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Abstract

For graphs G and T, and a family of graphs F let ex(G, T, F) denote the maximum possible
number of copies of T in an F-free subgraph of G. We investigate the algorithmic aspects of
calculating and estimating this function. We show that for every graph T, finite family F and
constant € > 0 there is a polynomial time algorithm that approximates ex(G, T, F) for an input
graph G on n vertices up to an additive error of en”™). We also consider the possibility of a
better approximation, proving several positive and negative results, and suggesting a conjecture
on the exact relation between T' and F for which no significantly better approximation can be
found in polynomial time unless P = NP.

1 Introduction

Many natural computational problems can be formulated as graph modification problems. In these
we are given an input graph G and we aim to apply the smallest number of modifications and
get a graph which has some predefined property. Both the allowed modifications and the desired
properties vary. The most common modifications are adding, deleting, or editing edges or vertices.
As for the desired properties, these are usually either graph properties coming from classical graph
theory or properties motivated by real world applications such as Molecular Biology [8], [14], [15],
Circuit Design [11] or Machine Learning [6].

Garey and Johnson [13] considered 18 edge and vertex modification problems. Yannakakis [22]
proved that such modification problems are NP-hard for properties such as outerplanar and transi-
tively orientable, Asano [4], and Asano and Hirata [5] established NP-hardness for several properties
expressible through forbidding families of minors or topological minors, El-Mallah and Colbourn
[11] proved NP-hardness for properties defined by forbidden minors and induced subgraphs. In
[22] Yannakakis posed the question of proving NP-hardness not only for specific properties, but for
general families of properties.

In [18] Natanzon, Shamir and Sharan studied edge modification problems for hereditary prop-
erties such as being Perfect. They showed that not only are these problems NP-hard, even finding
an approximate answer, up to some constant multiplicative factor, is NP-hard. Other works have
also investigated the question of approximation, see for example [16] and [7].
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In [1] Alon, Shapira and Sudakov investigated this question for the general family of monotone
graph properties!. The only relevant edge-modification for such properties is edge deletion. Note
that any monotone property can be defined as the property of a graph being F-free where F is an
appropriate (finite or infinite) family of graphs. Thus the question becomes the following: for a
graph G, let ex(G, K2, F) denote the maximum number of edges in a subgraph of G that contains
no copy of F' € F. The following theorem shows that this value can be approximated as follows.

Theorem 1.1 ([1]). For any fired € > 0 and any family of graphs F there is a deterministic

algorithm that given a graph G on n vertices computes ex(G, K, F) up to additive error of en? in
time O(n?).

A complimentary theorem shows that excluding simple cases, a significantly better approxima-
tion is NP-hard

Theorem 1.2 ([1]). Let F be a family of graphs and let G be a graph on n vertices. Then,

1. If there is a bipartite graph in F, then there is a fivred 6 > 0 for which it is possible to
approximate ex(G, Ko, F) within an additive error of n?=% in polynomial time.

2. On the other hand, if there are no bipartite graphs in F, then for any fixed § > 0 it is NP-hard

to approzimate ex(G, Ko, F) within an additive error of n>=°.

Note that if G = K,, the complete graph on n vertices, then finding ex(K,, K3, F) is the
classical Turan question. This question and its many variations are in the heart of extremal graph
theory. Recently in [3] the systematic study of the following variation was initiated

Definition 1.3. For graphs G and T and a family of graphs F let ex(G, T, F) denote the mazimum
number of copies of T in an F-free subgraph of G.

Following the spirit of Theorems 1.1 and 1.2 and the above generalization of the classical Turan
theorem, we consider the following question. Given a forbidden family of graphs F, a graph 7', and
a constant € > 0, is there a polynomial time algorithm that given a graph G determines ex(G, T, F)
up to an additive error of en?(1)? If so, is the problem of finding a significantly better approximation
NP-hard?

We answer the first question by proving the following

Theorem 1.4. For every constant € > 0, finite family of forbidden graphs F and fixed graph T,
there is a deterministic polynomial time algorithm that given a graph G on n vertices approxrimates
ex(G, T, F) within an additive error of en®T).

The proof is based on variants of Szemerédi’s regularity lemma, extending the methods in [1].

As for the question of better approximation, the natural generalization of the easy part of
Theorem 1.2 holds also in our case. For a fixed graph 7', an m blow-up of T is the graph obtained
by replacing each vertex of T' by an independent set of size m and each edge by a complete bipartite
graph between the corresponding independent sets.

"Monotone graph properties are properties that are closed under edge and vertex deletion, for example being K3
free or being planar.



