
J.S
tat.M

ech.
(2021)124004

PAPER: ML 2021

Matrix inference and estimation in
multi-layer models∗

Parthe Pandit1,2,∗∗, Mojtaba Sahraee-Ardakan1,2,
Sundeep Rangan3, Philip Schniter4 and
Alyson K Fletcher1,2

1 Dept. ECE, UC, Los Angeles, CA, United States of America
2 Dept. Statistics, UC, Los Angeles, CA, United States of America
3 Dept. ECE, NYU, NY, United States of America
4 Dept. ECE, The Ohio State University, OH, United States of America
E-mail: parthepandit@ucla.edu, msahraee@ucla.edu, srangan@nyu.edu,
schniter.1@osu.edu and akfletcher@ucla.edu

Received»30»October»2021
Accepted»for»publication»9»November»2021»
Published»3:»December»2021

Online at stacks.iop.org/JSTAT/2021/124004
https://doi.org/10.1088/1742-5468/ac3a75

Abstract. We consider the problem of estimating the input and hidden vari-
ables of a stochastic multi-layer neural network (NN) from an observation of the
output. The hidden variables in each layer are represented as matrices with sta-
tistical interactions along both rows as well as columns. This problem applies to
matrix imputation, signal recovery via deep generative prior models, multi-task
and mixed regression, and learning certain classes of two-layer NNs. We extend a
recently-developed algorithm—multi-layer vector approximate message passing,
for this matrix-valued inference problem. It is shown that the performance of the
proposed multi-layer matrix vector approximate message passing algorithm can
be exactly predicted in a certain random large-system limit, where the dimensions
N × d of the unknown quantities grow as N →∞ with d fixed. In the two-layer
neural-network learning problem, this scaling corresponds to the case where the
number of input features as well as training samples grow to infinity but the

∗This article is an updated version of: Pandit P, Sahraee Ardakan M, Rangan S, Schniter P and Fletcher A K 2020
Matrix inference and estimation in multi-layer models Advances in Neural Information Processing Systems vol 33
ed H Larochelle, M Ranzato, R Hadsell, M F Balcan and H Lin (New York: Curran Associates) pp 22456–67. Code
available at https://github.com/parthe/ML-Mat-VAMP.
∗∗Author to whom any correspondence should be addressed.

© 2021 IOP Publishing Ltd and SISSA Medialab srl 1742-5468/21/124004+31$33.00

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

number of hidden nodes stays fixed. The analysis enables a precise prediction of
the parameter and test error of the learning.

Keywords: inference of graphical models, machine learning, message-passing
algorithms, statistical inference

Contents

1. Introduction ...3

2. Example applications .. 5
2.1. Multi-task and mixed regression problems ..5
2.2. Sketched clustering .. 6
2.3. Learning the input layer of a two-layer neural network 6
2.4. Model-based matrix completion ...7

3. Multi-layer matrix VAMP ..8
3.1. MAP and MMSE inference .. 8
3.2. Algorithm details .. 8

4. Analysis in the large system limit ... 10
4.1. Main result .. 11

5. Numerical experiments .. 12

6. Conclusions .. 14

Acknowledgments . 14

Appendix A. State evolution equations 15

Appendix B. Large system limit details 17

Appendix C. Proof of theorem 1 17

Appendix D. General multi-layer recursions 18

Appendix E. Proof of theorem 2 24
E.1. Overview of the induction sequence ...24
E.2. Base case: proof of .. 25
E.3. Inductive step: proof of ...25

References ...30

https://doi.org/10.1088/1742-5468/ac3a75 2

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

1. Introduction

Consider an L-layer stochastic neural network (NN) given by

Z0
! = W!Z

0
!−1 + B! + Ξ0

! , ! = 1, 3, . . . , L − 1, (1a)

Z0
! = φ!(Z

0
!−1,Ξ

0
!), ! = 2, 4, . . . , L, (1b)

where, for ! = 0, 1, . . . , L, we have true activations Z0
! ∈ Rn!×d, weights W! ∈ Rn!×n!−1,

bias matrices B! ∈ Rn!×d, and true noise realizations Ξ0
! . The activation functions

φ! : Rn!−1×d → Rn!×d are known non-linear functions acting row-wise on their inputs. See
figure 1 (TOP). We use the superscript 0 in Z0

! to indicate the true values of the variables,
in contrast to estimated values denoted by Ẑ! discussed later. We model the true values
Z0

0 as a realization of random Z0, where the rows zT
0,i: of Z0 are i.i.d. with distribution

p0: p(Z0) =
∏n0

i=1p0(z0,i:). Similarly, we also assume that Ξ0
! are realizations of random

Ξ! with i.i.d. rows ξT
!,i:. For odd !, the rows ξ!,i: are zero-mean multivariate Gaussian

with covariance matrix N−1
! ∈ Rd×d, whereas for even !, the rows ξ!,i: can be arbitrarily

distributed but i.i.d.
Denoting by Y :=Z0

L ∈ RnL×d the output of the network, we consider the following
matrix inference problem:

Estimate Z := {Z!}L−1
!=0 given Y :=Z0

L and {W2k−1,B2k−1,φ2k}
L/2
k=1. (2)

A key feature of the problem we consider here is that the unknowns, Z!, are matrix-
valued with d columns with statistical dependencies between the columns. As we will see
in section 2, the matrix-valued case applies to several problems of broad interest such as
matrix imputation, multi-task and mixed regression problems, sketched clustering. We
also show that via this formulation we can analyze the learning in two layer NNs under
some architectural assumptions.

In many applications, the inference problem can be performed via minimization of
an appropriate cost function. For example, suppose the network (1) has no noise Ξ!

for all layers except the final measurement layer, ! = L. In this case, the Z0
L−1 = g(Z0

0)
for some deterministic function g(·) representing the action of the first L − 1 layers.
Inference can then be conducted via a minimization of the form,

ẐL−1 :=g

(
arg min

Z0

HL(Y,ZL−1) + H0(Z0), subject to ZL−1 = g(Z0)

)
(3)

where the term HL(Y,ZL−1) penalizes the prediction error and H0(Z0) is an (optional)
regularizer on the network input. For maximum a posteriori (MAP) estimation
one takes, HL(Y,ZL−1) = −log p(Y|ZL−1), and H0(Z0) = −log p(Z0), where the out-
put probability p(Y|ZL−1) is defined from the last layer of model (1b): Y = ZL =
φL(ZL−1,ΞL). The minimization (3) can then be solved using a gradient-based method.
Encouraging results in image reconstruction have been demonstrated in [4, 15, 18, 29,
37, 41, 45]. Markov-chain Monte Carlo algorithms and Langevin diffusion [7, 44] could
also be employed for more complex inference tasks.

https://doi.org/10.1088/1742-5468/ac3a75 3

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

Figure 1. (Top) The signal flow graph for true values of matrix variables {Z0
!}3

!=0,
given in equation (1) where Z0

! ∈ Rn!×d. (Bottom) Signal flow graph of the ML-
MVAMP procedure in algorithm 1. The variables with superscript + and − are
updated in the forward and backward pass respectively. ML-MVAMP (algorithm
1) solves (2) by solving a sequence of simpler estimation problems over consecutive
pairs (Z!,Z!−1).

However, rigorous analysis of these methods is difficult due to the non-convex
nature of the optimization problem. To address this issue, recent works [12, 25, 34]
have extended approximate message passing (AMP) methods to provide inference algo-
rithms for the multi-layer networks. AMP was originally developed in [3, 9, 10, 17] for
compressed sensing. Similar to other AMP-type results, the performance of multi-layer
AMP-based inference can be precisely characterized in certain high-dimensional random
instances. In addition, the mean-squared error (MSE) for inference of the algorithms
match predictions for the Bayes-optimal inference predicted by various techniques from
statistical physics [2, 14, 36]. Thus, AMP-based multi-layer inference provides a com-
putationally tractable estimation framework with precise performance guarantees and
testable conditions for optimality in certain high-dimensional random settings.

Prior multi-layer AMP works [12, 16, 26, 34] have considered the case of vector-valued
quantities with d = 1. The main contribution of this paper is to consider the matrix-
valued case when d > 1. To handle the case when d > 1, we extend the multi-layer
vector approximate message passing (ML-VAMP) algorithm of [12, 34] to the matrix
case. The ML-VAMP method is based on VAMP method of [35], which is closely related
to expectation propagation [28, 38], expectation-consistent approximate inference
[13, 32], S-AMP [6], and orthogonal AMP [24]. We will use ‘multi-layer matrix VAMP
(ML-Mat-VAMP)’ when referring to the matrix extension of ML-VAMP.

Contributions. First, similar to the case of ML-VAMP, we analyze ML-Mat-VAMP
in a large system limit (LSL), where n! →∞ and d is fixed, under rotationally invariant
random weight matrices W!. In this LSL, we prove that the MSE of the estimates of
ML-Mat-VAMP can be exactly predicted by a deterministic set of equations called the
state evolution (SE). The SE describes how the distribution of the true activations and
pre-activations of the network as well as the estimated values generated by ML-Mat-
VAMP evolve jointly from one iteration of the algorithm to the other. This extension of
the SE equations to the matrix case is not trivial and requires considering correlation
across multiple vectors. Indeed, in the case of ML-VAMP, the SE equations involve scalar
quantities and 2 × 2 matrices. For ML-Mat-VAMP, the SE equations involve d × d and
2d × 2d matrices.

https://doi.org/10.1088/1742-5468/ac3a75 4

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

Second, we show that the method can offer precise predictions in important estima-
tion problems that are difficult to analyze via other means. The ML-VAMP was focused
on deep reconstruction problems [4, 45]. The matrix version here can be applied to other
classes of problems such as multi-task regression, matrix completion and learning the
input layer of a NN. Even though these networks are typically shallow (just L = 2 lay-
ers), there are no existing methods that can provide the same types of precise results.
For example, in the case of learning the input layer of a NN, our results can exactly
predict the test error as a function of the noise statistics, activations, number of training
sample and other key modeling parameters.

Notation. Boldface uppercase letters X denote matrices. Xn: refers to the nth row of
X. Random vectors are row-vectors. For a function f : R1×m → R1×k, its row-wise exten-
sion is represented by f : RN×m → RN×k, i.e. [f(X)]n: = f(Xn:). We denote the Jacobian
matrix of f by ∂f

∂x(x) ∈ Rm×k, so that [∂f
∂x(x)]ij = ∂fi

∂xj
(x). For its row-wise extension f, we

denote by 〈 ∂f
∂X(X)〉 the average Jacobian, i.e. 1

N

∑N
n=1

∂f
∂Xn:

(Xn:) ∈ Rm×k.

2. Example applications

As we describe next, the matrix estimation problem (2) is of broad interest and sev-
eral interesting applications can be formulated under this framework. We share a few
examples below.

2.1. Multi-task and mixed regression problems

A simple application of the matrix-valued multi-layer inference problem (2) is for multi-
task regression [31]. Consider a generalized linear model of the form,

Y = φ(XF ;Ξ), (4)

where Y ∈ RN×d is a matrix of measured responses, X ∈ RN×p is a known design matrix,
F ∈ Rp×d are a set regression coefficients to be estimated, and Ξ is noise. The problem
can be considered as d separate regression problems—one for each column. However, in
some applications, these design ‘tasks’ are related in such a way that it benefits to jointly
estimate the predictors. To do this, it is common to solve an optimization problem of
the form

arg min
F

{
d∑

j=1

N∑

i=1

L(yij, [XF]ij) + λ
p∑

k=1

ρ(Fk:)

}

, (5)

where L(·) is a loss function, and ρ(·) is a regularizer that acts on the rows Fk: of F to
couple the prediction coefficients across tasks. For example, the multi-task LASSO [31]
uses loss L(y, z) = (y − z)2 and regularization ρ(Fk :) = ‖Fk :‖2 to enforce row-sparsity in
F. In the compressive-sensing context, multi-task regression is known as the ‘multiple
measurement vector’ (MMV) problem, with applications in MEG reconstruction [8],
DoA estimation [42], and parallel MRI [22]. An AMP approach to the MMV problem

https://doi.org/10.1088/1742-5468/ac3a75 5

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

was developed in [47]. The multi-task model (4) can be immediately written as a multi-
layer network (1) by setting: Z0 :=F,W0 :=X,Z1 :=W0Z0 = XF,Y = Z2 :=φ(Z1,Ξ).
Also, by appropriately setting the prior p(Z0), the multi-layer matrix MAP inference
(3) will match the multi-task optimization (5).

