postdoctoral
researcher at the Machine Learning Genoa Center, Genoa,
16146, Italy, under the supervision of Lorenzo Rosasco. His
research interests include sketching and dimensionality-reduc-
tion techniques, kernel methods, compressive sensing, online
algorithms, and privacy-aware learning.

Nicolas Keriven (nicolas.keriven@cnrs.fr) received his
Ph.D. degree from the Université de Rennes 1 in 2017, under
the supervision of Rémi Gribonval. He is a researcher at the
Centre National de la Recherche Scientifique, Paris, 75000,
France, and the Grenoble Images Parole Signal Automatique
lab, Grenoble, 38402, France. He received the 2017 Best
Student Paper award at the Signal Processing With Adaptive/
Sparse Representations workshop, for “Random Moments for
Sketched Mixture Learning.”

Vincent Schellekens (vincent.schellekens@uclouvain.be)
received his Ph.D. degree in signal processing in 2021 from
the UCLouvain, Louvainla-Neuve, B1348, Belgium. He is a
postdoctoral researcher funded by the Fonds de la Recherche
Scientique, under the supervision of Laurent Jacques, at the
Information and Communication Technologies, Electronics,
and Applied Mathematics, UCLouvain, Louvain-la-Neuve,
B1348, Belgium. His research focuses on compressive sens-
ing, general random embeddings, and privacy-preservation
methods for large-scale learning.

Laurent Jacques (laurent.jacques @uclouvain.be) received
his Ph.D. degree in mathematics and physics from
UCLouvain, Louvain-la-Neuve, Belgium, in 2004. He is a
professor and senior research associate of the Fonds de la
Recherche Scientique with the Image and Signal Processing
Group, Institute of Information and Communication
Technologies, Electronics, and Applied Mathematics,
UCLouvain, Louvain-la-Neuve, B1348, Belgium. His research
focuses on sparse signal representations, quantized compressive
sensing theory, and computational imaging. He has coauthored
more than 40 papers in international journals, 80 conference
proceedings and presentations, and four book chapters.

Philip Schniter (schniter.]1 @osu.edu) received his Ph.D.
degree in electrical engineering from Cornell University,

IEEE SIGNAL PROCESSING MAGAZINE | September 2021 | 35

Authorized licensed use limited to: The Ohio State University. Downloaded on July 06,2022 at 19:33:50 UTC from IEEE Xplore. Restrictions apply.



36

Ithaca, New York, USA, in 2000. He is a professor in the
Department of Electrical and Computer Engineering, The
Ohio State University, Columbus, Ohio, 43210, USA. He
received the IEEE Signal Processing Society (SPS) Best
Paper Award in 2016 and has served on several IEEE SPS
technical committees, including those on signal processing
for communications and networking, sensor arrays and multi-
channel communication, and computational imaging. He is a
Fellow of IEEE.

References

[1] R. Gribonval, A. Chatalic, N. Keriven, V. Schellekens, L. Jacques, and P.
Schniter, “Sketching datasets for large-scale learning (long version),” 2021,
arXiv:2008.01839.

[2] E. Pérez-Cruz and O. Bousquet, “Kernel methods and their potential use in sig-
nal processing,” IEEE Signal Process. Mag., vol. 21, no. 3, p. 3, 2004.

[3] B. Scholkopf and A. Smola, “Learning with kernels,” in Adaptive Computation
and Machine Learning. Cambridge: MIT Press, 2002. [Online]. Available: https:/
mitpress.mit.edu/books/learning-kernels

[4] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive
Sensing. BerlSpringer-Verlag, May 2012.

[5] R. Gribonval, G. Blanchard, N. Keriven, and Y. Traonmilin, “Compressive sta-
tistical learning with random feature moments,” Math. Stat. Learn., to be published.

[6] N. Keriven, A. Bourrier, R. Gribonval, and P. Pérez, “Sketching for large-scale
learning of mixture models,” Inform. Inference, vol. 7, no. 3, p. 3, 2017.

[7] A. Rahimi and B. Recht. “Random features for large scale kernel machines,” in
Proc. Neural Inform. Process. Syst. Conf., 2007, 1177-1184.

[8] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Inform. Theory,
vol. 44, no. 6, pp. 2325-2383, 1998. doi: 10.1109/18.720541.

[9] N. Keriven, N. Tremblay, Y. Traonmilin, and R. Gribonval. “Compressive
K-means,” in Proc. IEEE Int. Conf. Acoust. Speech & Signal Process, 2017, 6369-6373.