Proposition 1.5. Let T be a fived graph and let F be a family of graphs such that there is a graph
F € F which is a subgraph of a blowup of T. Then there is a fized € := (T, F) > 0 such that
ex(G,T,F) can be calculated in polynomial time up to additive error of n?M=¢ for any graph G on
n vertices.

The above is a straightforward application of the following simple proposition from [3].

Proposition 1.6 ([3]). Let T be a fized graph. Then ex(n,T, F) = Q(n*D) if and only if F is not
a subgraph of a blow-up of T. Otherwise, ex(n, T, F) < n*T)=¢ for some € := (T, F) > 0

If indeed F is a subgraph of a blow up of T, then for € := ¢(T.F) > 0, if n is large enough we
have that
0 <ex(G,T,F) < ex(K,, T, F) <n*T~ 0.

Thus 0 is a trivial approximation of ex(G, T, F) up to additive error of n*(T)=¢. For any family of
graphs F, if F' € F then ex(G, T, F) < ex(G, T, F), and the required result follows.

As for the extension of the second part of Theorem 1.2 we prove the following special case

Theorem 1.7. Let k > m > 2 be integers, then for every € > 0 approximating ex(G, K, Ki) up
to additive error of n™ ¢ is NP-hard for a given input graph G on n wvertices.

We believe that excluding the cases covered by Proposition 1.5 no better approximation is
possible, and so we suggest the following conjecture.

Conjecture 1.8. For every graph T, family of graphs F such that no F' € F is a subgraph of a
blow-up of T, and € > 0, it is NP-hard to approzimate ex(G,T,F) up to additive error of no(T)—e
for a given input graph G on n vertices.

The rest of the paper is organized as follows. Section 2 is dedicated to definitions and preliminary
results, most of these concern variations of the regularity lemma. Section 3 is the proof of the main
lemma used to establish Theorem 1.4. Sections 4 and 5 contain the proofs of Theorems 1.4 and
1.7 respectively, and finally Section 6 includes some further remarks concerning Conjecture 1.8 and
open problems.

2 Regularity Lemmas and Auxiliary Results

From here on let €1, €2... and §1, d2, ... be positive constants depending on €, T' and F and tending
to zero as € tends to zero. In some cases the indices refer to the lemma or theorem from which the
corresponding constant arises. Additionally, let ¢ = v(7") denote the number of vertices of T'.

2.1 Two Versions of the Regularity Lemma

Given a graph G and two disjoint sets of vertices A, B C V(G), let e(A, B) denote the number of
edges with one end point in each set and let the density of edges between the sets be defined as:

_ «(A,B)
HAB) = T4 18]



Definition 2.1 (e-Regular Pair). Given a graph G and a pair of disjoint sets of vertices A, B C
V(G), we say that the pair (A, B) is e-regular, if for any two subsets A’ C A and B' C B, such
that |A’| > €|A| and |B'| > €|B|, the inequality |d(A’, B') — d(A, B)| < € holds.

Definition 2.2 (e-Regular partition). Given a graph G and € > 0 a partition P = {V;}¥_ of V(G)
for which |V;| = |Vj| for every i,j > 1, |Vo| < k, and all but at most e(g) of the pairs (V;, V;) are
e-regular is called an e-regular partition.

The following theorem is the regularity lemma of Szemerédi [20]. It is convenient to use the
following version which appears, for example, in [12], Theorem 3.7.

Theorem 2.3 ([20],[12]). For any € > 0 and integer k there exist integers Noz := N(¢, k) and
Ko3 := K(e,k) such that the following holds. If |V| > Na3 then for any partition V. =VyU...UVj
with |Vo| < k and |[Vi| = ... = |V| and any graph G on the vertex set V there exists a partition
V =UyU...UUy such that

1. |U()‘ <k < Ko 3.
2. For each U; with i > 1 there is V; such that U; C Vj.
3. U] = ... = |Up]|.

4. UgU...U Uy is an e-reqular partition of G.

We will also need the following algorithmic version of the regularity lemma that uses a stronger
notion of regularity. For the following see [2] and [19]

Definition 2.4 (f-Regular partition). For a function f : N — (0,1) and a graph G we say that a
partition P = {V;}}_ of V(G) such that |Vy| < k and |V;| = |V;| for everyi,j > 1 is an f-regular
partition if all pairs (V;, V;),1 <i < j <k, are f(k)-reqular.

Theorem 2.5 ([2]). For every l,e > 0 and non-increasing function f : N — (0,1), there is an
integer Ko := Ko5(f,€,1) so that for a given graph G on n vertices, with n > Ka 5, one can add
or remove at most en® edges of G and get a graph Go that has an f-regular partition of order k,
where | < k < Ko 5. Furthermore, the needed changes and the partition can be found in polynomial
time.