In (5), the regularization couples the columns of F but the loss term couples its rows.
In mixed regression problems, the loss couples the columns of F. For example, consider
designing predictors F = [f1, f2] for mixed linear regression [46], i.e.

yi = qix
T
i f1 + (1 − qi)x

T
i f2 + vi, qi ∈ {0, 1}, (6)

where i = 1, . . . , N and the ith response comes from one of two linear models, but
which model is not known. This setting can be modeled by a different output mapping:
as before, set Z0 :=F, Z1 = XF and let the noise in the output layer be Ξ1 = [q,v]
which includes the additive noise vi in (6) and the random selection variable qi. Then,
we can write (6) via an appropriate function, y = φ1(Z1,Ξ1).

2.2. Sketched clustering

A related problem arises in sketched clustering [19], where a massive dataset is non-
linearly compressed down to a short vector y ∈ Rn, from which cluster centroids
fk ∈ Rp, for k = 1, . . . , d, are then extracted. This problem can be approached via

the optimization [20] minα!0 minF

∑n
i=1

∣∣∣yi −
∑d

j=1αj e
√
−1xT

i fj
∣∣∣
2

where xi ∈ Rp are known

i.i.d. Gaussian vectors. An AMP approach to sketched clustering was developed in
[5]. For known α, the minimization corresponds to MAP estimation with the multi-
layer matrix model with Z0 = F, W1 = X Z1 = XF and using the output mapping,
φ1(Z1,Ξ) :=

∑d
j=1αj e

√
−1Z1,: j + Ξ, where the exponential is applied elementwise and Ξ

is i.i.d. Gaussian. The mapping φ1 operates row-wise on Z1 and Ξ.

2.3. Learning the input layer of a two-layer neural network

The matrix inference problem (2) can also be applied to learning the input layer weights
in a two-layer NN. Let X ∈ RN×Nin and Y ∈ RN×Nout be training data corresponding to
N data samples. Consider the two-layer NN model,

Y = σ(XF1)F2 + Ξ, (7)

with weight matrices (F 1,F 2), componentwise activation function σ(·), and noise Ξ. In
(7), the bias terms are omitted for simplicity. We used the notation ‘F !’ for the weights,
instead of the standard notation ‘W !’, to avoid confusion when (7) is mapped to the
multi-layer inference network (2). Now, our critical assumption is that the weights in
the second layer, F 2, are known. The goal is to learn only the weights of the first layer,
F1 ∈ RNin×Nhid , from a dataset of N samples (X,Y).

If the activation is ReLU, i.e. σ(H) = max{H , 0} and Y has a single column
(i.e. scalar output per sample), and F 2 has all positive entries, we can, without loss
of generality, treat the weights F 2 as fixed, since they can always be absorbed into the

https://doi.org/10.1088/1742-5468/ac3a75 6

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

weights F 1. In this case, y and F2 are vectors and we can write the ith entry of y as

yi =
d∑

j=1

F2jσ([XF1]ij) + ξi =
d∑

j=1

σ([XF1]ijF2j) + ξi. (8)

Thus, we can assume, without loss of generality, that F2 is all ones. The parameterization
(8) is sometimes referred to as the committee machine [40]. The committee machine has
been recently studied by AMP methods [1] and mean-field methods [27] as a way to
understand the dynamics of learning.

To pose the two-layer learning problem as multi-layer inference, define
Z 0 :=F 1,W 1 :=X,Z 1 :=XF 1,Ξ2 :=Ξ, then Y = Z 2, where Z 2 is the output of a
two-layer inference network of the form in (1):

Y = Z2 = φ2(Z1,Ξ2) :=σ(Z1)F2 + Ξ2. (9)

Note that W 1 is known. Also, since we have assumed that F 2 is known, the function
φ2 is known. Finally, the function φ2 is row-wise separable on both inputs. Thus, the
problem of learning the input weights F 1 is equivalent to learning the input Z 0 of the
network (9).

2.4. Model-based matrix completion

Consider an observed matrix Y = ZL ∈ RNL×d with missing entries Ωc ∈ [NL] × [d]. The
problem is to impute the missing entries of Y. This is an important problem in sev-
eral applications ranging from recommendation systems, genomics, bioinformatics and
more broadly analysis of tabular data. There have been several approaches to solving
this data imputation problem, right from 0 imputation and mean imputation to more
sophisticated techniques based on generative models.

Consider a generative model based on a multi-layer perceptron as in (1) such that
the output ZL−1 models the uncorrupted data matrix. Then the imputation problem
can be posed as the solution of the MAP optimization problem:

minimize
{Z!}L

!=0

‖Y− ZL−1‖2
Ω − log P(ZL−1,ZL−2, . . . ,Z0) (10)

where ‖Y − ZL−1‖2
Ω =

∑
(i,j)∈Ω((Y)ij − (ZL−1)ij)2. One can also similarly construct Bayes

estimators such as E[ZL−1|ZL].
Traditional approaches to matrix completion have looked at regularized convex min-

imization schemes just like (10) where − log P(ZL−1) = ‖ZL−1‖∗, which is the nuclear
norm, or some other structure inducing convex norms. While the term − log P(. . .) in
(10) can be thought of as a more general regularization term, this formulation allows
for more general application problems with heterogeneous variables.

For example, in imputation of tabular data, it is often the case that some columns cor-
respond to continuous valued variables, whereas other variables are discrete valued mod-

https://doi.org/10.1088/1742-5468/ac3a75 7

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

eling yes/no answers or count data. In such scenarios the − log P(ZL−1, . . .) allows more
flexibility towards modeling using generalized linear models (GLMs) and other exponen-
tial family distributions for every column separately. One simple instance of (10) would
be a generative model − log P(ZL−1, . . . ,Z0) which is trained on some fully observed
data ZL−1 using unsupervised learning methods such as variational autoencoders and
generative adversarial networks.

3. Multi-layer matrix VAMP

3.1. MAP and MMSE inference

Observe that the equation (1) define a Markov chain over these signals and thus the
posterior p(Z|ZL) factorizes as p(Z|ZL) ∝ p(Z0)

∏L−1
!=1 p(Z!|Z!−1) p(Y|ZL−1), where recall

the notation Z from (2). The transition probabilities p(Z!|Z!−1) above are implicitly
defined in equation (1) and depend on the statistics of noise terms Ξ!. We consider both
MAP and minimum mean squared error (MMSE) estimation for this posterior:

Ẑmap = arg max
Z

p(Z|ZL) Ẑmmse = E[Z|ZL] =

∫
Zp(Z|ZL)dZ. (11)

3.2. Algorithm details

The ML-Mat-VAMP for approximately computing the MAP and MMSE estimates is
similar to the ML-VAMP method in [12, 33]. The specific iterations of ML-Mat-VAMP
algorithm are shown in algorithm 1. The algorithm produces estimates by a sequence of
forward and backward pass updates denoted by superscripts + and − respectively. The
estimates Ẑ±

! are constructed by solving sequential problems Z = {Z!}L−1
!=0 into a sequence

of smaller problems each involving estimation of a single activation or preactivation Z!

via estimation functions {G±
! (·)}L−1

!=1 which are selected depending on whether one is
interested in MAP or MMSE estimation.

To describe the estimation functions, we use the notation that, for a positive defi-
nite matrix Γ, define the inner product 〈A,B〉Γ :=Tr(ATBΓ) and let ‖A‖Γ denote the
norm induced by this inner product. For ! = 1, . . . , L − 1 define the approximate belief
functions

b!(Z!,Z!−1|R−
! ,R+

!−1,Γ
−
! ,Γ+

!−1) ∝ p(Z!|Z!−1)e
− 1

2‖Z!−R−
! ‖

2

Γ−!
− 1

2‖Z!−1−R+
!−1‖

2

Γ+
!−1 , (12)

where Z!,R
±
! ∈ Rn!×d and Γ±

! ∈ Rd×d for all ! = 0, 1, . . . , L. Define b0(Z0|R−
0 ,Γ−

0) and
bL(ZL−1|R+

L−1,Γ
+
L−1) similarly. The MAP and MMSE estimation functions are then given

by the MAP and MMSE estimates for these belief densities,

G±
!,map =(Ẑ+

! , Ẑ−
!−1) = arg max b!(Z!,Z!−1) G±

!,mmse =(Ẑ+
! , Ẑ−

!−1) = E[(Z!,Z!−1)|b!] (13)

where the expectation is with respect to the normalized density proportional to b!. Thus,
the ML-Mat-VAMP algorithm reduces the joint estimation of the vectors (Z0, . . . ,ZL−1)

https://doi.org/10.1088/1742-5468/ac3a75 8

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

Algorithm 1. Multilayer Matrix VAMP (ML-Mat-VAMP).

Require: estimators G+
0 , G−

L , {G±
! }L−1

!=1 .
1: Set R−

0! = 0 ∈ Rn!×d and initialize {Γ−
0!}

L−1
!=0 ∈ Rd×d

,0 .
2: for k = 0, 1, . . . ,N it − 1

3: // Forward pass 14: // Backward pass

4: Ẑ+
k0 = G+

0 (R−
k0,Γ

−
k0) 15: Ẑ−

k,L−1 = G−
L(R+

k,L−1,Γ
+
k,L−1)

5: Λ+
k0 =

〈
∂G+

0
∂R−

0
(R−

k0,Γ
−
k0)

〉−1
Γ−

k,0, 16: Λ−
k,L−1 =

〈
∂G−

L
∂R+

L−1
(R+

k,L−1,Γ
+
k,L−1)

〉−1
Γ+

k,L−1,

6: Γ+
k,0 = Λ+

k,0 − Γ−
k,0 17: Γ−

k,L−1 = Λ−
k,L−1 − Γ+

k,L−1

7: R+
k,0 = (Ẑ+

k,0Λ
+
k,0 −R−

k,0Γ
−
k,0)(Γ

+
k,0)

−1 18: R−
k+1,L−1 = (Ẑ−

k,L−1Λ
−
k,L−1 −R+

k,0Γ
+
k,0)(Γ

−
k,0)

−1

8: for ! = 1, . . . ,L − 1 do 19: for ! = L − 1, . . . , 1 do

9: Ẑ+
k! = G+

! (R−
k!,R

+
k,!−1,Γ

−
k!,Γ

+
k,!−1) 20: Ẑ−

k+1,!−1 =G−
! (R−

k+1,!,R
+
k,!−1,Γ

−
k+1,!,Γ

+
k,!−1)

10: Λ+
k! =

〈
∂G+

!
∂R−

!
(. . .)

〉−1
Γ−

k!, 21: Λ−
k+1,!−1 =

〈
∂G−

!
∂R+

!−1
(. . .)

〉−1
Γ+

k,!−1,

11: Γ+
k! = Λ+

k! − Γ−
k! 22: Γ−

k+1,! = Λ−
k! − Γ+

k!

12: R+
k! = (Ẑ+

k!Λ
+
k! − R−

k!Γ
−
k!)(Γ

+
k!)

−1 23: R−
k+1,!−1 = (Ẑ−

k!Λ
−
k! −R+

k!Γ
+
k!)(Γ

−
k+1,!)

−1

13: end for 24: end for
25: end for

to a sequence of simpler estimations on sub-problems with terms (Z!−1,Z!). We refer to
these subproblems as denoisers and denote their solutions by G±

! , so that Ẑ+
! = G+

! and

Ẑ−
!−1 = G−

! corresponding to lines 9 and 20 of algorithm 1. The denoisers G+
0 and G−

L ,

which provide updates to Ẑ+
0 and Ẑ−

L−1, are defined in a similar manner via b0 and bL,
respectively.

