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Abstract—This paper proposes a novel machine-learning ap-
proach for predicting AC-OPF solutions that features a fast and
scalable training. It is motivated by the significant training time
needed by existing machine-learning approaches for predicting
AC-OPF. The proposed approach is a 2-stage methodology that
exploits a spatial decomposition of the power network that is
viewed as a set of regions. The first stage learns to predict
the flows and voltages on the buses and lines coupling the
regions, and the second stage trains, in parallel, the machine-
learning models for each region. The predictions can then seed
a power flow to eliminate the physical constraint violations,
resulting in minor violations only for the operational bound
constraints. Experimental results on the French transmission
system (up to 6,700 buses) and large test cases from the pglib
library (up to 9,000 buses) demonstrate the potential of the
approach. Within a short training time, the approach predicts
AC-OPF solutions with very high fidelity, producing significant
improvements over the state-of-the-art. The proposed approach
thus opens the possibility of training machine-learning models
quickly to respond to changes in operating conditions.

Index Terms—Optimal Power Flow; Machine Learning; Neu-
ral Networks; Network Decomposition;

I. INTRODUCTION

The AC Optimal Power Flow (AC-OPF) problem is at the
core of modern power system operations. It determines the
least-cost generation dispatch that meets the demand of the
power grid subject to engineering and physical constraints.
It is non-convex and NP-hard [1], and the basic block of
many applications, including security-constrained OPF [2],
[3], security-constrained unit commitment [4], optimal trans-
mission switching [5], capacitor placement [6], and expansion
planning [7], among others.

Machine learning has significant potential for real-time AC-
OPF applications for a variety of reasons [8]. A machine-
learning model can leverage large amount of historical data
and deliver extremely fast approximations (compared to an
AC-OPF solver). Recent work (e.g., [9], [8]) has indeed
shown that machine-learning approaches can predict AC-OPF
with high fidelity and minimal constraint violations, using
a combination of neural networks and Lagrangian duality.
However, the training times and memory requirements of these
machine-learning models can be quite significant, which limits
their potential applications.

This paper explores a fundamentally different avenue: the
design of a scalable machine-learning approach for predict-
ing AC-OPF solutions that can be trained quickly. Such an
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approach would make it possible to train a machine-learning
model quickly to accommodate new operating conditions. It
would also open the possibility of training different machine-
learning models for different time periods and to perform
simulations with many more scenarios and contingencies.

To achieve this goal, the paper proposes a 2-stage machine-
learning approach that exploits a spatial decomposition of
the power system. The power network is viewed as a set of
regions, the first stage learns to predict the flows and voltages
on the buses and lines coupling the regions, and the second
stage trains, in parallel, the machine-learning models for
each region. Experimental results on the French transmission
system (up to 6,700 buses and 9,000 lines) and other testcases
(with more than 9,000 buses and 16,000 lines) demonstrate
the potential of the approach. Within a short training time, the
approach predicts AC-OPF solutions with very high fidelity
and minor constraint violations, producing significant im-
provements over the state-of-the-art. Experimental results also
show that the predictions can seed a power-flow optimization
to return a solution within 0.05% of the AC-OPF objective,
while reducing running times significantly.

To our knowledge, the proposed approach is the first dis-
tributed training algorithm for learning AC-OPF for large-
scale network topology. It builds on top, and significantly
extends, prior work [9], [8] combining machine learning and
Lagrangian duality. Most importantly, the 2-stage approach
significantly reduces the dimensionality of the learning task,
allows the training to be performed in parallel for each region,
and dramatically shortens training times, opening new avenues
for machine learning in very large-scale system operations.
It is also the first approach that can learn AC-OPF on an
actual, large-scale tranmission system fast, even on reasonable
hardware configurations. It is also important to emphasize
that the proposed methodology is not restricted to AC-OPF
and/or supervised learning. It should also be applicable to
industrial Security-Constrained Economic Dispatch (SCED),
or to other security-constrained forrmulations. It can also be
applied to other learning approaches, such as reinforcement
learning methods based on neural networks for real-time OPF
that uses the existing state of the system.