[10] E. Byrne, A. Chatalic, R. Gribonval, and P. Schniter, “Sketched clustering via
hybrid approximate message passing,” IEEE Trans. Signal Process, vol. 67, no. 17,
p. 17,2019. doi: 10.1109/TSP.2019.2924585.

[11] M. P. Sheehan, M. S. Kotzagiannidis, and M. E. Davies, “Compressive inde-
pendent component analysis,” in Proc. 27th IEEE European Signal Process. Conf.
(EUSIPCO), 2019, pp. 1-5. doi: 10.23919/EUSIPC0.2019.8903095.

[12] M. P. Sheehan, A. Gonon, and M. E. Davies, “Compressive learning for semi-
parametric models,” 2019, arXiv:1910.10024.

[13] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine, “Synopses for mas-
sive data,” Found. Trends Databases, vol. 4, nos. 1-3, p. 1, 2011. doi: 10.1561/
1900000004.

[14] D. Achlioptas, “Database-friendly random projections: Johnson-Lindenstrauss
with binary coins,” J. Comput. Syst. Sci., vol. 66, no. 4, p. 4, 2003. doi: 10.1016/
$0022-0000(03)00025-4.

[15] M. W. Mahoney, “Randomized algorithms for matrices and data,” Found.
Trends Mach. Learning, vol. 3, no. 2, pp. 123-224, 2010.

[16] C. Boutsidis, A. Zouzias, and P. Drineas, “Random projections for k-means
clustering,” in Proc. Adv. Neural Inform. Process. Syst., 2010, pp. 1-9.

[17] D. P. Woodruff, “Sketching as a tool for numerical linear algebra,” Found.
Trends Theoretical Comput. Sci., vol. 10, nos. 1-2, pp. 1-157, 2014. doi: 10.1561/
0400000060.

[18] D. Achlioptas, F. McSherry, and B. Scholkopf, “Sampling techniques for kernel
methods,” in Proc. Advances Neural Inform. Process. Syst., 2002, pp. 335-342.

[19] D. Feldman, M. Monemizadeh, and C. Sohler, “Coresets and sketches for high
dimensional subspace approximation problems,” in Proc. Annu. ACM-SIAM SY~P.
Discrete Algorithms, 2010, vol. 1, pp. 630-649. doi: 10.1137/1.978161197
3075.53.

[20] C. Williams and M. W. Seeger, “Using the Nystrom method to speed up kernel
machines,” in Proc. Advances Neural Inform. Processing Syst., vol. 13, 2001, pp.
628-688.

[21] A. R. Hall, Generalized Method of Moments. London: Oxford Univ. Press, 2005.

[22] E. J. Candés and M. B. Wakin, “An introduction to compressive sampling,” IEEE
Signal Process. Mag., vol. 25, no. 2, p. 2, 2008. doi: 10.1109/MSP.2007.914731.

[23] E. J. Candes and C. Fernandez-Granda, “Towards a mathematical theory of
super-resolution,” Commun. Pure Appl. Math, vol. 67, p. 6, 2014.
[24] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing

MRI,” IEEE Signal Process. Mag., vol. 25, no. 2, p. 2, 2008. doi: 10.1109/
MSP.2007.914728.

[25] J. A. Fessler, “Optimization methods for magnetic resonance image reconstruc-
tion: key models and optimization algorithms,” IEEE Signal Process. Mag., vol. 37,
no. 1, p. 1, 2020. doi: 10.1109/MSP.2019.2943645.

[26] Q. Denoyelle, V. Duval, G. Peyrée, and E. Soubies, “The sliding Frank—Wolfe
algorithm and its application to super-resolution microscopy,” Inverse Problems,
vol. 36, no. 1, p. 1, Jan. 2020. doi: 10.1088/1361-6420/ab2a29.

[27] Y. Chen and Y. Chi, “Harnessing structures in big data via guaranteed low-rank
matrix estimation: Recent theory and fast algorithms via convex and nonconvex opti-
mization,” IEEE Signal Process. Mag., vol. 35, no. 4, p. 4, 2018. doi: 10.1109/
MSP.2018.2821706.

[28] R. Ge, J. D. Lee, and T. Ma, “Matrix completion has no spurious local mini-
mum,” in Proc. Adv. Neural Inf. Process. Syst., New York: Curran Associates, 2016.

[29] V. Vapnik, Nature Statistical Learning Theory, vol. 6, Berlin, Germany:
Springer, 2013.

[30] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning.
Cambridge, MA: Cambridge Univ. Press, 2009.

[31] W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings into a
Hilbert space,” Contemporary Math., vol. 26, pp. 189-206, 1984.