Note that in [2] the definition of f-regular partition is slightly different. There is no set Vj and
the sizes of the sets are such that for every 4, 7, HVZ\ — \V]H < 1. Tt is easy to check that the two
versions are equivalent. For simplicity we will use the version which has a set V) and k sets of equal
size throughout the paper.

2.2 Definitions of Weighted Graphs and Partition Graphs

We use the following definitions for weighted graphs.

Definition 2.6.

1. A weighted graph W is a graph on n vertices with a weight function w : E(K,) — [0, 1], where
we identify between w(e) =0 and e ¢ E(W).



2. For a fizxed graph T let T be the the set of copies of T in W and let

Nw Ty => [  wi,v).

TeT (viw;)EE(T)

Call W a T-free graph if N(W,T) = 0.
(Note that in an unweighted graph G, N (G, T) is just the number of copies of T in G.)

3. Let W' be a weighted graph on V(W) with a weight function w' : E(W') — [0,1]. We say
that W' is a conventional subgraph of W if Ve € K, either w'(e) = w(e) or w'(e) = 0.

Given a graph G and an e-regular partition of it, say P = {V;}, we would like to associate a
weighted graph to G and P and to relate subgraphs of the weighted graph to subgraphs of G. To
do this we use the following definitions:

Definition 2.7.

1. Given a graph G and an e-regular partition P = {V;}¥_, of its vertices define the (e,d)-
partition graph W to be a weighted graph on k wvertices {v1,...,vx}. The weight function is
w(vi,v) = d(V;, V) if (Vi,V}) is an e-regular pair with density at least d and w(v;,v;) = 0
otherwise.

2. For a conventional subgraph of W, say W', let Gy be the following subgraph of G on the
same set of vertices V(G) = V(Gw). An edge e = {u,u'} € E(G) is also an edge of Gy if
and only if u € Vi, € V; and w'(vi,vj) > 0. The vertices of Vi form an independent set.

2.3 Embedding and Counting Copies of Fixed Graphs

For a graph R and an integer h let R(h) be the h-blowup of R, that is the graph obtained by
replacing each vertex with an independent set of size h, and each edge with a complete bipartite
graph between the corresponding independent sets.

Theorem 2.8 (Embedding Lemma, see, e.g., [17]). Given d > ¢ > 0, a graph R, and a positive
integer ma.g, construct a graph G by replacing every vertex of R by mag vertices, and by replacing
each edge of R by an e-reqular pair of density at least d. Let F be a subgraph of R(h) of mazimum
degree A >0, let 6 =d — € and eg = 62 /(2+ A). Ife < ¢y and h — 1 < egmag then F C G.

As we aim to use the embedding lemma with an (e, d) partition graph, we need to choose d to
suit a family of graphs F. Let A(F) = maxper{A(F)}, and let v(F) = maxper{v(F)}. For a
fixed € and family F let g = ¢ and let dag := d(e, A(F)) = ¢ + € as they appear in Theorem 2.8.
Note that dg.g tends to zero as € tends to zero. Let mag := maog(e, F) = v(}")l.

€

Lemma 2.9. Let W be a weighted graph on n vertices, ¢ > 0 be a constant and P = UfZIVZ- a
partition of V(W) into k > % parts of equal size. Let T’ be the set of all copies of T in W using
at least two vertices from the same V;. Then

Z H w(vi,v;) < ent.

TeT' (vi,v5)€E(T)



Proof. As w(v;,vj) < 1 note that > . H(vi,vj)eE(T) w(v;,v;) < |T'], and so it is enough to bound

the number of copies of T in 7'. A copy from 7' uses vertices from at most ¢ — 1 sets of the

partition, and in each such set there are 7 vertices. Thus

t 12
< (i <

as € > % the required result follows. ]

Note that the above lemma can be used for unweighted graphs by choosing w(v;,v;) € {0,1}
appropriately.

Lemma 2.10. Let T be a graph on t vertices, let G be a graph on n wvertices, P = Vo U {V}}f:l
an e-regular partition of its vertices and let W be its (e,dag) partition graph. Then there exists
d2.10 := 02.10(€, t), that tends to zero when € and dag tend to zero, such that

N(G,T) = [Vi' N(W,T)| < b2.10n"

Proof. Let NP (G, T) be the number of copies of T'in G using at most one vertex from each set
{V;}¥_, and not using vertices from Vp, edges between sets (V;, V;) which are not e-regular or with
density smaller than dsg. Call these copies conventional.

