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Abstract: This paper investigates an ordered partial matching alignment problem, in which the goal 1

is to align two sequences in the presence of potentially non-matching regions. We propose a novel 2

parameter-free dynamic programming alignment method called hidden state time warping that 3

allows an alignment path to switch between two different planes: a “visible" plane corresponding 4

to matching sections and a “hidden" plane corresponding to non-matching sections. By defining 5

two distinct planes, we can allow different types of time warping in each plane (e.g. imposing a 6

maximum warping factor in matching regions while allowing completely unconstrained movements 7

in non-matching regions). The resulting algorithm can determine the optimal continuous alignment 8

path via dynamic programming, and the visible plane induces a (possibly) discontinuous alignment 9

path containing matching regions. We show that this approach outperforms existing parameter-free 10

methods on two different partial matching alignment problems involving speech and music. 11

Keywords: hidden state time warping; alignment; dynamic programming; partial matching; DTW 12

1. Introduction 13

Dynamic time warping (DTW) is a widely used algorithm for determining the optimal 14

alignment between two sequences. Standard DTW assumes that the two sequences start 15

and end at the same location, and that the time warping is defined by a predetermined set 16

of allowable transitions. Variations of DTW have been proposed to estimate alignments 17

under various assumptions and conditions. For example, subsequence DTW determines the 18

optimal alignment between a short query sequence and any subsequence within a longer 19

reference sequence. In this paper, we propose a time warping algorithm for handling 20

ordered partial alignments, where the true alignment between two sequences may contain 21

discontinuities due to non-matching regions but the matching regions are assumed to 22

be ordered. Figure 1 provides a graphical illustration of the difference between the full 23

matching, subsequence matching, and ordered partial matching scenarios. 24

For the sake of completeness, we provide an overview of standard DTW before 25

describing variations and extensions of it in the literature. Estimating the alignment 26

between two sequences x1, x2, . . . , xN and y1, y2, . . . , yM with DTW consists of three main 27

steps. The first step is to compute a pairwise cost matrix C ∈ RN×M, where C[i, j] indicates 28

the dissimilarity between xi and yj. The second step is to compute a cumulative cost matrix 29

D ∈ RN×M, where D[i, j] indicates the lowest cost cumulative path score starting at C[0, 0] 30

and ending at C[i, j]. The elements in D can be computed using dynamic programming 31

based on a set of allowable transitions in the cost matrix, and a separate backtrace matrix 32

B ∈ ZN×M keeps track of the last transition in the lowest cost path ending at each location. 33

The third step is to follow the backtrace pointers in B to determine the lowest cost path 34

from C[0, 0] to C[N − 1, M − 1]. 35
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Figure 1. Different types of alignment problems. HSTW provides a parameter-free solution to the
ordered partial match alignment problem.

Many works have proposed variations or extensions of DTW.1 These works generally 36

fall into one of two categories. The first category of works focuses on mitigating the 37

quadratic runtime or memory costs of DTW, which make it prohibitive for processing 38

long sequences. Some works approach this by proposing approximations of DTW, such as 39

by imposing fixed boundaries on the alignment path (e.g. Sakoe-Chiba band [1], Itakura 40

parallelogram [2]), estimating the alignment at a coarse resolution and iteratively refining 41

the alignment path [3][4], estimating the alignment path with a limited amount of memory 42

[5], or using a parallelizable time warping algorithm [6]. Other works approach this by 43

computing exact DTW in a more efficient way, such as by using lower bounds [7][8], early 44

abandoning [9][10], utilizing multiple cores [11][12] or specialized hardware [13][14], or 45

performing the dynamic programming along diagonals rather than rows/columns to allow 46

for parallelization [15]. The second category of works focus on extending the behavior of 47

DTW in some way. Some examples in the audio processing literature include performing 48

time warping in an online fashion [16][17], handling repeats and jumps in music [18][19][20], 49

handling subsequence alignments [21][22], handling pitch drift in a capella performances 50

[23], and utilizing multiple performances to improve alignment accuracy [24]. 51

This paper proposes an alignment algorithm called hidden state time warping (HSTW) 52

that can handle ordered partial matching. In particular, HSTW allows for aligning two 53

sequences whose alignment may contain discontinuities due to non-matching regions, 54

as shown in Figure 1. Rather than computing a cumulative cost matrix D ∈ RN×M, we 55

instead compute a cumulative cost tensor D ∈ R2×N×M containing two different planes: a 56