II. RELATED WORK

Machine learning has attracted significant attention in the
power systems community: recent overviews of the various
approaches and applications can be found in [10], [11]. The
research on the AC-OPF can be classified into two categories:
supervised and reinforcement learning. On the supervised
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learning side, several approaches have been proposed for
learning the active set of constraints [12], [13], [14], [15], [16],
imitating the Newton-Raphson algorithm [17], or learning
warm-start points for speeding-up the optimization process
[18], [19]. Several approaches aim to predict optimal dispatch
decisions [20], [21], [22] but these were limited to small-case
studies. As mentioned earlier, this paper expands the work
from [9], [8] which has shown how deep learning can predict
AC-OPF for large test cases with high fidelity and minimal
constraint violations, using a combination of neural networks
and Lagrangian duality. [9] also showed how to exploit prior
solution or the system state and mentioned that the predictions
can be used to replace existing approximations that seed a
power flow. In the context of DC-OPEF, it is worth mentioning
the results of [23], [24] that provide formal guarantees on the
predictions of neural networks. The application of machine
learning to the security-constrained extension of the DC-OPF
is presented in [25], [26]. Note that these prior works all train
the model in a centralized fashion. The main contribution of
this paper is a distributed machine-learning scheme which is
fast and scalable. Several reinforcement-learning approaches
have also been proposed for the OPF [27], [28], [29], [30].
These approaches, which focus on solving real-time AC-OPF,
also use DNNs for approximating a mapping between the
state (loads) and the actions (generator, voltage setpoints)
of the agents, and their performance has been reported on
small topologies (up to 200 buses). The 2-stage methodology
proposed in this paper is particular intriguing in that context,
since it can boost these approaches by exploiting the spatial
and physical properties of the power system.

III. PRELIMINARIES

a) The AC Optimal Power Flow Problem: A power
network is modeled as an undirected graph (N, ) where N
and & are the set of buses and transmission lines. The set of
generators and loads are denoted by G and L. The goal of the
OPF is to determine the generator dispatch of minimal cost that
satisfies the load. The OPF constraints include engineering and
physical constraints. The OPF formulation is shown in Figure
1. The power flow equations are expressed in terms of complex
power of the form S=(p+jq), where p and ¢ denote the active
and reactive powers, admittances of the form Y = (g+ jb),
where ¢ and b denote the conductance and susceptance, and
voltages of the form V' =(vZ6), with magnitude v and phase
angle 6. The formulation uses v;,6;,p?, and ¢’ to denote
the voltage magnitude, phase angle, active power generation,
reactive power generation at bus ¢. Moreover, p;. and qlfj
denote the active and reactive power flows associated with
line (,7). The set .S; represents the set of shunts in bus 7.
The OPF receives as input the demand vectors p¢ and ¢¢ for
each bus ¢. The objective function captures the cost of the
generator dispatch. Typically, ¢;(-) is a linear or quadratic
function. Constraints (2), (3r), and (37¢) capture operating
bounds for the associated variables. The thermal limit for
line (4,j) is captured via constraint (4). Constraints (5r) and
(57) capture Ohm’s Law. Branch shunts are also considered in
the experimental results, but omitted from the formulation for
simplicity. Constraints (67) and (6¢) capture Kirchhoff’s Law.
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Fig. 1: The OPF Formulation.

b) Neural Network Architectures: Neural networks have
achieved tremendous success in approximating highly com-
plex, nonlinear mappings in various domains and applications.
A Neural Network (NN) consists of a series of layers, the
output of each layer being the input to the next layer. The NN
layers are often fully connected and the function connecting
the layers is given by o = 7(Wa + b), where € R” is
the input vector, o € R™ the output vector, W € R™*™ a
weight matrix, and b € R™ a bias vector. The function 7(-)
is non-linear (e.g., a rectified linear unit (ReLU)).

¢) Notations: The cardinality of set X is denoted by | X|.
[N] represents the set {1,2,..., N}. Vectors are displayed
using bold letters and * = [z, 2, ...,7,] . The element-
wise lower (resp. upper) bound of the vector x is denoted
by x (resp. ). In learning algorithms, the prediction for  is
denoted by .

IV. LEARNING AC-OPF
A. OPF Learning Goals

Given loads (p?,q?), the learning goal is to predict the
optimal control setpoints (p9,q?) of the generators, the bus
voltage v, and the phase angle difference A8 of the lines. This
task is equivalent to learning the complex, nonlinear, high-
dimensional mapping:

O : RAL| _y RIVIHIE2IG] 7

which maps the loads onto the optimal AC-OPF solution
returned by a deterministic solver. The input to the learning
task is a dataset

D = {(p%,q%)", (v, A0,p%,¢°)"}],

consisting of 7" instances specifying the inputs and outputs.