There are at most et? (g) (%)Qn’f*2 < en! copies of T using an edge of an irregular pair, there are
at most t2 (g) alg,g(%)Qnt_2 < dogn® copies using edges between sets of small density and there are

at most tkn'~! copies using a vertex from Vy. Together with Lemma 2.9 we get that for 6y > 0
that tends to zero when € and ds g tend to zero

IV(G,T) - NP(G,T)| < dont. (1)

Let 7 = {T;} be the set of all copies of T"in W. For a given copy T; let V(T;) = {v;,, .., v;, } be
the sets of vertices in W that T; uses, let V;,, .., V;, be the corresponding sets in P and let N (G, T;)
be the number of copies of T" in G using a vertex from V;, for the role of v;;.

A simplified version of Lemma 1.6 from [9] is the following

Lemma 2.11. Let T be a fized graph on t vertices, and let G be a graph with an e-reqular partition
into t parts P = Vi,...,V;. Let d;; be the density between the sets V; and Vj, and assume that
dij =0 for every {i,j} & E(T). Then for d2.11 := d2.11(€,t) that tends to zero as € rends to zero,

IN(G,T) — || H dij| < 211 |Val"
(4.9)EE(T)

In our case, when counting the number of copies of T; we focus only on the sets V;, .., V;,, and
assume that the density between two sets that do not correspond to an edge of T is zero. Thus,

V@G T) -l T wi, i)l < sulnlf
(vlkyvlj)eE(T’L)

Each conventional copy of T in GG can be mapped to a copy T; in W by mapping each vertex v
of T to the set V; it is contained in. Thus NP (G, T) = e N(G, T;).



Finally, note that |V;]| < %, and together with the above we get

VPG T) = INW.T) =Y (MG T) Wil J]  w(viey))l

T,eT (vivi )EE(Ty)
<M wW@En)-mlt I wsv)l
TiET (Ui,’l)j)EE(Ti)

n
< |T62.111W1|" < k‘t52.11(E)t = 9111

This together with (1) gives the required result.

2.4 Homomorphisms of Graphs and Homomorphism Freeness

Definition 2.12. Given graphs G and F we say that the function ¢ : V(F) — V(G) is a homo-
morphism from F to G if it maps edges to edges.

Definition 2.13. Given a graph G and a family of graphs F, we say that G is F-homomorphism-
free (Frhom-free, for short), if there is no homomorphism from F to G for any F € F.

Definition 2.14. For a weighted graph W, a graph T and a family of graphs F define the homo-
morphism extremal number to be

eXpom (W, T, F) = max{N (Wy,T) : Wy is a conventional subgraph of W and is Fpom-free}

Lemma 2.15. Let G be a graph, F a finite family of graphs, ¢ > 0, P = U?:OV; an e-reqular
partition of G and W its (e, ds.g)-partition graph. If v(G) > maogk, then the following holds:

1. If G is F-free then W is Fpom-free.
2. If W is Fpom-free then Gy is F-free.

Proof. For the first part, assume towards contradiction that there is a graph F € F such that
there is a homomorphism of it into W. To apply Lemma 2.8 first note that this means that F
is a subgraph of W (v(F)), which is the graph obtained by replacing every vertex of W by an
independent set of size v(F) and every edge with positive weight by a complete bipartite graph
between the corresponding independent sets. Furthermore, as n > mg gk and the edges correspond
to e-regular pairs in the partition with density at least dsg we get that indeed G must contain a
copy of F'. This is a contradiction as we assumed that G is F-free.

As for the second part, assume that there is a copy of some F' € F in Gyw. Let V(F) =
{v1,...,v¢} be the vertices of this copy and assume that in the copy in Gy vertex v; comes from
the set V. If (vi,v5) is an edge in the copy F, this means that there is an edge between the vertices
Vg, Ug; in W Thus the mapping v; — vy, is a homomorphism. As we assumed that W is Fj,op,-free
this is a contradiction. ]



2.5 Auxiliary Lemmas

Here we prove simple lemmas to be used in the proof of Theorem 1.4.

Lemma 2.16. Let G and G’ be graphs on n wvertices, such that one can edit (i.e. add or remove)
t%nz edges of G and get G'. Then for every fized graph T and family of graphs F,

lex(G, T, F) —ex(G', T, F)| < én'.

Proof. Let E be the set of edges we need to delete from G to make it a subgraph of G’, and let
G be the subgraph of G which is F-free and has the maximum possible number of copies of T
If Gy, is the subgraph of G obtained by deleting from it any edges from E then Gj, is an F-free
subgraph of G’ and the following holds

ex(G), T, F) > N(Gy, T) > N(Go,T) — fﬂ 2nt=2 = ex(G, T, F) — on'

As this is symmetric for G and G’ we get the needed result. O

Lemma 2.17. For every € > 0 and r € N there is 62,17 := d2.17(€,7) that tends to zero as € tends
to zero such that for every set of constants 0 < aq, ..., < 1

T

H(ai —€) > Hai — 0217
i=1

=1

Proof. As a; < 1 the following holds

T

H(ai —€) :Hai + Z(—e)i Z Haj

i=1 i=1 i=1 IC[r),[I|=r—i jEI

>Haz e Y e

=1 IC[r),[I|=r—ijel

>Haz 3 ()

i=1
= H a;— ((1+¢)" —1)
Thus taking d9.17 = ((1 +e€) — 1) gives the needed result. O

3 The Main Lemma

The algorithm for Theorem 1.4 gets a graph G and uses the regularity lemma to get a partition
graph W, and then solves the extremal question for W. To prove the correctness of the algorithm
we need to show that indeed the answer for W gives a good estimate for the original extremal
question on the graph G.