“visible" plane corresponding to matching sections and a “hidden" plane corresponding 57

to non-matching sections. The alignment path can transition between the visible and 58

hidden planes. By defining two distinct planes, we can use different dynamic programming 59

rules to treat matching and non-matching sections differently (e.g. imposing a maximum 60

time warping factor in matching sections while allowing unconstrained movements in 61

non-matching sections). Furthermore, we can find the optimal (continuous) alignment 62

path through the entire double-plane using a dynamic programming framework, and then 63

induce a discontinuous optimal matching alignment path by considering only the path 64

elements in the visible plane. In the following sections, we describe this algorithm in 65

more detail and provide experimental evidence of its effectiveness on two different tasks: 66

1 It is worth mentioning how DTW fits into the broader literature of alignment algorithms. At the highest level
of abstraction, alignment algorithms can be categorized into two groups: those with trainable parameters
(e.g. HMMs) and those without trainable parameters (parameter-free algorithms like DTW which only have
hyperparameters). Both groups use dynamic programming to estimate an alignment, but they differ in the
contexts in which they are used. HMMs can only be used when training data is available and are the preferred
method when aligning unstructured data to a sequence of symbolic symbols (e.g. aligning music audio to
a symbolic score or aligning speech audio to a sequence of words). In contrast, DTW can be used without
any training data and is usually the preferred method when aligning two sequences of unstructured data
(e.g. audio-audio alignment). In this paper, we focus exclusively on parameter-free algorithms. The main
advantage of a parameter-free method is its simplicity and “portability": it can be applied to any type of data
without training, as we demonstrate on two different tasks in this paper.
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one involving the alignment of speech data in the presence of tampering operations like 67

insertion, deletion, and replacement, and another involving the synchronization of music 68

performances with different content (e.g. silence or applause) before, after, and in between 69

movements of a musical piece. 2
70

2. Materials and Methods 71

In this section, we describe how to align two partially matching audio recordings 72

using our proposed hidden state time warping (HSTW) algorithm. There are three steps: 73

extracting the features, estimating a global alignment, and determining which regions are 74

matching. These three steps will be discussed in the next three subsections (Sections 2.1 - 75

2.3), followed by a discussion of initialization (Section 2.4) and setting hyperparameters 76

(Section 2.5). 77

2.1. Feature Extraction 78

The first step is to extract features from both audio recordings. HSTW can work with 79

any feature representation, so for simplicity we use standard feature representations. For 80

speech audio, we compute 13-dimensional MFCCs with delta and delta-delta features (total 81

39 dimensions) using 25 ms analysis frames and 10 ms hop size. For music audio, we 82

compute 12-dimensional chroma features based on a constant Q transform with 23 ms 83

hop size. At the end of this first step, we have two sequences of features x1, . . . , xL1 and 84

y1, . . . , yL2 . 85

2.2. Alignment 86

The second step is to estimate a global continuous alignment path between the two 87

sequences of features. This process consists of three sub-steps, which are described in the 88

next three paragraphs. 89

First, we compute a pairwise cost matrix C ∈ RL1×L2 between the two feature se- 90

quences. For speech audio we use Euclidean distance as a dissimilarity metric, and for 91

music audio we use cosine distance. So, C[i, j] indicates the dissimilarity between the 92

feature xi in the first sequence and the feature yj in the second sequence. 93

Second, we compute a cumulative cost tensor D ∈ R2×L1×L2 (and corresponding
backtrace tensor B ∈ N2×L1×L2 ) using the following dynamic programming rules:

Dh[i, j] =


γ+α

2 i = 0, j = 0

min


Dh[i, j − 1] + γ

Dh[i − 1, j] + α

Dv[i − 1, j − 1] + γ + α

otherwise

Dv[i, j] =



C[0, 0] i = 0, j = 0

min


Dv[i − 1, j − 1] + 2 · C[i, j]
Dv[i − 2, j − 1] + 3 · C[i, j]
Dv[i − 1, j − 2] + 3 · C[i, j]
Dh[i, j] + β

otherwise

where Dh and Dv correspond to the hidden and visible planes, respectively. In the multi- 94

case expressions for both Dh[i, j] and Dv[i, j], the first case handles the initialization of the 95

cumulative cost tensor, and the second case specifies the dynamic programming rules. 96