The estimation functions (13) can be easily computed for the multi-layer matrix
network. An important characteristic of these estimators is that they can be computed
using maps which are row-wise separable over their inputs and hence are easily paral-
lelizable. To simplify notation, we denote the precision parameters for denoisers G±

! in
the kth iteration by

Θ+
k! := (Γ−

k!,Γ
+
k,!−1), Θ−

k! := (Γ−
k+1,!,Γ

+
k,!−1), Θ+

k0 :=Γ−
k0, Θ−

kL :=Γ+
k,L−1. (14)

Non-linear layers. For ! even, since the rows of Ξ! are i.i.d., the belief
density b!(Z!,Z!−1|·) from (12) factors as a product across rows, b!(Z!,Z!−1) =∏

nb!([Z!]n:, [Z!−1]n:). Thus, the MAP and MMSE estimates (13) can be performed over
d-dimensional variables where d is the number of entries in each row. There is no joint
estimation across the different n! rows.

Linear layers. When ! is odd, the density b!(Z!,Z!−1|·) in (12) is a Gaussian. Hence,
the MAP and MMSE estimates agree and can be computed via least squares. Although
for linear layers [G+

! ,G−
!](R−

! ,R+
!−1,Θ!) is not row-wise separable over (R−

! ,R!−1), it can

https://doi.org/10.1088/1742-5468/ac3a75 9

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

be computed using another row-wise denoiser [G̃+
! , G̃−

!] via the singular value decom-
position of the weight matrix W! = V! diag(S!)V!−1 as follows. Note that the SVD is
only needed to be performed once:

[G+
! ,G−

!](R!,R!−1,Θ!) = arg max
Z!,Z!−1

‖Z! −W!Z!−1 − B!‖2
N!

+
∥∥Z! − R−

!

∥∥2

Γ−
!

+
∥∥Z!−1 −R+

!−1

∥∥2

Γ+
!−1

(a)
= argmax

Z!,Z!−1

∥∥VT
! Z! − diag(S!)V!−1Z!−1 − VT

! B!

∥∥2

N!

+
∥∥VT

! Z! −VT
! R

−
!

∥∥2

Γ−
!

+
∥∥V!−1Z!−1 −V!−1R

+
!−1

∥∥2

Γ+
!−1

(b)
= [VT

! G̃
+
! ,V!−1G̃

−
!](VT

! R!,V!−1R!−1,Θ!)

where (a) follows from the rotational invariance of the norm, and (b) follows from the
definition of denoiser [G̃+

! , G̃−
!](R̃−

! , R̃+
!−1,Θ!) given below

[G̃+
! , G̃−

!] := arg max
Z̃!,Z̃!−1

∥∥∥Z̃! − diag(S!)Z̃!−1 − B̃!

∥∥∥
2

N!

∥∥∥Z̃! − R̃−
!

∥∥∥
2

Γ−
!

+
∥∥∥Z̃!−1 − R̃+

!−1

∥∥∥
2

Γ+
!−1

. (15)

Note that the optimization problem in (15), is decomposable accross the rows of variables
Z̃! and Z̃!−1, and hence [G̃+

! , G̃−
!] operates row-wise on its inputs.

Fixed points. We note that the fixed points of the ML-Mat-VAMP algorithm can
be shown to be Karush–Kuhn–Tucker points of the variational formulations of (11),
omitted here due to lack of space. This is a direct extension of results from section 3 of
[34]. In particular, we can show that the ML-Mat-VAMP in the MAP inference case is
a preconditioned Peaceman–Rachford splitting ADMM type algorithm [39].

4. Analysis in the large system limit

We follow the analysis framework of the ML-VAMP work [12, 33], which is itself based on
the original AMP analysis in [3]. This analysis is based on considering the asymptotics of
certain large random problem instances. We essentially show that under certain assump-
tions, as the dimension goes to infinity the behavior of the ML-Mat-VAMP algorithm
can be characterized by a set of equations that describe how the distribution of rows
of hidden matrices evolve at each iteration of the algorithm for all the layers. Specifi-
cally, we consider a sequence of problems (1) indexed by N such that for each problem
the dimensions n!(N) are growing so that limN→∞

n!
N = β! ∈ (0,∞) are scalar constants.

Note that d is finite and does not grow with N .
Distributions of weight matrices. For ! = 1, 3, . . . , L − 1, we assume that

the weight matrices W! are generated via the singular value decomposition,

https://doi.org/10.1088/1742-5468/ac3a75 10

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

W! = V! diag(S!)V!−1 where V! ∈ Rn!×n! are Haar distributed over orthonormal matri-
ces and S! = (s!,1, . . . , s!,min{n!,n!−1}). We will describe the distribution of the components
S! momentarily.

Assumption on denoisers. We assume that the non-linear denoisers G±
2k act

row-wise on their inputs (R−
2k,R

+
2k−1). Further these operators and their Jacobian matri-

ces ∂G+
2k

∂R−
2k

, ∂G−
2k

∂R+
2k−1

, ∂G+
0

∂R−
0
, ∂G−

L
∂R+

L−1
are uniformly Lipschitz continuous , the definition of which is

provided in appendix B.
Assumption on initialization, true variables. The distribution of the remaining

variables is described by a weak limit: for a matrix sequence X :=X(N) ∈ RN×d, by the

notation X
2⇒X we mean that there exists a random variable X in Rd with E‖X‖2 < ∞

such that limN→∞
1
N

∑N
i=1ψ(Xi:) = Eψ(X) almost surely, for any bounded continuous

function ψ : Rd → R, as well as for quadratic functions x.Px for any P ∈ Rd×d
/0 . This is

also referred to as Wasserstein-2 convergence [30]. For example, this property is satisfied
for a random X with i.i.d. rows with bounded second moments, but is more general,
since it applies to deterministic matrix sequences as well. More details on this weak limit
are given in appendix B.

Let B! :=VT
! B!, and S! ∈ Rn! be the zero-padded vector of singular values of W!,

and let τ−
0! ∈ Rd×d

,0 . Then we assume that the following empirical convergences hold.

(Ξ!,R
−
0! − Z0

!)
2⇒ (Ξ!, Q

−
0!) for even ! and (S!,B!,Ξ!,V

.
! (R−

0! − Z0
!))

2⇒ (S!, B!, Ξ!, Q
−
0!),

for odd !. Here S! ∈ R!0 is bounded, B! ∈ Rd is bounded, Ξ2!−1 ∼ N (0,N−1
2!−1), and

Q−
0! ∼ N (0, Γ−

0!), for ! = 0, 1, . . . , L − 1 are all pairwise independent random variables.

Additionally, we assume that Z0
0

2⇒Z0 and that the sequence of initial matrices {Γ−
0!}

satisfies the following pointwise convergence

Γ−
0!(N) → Γ−

0!, ! = 0, 1, . . . , L − 1. (16)

4.1. Main result

The main result of this paper concerns the empirical distribution of the rows
[Ẑ±

!]n:, [R
±
!]n: of the iterates of algorithm 1. It characterizes the asymptotic behavior

of these empirical distributions in terms of d-dimensional random vectors, which are
either Gaussians or functions of Gaussians. Let G±

! denote maps R1×d → R1×d, such
that (13), i.e. [G±

! (R−
! ,R+

!−1,Θ)]n: = G±
! ([R−

!]n:, [R
+
!−1]n:,Θ). Having stated the requisite

definitions and assumptions, we can now state our main result.

Theorem 1. For a fixed iteration index k ! 0, there exist deterministic matrices
K+

k! ∈ R2d×2d
,0 , and τ−

k!,Γ
+
k! and Γ−

k!,∈ Rd×d
,0 such that for even !:

(
Z0

!−1,Z
0
! , Ẑ

−
k,!−1, Ẑ

+
k!

)
2⇒
(

A, Ã, G−
! (C+ Ã, B+A,Γ−

k!,Γ
+
k,!−1), G

+
! (C+ Ã, B+A,Γ−

k!,Γ
+
k,!−1)

)

https://doi.org/10.1088/1742-5468/ac3a75 11

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

where (A, B) ∼ N (0,K+
k,!−1), C ∼ N (0, τ−

k!), Ã = φ!(A, Ξ!) and (A, B), C are indepen-
dent. For ! = 0, the same result holds where the first and third terms are dropped,
whereas for ! = L, the second and fourth terms are dropped. Similarly, for odd !:

(
VT

!−1Z
0
!−1,V

T
!−1Z

0
! ,V!Ẑ

−
k,!−1,V!Ẑ

+
k!

)

2⇒
(

A, Ã, G−
! (C + Ã, B + A,Γ−

k!,Γ
+
k,!−1), G

+
! (C + Ã, B + A,Γ−

k!,Γ
+
k,!−1)

)

where (A, B) ∼ N (0,K+
k,!−1), C ∼ N (0, τ−

k!), Ã = S! A + B! + Ξ! and (A, B), C are
independent.

Furthermore for ! = 0, 1, . . . , L − 1, we have

(Γ±
k!, Λ

±
k!)

a.s.−−→ (Γ±
k!,Λ

±
k!).

The parameters in the distribution, {K+
k!, τ

−
k!,Γ

±
k!, Λ

±
k!} are deterministic and can be

computed via a set of recursive equations called the SE. The SE equations are provided
in appendix A. The result is similar to those for ML-VAMP in [12, 34] except that
the SE equations for ML-Mat-VAMP involve d × d and 2d × 2d matrix terms; the ML-
VAMP SE only requires scalar and 2 × 2 matrix terms. The result holds for both MAP
inference and MMSE inference, the only difference is implicit, i.e. the choice of denoiser
G!(·) from equation (13).

The importance of theorem 1 is that the rows of the iterates of the ML-Mat-VAMP
algorithm (Ẑ−

k,!−1, Ẑ
+
k! in algorithm 1) and the rows of the corresponding true values,

Z0
!−1,Z

0
! , have a simple, asymptotic random vector description of a typical row. We

will call this the ‘row-wise’ model. According to this model, for even !, the rows of
Z0

!−1 converge to a Gaussian A ∈ Rd and the rows of Z0
! converge to the output of the

Gaussian through the row-wise function φ!, Ã = φ!(A, Ξ!). Then the rows of the estimates
Ẑ−

k,!−1, Ẑ
+
k! asymptotically approach the outputs of row-wise estimation function G−(·)

and G+(·) supplied by A and Ã corrupted with Gaussian noise. A similar convergence
holds for odd !.

This ‘row-wise’ model enables exact an analysis of the performance of the estimates
at each iteration. For example, to compute a weighted MSE metric at iteration k, the
convergence shows that,

1

n!

∥∥∥Ẑ+
k! − Z0

!

∥∥∥
2

H

a.s.−−→ E‖G+
! (C + Ã, B + A,Θk!) − Ã‖2

H,

for even ! and any positive semi-definite matrix H ∈ Rd×d. The norm on the left-hand
above acts row-wise, ‖Z‖2

H :=
∑

i‖Zi:‖2
H. Hence, this asymptotic MSE can be evaluated

via expectations of d-dimensional variables from the SE. Similarly, one can obtain exact
answers for any other row-wise performance metric of {(Ẑ±

k!,Z
0
!)}! for any k.

https://doi.org/10.1088/1742-5468/ac3a75 12

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

Figure 2. Test error in learning the first layer of a two layer NN using ADAM-based
gradient descent, ML-Mat-VAMP and its SE prediction.

5. Numerical experiments

We consider the problem of learning the input layer of a two layer NN as described
in section 2.3. We learn the weights F1 of the first layer of a two-layer network by
solving problem (9). The LSL analysis in this case corresponds to the input size nin and
number of samples N going to infinity with the number of hidden units being fixed.
Our experiment take d = 4 hidden units, Nin = 100 input units, Nout = 1 output unit,
sigmoid activations and variable number of samples N. The weight vectors F1 and F2

are generated as i.i.d. Gaussians with zero mean and unit variance. The input X is also
i.i.d. Gaussians with variance 1/Nin so that the average pre-activation has unit variance.
Output noise is added at two levels of 10 and 15 dB relative to the mean. We generate
1000 test samples and a variable number of training samples that ranges from 200 to
4000. For each trial and number of training samples, we compare three methods: (i)
MAP estimation where the MAP loss function is minimized by the ADAM optimizer
[21] in the Keras package of Tensorflow; (ii) algorithm 1 run for 20 iterations and (iii) the
SE prediction. The ADAM algorithm is run for 100 epochs with a learning rate = 0.01.
The expectations in the SE are estimated via Monte-Carlo sampling (hence there is
some variation).