Lemma 3.1. Let T be a fixed graph, F a finite family of graphs, € > 0 and k € N. Then there
exists 931 := d3.1(€, T, F) that tends to zero as € tends to zero, for which the following holds. Let
G be a graph on n vertices, let P be an f(k)-partition of G into k parts as in Theorem 2.5 where
f(k) =min{e, k- K53} and let W be the (f(k),das) partition graph it gives. Then

ex(G, T, F) < (%)texhom(W, T,F) + 831nt

Proof of Lemma 3.1. Let Wy be a conventional subgraph of W such that N'(Wy, T) = expom (W, T, F).
Assume towards contradiction that G has an F-free subgraph Gy such that

n
k
where 031 is chosen in the end and tends to zero as € tends to zero.

N(Gex, T) > ./\/(W(), T)( )t + 53.1nt. (2)

Using Theorem 2.3 we can find a refinement of P = {V;}le which is an e-regular partition of
Gex into kg - k < Ko 3 parts where kg > % Call this partition Q = VU {{Vi,j}f‘):l}f:l, where
Vi,j C Vi. Note that as |Vo| < K23 and all of the other sets are of equal size, we get that

Vijl > Ky -n=k(Ka3) - — > kKj 3 - |Vil,

> 3

and so as P is an f-regular partition with f(k) < kK3 it holds that
da(Vi, V}) > dG(Vi,li? lej) —¢€ (3)

for every choice of 1 < l;,1; < kg and 1 <4, j < k, where dg is the density in G. Note that here we
used the strong regularity in an essential way, as |V, | is far smaller than |V;|.

Let W* be the (e, d2g) partition graph of @ and Gex. Note that by Lemma 2.10 and by (2) this
means that

t
(k: nk > NW*,T) > N(Gex, T) — S2.10n" > (%)tN(Wo,T) + (831 — d2.10)n"
- ko

and in particular

(,jo) NW*,T) > N(Wo, T) + (851 — S210)k". ()

To obtain a contradiction to the existence of Gex we first prove the following lemma

Lemma 3.2. There exists a choice of r; € [ko| for every i € [k] such that the following holds. Let
W** be the subgraph of W* spanned by the vertices vi ..., Vg, then

ESN(W* T) > N(W*,T) — ea.9(k - ko)*

Proof. Let T™* be the set of copies of T"in W* such that for every two vertices of the copy, v; ;, and
Vjk;, @ # j. Using Lemma 2.9 we get that

Z H w*(v,-, ’Uj) > N(W*, T) — 62‘9(k}]€0)t.

TeT* (vi,v5)€E(T)



For every i let us choose r; uniformly at random, and let W’ be the subgraph spanned by the
chosen vertices. For T' € T* let A(T') be the event that all of the vertices of T" are in W’. Then

BN (W' T =E[ky > 1azy [[  w'wivy)] =

TeT* Vi,Vj EE(T)

1
= kg Z i H w* (vi,v;) > N(W*,T) — ea9(k - ko)

TeT* 9 v;0;€ B(T)

Thus, there must be some choice of rq, ..., r; that gives the needed inequality. ]

Given the graph W** that is the choice of r; for every ¢, we can now find an Fj,,,-free con-
ventional subgraph of W, say Wi, for which N(W1,T) > N (Wy,T). Take (v;,v;) to be an edge of
Wy if and only if (v;y,,vj,;) is an edge of W**. First note that by (3) and the fact that Gex is a
subgraph of G we get that

wl(viavj) = dG(V;'a VYj) > dG(‘/i,TZ')V_Yj,T']') — €
> G Viiry, Vi) — € = W (V3 0,,0j,p,) — € (5)

Second, the mapping ¢ : V(W**) — V(W1), ¢(vir,) = v; maps edges with non-negative weight
to edges with non-negative weight. Thus as W** is Fpon-free then so is Wj. Finally, note that if
T (W1) and T(W**) are the copies of T in W1 and W** respectively, then ¢ is a bijection between
them. Thus, the following holds

N(Wl,T) = Z H wl(vi,vj)

TET(Wh) (viv;)EE(T)

= > [T ol ) e™ win)

TET(W**) (vir;vj,r;JEE(T)

> H (W (Vi ;) — €)
TET(W**) (vir; v5.r;)EE(T)
2.17

—
ot
=

> N(W**, T) — (52_17kt

3.2 1

> (k—)tN(W*, T) — ea0k' — 017k
0

(4)
> N(Wo,T) + (631 — 0210 — €2.9 — 2.17)k" > N (W, T)

The last inequality holds since d3.1 can be chosen so that d3.1 > d2.10 + €2.9 + 02.17.