There are three types of transitions that end in the hidden plane: (i) a horizontal transition 97

to the right in the hidden plane with a penalty of γ, (ii) a vertical transition upwards in the 98

hidden plane with a penalty of α, and (iii) a diagonal transition from position (i − 1, j − 1) 99

in the visible plane to position (i, j) in the hidden plane with penalty γ + α. Note that 100

2 Code for reproducing the results can be found at https://github.com/HMC-MIR/HSTW.

https://github.com/HMC-MIR/HSTW
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these three cases all incur fixed penalties that are independent of the pairwise cost C[i, j]. 101

There are four types of transitions that end in the visible plane: three regular transitions 102

{(1, 1), (1, 2), (2, 1)} in the visible plane with corresponding transition weights {2, 3, 3}, as 103

well as a transition from position (i, j) in the hidden plane to position (i, j) in the visible 104

plane with a penalty of β. As we compute each element of Dh[i, j] and Dv[i, j], we also 105

update the corresponding backtrace tensor entries Bh[i, j] and Bv[i, j] to record the optimal 106

transition type at each position. 107

Third, we determine the optimal global continuous alignment path through D using 108

backtracking. We start with the element in the last row and column of Dv or Dh (whichever 109

has a lower cumulative path score), and then follow the back pointers in B to determine 110

each step of the optimal path. We stop backtracking once we have reached either Dv[0, 0] 111

or Dh[0, 0]. 112

2.3. Classification 113

The third step is to classify each element in the optimal global continuous alignment 114

path as matching or not matching. The classification for a path element can then be imputed 115

to the corresponding audio frames in the two recordings. For example, if a path element 116

(i, j) is classified as a non-match, we can infer that the ith frame of the first recording does 117

not match the other recording. With the HSTW algorithm, the classification can be done 118

in two ways: (1) classify path elements in the visible plane as matches and path elements 119

in the hidden plane non-matches, or (2) classify each path element (i, j) by applying a 120

hard threshold to the corresponding pairwise cost C[i, j]. We report results with both 121

classification methods. 122

2.4. Initialization 123

The equations shown above are not the HSTW algorithm – they are just one example of 124

HSTW. In the same way that DTW can be modified by choosing a different set of allowable 125

transitions and weights or modified to handle subsequence matches, so too can HSTW be 126

flexibly adapted to a range of scenarios. 127

One way to modify HSTW behavior is to choose different initialization conditions 128

for the cumulative cost tensor D. For example, the equations can be modified to handle 129

subsequence alignment by introducing two changes: (a) initializing Dv[0, j] = C[0, j], 130

j = 0, 1, . . . , L2 − 1 so that the alignment path can begin anywhere in the second (longer) 131

sequence without penalty and (b) beginning the backtracking from position (L1 − 1, j∗) 132

where j∗ = argminj Dv[L1 − 1, j] to allow the alignment path to end anywhere without 133

penalty. One can treat Dh similarly to allow subsequence paths to start or end in the hidden 134

plane. 135

Another way to modify HSTW behavior is to choose different allowable transitions 136

and transition weights. The equations shown above allow for (1, 1), (1, 2), and (2, 1) 137

transitions within the visible plane with corresponding transition weights 2, 3, and 3. These 138

allowable transitions and transition weights could be chosen differently to encourage or 139

allow certain types of alignment paths. 140

2.5. Hyperparameters 141

In addition to the hyperparameters that DTW has, HSTW has three additional hyper- 142

parameters: γ, α, and β. These three hyperparameters have clear interpretations: γ is a skip 143

penalty for a horizontal transition, α is a skip penalty for a vertical transition, and β is a 144

plane transition penalty. These hyperparameters can be set to achieve different types of 145

behavior. We describe our method of setting these hyperparameters for our two tasks of 146

interest. 147

We set the hyperparameters on our (subsequence alignment) speech verification task 148

to perform well in the presence of common tampering operations like insertions, deletions, 149

and replacements. For the deletion penalty γ, we found that the optimal setting is a small, 150

positive number. We want the cost to be small in order to allow skipping in the reference 151
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Piece Files mean std min max
Opus 17, No 4 64 259.7 32.5 194.4 409.6
Opus 24, No 2 64 137.5 13.9 109.6 180.0
Opus 30, No 2 34 85.0 9.2 68.0 99.0
Opus 63, No 3 88 129.0 13.4 96.2 162.9
Opus 68, No 3 51 101.1 19.4 71.8 164.8