Given an estimate F̂1 and true value F0
1, we can compute the test error as fol-

lows: given a new sample x, the true and predicted pre-activations will be z1 = (F0
1)

Tx
and ẑ1 = F̂T

1 x. Thus, if the new sample x ∼ N (0, 1
Nin

I), the true and predicted pre-
activations, (z1, ẑ1), will be jointly Gaussian with covariance equal to the empirical
2d × 2d covariance matrix of the rows of F0

1 and F̂1:

K :=
1

Nin

Nin∑

k=1

uT
kuk, uk =

[
F1,k: F̂1,k:

]
. (17)

From this covariance matrix, we can estimate the test error, E|y − ŷ|2 = E|FT
2 (σ(z1) −

σ(ẑ1)|2, where the expectation is taken over the Gaussian (z1, ẑ1) with covariance
K. Also, since (17) is a row-wise operation, it can be predicted from the ML-Mat-

https://doi.org/10.1088/1742-5468/ac3a75 13

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

VAMP SE. Thus, the SE can also predict the asymptotic test error. The normalized
test error for ADAM-MAP, ML-Mat-VAMP and the ML-Mat-VAMP SE are plot-
ted in figure 2. The normalized test error is defined as the ratio of the MSE on the
test samples to the optimal MSE. Hence, a normalized MSE of one is the minimum
value.

Note that since ADAM and ML-Mat-VAMP are solving the same optimization
problem, they perform similarly as expected. The main message of this paper is not
to develop an algorithm that outperforms ADAM, but rather an algorithm that has
theoretical guarantees. The key property of ML-Mat-VAMP is that its asymptotic
behavior at all the iterations can be exactly predicted by the SE equations. In this
example, figure 2 shows that the normalized test MSE predicted via SE (plotted
in green) matches the normalized MSE of ML-Mat-VAMP estimates (plotted in
orange).

6. Conclusions

We have developed a general framework for analyzing inference in multi-layer net-
works with matrix valued quantities in certain high-dimensional random settings. For
learning the input layer of a two layer network, the methods enables precise predic-
tions of the expected test error as a function of the parameter statistics, numbers
of samples and noise level. This analysis can be valuable in understanding key prop-
erties such as generalization error, for example using ML-VAMP, Emami et al [11]
characterizes the generalization error of GLMs under a variety of feature distribu-
tions and train-test mismatch. Future work will look to extend these to more complex
networks.

Broader impact

In statistical physics, systems with a large number of degrees of freedom often admit
a simplified macroscopic description. Modern NNs have thousands of hidden units and
billions of free parameters; is there an analogous macroscopic description of the dynam-
ics of multi-layer NNs? This paper identifies some of these macroscopic descriptions that
can be used to analyze a large class of optimization problems (see section 2 for exam-
ples) arising in signal processing, data science, and machine learning. The techniques
developed in this paper allow analyzing and understanding the fundamental limits of
learning in 1 and 2 layer NNs which are basic building blocks in modern machine learning
pipelines.

Acknowledgments

The work of P Schniter was supported by NSF Grant 1716388. The work of P Pandit, M
Saharee-Ardakan and A K Fletcher was supported in part by the NSF Grants 1738285
and 1738286, ONR Grant N00014-15-1-2677. The work of S Rangan was supported in

https://doi.org/10.1088/1742-5468/ac3a75 14

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

part by NSF Grants 1116589, 1302336, and 1547332, NIST, SRC and the industrial
affiliates of NYU Wireless.

Appendix A. State evolution equations

The SE equations given in algorithm 2 define an iteration indexed by k of constant
matrices {K+

k!, τ
−
kl,Γ

±
kl}L

!=0. These constants appear in the statement of the main result
in theorem 1. The iterations in algorithm 2 also iteratively define a few R1×d valued
random vectors {Q0

! , P
0
! , Q±

k!, P
±
k!} which are either multivariate Gaussian or functions

of multivariate Gaussians. In order to state algorithm 2, we need to define certain
random variables and functions appearing therein which are described below. Let
Lodd = {1, 3, . . . , L − 1} and Leven = {2, 4, . . . , L − 2}.

Define {Θ±
k!} similar to Θ±

k! from equation (14) using {Γ±
k!}. Further, for ! =

1, 2, . . . , L − 1 define

Ω+
k! := (Λ+

k!,Γ
+
k!,Γ

−
k!), Ω−

k! := (Λ+
k,!−1,Γ

−
k,!−1,Γ

−
k,!−1),

and Ω+
k0 and Ω−

kL. Now define random variables W! as

W0 = Z0
0 , WL = (Y , ΞL), W! = Ξ!, ∀ ! ∈ Leven,

W! = (S!, B!, Ξ!), ∀ ! ∈ Lodd.
(18)

Define functions {f 0
! }L

!=1 as

f 0
! (P 0

!−1, W!) := S!P
0
!−1 + B! + Ξ!, ∀ ! ∈ Lodd,

f 0
! (P 0

!−1, W!) :=φ!(P
0
!−1, Ξ!), ∀ ! ∈ Leven ∪ {L}

(19)

and using (14) define functions {h±
! , }L

!=1, h+
0 and h−

L as

h±
! (P 0

!−1, P
+
!−1, Q

−
! , W!,Θ

±
k!) = G±

! (Q−
! + Q0

! , P
+
!−1 + P 0

!−1,Θ
±
k!), ∀ ! ∈ Leven,

h±
! (P 0

!−1, P
+
!−1, Q

−
! , W!,Θ

±
k!) = G̃±

! (Q−
! + Q0

! , P
+
!−1 + P 0

!−1,Θ
±
k!), ∀ ! ∈ Lodd

h+
0 (Q−

0 , W0,Θ
+
k0) = G+

0 (Q−
0 + W0,Θ

+
k0),

h−
L(P 0

L−1, P
+
L−1, WL,Θ−

kL) = G−
L(P +

L−1 + P 0
L−1,Θ

−
kL). (20)

Note that [G+
! , G−

!] and [G̃+
! , G̃−

!] are maps from R1×d → R1×d such that their row-wise

extensions are the denoisers [G+
! ,G−

!] and [G̃+
! , G̃−

!] respectively. Using (20) define
functions {f±

! }L−1
!=1 , f+

0 and f−
L as

f+
! (P 0

!−1, P
+
!−1, Q

−
! , W!,Ω

+
k!) =

[(
h+
! − Q0

!

)
Λ+

k! − Q−
! Γ

−
k!

]
(Γ+

k!)
−1,

f−
! (P 0

!−1, P
+
!−1, Q

−
! , W!,Ω

−
k!) =

[(
h−
! − P 0

!−1

)
Λ−

k,!−1 − P +
!−1Γ

+
k,!−1

]
(Γ−

k,!−1)
−1.

f+
0 (Q−

0 , W0,Ω
+
k0) =

[
(h+

0 − W0) Λ
+
k0 − Q−

0 Γ
−
k0

]
(Γ+

k0)
−1,

f−
L(P 0

L−1, P
+
L−1, WL,Ω−

kL) =
[(

h−
L − P 0

L−1

)
Λ−

k,L−1 − P +
L−1Γ

+
k,L−1

]
(Γ−

k,L−1)
−1.

(21)

https://doi.org/10.1088/1742-5468/ac3a75 15

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

Algorithm 2. SE for ML-Mat-VAMP (algorithm 1).

Require: functions {f 0
! } from (19), {h±

! } from (20), and {f±
! } from (21). Perturbation

random variables {W!} from (18). Initial random vectors {Q−
0!}

L−1
!=0 with initial covariance

matrices {τ−
0!}

L−1
!=0 from section 4. Initial matrices {Γ−

0!}L
!=0 from (16).

1: // Initial pass
2: Q0

0 = W0, τ 0
0 = Cov(Q0

0) and P 0
0 ∼ N (0, τ 0

0)
3: for ! = 1, . . . ,L − 1 do
4: Q0

! = f 0
! (P 0

!−1,W!)
5: P 0

! ∼ N (0, τ 0
!), τ

0
! = Cov(Q0

!)
6: end for

7: for k = 0, 1, . . . , do
8: // Forward pass

9: Q̂+
k0 = h+

0 (Q−
k0,W0,Θ

+
k0)

10: Λ+
k0 = (E ∂Q̂+

k0
∂Q−

0
)−1Γ−

k,0

11: Γ+
k0 = Λ+

k0 − Γ−
k0

12: Q+
k0 = f+

0 (Q−
k0,W0,Ω

+
k0)

13: (P 0
0 ,P +

k0) ∼ N (0,K+
k0), K+

k0 := Cov(Q0
0,Q

+
k0)

14: for ! = 1, . . . ,L − 1 do

15: Q̂+
k! = h+

! (P 0
!−1,P

+
k,!−1,Q

−
k!,W!,Θ

+
k!)

16: Λ+
k! = (E ∂Q̂+

k!
∂Q−

k!
)−1Γ−

k!

17: Γ+
k! = Λ+

k! − Γ−
k!

18: Q+
k! = f+

! (P 0
!−1,P

+
k,!−1,Q

−
k!,W!,Ω

+
k!)

19: (P 0
! ,P +

k!) ∼ N (0,K+
k!), K+

k! :=Cov(Q0
! ,Q

+
k!)

20: end for

21: // Backward pass

22: P̂−
k+1,L−1 = h−

L(P 0
L−1,P

+
k,L−1,WL,Θ−

k+1,L)

23: Λ−
k+1,L = (E ∂P̂−

k+1,L−1

∂P+
L−1

)−1Γ+
kL

24: Γ−
k+1,L−1 = Λ−

k+1,L−1 − Γ+
k,L−1,

25: P−
k+1,L−1 = f−

L(P 0
L−1,P

+
k,L−1,WL,Ω−

k+1,L)
26: Q−

k+1,L−1 ∼ N (0, τ−
k+1,L−1), τ−

k+1,L−1 := Cov(P−
k+1,L−1)

27: for ! = L − 2, . . . , 0 do
28: P̂−

k+1,! = h−
! (P 0

! ,P +
k!,Q

−
k+1,!+1,W!,Θ

−
k+1,!)

29: Λ−
k+1,! = (E ∂P̂−

k+1,!

∂P+
k,!

)−1Γ+
k,!

30: Γ−
k+1,! = Λ−

k+1,! − Γ+
k,!,

31: P−
k+1,! = f−

! (P 0
! ,P +

k!,Q
−
k+1,!+1,W!,Ω

−
k+1,!)

32: Q−
k+1,! ∼ N (0, τ−

k+1,!), τ−
k+1,! :=Cov(P−

k+1,!)
33: end for
34: end for

https://doi.org/10.1088/1742-5468/ac3a75 16

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

Appendix B. Large system limit details

The analysis of algorithm 1 in the LSL is based on [3] and is by now standard in the
theory of AMP-based algorithms. The goal is to characterize ensemble row-wise averages
of iterates of the algorithm using simpler finite-dimensional random variables which are
either Gaussians or functions of Gaussians. To that end, we start by defining some key
terms needed in this analysis.

Definition 1 (pseudo-Lipschitz continuity). For a given p ! 1, a map g : R1×d → R1×r is
called pseudo-Lipschitz of order p if for any r1, r2 ∈ Rd we have,

‖g(r1) − g(r2)‖ " C‖r1 − r2‖
(
1 + ‖r1‖p−1 + ‖r2‖p−1

)
.

Definition 2 (empirical convergence of rows of a matrix sequence). Consider a matrix-
sequence {X(N)}∞

N=1 with X(N) ∈ RN×d. For a finite p ! 1, let X ∈ (Rd, Rd) be a Rd-
measurable random variable with bounded moment E‖X‖p

p < ∞. We say the rows of

matrix sequence {X(N)} converge empirically to X with pth order moments if for all
pseudo-Lipschitz continuous functions f(·) of order p,

lim
N→∞

1

N

N∑

n=1

f(X(N)
n:) = E[f(X)] a.s. (22)

Note that the sequence {X(N)} could be random or deterministic. If it is random,
however, then the quantities on the left-hand side are random sums and the almost sure
convergence must take this randomness into account as well.