The existence of such Wy is the needed contradiction, as we chose Wy to be a conventional
Fhom-free subgraph of W that has the maximum possible value of N'(Wy,T). Thus there cannot
be a graph Geyx which is F-free and has more than (%)texhom(W, T, F) + 63.1n! copies of T. d

4 Proof of Theorem 1.4

The algorithm itself is rather straightforward. Let ng = mogKs s, if V(G) < ng we can use brute-
force as there is a constant number of options to check. If V(G) > ng then for ¢4 > 0 Theorem

10



2.5 gives us an efficient algorithm for finding €;n? edges to add or remove from G and to find a
k- K{;-regular partition P = Vo U {V;}¥_, of the edited graph, where Ky5 > k > é

In Theorem 2.5 we change e;n? edges, and as [Vo| < K25 we can remove all edges using a vertex
from Vj, and change at most €;n? + Ko 5n < ean? edges of the original graph G. This will give us
a graph that has an f(k)-partition of its vertices into k parts of equal size. Call this graph G*.

By Lemma 2.16 if we prove that we found the approximated answer for G*, up to an additive
error of egn’, then we have also found an answer for G itself up to an additive error term of
(e2 + €3)n'. Thus we may focus on the graph G*, remembering that

lex(G, T, F) — ex(G*, T, F)| < (e2 + e3)n’ (6)

Let W be the (e1,da.g) partition graph of P and G*. We use brute-force to find a conventional
subgraph of it, say Wy, which is Fj,,-free and maximizes N' (W, T). As W has a constant number
of vertices, we can do this in constant time (not depending on the size of G). By Lemma 2.15 G,

is F-free, and so
N(G}'ZVO,T) <ex(G*,T,F)

To prove that Gy, gives the needed approximation, it is left to show that
¢
N(Gy,,T) > ex(G*, T, F) — en'.

Indeed Lemma 2.10 shows that

N (Givs T) = ()N (Wo, )| < da0m. (7)

By Lemma 3.1 there is no F-free subgraph of G* that has more than (2)'N' (W, T) 4 d3.1n" copies
of T, thus

n
]ex(G*,T, .F) - (%)tN(Wo,T)‘ < (53,1nt. (8)
Thus by using equations (6), (7), and (8) we get that
N (Giy,, T) = ex(G, T, F)| < (e2 + €3 + 031 + 82.10)n"

and as €9, €3,031 and d9.1¢ all tend to zero as € tends to zero, their sum can be made as small as
needed. ]

5 Proof of Theorem 1.7

Before we prove the theorem, we establish the following two simple lemmas.

Lemma 5.1. For any integers 2 < m < k it is NP-hard to calculate ex(G, Ky, K}) exactly.

Proof. We show that calculating ex(G, K, K}) exactly is at least as hard as calculating ex(G, K, K)
exactly, which by Theorem 1.2 is NP-hard.

Given a graph G, we construct a graph G’ by adding n™*! disjoint copies of K,, on each edge.

These copies use m — 2 new vertices each, and a single edge from G. As there are at most n™ copies
of K, in G itself, it is easy to check that

ex(G, K, Kp) < ex(G, Ko, Kj,)n™ ™ + 0™ < ex(G', Kpn, Ki) +n™.
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Therefore oK K . oK K
eX( 9 my ]C) = S eX(G, K27Kk-) S eX( 9 my k))
n

npm+1 nm—i—l

implying that for n > 1 ex(G, K3, K}) can be calculated exactly from the exact value of ex(G’, K, Ky).
O

Lemma 5.2. Let G be a graph, let N be an integer and let G’ be the N-blowup of G. Then for
every 2 < m < k we have ex(G', Ky, Ki) = ex(G, Ky, Ki,) - N™.