Table 1. Overview of the Chopin Mazurka data used in the music alignment task. All durations are
in seconds. The top two pieces are used for validation (i.e. setting hyperparameters), and the bottom
three pieces are used for testing. Tampered versions of the performances are generated to simulate
non-matching regions at the beginning, middle, and end of the recording.

dimension when there is a deletion edit in the query. If we set γ to zero, however, it allows 152

for arbitrarily long skips, which has undesirable behavior. We use γ = 3 in all of our 153

reported results, and we find that system performance is relatively insensitive for values 154

within the range 0.5 < γ < 10. For the insertion penalty α, we found that the optimal value 155

strongly depends on the values in the cost matrix. If α is too large, the algorithm cannot 156

follow vertical alignment paths corresponding to insertions. If α is too small, the optimal 157

subsequence path consists of simply skipping across the entire cost matrix. Ideally, we want 158

the penalty to be greater than the cost between two matching elements but smaller than the 159

cost between non-matching elements. Accordingly, we set α in a data-dependent way: we 160

calculate the minimum cost in each row of the cost matrix C (i.e. the minimum cost for each 161

query frame), and then set α to cα = 2.4 times the median of these row minima. We find 162

system performance to be insensitive across the range 2 < cα < 3. For the hidden-to-visible 163

transition penalty β, we find that β = cβ ∗ (γ + α) with cβ = 33 works well, and that system 164

performance is insensitive for values within the range 30 < cβ < 40. This penalty prevents 165

the alignment path from coming up to the visible plane unless it can “consume" enough 166

low-cost elements. 167

We set the hyperparameters on our music alignment task in the same manner but with 168

one difference: we always set γ = α since the alignment task is symmetric. Based on our 169

training data, we used cγ = 10 and cβ = 150. 170

3. Results 171

In this section we describe a set of experiments with two different tasks involving both 172

music and speech data. We first describe the experimental setup of both tasks, and then 173

present our empirical results. 174

3.1. Experimental Setup - Music Synchronization 175

The first task is synchronization of different music performances of the same piece in 176

the presence of non-matching regions. We use the Mazurka dataset [25], which consists 177

of multiple performances of five different Chopin Mazurkas. For each performance, the 178

dataset contains manual annotations of beat-level timestamps. We set aside two Mazurkas 179

for training and the other three Mazurkas for testing, resulting in a total of 2514 training 180

alignment pairs and 7069 test alignment pairs. This dataset has been used in a number 181

of previous studies on music alignment [26][6][27][25]. Table 1 shows an overview of the 182

Mazurka dataset. 183

There are a number of factors that might cause two classical music recordings of the 184

same piece to have non-matching regions. For example, a CD audio recording might start 185

and end at the beginning and end of the actual performance, while a Youtube recording 186

might contain silence or applause at the beginning and/or end of the video. Non-matching 187

regions in the middle of a recording might be due to structural differences like repeats, 188

silence between movements of a piece, or a different cadenza. 189
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We generate tampered versions of the Mazurka performances in order to study the 190

effect of non-matching regions. The beginning, middle, and end of each original Mazurka 191

performance is tampered in the following manner. First, a filler audio recording of a different 192

Mazurka is randomly selected from the same train-test split. This filler recording is used 193

to replace original content with non-matching content. Second, the first Lstart seconds of 194

the original recording is replaced with a random interval selected from the filler recording, 195

where Lstart is selected uniformly in the interval [0, 10] seconds. Third, the last Lend seconds 196

of the original recording is likewise replaced with a random interval in the filler recording, 197

where Lend is selected uniformly from [0, 10] seconds. Finally, a random L second interval 198

in the middle of the original recording is replaced with content from the filler recording. 199

We make sure the middle tampered region is at least 10 seconds away from the tampered 200

regions at the beginning and end, so as to avoid creating very short matching fragments. 201