The above convergence is equivalent to requiring weak convergence as well as con-
vergence of the pth moment, of the empirical distribution 1

N

∑N
n=1δX(N)

n:
of the rows of

X(N) to X . This is also referred to convergence in the Wasserstein-p metric (chapter 6
in [43]).

In the case of p = 2, the condition is equivalent to requiring (22) to hold for all
continuously bounded functions f as well as for all fq(x) = x TQx for all positive definite
matrices Q .

Definition 3 (uniform Lipschitz continuity). For a positive definite matrix M , the map
φ(r;M) :Rd → Rd is said to be uniformly Lipschitz continuous in r at M = M if there
exist non-negative constants L1, L2 and L3 such that for all r ∈ Rd

‖φ(r1;M0) − φ(r2;M0)‖ " L1‖r1 − r2‖
‖φ(r;M1) − φ(r;M2)‖ " L2(1 + ‖r‖)ρ(M1,M2)

for all M i such that ρ(Mi,M) < L3 where ρ is a metric on the cone of positive
semidefinite matrices.

We are now ready to prove theorem 1.

Appendix C. Proof of theorem 1

The proof of theorem 1 is a special case of a more general result on multi-layer recursions
given in theorem 2. This result is stated in appendix D, and proved in appendix E. The

https://doi.org/10.1088/1742-5468/ac3a75 17

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

rest of this section identifies certain relevant quantities from theorem 1 in order to apply
theorem 2.

Consider the SVD given of weight matrices W! of the network given by,

W! = V! diag(S!)V! − 1

as explained in section 4 of the main paper. We analyze algorithm 1 using transformed
versions of the true signals Z0

! and input errors R±
! − Z0

! to the denoisers G±
! . For

! = 0, 2, . . . , L − 2, define

q0
! = Z0

! q0
!+1 = V.

!+1Z
0
!+1 (23a)

p0
! = V!Z

0
! p0

!+1 = Z0
!+1 (23b)

which are depicted in figure 3 (top). Similarly, define the following transformed versions
of errors in the inputs R±

! to the denoisers G±
!

q−
! = R−

! − Z0
! q−

!+1 = V.
!+1(R

−
!+1 − Z0

!+1) (24a)

p+
! = V!(R

+
! − Z0

!) p+
!+1 = R+

!+1 − Z0
!+1. (24b)

These quantities are depicted as inputs to function blocks f ±
! in figure 3 (middle). Define

perturbation variables w! as

w0 = Z0
0, wL = (Y,ΞL), w! = Ξ!, ∀ ! ∈ Leven (25a)

w! = (S!,B!,Ξ!), ∀ ! ∈ Lodd. (25b)

Finally, we define q+
! and p−

! for ! = 1, 2, . . . , L − 1 as

q+
! = f+

! (p0
!−1,p

+
!−1,q

−
! ,w!, Ω!) (26a)

p−
!−1 = f−! (p0

!−1,p
+
!−1,q

−
! ,w!, Ω!), (26b)

which are outputs of function blocks in figure 3 (middle). Similarly, define the quantities
q+

0 = f+
0 (q−

0 ,Z0, Ω0) and p−
L−1 = f+

L (p0
L−1,p

+
L−1,Y, ΩL).

Lemma 1. Algorithm 1 is a special case of algorithm 3 with the definitions
{q0

! ,p
0
! ,q

±
! ,p±

! }L−1
!=0 given in equations (23), (24), and (26), functions f ±

! are row-wise
extensions of f±

! defined using equations (20) and (21).

Lemma 2. Assumptions 1 and 2 required for applying theorem 2 are satisfied by the
conditions in theorem 1.

Proof. The proofs of the above lemmas are identical to the case of d = 1, which was
shown in [34]. For details see appendix F in [34]. #

Appendix D. General multi-layer recursions

To analyze algorithm 1, we consider a more general class of recursions as given in
algorithm 3 and depicted in figure 3. The Gen-ML recursions generates (i) a set of true
matrices q0

! and p0
! and (ii) iterated matrices q±

k! and p±
k!. Each of these matrices have

the same number of columns, denoted by d.

https://doi.org/10.1088/1742-5468/ac3a75 18

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

Figure 3. (Top) The equation (1) with equivalent quantities defined in (23), and
f 0
! defined using (19). (Middle) The Gen-ML-Mat recursions in algorithm 3. These

are also equivalent to ML-Mat-VAMP recursions from algorithm 1 (see lemma 1) if
q±,p± are as defined as in equations (24) and (26), and f ±

! given by equations (20)
and (21). (Bottom) Quantities in the GEN-ML-SE recursions. These are also equiva-
lent to ML-Mat-VAMP SE recursions from algorithm 2 (see lemma 1). The iteration
indices k have been dropped for notational simplicity.

The true matrices are generated by a single forward pass, whereas the iterated matri-
ces are generated via a sequence of forward and backward passes through a multi-layer
system. In proving the SE for the ML-Mat-VAMP algorithm (algorithm 1, one would
then associate the terms q±

k! and p±
k! with certain error quantities in the ML-Mat-VAMP

recursions. To account for the effect of the parameters Γ±
k! and Λ±

k! in ML-Mat-VAMP,
the Gen-ML algorithm describes the parameter updates through a sequence of parame-
ter lists Υ±

k!. The parameter lists are ordered lists of parameters that accumulate as the
algorithm progresses. The true and iterated matrices from algorithm 3 are depicted in
the signal flow graphs in figure 3 (top) and (middle), respectively. The iteration index
k for the iterated vectors qk!,pk! has been dropped for simplifying notation.

The functions f 0
! (·) that produce the true matrices q0

! ,p
0
! are called initial matrix

functions and use the initial parameter list Υ−
01. The functions f±

k!(·) that produce the
matrices q+

k! and p−
k! are called the matrix update functions and use parameter lists Υ±

kl.
The initial parameter lists Υ−

01 are assumed to be provided. As the algorithm progresses,
new parameters λ±

k! are computed and then added to the lists in lines 12, 18, 25 and 31.
The matrix update functions f±

k!(·) may depend on any sets of parameters accumulated
in the parameter list. In lines 11, 17, 24 and 30, the new parameters λ±

k! are computed by:
(1) computing average values µ±

k! of row-wise functions ϕ±
k!(·); and (2) taking functions

T ±
k!(·) of the average values µ±

k!. Since the average values µ±
k! represent statistics on the

https://doi.org/10.1088/1742-5468/ac3a75 19

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

Algorithm 3. General multi-layer matrix (Gen-ML-Mat) recursion.

Require: initial matrix functions {f 0
! }. Matrix update functions {f±

k!(·)}. Parameter statistic
functions {ϕ±

k!(·)}. Parameter update functions {T±
k!(·)}. Orthogonal matrices {V!}.

Perturbation variables {w±
! }. Initial matrices {q−

0!}. Initial parameter list Υ−
01.

1: // Initial pass
2: q0

0 = f00(w0), p0
0 = V0q0

0

3: for ! = 1, . . . ,L − 1 do
4: q0

! = f 0
! (p0

!−1,w!, Υ
−
01)

5: p0
! = V!q0

!
6: end for
7:
8: for k = 0, 1, . . . do
9: // Forward pass
10: λ+

k0 = T+
k0(µ

+
k0,Υ

−
0k)

11: µ+
k0 =

〈
ϕ+

k0(q
−
k0,w0,Υ

−
0k)

〉

12: Υ+
k0 = (Υ−

k1,λ
+
k0)

13: q+
k0 = f+k0(q

−
k0,w0,Υ

+
k0)

14: p+
k0 = V0q

+
k0

15: for ! = 1, . . . ,L − 1 do
16: λ+

k! = T+
k!(µ

+
k!, Υ

+
k,!−1)

17: µ+
k! =

〈
ϕ+

k!(p
0
!−1,p

+
k,!−1,q

−
k!,w!, Υ

+
k,!−1)

〉

18: Υ+
k! = (Υ+

k,!−1,λ
+
k!)

19: q+
k! = f+k!(p

0
!−1,p

+
k,!−1,q

−
k!,w!, Υ

+
k!)

20: p+
k! = V!q

+
k!

21: end for
22: // Backward pass
23: λ−

k+1,L = T−
kL(µ−

kL, Υ+
k,L−1)

24: µ−
kL =

〈
ϕ−

kL(p+
k,L−1,wL, Υ+

k,L−1)
〉

25: Υ−
k+1,L = (Υ+

k,L−1,λ
+
k+1,L)

26: p−
k+1,L−1 = f−kL(p0

L−1,p
+
k,L−1,wL, Υ−

k+1,L)

27: q−
k+1,L−1 = VT

L−1pk+1,L−1

28: for ! = L − 1, . . . , 1 do
29: λ−

k+1,! = T−
k!(µ

−
k!, Υ

−
k+1,!+1)

30: µ−
k! =

〈
ϕ−

k!(p
0
!−1,p

+
k,!−1,q

−
k+1,!,w!, Υ

−
k+1,!+1)

〉

31: Υ−
k+1,! = (Υ−

k+1,!+1,λ
−
k+1,!)

32: p−
k+1,!−1 = f−k!(p

0
!−1,p

+
k,!−1,q

−
k+1,!,w!, Υ

−
k+1,!)

33: q−
k+1,!−1 = VT

!−1p
−
k+1,!−1

34: end for
35: end for

rows of ϕ±
k!(·), we will call ϕ±

k!(·) the parameter statistic functions . We will call the
T ±

k!(·) the parameter update functions . The functions f 0
! , f±

k!,ϕ
±
! also take as input some

perturbation vectors w!.

https://doi.org/10.1088/1742-5468/ac3a75 20

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

Similar to the analysis of the ML-Mat-VAMP algorithm, we consider the following
LSL analysis of Gen-ML. Specifically, we consider a sequence of runs of the recursions
indexed by N . For each N , let N! = N!(N) be the dimension of the matrix signals
p±
! and q±

! as we assume that limN→∞
N!
N = β! ∈ (0,∞) is a constant so that N! scales

linearly with N . Note however that the number of columns of each of the matrices
{q0

! ,p
0
! ,q

±
k!,p

±
k!} is equal to a finite integer d > 0, which remains fixed for all N . We

then make the following assumptions. See appendix B for an overview of empirical
convergence of sequences which we use in the assumptions described below.

Assumption 1. For vectors in the Gen-ML algorithm (algorithm 3), we assume:

(a) The matrices V! are Haar distributed on the set of N! × N! orthogonal matrices
and are independent from one another and from the matrices q0

0, q−
0!, perturbation

variables w!.

(b) The rows of the initial matrices q−
0!, and perturbation variables w! converge jointly

empirically with limits,

q−
0!

2⇒Q−
0!, w!

2⇒W!, (27)

where Q−
0! are random vectors in R1×d such that (Q−

00, . . . , Q
−
0,L−1) is jointly Gaussian.

For ! = 0, . . . , L − 1, the random variables W!, P 0
!−1 and Q−

0! are all independent.
We also assume that the initial parameter list converges as

lim
N→∞

Υ−
01(N)

a.s.−−→ Υ−
01, (28)

to some list Υ−
01. The limit (28) means that every element in the list λ(N) ∈ Υ−

01(N)
converges to a limit λ(N) → λ ∈ Υ−

01 as N →∞ almost surely.

(c) The matrix update functions f±
k!(·) and parameter update functions ϕ±

k!(·) act row-
wise. For example, in the kth forward pass, at stage !, we assume that for each
output row n,

[
f+k!(p

0
!−1,p

+
k,!−1,q

−
k!,w!, Υ

+
k!)

]
n:

= f+
k!(p

0
!−1,n:,p

+
k,!−1,n:,q

−
k!,n:,w!,n:, Υ

+
k!)

[
ϕ+

k!(p
0
!−1,p

+
k,!−1,q

−
k!,w!, Υ

+
k!)

]
n:

= ϕ+
k!(p

0
!−1,n:,p

+
k,!−1,n:,q

−
k!,n:,w!,n:, Υ

+
k!),

for some R1×d-valued functions f+
k!(·) and ϕ+

k!(·). Similar definitions apply in the
reverse directions and for the initial vector functions f 0

! (·). We will call f±
k!(·)

the matrix update row-wise functions and ϕ±
k!(·) the parameter update row-wise

functions.