Proof. Suppose without loss of generality that V(G) = [n]. For each i € [n] let U; C V(G') be
the blowup-set corresponding to the vertex i € V(G). Thus |Uy| = ...|U,| = N and V(') is the
disjoint union UyU- - -UU,. Let F be a Ki-free subgraph of G satisfying N (F, K,) = ex(G, K, Ky,).
Then the N-blowup of F is a Ki-free subgraph of G’ with N(F, K,;,) - N™ = ex(G, Ky, Ki) - N™
copies of K,,. This shows that ex(G', K,,, Kx) > ex(G, K, Ki) - N™. In the other direction, let
F’ be a Kj-free subgraph of G’ satisfying N (F', K,,,) = ex(G', K, K}). For each 1 <i < n, let u;
be a random vertex of U;. Set F := F'[{u1,...,u,}]. By linearity of expectation, we have

EWN(F, Kp)] = N(F',Ky) - N,

On the other hand, note that F' is Ki-free (as it is a subgraph of F’), and that F is a subgraph of
G. Tt follows that N(F, K,,) < ex(G, Ky, K) with probability 1. We conclude that

ex(G', K, K) - N~ =N(F',K,;,) - N = EN(F, Kp,)] < ex(G, K, Ky),
as required. This completes the proof. O

Now we are ready to prove Theorem 1.7
Proof. We show that the problem of approximating ex(G, K,,, K}) up to additive error |V (G)|™ ¢
is as hard as the problem of computing ex(G, K, Kj) exactly. Let G be a graph on n vertices. Set
N = (2n)m/5, and let G’ be the N-blowup of G. Note that G’ can be constructed from G in poly-
nomial time. Suppose R is an integer satisfying |R — ex(G’, K, Ki)| < |[V(G")|™"7¢ = (nN)™ "¢ <
%Nm. By Lemma 5.2, we have ‘Nim — eX(G,Km,Kk)‘ < % It follows that ex(G, Ky, Ki) is the
integer nearest to the number N—%. Therefore if we can approximate ex(G’, K,,, Kx) up to additive
error |V (G')[™ ¢ in polynomial time, then we can also compute ex(G, K, K) exactly in polyno-
mial time, where here we use the fact that |V (G’)| = nN is polynomial in n. But this is NP-hard
by Lemma 5.1, completing the proof. O

6 Concluding remarks and open questions

6.1 Improving on Theorem 1.7

In the introduction we have posed the following conjecture,

Conjecture 1.8 For every graph T, family of graphs F such that no F € F is a subgraph of a
blow-up of T, and € > 0, it is NP-hard to approzimate ex(G,T,F) up to additive error of no(I)—e
for a given input graph G on n vertices.

Allowing a smaller additive error, we can get the above for a large family of graphs.
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Proposition 6.1. For any € > 0, 3-connected graph T on t vertices and a family of 3-connected
graphs F such that no F' € F is a subgraph of a blow-up of T, it is NP-hard to approrimate
ex(G, T, F) up to additive error of n'=27¢.

Proof. We show that the question of calculating ex(G, Ko, F) exactly can be reduced to the question
of approximating ex(G, T, F) up to additive error of nc(t=2)/(c+2)~¢ where ¢ is a constant as large
as needed and 0 < ¢ < e. As every F' € F is not a subgraph of a blow-up of T, in particular it is
not bipartite, and thus the former is known to be NP-hard by Theorem 1.2. As ¢ can be as large
as we want it can be chosen so that ¢(t —2)/(c+2) —€ >t —2 —e.

Given a graph G on n vertices, let us construct G* as follows. Let 7" be a subgraph of T
obtained by removing two arbitrary vertices connected by an edge, say {u,v}. For each edge e € G
add t—2 independent sets of size n¢ to the graph. Connect the appropriate pairs of sets by complete
bipartite graphs to create a blow-up of 7”, and then connect sets corresponding to neighbors of u
and v in T to the two endpoints of e. Call the new copies of T created external and the copies
spanned by G internal.

Note that N := v(GT) < n + (t — 2)nn? and Ne(t=2/(c+2)=¢ < Lpet=2) Furthermore, in G+
every edge of G takes part in a fixed number of external copies of T in GT, say X7 > n¢t=2) and
in at most O(n'~?) internal copies. In addition, no new copies of graphs from F are created. This
is true as T' and the graphs in F are 3-connected and no graph in F is a subgraph of a blow-up of
T.

Let ex(GT, T, F) = N(GT,T) — ex(G", T, F) where N(G*,T) is the number of copies of T in
G, and similarly ex(G, K, F) = |E(G)| — ex(G, K3, F). First note that

&=(GT, T, F) <ex(G, Ko, F) X7 4+ O(n).

Indeed, by deleting ex(G, K2, F) edges from G we can make G into an F-free graph, as all of the
copies of F are spanned by the vertices coming from G. Removing these edges will remove all of
the external copies of T using them together with some internal copies.