Each tampered recording is aligned against all other (untampered) original recordings of 202

the same Mazurka. 203

We evaluate system performance based on how well it classifies each audio frame in 204

the query (i.e. the tampered recording) as matching or non-matching. Note that determining 205

whether or not an audio frame is matching or non-matching requires solving the alignment 206

problem accurately.3 We characterize performance using a standard receiver operating 207

characteristic (ROC) curve, which shows the tradeoff between false positives and false 208

negatives. When evaluating classification performance, we exclude frames that lie within a 209

±∆ = 100 ms scoring collar around tampering locations. 210

3.2. Experimental Setup - Speech Alignment & Verification 211

The second task is verifying the legitimacy of a short speech recording (e.g. a viral 212

video clip of a presidential speech on social media) by comparing it to a trusted reference 213

recording (e.g. an official recording of the entire speech from a major news outlet). The goal 214

is to be able to perform verification in the presence of common tampering operations like 215

insertions, deletions, and replacements. Note that while there is a rich literature in audio 216

tampering detection by detecting internal inconsistencies and tampering artifacts (see [28] 217

for a survey), our task instead focuses exclusively on positively verifying the legitimacy of 218

an audio recording by aligning and comparing it to a trusted external reference recording. 219

This problem has become particularly relevant in recent years, as digital audio editing 220

software and deep fake technology has become readily accessible [29]. 221

To simulate a realistic scenario involving a high-profile political figure, we use record- 222

ings of former U.S. President Donald Trump. We collected 50 speech recordings of Trump 223

from 2017 to 2018, all taken from the official White House Youtube playlist when he was in 224

office. Each of these recordings is single-speaker and is 1-3 minutes long. 225

We generate audio queries from the raw data in the following manner. We randomly 226

select ten 10-second segments from each recording, and then generate four different versions 227

of each segment by applying various tampering operations. The first version has no 228

tampering: it is simply an unedited version at a lower bitrate quality (160 kbps) than the 229

reference (320 kbps). The second version has an insertion: we randomly select an L second 230

fragment from a different audio recording (within the dataset) and insert the fragment 231

into the 10-second segment at a random location. The third version has a deletion: we 232

randomly select an L second interval from the segment and delete it. The fourth version has 233

a replacement: we randomly select an L second fragment from a different audio recording 234

and use it to replace a randomly selected L second fragment in the 10-second segment. For 235

a given value of L, this process will generate a total of 4 × 50 × 10 = 2000 queries. We 236

divide the queries by speech recording and use 50% for training and 50% for testing. Each 237

query is aligned against the corresponding high-resolution reference audio recording from 238

which it was taken. 239

3 We found that all systems had roughly the same alignment accuracy, so we only focus on reporting classification
performance.
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Figure 2. Results on the speech alignment & verification task. Bars indicate the equal error rate for
classifying audio frames as matching vs. non-matching. Systems with ∗ are not threshold-based and
therefore do not sweep out a full ROC curve. For these systems, the bar indicates the mean of the
false positive and false negative rate.

We evaluate our speech verification system based on how well it classifies each audio 240

frame in the query as matching or non-matching. Again, we note that solving the classifica- 241

tion task requires solving the alignment task accurately, and is therefore a better indicator 242

of system-level performance. We evaluate this binary classification task using a standard 243

ROC curve and corresponding equal error rate (EER). We exclude frames that lie within a 244

±∆ = 100 ms scoring collar around tampering locations. 245

3.3. Speech Alignment & Verification Results 246

For the speech task, we compare the performance of seven different parameter-free 247

alignment systems. The first system (“DTW-111") is subsequence DTW with (query, refer- 248

ence) transitions {(1, 1), (0, 1), (1, 0)} and corresponding transition weights {1, 1, 1}. For 249

each element (i, j) on the optimal alignment path, the pairwise cost C[i, j] is imputed as a 250

score to the ith frame in the query (i.e. the potentially tampered recording), and each query 251

frame’s score is compared to a threshold to determine if the frame is a match or a non-match. 252

This threshold can be varied to sweep out an ROC curve. The second (“DTW-121") and 253

third (“DTW-112") systems are the same as the first system but with transition weights 254

{1, 2, 1} and {1, 1, 2}, respectively. The fourth system (“NW-threshold") is Needleman- 255