Next we define a set of deterministic constants {K+
k!, τ

−
k!, µ

±
k!, Υ

±
kl, τ

0
!} and R1×d-

valued random vectors {Q0
! , P

0
! , Q±

k!, P
±
! } which are recursively defined through algorithm

4, which we call the general multi-layer matrix (Gen-ML-Mat) SE. These recursions in
algorithm closely mirror those in the Gen-ML-Mat algorithm (algorithm 3). The matri-
ces q±

k! and p±
k! are replaced by random vectors Q±

k! and P ±
k!; the matrix and parameter

update functions f±
k!(·) and ϕ±

k!(·) are replaced by their row-wise functions f±
k!(·) and

ϕ±
k!(·); and the parameters λ±

k! are replaced by their limits λ±
k!. We refer to {Q0

! , P
0
! } as

true random vectors and {Q±
k!, P

±
kl} as iterated random vectors . The signal flow graph

https://doi.org/10.1088/1742-5468/ac3a75 21

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

Algorithm 4. Gen-ML-Mat SE.

Require: matrix update row-wise functions f 0
! (·) and f±

k!(·), parameter statistic row-wise
functions ϕ±

k!(·), parameter update functions T±
k!(·), initial parameter list limit: Υ−

01, initial
random variables W!, Q−

0!, ! = 0, . . . ,L − 1.
1: // Initial pass
2: Q0

0 = f0
0(W0,Υ

−
01), P 0

0 ∼ N (0, τ 0
0), τ 0

0 = E(Q0
0)

2

3: for ! = 1, . . . ,L − 1 do
4: Q0

! = f 0
! (P 0

!−1,W!, Υ
−
01)

5: P 0
! ∼ N (0, τ 0

!), τ
0
! = Cov(Q0

!)
6: end for
7:
8: for k = 0, 1, . . . do
9: // Forward pass

10: λ+
k0 = T+

k0(µ
+
k0,Υ

−
0k)

11: µ+
k0 = E(ϕ+

k0(Q
−
k0,W0,Υ

−
0k))

12: Υ+
k0 = (Υ−

k1,λ
+
k0)

13: Q+
k0 = f+

k0(Q
−
k0,W0,Υ

+
k0)

14: (P 0
0 ,P +

k0) ∼ N (0,K+
k0), K+

k0 = Cov(Q0
0,Q

+
k0)

15: for ! = 1, . . . ,L − 1 do
16: λ+

k! = T+
k!(µ

+
k!, Υ

+
k,!−1)

17: µ+
k! = E(ϕ+

k!(P
0
!−1,P

+
k,!−1,Q

−
k!,W!, Υ

+
k,!−1))

18: Υ+
k! = (Υ+

k,!−1,λ
+
k!)

19: Q+
k! = f+

k!(P
0
!−1,P

+
k,!−1,Q

−
k!,W!, Υ

+
k!)

20: (P 0
! ,P +

k!) ∼ N (0,K+
k!), K+

k! = Cov(Q0
! ,Q

+
k!)

21: end for

22: // Backward pass

23: λ−
k+1,L = T−

kL(µ−
kL, Υ+

k,L−1)
24: µ−

kL = E(ϕ−
kL(P 0

L−1,P
+
k,L−1,WL, Υ+

k,L−1))

25: Υ−
k+1,L = (Υ+

k,L−1,λ
+
k+1,L)

26: P−
k+1,L−1 = f−

kL(P 0
L−1,P

+
k,L−1,WL, Υ−

k+1,L)
27: Q−

k+1,L−1 ∼ N (0, τ−k+1,L−1), τ−k+1,L−1 = Cov(P−
k+1,L−1)

28: for ! = L − 1, . . . , 1 do
29: λ−

k+1,! = T−
k!(µ

−
k!, Υ

−
k+1,!+1)

30: µ−
k! = E(ϕ−

k!(P
0
!−1,P

+
k,!−1,Q

−
k+1,!,W!, Υ

−
k+1,!+1))

31: Υ−
k+1,! = (Υ−

k+1,!+1,λ
−
k+1,!)

32: P−
k+1,!−1 = f−

k!(P
0
!−1,P

+
k,!−1,Q

−
k+1,!,W!, Υ

−
k+1,!)

33: Q−
k+1,!−1 ∼ N (0, τ−k+1,!−1), τ−k+1,!−1 = Cov(P−

k+1,!−1)
34: end for
35: end for

for the true and iterated random variables in algorithm 4 is given in the bottom panel
of figure 3. The iteration index k for the iterated random variables {Q±

k!, P
±
kl} to simplify

notation.

https://doi.org/10.1088/1742-5468/ac3a75 22

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

We also assume the following about the behavior of row-wise functions around the
quantities defined in algorithm 4. The iteration index k has been dropped for simplifying
notation.

Assumption 2. For row-wise functions f ,ϕ and parameter update functions T we
assume:

(a) T ±
k!(µ

±
k!, ·) are continuous at µ±

k! = µ±
k!

(b) f+
k!(p

0
!−1, p

+
k,!−1, q

−
k!, w!, Υ

+
k!),

∂f+
k!

∂q−k!
(p0

!−1, p
+
k,!−1, q

−
k!, w!, Υ

+
k!) and ϕ+

k!(p
0
!−1, p

+
k,!−1, q

−
k!, w!,

Υ+
k,!−1) are uniformly Lipschitz continuous in (p0

!−1, p
+
k,!−1, q

−
k!, w!) at Υ+

k! = Υ+
k!,

Υ+
k,!−1 = Υ+

k,!−1. Similarly, f−
k+1,!(p

0
!−1, p

+
k,!−1, q

−
k+1,!, w!, Υ

−
k!),

∂f−k!
∂p+

k,!−1
(p0

!−1, p
+
k,!−1, q

−
k+1,!,

w!, Υ
−
k!), and ϕ−

k!(p
0
!−1, p

+
k,!−1, q

−
k+1,!, w!, Υ

−
k+1,!+1) are uniformly Lipschitz continuous

in (p0
!−1, p

+
k,!−1, q

−
k+1,!, w!) at Υ−

k! = Υ−
k!, Υ

−
k+1,!+1 = Υ−

k+1,!+1.

(c) f 0
! (p0

!−1, w!, Υ
−
01) are uniformly Lipschitz continuous in (p0

k,!−1, w!) at Υ−
k+1,! = Υ−

k+1,!.

(d) Matrix update functions f±
k! are asymptotically divergence free meaning

lim
N→∞

〈
∂f+k!
∂q−

k!

(p+
k,!−1,q

−
k!,w!, Υ

+
k!)

〉
= 0, lim

N→∞

〈
∂f−k!

∂p+
k,!−1

(p+
k,!−1,q

−
k+1,!,w!, Υ

−
k!)

〉

= 0

(29)

We are now ready to state the general result regarding the empirical convergence of
the true and iterated vectors from algorithm 3 in terms of random variables defined in
algorithm 4.

Theorem 2. Consider the iterates of the Gen-ML recursion (algorithm 3) and the corre-
sponding random variables and parameter limits defined by the SE recursions (algorithm
4) under assumptions 1 and 2. Then,

(a) For any fixed k ! 0 and fixed ! = 1, . . . , L − 1, the parameter list Υ+
k! converges as

lim
N→∞

Υ+
k! = Υ+

k! (30)

almost surely. Also, the rows of w!, p0
!−1, q0

! , p+
0,!−1, . . . ,p

+
k,!−1 and q±

0!, . . . ,q
±
k!

almost surely jointly converge empirically with limits,

(p0
!−1,p

+
i,!−1,q

−
j!,q

0
! ,q

+
j!)

2⇒ (P 0
!−1, P

+
i,!−1, Q

−
j!, Q

0
! , Q

+
j!), (31)

for all 0 " i, j " k, where the variables P 0
!−1, P +

i,!−1 and Q−
j! are zero-mean jointly

Gaussian random variables independent of W! and with covariance matrix given
by

Cov(P 0
!−1, P

+
i,!−1) = K+

i,!−1, E(Q−
j!)

2 = τ−
j!, E(P +T

i,!−1Q
−
j!) = 0, E(P 0T

!−1Q
−
j!) = 0,

(32)

and Q0
! , Q+

j! are the random variable in lines 4, 19, i.e.

Q0
! = f 0

! (P 0
!−1, W!), Q+

j! = f+
j!(P

0
!−1, P

+
j,!−1, Q

−
j!, W!, Υ

+
j!). (33)

https://doi.org/10.1088/1742-5468/ac3a75 23

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

An identical result holds for ! = 0 with all the variables p+
i,!−1 and P +

i,!−1 removed.

(b) For any fixed k ! 1 and fixed ! = 1, . . . , L − 1, the parameter lists Υ−
k! converge as

lim
N→∞

Υ−
k! = Υ−

k! (34)

almost surely. Also, the rows of w!, p0
!−1, p±

0,!−1, . . . ,p
±
k−1,!−1, and q−

0!, . . . ,q
−
k! almost

surely jointly converge empirically with limits,

(p0
!−1,p

+
i,!−1,q

−
j!,p

−
j,!−1)

2⇒ (P 0
!−1, P

+
i,!−1, Q

−
j!, P

−
j,!−1), (35)

for all 0 " i " k − 1 and 0 " j " k, where the variables P 0
!−1, P +

i,!−1 and Q−
j! are zero-

mean jointly Gaussian random variables independent of W! and with covariance
matrix given by equation (32) and P−

j! is the random variable in line 32:

P−
j! = f−

j!(P
0
!−1, P

+
j−1,!−1, Q

−
j!, W!, Υ

−
j!). (36)

An identical result holds for ! = L with all the variables q−
j! and Q−

j! removed.

For k = 0, Υ−
01 → Υ−

01 almost surely, and the rows {(w!,n:,p0
!−1,n:,q

−
j!,n:)}N

n=1

empirically converge to independent random variables (W!, P 0
!−1, Q

−
0!).

Proof. Appendix E is dedicated to proving this result. #

Appendix E. Proof of theorem 2

The proof proceeds using mathematical induction. It largely mimics the proof for the
case of d = 1 which were the convergence results in theorem 5 in [34]. However, in the
case of d > 1, we observe that several quantities which were scalars in proving theorem
5 in [34] are now matrices. Due to the non-commutativity of these matrix quantities, we
re-state the whole prove, while modifying the requisite matrix terms appropriately.

E.1. Overview of the induction sequence

The proof is similar to that of theorem 4 in [35], which provides a SE analysis for VAMP
on a single-layer network. The critical challenge here is to extend that proof to multi-
layer recursions. Many of the ideas in the two proofs are similar, so we highlight only
the key differences between the two.

Similar to the SE analysis of VAMP in [35], we use an induction argument. However,
for the multi-layer proof, we must index over both the iteration index k and layer index
!. To this end, let H+

k! and H−
k! be the hypotheses:

• H+
k!: the hypothesis that theorem 2(a) is true for a given k and !, where 0 " ! " L − 1.

• H−
k!: the hypothesis that theorem 2(b) is true for a given k and !, where 1 " ! " L.

We prove these hypotheses by induction via a sequence of implications,

{H−
0!}L

!=1 · · · ⇒ H−
k1 ⇒ H+

k0 ⇒ · · · ⇒ H+
k,L−1 ⇒ H−

k+1,L ⇒ · · · ⇒ H−
k+1,1 ⇒ · · · , (37)

beginning with the hypotheses {H−
0!} for all ! = 1, . . . , L − 1.

https://doi.org/10.1088/1742-5468/ac3a75 24

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

E.2. Base case: proof of {H−
0&}L

&=1

The base case corresponds to the hypotheses {H−
0!}L

!=1. Note that theorem 2(b) states
that for k = 0, we need Υ−

01 → Υ−
01 almost surely, and {(w!,n:,p0

!−1,n:,q
−
j!,n:)}N

n=1 empir-
ically converge to independent random variables (W!, P 0

!−1, Q
−
0!). These follow directly

from equations (27) and (28) in assumption 1(a).

