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ABSTRACT

For image recovery problems, plug-and-play (PnP) methods have
been developed that replace the proximal step in an optimization al-
gorithm with a call to an application-specific denoiser, often imple-
mented using a deep neural network. Although such methods have
been successful, they can be improved. For example, the denoiser is
often trained using white Gaussian noise, while PnP’s denoiser in-
put error is often far from white and Gaussian, with statistics that
are difficult to predict from iteration to iteration. PnP methods based
on approximate message passing (AMP) are an exception, but only
when the forward operator behaves like a large random matrix. In
this work, we design a PnP method using the expectation consistent
(EC) approximation algorithm, a generalization of AMP, that offers
predictable error statistics at each iteration, from which a deep-net
denoiser can be effectively trained.

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a medical imaging approach
that uses magnetic fields to create detailed anatomical images. Al-
though MRI provides excellent soft-tissue contrast without the use of
ionizing radiation, it takes a long time to fully sample the measure-
ment space. Thus, it is common to take relatively few measurements
and apply sophisticated post-processing to reconstruct an accurate
image. Although our paper focuses on MRI, the methods we pro-
pose apply to any application where the goal is to recover a signal
from undersampled Fourier measurements.

The measurements y € C°™ collected in C-coil MRI, known
as “k-space” measurements, can be modeled as

M F Diag(s1)
y=Axo+w with A = : , (D

M F Diag(sc)

where 2o € CY is a vectorized version of the N-pixel image we
wish to recover, F' € CV*¥ is a unitary 2D discrete Fourier trans-
form (DFT), M € RM*¥ is a sampling mask formed from M
rows of the identity matrix I € RYXN 5. € C¥ is the cth coil-
sensitivity map, and w ~ N(0, I /v,,) is additive white Gaussian
noise (AWGN) with precision 7., (i.e., variance 1/7,). In the spe-
cial case of single-coil MRI, C' = 1 and s; = 1, the all-ones
vector. In this paper, we use the variable-density sampling masks
like that shown in Fig. 1. In MRI, the pixels-to-measurement ratio,
R £ N/M, is known as the “acceleration rate.” When R > 1, one
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Fig. 1: A variable-density sampling mask at R = 4.

cannot uniquely determine & from y due to the nullspace of A, and
so prior information about o is needed for its recovery.

To recover images from undersampled MRI measurements,
many methods have been proposed. Some are based on iterative
optimization [1,2], as described in the sequel. More recently, deep
neural networks (DNNs) that directly map MRI measurements y
to an image T have been proposed, e.g., [3,4]. Although such
DNNs work well, training them requires huge fully-sampled k-
space datasets (which may be difficult or impossible to obtain) and
changes in the acquisition parameters (e.g., sampling mask) from
training to testing can degrade performance [5].

In this work, we focus on the “plug and play” approach that it-
eratively calls a DNN for image denoising, which brings several ad-
vantages. First, DNN denoisers can be trained using image patches,
implying the need for relatively few images and no k-space data.
Second, the denoiser is trained independently of the acquisition pa-
rameters, so that it generalizes to any acquisition scenario. Our ap-
proach is based on the generalized expectation consistent (GEC) ap-
proximation algorithm from [6], which lives in the family of approx-
imate message passing (AMP) algorithms like [7, 8].

2. BACKGROUND

2.1. Compressed-sensing-based methods

The conventional approach to MRI image recovery [1, 2] is to pose
and solve an optimization problem of the form

T = arg min {g1(z) + g2(z) }, @)

where g1 (z) promotes measurement fidelity and g2 () is an image-
based regularizer. Typical choices are

gi(z) = 2|y — Az|? 3)

for (1) and g2(x) = A||®x||; with a suitable transform ¥ (e.g.,
wavelet or total-variation) and carefully chosen A > 0. Such g2
encourage sparsity in the transform coefficients Wa.
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Many algorithms have been proposed to solve (2) with convex
g1 and g2 [2]. For example, the alternating directions method of
multipliers (ADMM) [9] iterates

T1 4 Prox, -1, (x2 —u) (4a)
T2 + prox, -1, (x1 +u) (4b)
ueu+(m1fa;2), (4c)

where the proximal operator is defined as
proxp('r‘) éargm{in {p(az)+%\|:l:—1"||2}. (5)

In (4), v > 0 is a tunable stepsize that affects the speed of ADMM’s
convergence but not its fixed point.