Furthermore, if we removed ex(G™, T, F) copies of T from GT and made it F-free, we may
assume that we have done this by removing only edges from G, say e of them, and that G was
made F-free. Each edge of G takes part in at least X distinct copies of T', so

&(G+, T, f) >eXr > e?(G, Ko, f)XT
From the above

&(GH, T, F) — O(n')
Xr

a<( ()t
< eix(G, K2’]:) < M’
Xr

and as

Nc(t—2)/(c+2)—e’ 1 q O(nt) 1
< = <
X7 =5 X, °®
if we calculated ex(G™, T, F) up to an additive error of Ne(t=2)/(e+2)=¢ then we calculated ex(G, Ky, F)
up to an additive error of 2/5, as this is an integer this means we have calculated it exactly and

this is known to be NP-hard. O

The full assertion of Conjecture 1.8 remains open. The following questions address several
special cases.
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1. Is approximating ex(G, Kp,, Kp+1) up to additive error of n™~¢ NP-hard for any integer
m > 2 and any € > 0?7 The case m = 2 is proved in [1] and we can also prove it for m = 3.

2. Given a family of graphs F such that x(F) > m + 2 for every F' € F, is it NP-hard to
approximate ex(G, K, F) up to additive error of n™ ¢ for every € > 0?7 Theorem 1.7 is of
course a special case of this.

6.2 Calculating ex(G, T, F') exactly

Proposition 6.1 implies that for many graphs T and F' there is no efficient algorithm that calculates
ex(G, T, F) exactly. Nevertheless, for some special cases this calculation is possible in polynomial
time. We mention two simple examples.

Proposition 6.2. For a graph G on n vertices the following can be solved in polynomial time

1. ex(G, kKs, K1 2), where kK3 is a matching of size k > 1.

2. eX(G, KQ, K17t+1).

Proof. Part 1 is trivial. It is known since Edmonds [10] that given an input graph G a matching
of maximum size can be found in polynomial time. As any K o-free subgraph of G is a matching
it is clear that maximizing the largest matching also maximizes the number of copies of kK5.

The proof of part 2 follows the idea of the proof of the f-factor theorem of Tutte [21]. Given a
graph G, we may assume that it has no isolated vertices. First, replace each vertex v € V(G) with
an independent set of size d(v), say V(v) = {v1, ..., vg() }, and for every edge e = {u, v} of G choose
arbitrarily vertices v;, u; and connect them, making sure that at the end of the processes each
vertex of the new graph is of degree exactly one. Note that there is a one-to-one correspondence
between edges in the new graph and edges in G.

Second, for every independent set V' (v) corresponding to a vertex v € V(G) such that d(v) >
t 4+ 1, add a new independent set U(v) of size d(v) — t. Connect all of the vertices in V(v) to all
the vertices in U(v). Call the new graph obtained by this processes G*.

By [10] there is a polynomial time algorithm that finds a maximum matching in G*, call this
maximum matching M. Note that we may assume that M saturates all the vertices in the sets
U(v). Indeed, if some w € U(v) is not saturated we may add to M an edge between w and some
vertex of V' (v), say vy, that is not adjacent to U(v) in M and if prior to this addition there was an
edge in M adjacent to vy, delete it. A vertex v; must exist as V(v) > U(v) and the replacement of
edges does not make the size of M smaller.

Each edge in M that is not adjacent to some U(v) corresponds to an edge of G. Let us
keep in G only these edges and call the new graph G’. For every vertex v the set U(v) was
saturated in M and so the number of edges adjacent to V(v) and a vertex not in U(v) is at most
[V (v)]|—|U(v)| = dg(v) — (dg(v) —t) = t. Thus the new graph G is a subgraph of G with maximum
degree at most t. The number of edges in G’ is exactly the number of edges in M that are not
adjacent to some U(v), that is e(G") = [M| = 3, cv(q)(da(v) —t).

It is left to show that G’ has the maximum possible number of edges. Indeed, assume that G"
is a subgraph of G with maximum degree at most ¢ which has more edges than G’. Looking at G*
take into a matching M’ each edge corresponding to an edge in G”. This results in a matching as
each v; € V(v) has exactly one neighbor outside of U(v). In addition, for each v € V(G) choose
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da(v) —t edges between U(v) and V (v) to add to M’ while keeping it a matching. As the maximum
degree in G” is at most ¢ there will be |U(v)| = dg(v) — t unsaturated vertices in V' (v) to connect
to U(v). The resulting matching will be of size e(G") + 3", oy (da(v) —t) > |M], in contradiction
to the maximality of M.

Thus we get that ex(G, Ko, K1 441) = e(G') = | M| = 2vev(e)lda(v) —t) = |[M]- te(G)+v(G)t,
and we can find |M|, e(G), and v(G) in polynomial time.

O]

It would be interesting to characterize all pairs of graphs 7" and F' for which ex(G,T, F) can be
calculated exactly in polynomial time, for a given input graph G.
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