E.3. Inductive step: proof of H+
k,&+1

Fix a layer index ! = 1, . . . , L − 1 and an iteration index k = 0, 1, We show the
implication · · · =⇒ H+

k,!+1 in (37). All other implications can be proven similarly using
symmetry arguments.

Definition 4 (induction hypothesis). The hypotheses prior to H+
k,!+1 in the sequence

(37), but not including H+
k,!+1, are true.

The inductive step then corresponds to the following result.

Lemma 3. Under the induction hypothesis, H+
k,!+1 holds.

Before proving the inductive step in lemma 3, we prove two intermediate lemmas. Let
us start by defining some notation. Define P+

k! := [p+
0! · · ·p+

k!] ∈ RN!×(k+1)d, be a matrix
whose column blocks are the first k + 1 values of the matrix p+

! . We define the matrices
P−

k!, Q+
k! and Q−

k! in a similar manner with values of p−
! ,q+

! and q−
! respectively.

Note that except the initial matrices {w!,q
−
0!}L

!=1, all later iterates in algorithm 3 are
random due to the randomness of V!. Let G±

k! denote the collection of random variables
associated with the hypotheses, H±

k!. That is, for ! = 1, . . . , L − 1,

G+
k! :=

{
w!,p

0
!−1,P

+
k,!−1,q

0
! ,Q

−
k!,Q

+
k!

}
,

G−
k! :=

{
w!,p

0
!−1,P

+
k−1,!−1,q

0
! ,Q

−
k!,P

−
k,!−1

}
.

For ! = 0 and ! = L we set, G+
k0 :=

{
w0,Q

−
k0,Q

+
k0

}
, G−

kL :=
{
wL,p0

L−1,P
+
k−1,L−1,P

−
k,L−1

}
.

Let G+
k! be the sigma algebra generated by the union of all the sets G±

k′!′ as they have
appeared in the sequence (37) up to and including the final set G+

k!. Thus, the sigma
algebra G+

k! contains all information produced by algorithm 3 immediately before line 20
in layer ! of iteration k. Note also that the random variables in algorithm 4 immediately
before defining P +

k,! in line 20 are all G+
k! measurable.

Observe that the matrix V! in algorithm 3 appears only during matrix-
vector multiplications in lines 20 and 32. If we define the matrices,
Ak! :=

[
p0
! ,P

+
k−1,! P−

k!

]
, Bk! :=

[
q0
! ,Q

+
k−1,! Q−

k!

]
, all the matrices in the set G+

k! will
be unchanged for all matrices V! satisfying the linear constraints

Ak! = V!Bk!. (38)

Hence, the conditional distribution of V! given G+
k! is precisely the uniform distribution

on the set of orthogonal matrices satisfying (38). The matrices Ak! and Bk! are of
dimensions N! × (2k + 2)d. From lemmas 3 and 4 in [35], this conditional distribution is

https://doi.org/10.1088/1742-5468/ac3a75 25

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

given by

V!|G+
k!

d
=Ak!(A

T
k!Ak!)

−1BT
k! + UA⊥

k!
Ṽ!U

T
B⊥

k!
, (39)

where UA⊥
k!

and UB⊥
k!

are N! × (N! − (2k + 2)d) matrices whose columns are an orthonor-

mal basis for Range(Ak!)⊥ and Range(Bk!)⊥. The matrix Ṽ! is Haar distributed on the
set of (N! − (2k + 2)d) × (N! − (2k + 2)d) orthogonal matrices and is independent of G+

k!.
Next, similar to the proof of theorem 4 in [35], we can use (39) to write the conditional

distribution of p+
k! (from line 20 of algorithm 3) given G+

k! as a sum of two terms

p+
k!|G+

k!
= V!|G+

k!
q+

k!
d
=p+det

k! + p+ran
k! , (40a)

p+det
k! :=Ak!(B

T
k!Bk!)

−1BT
k!q

+
k! (40b)

p+ran
k! :=UB⊥

k
ṼT

! U
T
A⊥

k
q+

k! (40c)

where we call p+det
k! the deterministic term and p+ran

k! the random term. The next two
lemmas characterize the limiting distributions of the deterministic and random terms.

Lemma 4. Under the induction hypothesis, the rows of the ‘deterministic’ term p+ det
k!

along with the rows of the matrices in G+
k! converge empirically. In addition, there exists

constant d × d matrices β+
0!, . . . , β

+
k−1,! such that

p+det
k!

2⇒P +det
k! :=P 0

! β
0
! +

k−1∑

i=0

P +
i! βi!, (41)

where P + det
k! ∈ R1×d is the limiting random vector for the rows of pdet

k! .

Proof. The proof is similar that of lemma 6 in [35], but we go over the details as
there are some important differences in the multi-layer matrix case. Define P̃+

k−1,! =[
p0
! , P+

k−1,!
]
, Q̃+

k−1,! =
[
q0
! , Q+

k−1,!
]
, which are the matrices in RN!×(k+1)d. We can then write

Ak! and Bk! from (38) as

Ak! :=
[
P̃+

k−1,! P−
k!

]
, Bk! :=

[
Q̃+

k−1,! Q−
k!

]
. (42)

We first evaluate the asymptotic values of various terms in (40b). By definition of Bk!

in (42),

BT
k!Bk! =

[
(Q̃+

k−1,!)
TQ̃+

k−1,! (Q̃+
k−1,!)

TQ−
k!

(Q−
k!)

TQ̃+
k−1,! (Q−

k!)
TQ−

k!

]
.

We can then evaluate the asymptotic values of these terms as follows: for 0 " i, j " k − 1
the asymptotic value of the (i + 2, j + 2)ndd × d block of the matrix (Q̃+

k−1,!)
TQ̃+

k−1,! is

https://doi.org/10.1088/1742-5468/ac3a75 26

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

lim
N→∞

1

N!

[
(Q̃+

k−1,!)
TQ̃+

k−1,!

]

i+2,j+2

(a)
= lim

N→∞

1

N!
(q+

i!)
Tq+

j!

= lim
N→∞

1

N!

N!∑

n=1

[q+
i!]n:[q

+
j!]

T
n:

(b)
= E

[
Q+T

i! Q+
j!

]

where (a) follows since the (i + 2)th column block of Q̃+
k−1,! is q+

i!, and (b) follows due
to the empirical convergence assumption in (31). Also, since the first column block of
Q̃+

k−1,! is q0
! , we obtain that

lim
N!→∞

1

N!
(Q̃+

k−1,!)
TQ̃+

k−1,! = R+
k−1,! and lim

N!→∞

1

N!
(Q−

k!)
TQ−

k! = R−
k!, (43)

where R+
k−1,! ∈ R(k+1)d×(k+1)d is the covariance matrix of

[
Q0

! Q+
0! . . .Q+

k−1,!

]
, and R−

k! ∈
R(k+1)d×(k+1)d is the covariance matrix of [Q−

0! Q−
1! . . .Q−

k!]. For the matrix (Q̃+
k−1,!)

TQ−
k!,

first observe that the limit of the divergence free condition (29) implies

E
[
∂f+

i!(P
+
i,!−1, Q

−
i!, W!, Υi!)

∂Q−
i!

]
= lim

N!→∞

〈
∂f+i!(p

+
i,!−1,q

−
i!,w!, Υ

+
i!)

∂q−
i!

〉
= 0, (44)

for any i. Also, by the induction hypothesis H+
k!,

E(P +T
i,!−1Q

−
j!) = 0, E(P 0T

!−1Q
−
j!) = 0, (45)

for all 0 " i, j " k. Therefore using (33), the cross-terms E(Q+T
i! Q−

j!) are given by

E(f+
i!(P

0
!−1, P

+
i,!−1, Q

−
i!, W!, Υi!)

TQ−
j!)

(a)
= E

[
∂f+

i!(P
0
!−1, P

+
i,!−1, Q

−
i!, W!, Υ

+
i!)

∂P 0
!−1

]

E(P 0T
!−1Q

−
j!)

+ E
[
∂f+

i!(P
0
!−1, P

+
i,!−1, Q

−
i!, W!, Υ

+
i!)

∂P +
i,!−1

]

E(P +T
i,!−1Q

−
j!)

+ E
[
∂f+

i!(P
0
!−1, P

+
i,!−1, Q

−
i!, W!, Υ

+
i!)

∂Q−
i!

]

E(Q−T
i! Q−

j!)
(b)
= 0,

(46)

(a) follows from a multivariate version of Stein’s lemma (equation (2) in [23]); and (b)
follows from (44), and (45). Consequently,

lim
N!→∞

1

N!
BT

k!Bk! =

[
R+

k−1,! 0
0 R−

k!

]
, and lim

N!→∞

1

N!
BT

k!q
+
k! =

[
b+

k!

0

]
, (47)

where b+
k! :=

[
E(Q+T

0! Q+
k!) E(Q+T

1! Q+
k!) . . . E(Q+T

k−1,!Q
+
k!)

]T
, is the matrix of correlations.

We again have 0 in the second term because E[Q+T
i! Q−

j!] = 0 for all 0 " i, j " k. Hence

https://doi.org/10.1088/1742-5468/ac3a75 27

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

we have

lim
N!→∞

(BT
k!Bk!)

−1BT
k!q

+
k! =

[
β+

k!

0

]
, β+

k! :=
[
R+

k−1,!
]−1

b+
k!. (48)

Therefore, p+det
k! equals

Ak!(B
T
k!Bk!)

−1BT
k!q

+
k! =

[
P̃+

k−1,! P−
k,!

] [β+
k!

0

]
+ O

(
1

N!

)

= p0
!β

0
! +

k−1∑

i=0

p+
i!β

+
i! + O

(
1

N!

)
,

(49)

where β0
! and β+

i! are d × d block matrices of β+
k! and the term O(1

N!
) means a matrix

sequence, ϕ(N) ∈ RN! such that limN→∞
1
N ‖ϕ(N)‖2 = 0. A continuity argument then

shows the empirical convergence (41). #

Lemma 5. Under the induction hypothesis, the components of the ‘random’ term p+ran
k!

along with the components of the vectors in G+
k! almost surely converge empirically. The

components of p+ran
k! converge as

p+ran
k!

2⇒Uk!, (50)

where Uk! is a zero mean Gaussian random vector in R1×d independent of the limiting
random variables corresponding to the variables in G+

k!.

Proof. The proof is identical to that of lemmas 7 and 8 in [35]. #
We are now ready to prove lemma 3.

Proof of lemma 3. Using the partition (40a) and lemmas 4 and 5, we see that the
components of the vector sequences in G+

k! along with p+
k! almost surely converge jointly

empirically, where the components of p+
k! have the limit

p+
k! = pdet

k! + pran
k!

2⇒P 0
! β

0
! +

k−1∑

i=0

P +
i! β

+
i! + Uk! =: P +

k!. (51)

Note that the above Wasserstein-2 convergence can be shown using the same

arguments involved in showing that if XN |F d
=⇒ X |F , and YN |F d

=⇒ c, then

(XN , YN)|F d
=⇒ (X , c)|F for some constant c and sigma-algebra F .

We first establish the Gaussianity of P +
k!. Observe that by the induction hypothesis,

H−
k,!+1 holds whereby (P 0

! , P +
0! , . . . , P

+
k−1,!, Q

−
0,!+1, . . . , Q

−
k,!+1), is jointly Gaussian. Since Uk

is Gaussian and independent of (P 0
! , P +

0! , . . . , P
+
k−1,!, Q

−
0,!+1, . . . , Q

−
k,!+1), we can conclude

from (51) that (P 0
! , P +

0! , . . . , P
+
k−1,!, P

+
k!, Q

−
0,!+1, . . . , Q

−
k,!+1) is jointly Gaussian.

We now need to prove the correlations of this jointly Gaussian random vector are as
claimed by H+

k,!+1. Since H−
k,!+1 is true, we know that (32) is true for all i = 0, . . . , k − 1

and j = 0, . . . , k and ! = ! + 1. Hence, we need only to prove the additional identity for

https://doi.org/10.1088/1742-5468/ac3a75 28

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

i = k, namely the equations: Cov(P 0
! , P +

k!)
2 = K+

k! and E(P +
k!Q

−
j,!+1) = 0. First observe

that

E(P +T
k! P +

k!)
2 (a)
= lim

N!→∞

1

N!
p+T

k! p+
k!