[32] Z.-W. Pan, D.-H. Xiang, Q.-W. Xiao, and D.-X. Zhou, “Parzen windows for
multi-class classification,” J. Complexity, vol. 24, nos. 5-6, pp. 5-6, 2008. doi:
10.1016/j.jc0.2008.07.001.

[33] E. X. Yu, A. T. Suresh, K. M. Choromanski, D. N. Holtmann-Rice, and S.
Kumar, “Orthogonal random features,” in Proc. Neural Inform. Process. Syst.
Conf., 2016, pp. 1975-1983.

[34] A. Chatalic, R. Gribonval, and N. Keriven, “Large-scale high-dimensional
clustering with fast sketching,” in Proc. IEEE Int. Conf. Acoust. Speech & Signal
Process, 2018, pp. 4714-4718.

[35] V. Schellekens and L. Jacques, “Quantized compressive k-means,” IEEE
Signal Process. Lett., vol. 25, no. 8, pp. 1211-1215, Aug. 2018. doi: 10.1109/
LSP.2018.2847908.

[36] V. Schellekens and L. Jacques, “Breaking the waves: Asymmetric random peri-
odic features for low-bitrate kernel machines,” Inf. Inference, to be published. doi:
https://doi.org/10.1093/imaiai/iaab008

[37] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data pub-
lishing: A survey of recent developments,” ACM Comput. Survey, vol. 42, no. 4, p.
4, June 2010. doi: 10.1145/1749603.1749605.

[38] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,”
Theoretical Comput. Sci., vol. 9, no. 3—4, pp. 3—4, 2014.

[39] A. D. Sarwate and K. Chaudhuri, “Signal processing and machine learning
with differential privacy: Algorithms and challenges for continuous data,” IEEE
Signal Process. Mag., vol. 30, no. 5, p. 5,2013. doi: 10.1109/MSP.2013.2259911.

[40] M. Testa, D. Valsesia, T. Bianchi, and E. Magli, Compressed Sensing for
Privacy-Preserving Data Processing. Berlin: Springer-Verlag, 2019.

[41] S. Rane and P. T. Boufounos, “Privacy-preserving nearest neighbor methods:
Comparing signals without revealing them,” IEEE Signal Process. Mag., vol. 30,
no. 2, p. 2,2013. doi: 10.1109/MSP.2012.2230221.

[42] H. V. Poor, An Introduction to Signal Detection and Estimation. Springer
Science & Business Media, 2013.

[43] V. Schellekens, A. Chatalic, F. Houssiau, Y.-A. de Montjoye, L. Jacques, and
R. Gribonval, “Differentially private compressive k-means,” in Proc. IEEE Int.
Conf. Acoust. Speech & Signal Process, 2019, pp. 7933-7937.

[44] A. Chatalic, V. Schellekens, F. Houssiau, Y.-A. de Montjoye, L. Jacques, and
R. Gribonval, “Compressive learning with privacy guarantees,” Information and
Inference: A Journal of the IMA, May 2021. doi: 10.1093/imaiai/iaab005. [Online].
Available: https://doi.org/10.1093/imaiai/iaab005

[45] A. Saade et al., “Random projections through multiple optical scattering,” in
Proc. IEEE Int. Conf. Acoust. Speech & Signal Process, 2016, 6215-6219.

[46] N. Boyd, G. Schiebinger, and B. Recht, “The alternating descent conditional
gradient method for sparse inverse problems,” SIAM J. Optim., vol. 27, no. 2, p. 2,
2017. doi: 10.1137/15M1035793.

[47] Y. Traonmilin and J.-F. Aujol, “The basins of attraction of the global minimiz-
ers of the non-convex sparse spikes estimation problem,” 2018, arXiv:1811.12000.

[48] L. Chizat and F. Bach, “On the global convergence of gradient descent for over-
parameterized models using optimal transport,” in Proc. Adv. Neural Inform.
Process. Syst., 2018.

[49] V. Schellekens and L. Jacques, “Compressive classification (machine learning
without learning),” 2018, arXiv:1812.01410.

[50] M. Udell, C. Horn, R. Zadeh, and S. Boyd, “Generalized low rank models,”
Found. Trends Mach. Learn., vol. 9, no. 1, p. 1, 2016. doi: 10.1561/2200000055.

[51] R. Gribonval, G. Blanchard, N. Keriven and Y. Traonmilin, “Statistical learning
guarantees for compressive clustering and compressive mixture modeling,” Math.
Stat. Learn., to be published.

IEEE SIGNAL PROCESSING MAGAZINE | September 2021 |

Authorized licensed use limited to: The Ohio State University. Downloaded on July 06,2022 at 19:33:50 UTC from IEEE Xplore. Restrictions apply.