Wunsch alignment [30], which allows for regular (1, 1) transitions as well as (0, 1) and 256

(1, 0) transitions with a fixed insertion/deletion penalty γ that does not depend on the 257

pairwise cost matrix C. Once the optimal alignment path has been estimated, scores are 258

imputed to the query frames and thresholded, as before. The fifth system (“NW-skip") is 259

identical to the fourth system but simply classifies insertions and deletions as non-matches 260

and (1, 1) transitions as matches. The sixth system (“HSTW-threshold") uses our proposed 261

algorithm to estimate an optimal subsequence alignment path, imputes scores to each 262

query frame based on the pairwise cost matrix, and then applies a threshold. The seventh 263

system (“HSTW-plane") estimates the alignment with our proposed algorithm and simply 264

classifies path elements in the visible plane as matches and path elements in the hidden 265

plane as non-matches. For each system above, hyperparameters are tuned on the training 266

set. 267
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Figure 3. ROC curves for all systems on the speech alignment & verification task with L = 2s tamper-
ing duration. NW-skip and HSTW-plane are not threshold-based systems, so their performance is
characterized by a single point.
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Figure 2 shows the frame classification results on the speech verification task for 268

L = 1, 2, 3, 4s tampering durations. For all threshold-based systems (i.e. all systems except 269

NW-skip and HSTW-plane), the bars indicate the EER of classification performance. Because 270

NW-skip and HSTW-plane are not threshold-based systems, their performance is defined 271

by a single point in the ROC plane, as shown in Figure 3 for L = 2s tampering durations. 272

For these two systems, an approximation of EER is estimated by averaging the false positive 273

and false negative rate. 274

There are three things to notice about Figures 2 and 3. First, HSTW-plane has the best 275

classification performance by a wide margin. For example, for L = 2s tampering operations, 276

HSTW-plane achieves 0.01% false positive rate and 0.25% false negative rate, while the best 277

non-HSTW system achieves 3.04% equal error rate. Second, HSTW-plane performs much 278

better than HSTW-threshold, even though both systems have identical alignment paths. 279

This indicates that there is relevant information in the visible/hidden dimension that is 280

not captured by the 2D alignment between the two sequences. Third, the performance of 281

non-HSTW systems varies drastically based on the tampering duration, but is much more 282

stable for the HSTW-based systems. 283

3.4. Music Synchronization Results 284

For the music task, we compare the performance of six different systems. The first two 285

systems (“DTW-233", “DTW-111") are standard DTW with transitions {(1, 1), (1, 2), (2, 1)} 286

and corresponding transition weights {2, 3, 3} or {1, 1, 1}. Scores are imputed to each frame 287

in the query (i.e. the tampered recording) and thresholded, as before. The third system 288

(“NWTW-threshold") was proposed in [20] as a way to handle both time warping as well 289

as insertions and deletions. It allows for {(1, 1), (1, 2), (2, 1)} transitions to handle time 290

warping, as well as (0, 1) and (1, 0) skip transitions with a fixed penalty γ. Scores are 291

imputed to the query frames and thresholded as above. The fourth system (“NWTW-skip") 292

is identical to the third system but simply classifies insertion and deletion transitions 293

as non-matches and all other regular transitions as matches. The fifth system (“HSTW- 294

threshold") uses our proposed algorithm to estimate an optimal global alignment path, 295

and then imputes scores to each query frame and thresholds as before. The sixth system 296

(“HSTW-plane") estimates the alignment with our proposed algorithm and simply classifies 297

path elements in the visible plane as matches and path elements in the hidden plane as 298

non-matches. For each system above, hyperparameters are tuned on the training set. 299

Figure 4 shows the results on the music synchronization task with L = 5, 10, 20, 30s 300

tampering durations. We see that HSTW-plane again has the best performance, but that 301

the music task is much more challenging than the speech task based on the equal error 302

rates. This is because the speech task involves comparing two exactly matching recordings 303