2.2. Plug-and-play methods

The prox operator (5) can interpreted as a denoiser, in particu-
lar, the maximum a posteriori (MAP) estimator of oo with prior
p(xo) e~ 92(®0) from an observation * = o + e with ~-
precision AWGN e. Leveraging this fact, Bouman et al. [10] pro-
posed to replace ADMM line (4b) with a call to a high-performance
image denoiser f2(x) like BM3D [11] or DnCNN [12], giving
rise to “plug-and-play” (PnP) ADMM. PnP extensions of other al-
gorithms, such as primal-dual splitting (PDS) [13] and proximal
gradient (PG) [14], have also been proposed. As shown in the recent
overview paper, PnP methods have been shown to significantly out-
perform compressed-sensing-based approaches in MRI [5]. Note,
however, that when (4b) is replaced with a denoising step of the form
“@o < f2(x1 + u),” the stepsize v does affect the fixed-point [5]
and thus must be tuned.

Although PnP algorithms work well in MRI, there is room for
improvement. For example, while image denoisers are typically de-
signed/trained to remove the effects of AWGN, PnP algorithms do
not provide the denoiser with an AWGN-corrupted input at each it-
eration. Rather, the denoiser’s input error has iteration-dependent
statistics that are difficult to analyze or predict.

2.3. Approximate message passing

In (2), if we interpret g1 () as a log-likelihood and g» () as a log
prior, then Z can be interpreted as the MAP estimate of = from y.
However, because image recovery results are often judged by mean-
squared error (MSE), one may be more interested in the minimum
MSE (MMSE) estimate of @ from y. Interestingly, both MMSE
and MAP estimation are facilitated by approximate message passing
(AMP) methods like [7, 8].
For example, the AMP algorithm from [7] iterates

vt =3 (y — Az’ + o' tr{Vfé(wt71+AHvt)}) (6a)

Tt+1 — ﬁ”vt+1”2 (6b)
wt+1 — f2t+l(wt + AHvi+1) (6C)
overt = 0,1,2, ..., starting from v° = 0 = x°, where fi(-) is a

Lipschitz denoising function, tr{V f5(r)} is the trace of the Jaco-
bian of f} at 7, and 8 = N/||A||%. When configured for MAP esti-
mation, AMP uses the MAP denoiser f3(r) = prox_:,, (). When
configured for MMSE estimation, AMP instead uses the MMSE de-
noiser f3(r) = E{z | r} for r =  + w with w ~ N (0, 7'T).
Importantly, when the forward operator A is large and i.i.d. sub-
Gaussian, and when f3 is Lipschitz, the macroscopic behavior of
AMP is rigorously characterized by a scalar state-evolution [15,16].

When £ is the MMSE denoiser and the state-evolution has a unique
fixed point, AMP provably converges to the MMSE-optimal esti-
mate Zumse [15, 16]. For images, the MMSE denoiser can be ap-
proximated by BM3D or a DNN, as proposed in [17], leading to
“denoising-AMP” (D-AMP). There, the trace-Jacobian in (6a) is ap-
proximated using the Monte-Carlo approach [18]

te{Vf5(r)} = 8 "q"[fi(r + 5q) — Fi(r)], %)

with random g ~ N(0, I') and small § > 0.

More recently, the vector AMP (VAMP) algorithm [8] was pro-
posed, with similar properties as AMP (e.g., rigorous state evolution
and provable MMSE estimation) but applicability to a wider class of
random matrices: right orthogonally invariant (ROI) ones. Inspired
by D-AMP, a denoising VAMP (D-VAMP) was proposed in [19] and
analyzed in [20].

2.4. AMP for MRI

Neither AMP nor VAMP works as intended in MRI because A in (1)
lacks sufficient randomness. In fact, these algorithms tend to diverge
in MRI if applied without modification.

The failure of AMP and VAMP can be understood from their
error recursions. For AMP, the error recursion is [21]

et = (I-ATA)e" + AT('w—i—ﬁvt tr{Vfs(xo+e")}) (8)
t+1 _ ptt1 t+1
=f2( ) — o. )

It is important to keep in mind that images 2o have much more en-
ergy at low Fourier frequencies than at high ones. The same tends
to be true of the output error €’ of an image denoiser. Even so, if
A € RM*YN was large and i.i.d. (with zero mean and elementwise
variance ), then the I — AT A term in (8) would randomize €’
such that the denoiser input error vector €'t looks like AWGN. In
MRI, however, both A and €’ have Fourier structure, this random-
ization does not happen, and AMP behaves unpredictably. A similar
behavior plagues VAMP.