(b)
= lim

N!→∞

1

N!
q+T

k! q+
k!

(c)
= E

(
Q+T

k! Q+
k!

)2

where (a) follows from the fact that the rows of p+
k! converge empirically to P +

k!; (b) fol-
lows from line 20 in algorithm 3 and the fact that V! is orthogonal; and (c) follows from
the fact that the rows of q+

k! converge empirically to Q+
k! from hypothesis H+

k,!. Since
p0
! = V!q0, we similarly obtain that E(P 0T

! P +
k!) = E(Q0T

! Q+
k!), E(P 0T

! P 0
!) = E(Q0T

! Q0
!),

from which we conclude

Cov(P 0
! , P +

k!) = Cov(Q0
! , Q

+
k!) =: K+

k!, (52)

where the last step follows from the definition of K+
k! in line 20 of algorithm 4. Finally,

we observe that for 0 " j " k

E(P +T
k! Q−

j,!+1)
(a)
= β0T

! E(P 0T
! Q−

j,!+1) +
k−1∑

i=0

β+T
i! E(P +T

i! Q−
j,!+1) + E(UT

k!Q
−
j,!+1)

(b)
= 0,

(53)

where (a) follows from (51) and, in (b), we used the fact that E(P 0T
! Q−

j,!+1) = 0

and E(P +T
i! Q−

j,!+1) = 0 since (32) is true for i " k − 1 corresponding to H−
k,!+1 and

E(UT
k!Q

−
j,!+1) = 0 since Uk! is independent of G+

k!, and Q−
j,!+1 is G+

k! measurable. Thus,
with (52) and (53), we have proven all the correlations in (32) corresponding to H+

k,!+1.

Next, we prove the convergence of the parameter lists Υ+
k,!+1 to Υ+

k,!+1. Since Υ+
k! →

Υ+
k! due to hypothesis H+

k!, and ϕ+
k,!+1(·) is uniformly Lipschitz continuous, we have that

limN→∞ µ+
k,!+1 from line 17 in algorithm 3 converges almost surely as

lim
N→∞

〈
ϕ+

k,!+1(p
0
! ,p

+
k!,q

−
k,!+1,w!+1, Υ

+
k!)

〉
= E

[
ϕ+

k,!+1(P
0
! , P +

k!, Q
−
k,!+1, W!+1, Υ

+
k!)

]

= µ+
k,!+1, (54)

where µ+
k,!+1 is the value in line 17 in algorithm 4. Since T+

k,!+1(·) is continuous, we

have that λ+
k,!+1 in line 18 in algorithm 3 converges as limN→∞ λ+

k,!+1 = T+
k,!+1(µ

+
k,!+1, Υ

+
k!)

=:λ+
k,!+1, from line 18 in algorithm 4. Therefore, we have the limit

lim
N→∞

Υ+
k,!+1 = lim

N→∞
(Υ+

k,!,λ
+
k,!+1) = (Υ+

k,!,λ
+
k,!+1) = Υ+

k,!+1, (55)

which proves the convergence of the parameter lists stated in H+
k,!+1. Finally, using (55),

the empirical convergence of the matrix sequences p0
! , p+

k! and q−
k,!+1 and the uniform

Lipschitz continuity of the update function f+
k,!+1(·) we obtain that q+

k,!+1 equals

f+k,!+1(p
0
! ,p

−
k!,q

−
k,!+1,w!+1, Υ

+
k,!+1)

2⇒ f+
k,!+1(P

0
! , P−

k!, Q
−
k,!+1, W!+1, Υ

+
k,!+1) =: Q+

k,!+1,

which proves the claim (33) for H+
k,!+1. This completes the proof. #

https://doi.org/10.1088/1742-5468/ac3a75 29

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

An overview of the iterates in algorithm 3 is depicted in figure 3 (top) and (middle).
Theorem 2 shows that the rows of the iterates of algorithm 3 converge empirically with
second order moments to random variables defined in algorithm 4. The random variables
defined in algorithm 4 are depicted in figure 3 (bottom).

References

[1] Aubin B, Antoine M, Krzakala F, Macris N, Zdeborová L et al 2018 The committee machine: computational to
statistical gaps in learning a two-layers neural network Advances in Neural Information Processing Systems
pp 3223–34

[2] Barbier J, Krzakala F, Macris N, Miolane L and Zdeborová L 2019 Optimal errors and phase transitions in
high-dimensional generalized linear models Proc. Natl Acad. Sci. USA 116 5451–60

[3] Bayati M and Montanari A 2011 The dynamics of message passing on dense graphs, with applications to
compressed sensing IEEE Trans. Inf. Theory 57 764–85

[4] Bora A, Jalal A, Price E and Dimakis A G 2017 Compressed sensing using generative models Proc. ICML
[5] Byrne E, Chatalic A, Gribonval R and Schniter P 2019 Sketched clustering via hybrid approximate message

passing IEEE Trans. Signal Process. 67 4556–69
[6] Cakmak B, Winther O and Fleury B H 2014 S-AMP: approximate message passing for general matrix ensembles

Proc. IEEE ITW
[7] Cheng X, Chatterji N S, Abbasi-Yadkori Y, Bartlett P L and Jordan M I 2018 Sharp convergence rates for

Langevin dynamics in the nonconvex setting (arXiv:1805.01648)
[8] Cotter S F, Rao B D, Kjersti Engan K and Kreutz-Delgado K 2005 Sparse solutions to linear inverse problems

with multiple measurement vectors IEEE Trans. Signal Process. 53 2477–88
[9] Donoho D L, Maleki A and Montanari A 2009 Message-passing algorithms for compressed sensing Proc. Natl

Acad. Sci. 106 18914–9
[10] Donoho D L, Maleki A and Montanari A 2010 Message passing algorithms for compressed sensing Proc. of IEEE

Information Theory Workshop pp 1–5
[11] Emami M, Sahraee-Ardakan M, Pandit P, Rangan S and Fletcher A K 2020 Generalization error of generalized

linear models in high dimensions (arXiv:2005.00180)
[12] Fletcher A K, Rangan S and Schniter P 2018 Inference in deep networks in high dimensions Proc. of IEEE Int.

Symp. on Information Theory
[13] Fletcher A K, Sahraee-Ardakan M, Rangan S and Schniter P 2016 Expectation consistent approximate inference:

generalizations and convergence Proc. of IEEE Int. Symp. on Information Theory pp 190–4
[14] Gabrié M, Manoel A, Luneau C, Barbier J, Macris N, Krzakala F and Zdeborová L 2018 Entropy and mutual

information in models of deep neural networks Proc. NIPS
[15] Hand P and Voroninski V 2017 Global guarantees for enforcing deep generative priors by empirical risk

(arXiv:1705.07576)
[16] He H, Wen C-K and Jin S 2017 Generalized expectation consistent signal recovery for nonlinear measurements

2017 IEEE Int. Symp. on Information Theory (ISIT) (IEEE) pp 2333–7
[17] Kabashima Y 2003 A CDMA multiuser detection algorithm on the basis of belief propagation J. Phys. A: Math.

Gen. 36 11111
[18] Kabkab M, Samangouei P and Chellappa R 2018 Task-aware compressed sensing with generative adversarial

networks 32nd AAAI Conf. on Artificial Intelligence
[19] Keriven N, Bourrier A, Gribonval R and Pérez P 2017 Sketching for large-scale learning of mixture models Inf.

Inference A 7 447–508
[20] Keriven N, Tremblay N, Traonmilin Y and Gribonval R 2017 Compressive k -means IEEE Int. Conf. on Acoustics,

Speech and Signal Processing (ICASSP) (IEEE) pp 6369–73
[21] Kingma D P and Ba J 2014 Adam: a method for stochastic optimization (arXiv:1412.6980)
[22] Liang D, Ying L and Liang F 2009 Parallel MRI acceleration using M-FOCUSS Proc. of Int. Conf. on

Bioinformatics and Biomedical Engineering (IEEE) pp 1–4
[23] Liu J S 1994 Siegel’s formula via Stein’s identities Stat. Probab. Lett. 21 247–51
[24] Ma J and Ping L 2017 Orthogonal AMP IEEE Access 5 2020–33
[25] Manoel A, Krzakala F, Mézard M and Zdeborová L 2017 Multi-layer generalized linear estimation Proc. of IEEE

Int. Symp. on Information Theory pp 2098–102

https://doi.org/10.1088/1742-5468/ac3a75 30

J.S
tat.M

ech.
(2021)124004

Matrix inference and estimation in multi-layer models

[26] Manoel A, Krzakala F, Varoquaux G, Thirion B and Zdeborová L 2018 Approximate message-passing for convex
optimization with non-separable penalties (arXiv:1809.06304)

[27] Mei S, Montanari A and Nguyen P-M 2018 A mean field view of the landscape of two-layer neural networks
Proc. Natl Acad. Sci. USA 115 E7665–71

[28] Minka T P 2001 Expectation propagation for approximate Bayesian inference Proc. UAI pp 362–9
[29] Mixon D G and Villar S 2018 Sunlayer: stable denoising with generative networks (arXiv:1803.09319)
[30] Montanari A, Ruan F, Sohn Y and Yan J 2019 The generalization error of max-margin linear classifiers: high-

dimensional asymptotics in the overparametrized regime (arXiv:1911.01544)
[31] Obozinski G, Taskar B and Jordan M 2006 Multi-task feature selection Technical Report Statistics Department,

UC Berkeley p 2
[32] Opper M and Winther O 2005 Expectation consistent approximate inference J. Mach. Learn. Res. 6 2177–204
[33] Pandit P, Sahraee M, Rangan S and Fletcher A K 2019 Asymptotics of MAP inference in deep networks Proc.

of IEEE Int. Symp. on Information Theory pp 842–6
[34] Pandit P, Sahraee-Ardakan M, Rangan S, Schniter P and Fletcher A K 2020 Inference with deep generative

priors in high dimensions IEEE J. Sel. Areas Inf. Theory 1 336
[35] Rangan S, Schniter P and Fletcher A K 2019 Vector approximate message passing IEEE Trans. Inf. Theory 65

6664–84
[36] Reeves G 2017 Additivity of information in multilayer networks via additive Gaussian noise transforms Proc. of

Allerton Conf. on Communication, Control & Computing pp 1064–70
[37] Shah V and Hegde C 2018 Solving linear inverse problems using GAN priors: an algorithm with provable

guarantees IEEE Int. Conf. on Acoustics, Speech and Signal Processing pp 4609–13
[38] Takeuchi K 2017 Rigorous dynamics of expectation-propagation-based signal recovery from unitarily invariant

measurements Proc. of IEEE Int. Symp. on Information Theory pp 501–5
[39] Themelis A and Patrinos P 2020 Douglas–Rachford splitting and ADMM for nonconvex optimization: tight

convergence results SIAM J. Optim. 30 149–81
[40] Tresp V 2000 A Bayesian committee machine Neural Comput. 12 2719–41
[41] Tripathi S, Lipton Z C and Nguyen T Q 2018 Correction by projection: denoising images with generative

adversarial networks (arXiv:1803.04477)
[42] Tzagkarakis G, Milioris D and Tsakalides P 2010 Multiple-measurement Bayesian compressed sensing using

GSM priors for DOA estimation Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing (IEEE)
pp 2610–3

[43] Villani C 2008 Optimal Transport: Old and New vol 338 (Berlin: Springer) (https://doi.org/10.1007/978-3-540-
71050-9)

[44] Welling M and Yee W T 2011 Bayesian learning via stochastic gradient Langevin dynamics Proc. of 28th Int.
Conf. on Machine Learning pp 681–8

[45] Yeh R, Chen C, Lim T Y, Hasegawa-Johnson M and Do M N 2016 Semantic image inpainting with perceptual
and contextual losses (arXiv:1607.07539)

[46] Yi X, Caramanis C and Sanghavi S 2014 Alternating minimization for mixed linear regression Int. Conf. on
Machine Learning pp 613–21

[47] Ziniel J and Schniter P 2013 Efficient high-dimensional inference in the multiple measurement vector problem
IEEE Trans. Signal Process. 61 340–54

https://doi.org/10.1088/1742-5468/ac3a75 31