(with possible tampering operations), whereas the music task involves comparing two 304

different performances of a piece (with additional tampering operations). Again, we 305

see that HSTW-plane has better performance than HSTW-threshold despite the fact that 306

both share the same predicted alignment path. This suggests that the hidden and visible 307

planes are capturing important and relevant information that the 2D alignment path is not 308

capturing. 309

Figure 5 shows two example HSTW alignments from the music task that illustrate 310

when HSTW performs well (top) and when HSTW performs poorly (bottom). The green 311

and red regions indicate ground truth matching and non-matching regions in time (i.e. the 312

red regions correspond to tampered operations), the blue line shows which plane (hidden 313

or visible) each element of the optimal HSTW path is in, and the black line shows the 314

corresponding costs in the pairwise cost matrix. We can see that HSTW correctly identifies 315

the tampered regions: it transitions from the visible plane to the hidden plane when there is 316

tampering. In the bottom example, we can see that the matching and non-matching regions 317

are difficult to differentiate based on pairwise cost values, which leads to higher error rates 318

compared to the speech task. Looking at the pairwise costs, the HSTW predictions are 319

reasonable though incorrect. 320
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Figure 4. Results on the music synchronization task with non-matching regions. Bars indicate the
equal error rate for classifying audio frames as matching vs. non-matching. For systems that are not
threshold-based (indicated with ∗), bars indicate the mean of the false positive and false negative rate.

Figure 5. Two example HSTW alignments on the music task. Green and red regions indicate ground
truth matching and non-matching regions, respectively. The blue line shows the hidden/visible plane
of the optimal path, and the black line shows corresponding costs in the pairwise cost matrix.
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4. Discussion 321

In this section, we discuss the benefits of HSTW compared to previous work, its 322

limitations, and areas of future work. 323

The benefits of HSTW can be viewed from two different perspectives. As mentioned 324

earlier, alignment algorithms can be categorized into two groups: trainable alignment meth- 325

ods like HMMs and parameter-free alignment methods like DTW. Compared to trainable 326

alignment methods, the main benefit of HSTW is its simplicity and portability: it can be 327

easily adapted to new domains without requiring a cumbersome training process, as we 328

demonstrated with two different tasks in this article. Compared to previous parameter-free 329

alignment methods, the main benefit of HSTW is in its improved handling of non-matching 330

regions (which results in an ordered partial match alignment problem). The most relevant 331

previous parameter-free method is NWTW [20], which allows for horizontal/vertical skips 332

as well as time warping transitions at each position in the cost matrix. While NWTW should 333

in theory be able to handle non-matching regions as a consecutive sequence of horizontal 334

and vertical skips, we see from Figures 2 and 4 that it performs substantially worse than 335

HSTW in handling non-matching regions. Since NWTW and HSTW both allow for the 336

exact same types of transitions, the difference in performance comes from separating the 337

single state (in NWTW) into two distinct states with different time warping characteristics. 338

There are two limitations or drawbacks to using HSTW. The first drawback is the 339

additional computation and memory requirements compared to standard DTW. Because of 340

the additional hidden plane in the cumulative cost matrix and backtrace matrix, HSTW 341

requires twice as much computation and memory as DTW with the same size cost matrix. 342

So, while HSTW is in theory a generalization of DTW that could be used as a more flexible 343

alternative, in practice its use is only recommended for handling ordered partial match 344

alignment. The second drawback is the need to set 2-3 additional hyperparameters4 beyond 345

those of standard DTW. This can be done with a very small amount of data, however, so 346

this would be considered a relatively minor drawback. 347

For future work, we plan to generalize HSTW to more than two states. While HSTW 348

explores the use of a hidden and visible state, the concept can readily be extended to 349

multiple states, each having its own time warping characteristics. This would allow one to 350

encode structure a priori into the alignment algorithm while remaining a parameter-free 351

algorithm. 352
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Abbreviations 362

The following abbreviations are used in this manuscript: 363

364

4 Recall that there are three hyperparameters: the skip penalty in the horizontal direction, the skip penalty in
the vertical direction, and the plane transition penalty. If the alignment problem is symmetric, however, only
two effective hyperparameters need to be set.

https://github.com/HMC-MIR/HSTW
https://github.com/HMC-MIR/HSTW
https://github.com/HMC-MIR/HSTW
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DTW Dynamic time warping
HSTW Hidden state time warping
HMMs Hidden markov models
MFCCs Mel frequency cepstral coefficients
ROC Receiver operating characteristic
kbps kilobits per second
EER Equal error rate
NWTW Needleman-Wunsch time warping
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