Several MRI-specific variations of AMP and VAMP have been
proposed to counter these deficiencies. For example, [22] proposed
D-AMP with a very small 3, which helps the algorithm converge, but
at the cost of degrading its fixed points. [23] proposed a damped D-
VAMP that, combined with a novel initialization, showed improved
performance and runtime over PnP-ADMM for MRI.

Several other VAMP-based algorithms for MRI have been de-
signed to recover the wavelet coefficients of the image rather than
the image itself. The motivation is that, in this case, A is a Fourier-
Wavelet matrix, which is approximately block diagonal [24], where
the blocks correspond to the wavelet subbands. With an appropri-
ate modification of VAMP, the subband error vectors can be made
to behave more like AWGN, albeit with different variances. The
first incarnation of this idea appeared in [25], where a fixed band-
wise normalization procedure was used. Later, for single-coil MRI
with variable-density sampling masks, a “variable density AMP”
(VDAMP) algorithm with band-specific adaptive wavelet threshold-
ing was proposed in [26], which was able to successfully predict the
noise variance in each subband at each iteration. More recently, the
D-VDAMP algorithm [27] extended VDAMP to DNN denoising in
each subband.

Although D-VDAMP is the state-of-the-art AMP algorithm for
MR, it is based on a non-standard modification of VAMP with de-
graded fixed points, which makes early stopping critical for good
performance. Also, it is not clear how to extend D-VDAMP to multi-
coil MRI. These issues motivate our approach, which is described
next.

€ xo+ e
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3. PROPOSED APPROACH

3.1. Denoising GEC

Our approach uses the GEC framework from [6], which is summa-
rized in Alg. 1. When solving a convex optimization problem of the
form (2), the functions f; in Alg. 1 take the form

fi(r,y) = gproxy, . (r), i=1,2, (10)

for the generalized proximal operator
gprox, ., (r) £ argmin {p(x) + 3z —r3}, (D

where ||q||4 £ +/q" Diag(+)q and Diag(-) creates a diagonal ma-
trix from its vector argument. Note that if v = 1, then gprox,, ,, =
prox.—1,. Furthermore, if the ~; vectors were held fixed over the
iterations and took the form «; = ;1, then Alg. 1 reduces to a vari-
ant of ADMM (4) with two dual updates: (4c) and a similar step
between (4a) and (4b). So, GEC can be interpreted as an ADMM-
like algorithm with two adaptive vector-valued stepsizes, «v1 and ~ys.

—1

Algorithm 1 Generalized EC (GEC)
Require: fi(-,), f2(-,-), and gdiag(:).
1: Select initial 71,1
2: repeat
3: /Il Measurement fidelity

4: 1« fi(ri,m)

5. m < Diag(gdiag(V fi(r1,7))) " 'm

6: Y2 =11 — 71

7 72 < Diag(y2) " (Diag(n:1)@1 — Diag(y1)r1)
8: // Denoising

9: To — fa(r2,2)

10:  m2 < Diag(gdiag(V f2(r2,72))) "'z

11: Y1 < M2 — Y2

12: r1 < Diag(v1) ™" (Diag(n2)Z2 — Diag(~z2)r2)
13: until Terminated

In lines 5 and 10, GEC averages the diagonal of the Jacobian
separately over L coefficient subsets using gdiag: RV *YN RY:

. t
gdiag(Q) £ [d11L1,...7dL1IVL]T, de = r{%;é}. (12)

In (12), Ny is the size of the /th subset and Qgr € R¢*N¢ is the (th
diagonal subblock of the matrix input Q. When L =1, GEC reduces
to VAMP.

We focus on the quadratic loss (3), which yields

fi(r,7) = (wA" A + Diag(v)) ' (7w Ay + Diag(+)r).
(13)

For f2, we propose to “plug in” a DNN denoiser. For both f; and
f2, we approximate the tr{Q¢,} term in (12) using

tr{Que} ~ 07" ql' [fi(r + dqe,v) — fi(r,y)], (14

where the (th coefficient subset in g is i.i.d. unit-variance Gaussian
and the others are zero. Inspired by D-AMP and D-VAMP, we call
this approach “denoising GEC” (D-GEC).

Fig. 2: Test images from http://mridata.org.

3.2. D-GEC for Image Recovery

Like [25-27], we recover the wavelet coefficients ¢y rather than the
image pixels xo. For orthogonal wavelet transform W, we have ¢ =
Y, and g = \I'Tco, so that we can rewrite (1) as

y=Bco+w with B2 A¥'. (15)

To apply D-GEC to co-recovery, we choose f; as in (13), but with
B in place of A, and for the diagonalization subsets we choose the
L = 3D +1 subbands of a depth-D 2D wavelet transform. As
in [27], we perform denoising in the wavelet domain using a denoiser
f- that can exploit knowledge of the noise variance in each wavelet
subband, as provided by the precision vector 2.

4. NUMERICAL EXPERIMENTS

We now compare the proposed D-GEC algorithm to the existing D-
VDAMP [27] and PnP-PDS [13] algorithms. Based on the extensive
experiments in [27], D-VDAMP is state-of-the-art among PnP algo-
rithms. PnP-PDS is a useful baseline, since it has the same fixed
points as PnP-ADMM and PnP-PG.

Denoisers: For a fair comparison to D-VDAMP [27], we use the
DNN denoiser proposed in [27], which is modification of DnCNN
[12] that accepts the noise standard deviation (SD) in each wavelet
subband. The denoiser was trained using noise that was white in
each subband but with SD that varies across subbands. In particu-
lar, 5 copies of the denoiser were trained using subband noise SDs
uniformly distributed in the ranges 0-10, 10-20, 20-50, 50-120, and
120-500, respectively. (Pixel values ranged from 0-255.) The DNNs
were trained using patches from 70 MRI images of the Stanford 2D
FSE dataset available at http://mridata.org. For PnP-PDS,
we used a standard DnCNN denoiser trained on the same data with
white noise of SD uniformly distributed in 20-50, as in [27]. Be-
cause we used real-valued images, the denoisers use only the real
part of the input and generate a real-valued output.

Test data: For evaluation, we used the ten 352x352 MRI images in
Fig. 2, which were not in the training dataset. The measurements y
were constructed using (1) with complex AWGN w whose variance
was adjusted to give a pre-masking SNR of 40 dB. For the multicoil
experiments, we used coil sensitivities s. simulated using the Biot-
Savart law, while in the single-coil case, we used s1 = 1.
Algorithm parameters: For D-GEC and D-VDAMP, we used a 2D
Haar wavelet transform with D = 4 levels, giving L = 13 wavelet
subbands. D-GEC used the auto-tuning scheme from [28] and the
damping scheme from [23] with parameter 0.4. D-VDAMP code
was obtained from the authors and run under default settings, which
are detailed in [27]. PnP-PDS was run for 200 iterations using the
stepsize that maximized PSNR on the training set.

Single-coil results: Table 1 shows that D-GEC outperformed D-
VDAMP in all single-coil experiments and outperformed PnP-PDS
in all but SSIM at R =8. Figure 5 shows an example of the wavelet
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Fig. 3: SD of D-GEC’s denoiser input versus iteration.
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Fig. 4: Example single-coil recoveries and error maps.
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Fig. 5: True coefficients, denoiser input, error (iteration 10).

C =1 coil C = 4 coils
R=4 R=38 R=4 R=38
method PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR  SSIM
PnP-PDS 40.66 0968 | 37.38  0.951 | 3471 0935 | 33.09 0917
D-VDAMP | 4236 0972 | 3592 0918 n/a n/a n/a n/a
D-GEC 4297 0977 | 37.65 0.946 | 4518 0.993 | 41.13 0.982

Table 1: Recovery results averaged over the 10 test images.

coefficients input to D-GEC’s denoiser at the 10th iteration, and their
error relative to the true coefficients. Figure 3 shows the evolution
of the standard deviation at the input to D-GEC’s denoiser in each
subband; there is a good agreement between true and predicted val-
ues. Figure 6 suggests that the subband errors are Gaussian. Figure 4
shows image recoveries and error maps for one test image at R = 4.
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Fig. 6: Wavelet coefficient QQ-plots showing Gaussianity.

Multi-coil results: Table 1 shows D-GEC significantly outperform-
ing PnP-PDS in PSNR and SSIM in the 4-coil case. D-VDAMP does
not support multi-coil recovery and thus is not shown.

5. CONCLUSION

We designed a GEC-based plug-and-play algorithm for MRI that
renders the subband errors white and Gaussian with predictable
variance, and used it with a denoiser trained to handle subband er-
rors that are white and Gaussian with known variance. Experiments
show good performance relative to previous approaches in single-
and multi-coil settings.
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