B. A Lagrangian Dual Model for Learning AC-OPF

One of the challenges of learning mapping O is the presence
of physical and engineering constraints. Ideally, given a NN
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O[w)] parameterized by weights w, the goal is to find the
optimal solution w* of the problem:

min Lo(ﬁa é)ﬁga (jg) (10)
st. (9,0,p9,¢%) = Olw](p?, q%)
(ﬁ7 é7 1597 égu ﬁf7 qf) SatiSfy (2)'(62)

where Ly denotes the average norm of the difference between
the ground truth and the predictions Lo (&) = = Zleﬂmt —
&'|| over all training instances, and (pf,§”’) are computed
using constraints (5r) and (57). However, it is unlikely that
there exist weights w such that the predictions actually satisfy
the AC-OPF constraints, since the learning task is a high-
dimensional regression task. However, ignoring the constraints
entirely leads to predictions that significantly violate the
problem constraints as shown in [8], [26]. The approach from
[9], [8] addresses this difficulty by using a Lagrangian dual
method relying on constraint violations. The violation of a
constraint f(x) > 0 is given by v.(x) = max{0,—f(x)},
while the violation of f(x) = 0 is v.(x) = |f(z)|. Problem
(10) can then be approximated by

min L\, w) =Lo(9,0,p9,¢%) + A&

s.t. (ﬁ,é,ﬁgﬁg) = O[w](pd,qd)

(11)

where A'o = Y cec Aee(8,0,P9,G9), A is the weight
for the violation of constraint ¢, and ¥, denotes the average
violation of constraint ¢ over all training instances. Again, the
satisfaction of the constraints (5r), (57) is guaranteed, since the
power flows are computed indirectly from these constraints.
For a fixed A, L(\, w) can be used as the loss function for
training the neural network. Moreover, the constraint weights
can be updated using a subgradient method that performs the
following operations in iteration j.

w’ = argmin LAYV w) (12)

N o= \U-D + pir(w)

Learning the mapping O is challenging for large-scale
topologies. For instance, it takes 7 hours to train a network
for a topology of 3500 buses [8]. This limits the potential
applications of neural networks in large power systems which
may be up to 50000 buses. Indeed, during operations, the
topology of the system may change from day to day through
line or bus switching, meaning that a different mapping
needs to be learned. Similarly, the mapping O depends on
the commitment decisions in the day-ahead markets, again
potentially changing the mapping to be learned.

The goal of this paper is to propose a fast training procedure
to learn the mapping O. Such a fast training procedure would
have many advantages: the NN model could be trained after
the day-ahead market clearing and/or in real time during
operations when the network topology changes, and it could
be tailored to the load profiles of specific times in the day
(e.g., 2:00pm-4:00pm). These considerations are important,
especially given the increasing share of renewable energy
in the energy mix and the increasing prediction errors. For
instance, a fast training procedure enables machine-learning

3

’ K \ maxyer) [NF| 7] H
3 2525 127
6 1653 279
12 1156 326

TABLE I: Maximum Region Sizes and Number of Coupling
Branches for Different Partitions of the French System.

models to be trained and refined at various times during the
day when forecasts on renewable energy sources are becoming
increasingly reliable.

C. Exploiting Network Sparsity

One possible avenue to obtain a fast training procedure is to
exploit the sparsity typically found in power system networks.
Consider a partition { ¥} of the buses, i.e.,

K

UN=N, NN =0k £K

k=1
Denote the generators and loads of region k by G* and £
respectively and define

EF={(i,j) e £:i,j e N*},k € [K].
EF =E\(UE_ &R, N© ={i:(i,j) € ETV(j,i) €&}

Here £F represents the lines within partition element k& and
£ the coupling lines that connect partition elements. In the
French transmission system, the test case in this paper, || =
6705, |€] = 8962, and |€] = 1.3x|N|. Moreover, the system is
organized in 12 geographical areas using 326 (3.6%) coupling
lines and maxye () |[N*| = 1156 (17.2%) buses. The trade-off
between the maximum region size and the number of coupling
branches is illustrated in Table I.

To leverage the network sparsity, a natural first attempt
would be to learn a mapping for each region, i.e.,

Ok R8T 5 RAIVHIH2IGY (k¢ [K]). (8)

The learning thus predicts the setpoints for generators in region
k using only the loads of the same region. These learning tasks
would be performed independently and in parallel. However,
it is obvious that the loads £* are not sufficient to determine
the optimal setpoints for generators G¥. In fact, O} is not even
a function, since two inputs for the loads LF in the training
set may be associated with different outputs due to loads in
other parts of the network.

D. Capturing Flows on Coupling Lines

Consider the simplistic power system depicted in Figure 2.
There are two areas, N'' = {1,2,3} and N? = {4,5,6},
which gives N = {3,4}, €7 = {(3,4),(4,3)}. The
mapping O views the setpoints for the generator at bus 2
(. 43) as a function of (p,qf,p{, ¢, pe, ¢, pi,qd). How-
ever, assume that flows (p473,q£73), along with the voltage
magnitudes v3, vy are fixed and respect constraints (4), (5r),
(51) associated with line (3,4). In that case, the setpoints for
the generator at bus 2 can be computed without the knowledge
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(rh.q) (%)
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(r%,q%)
(r7,97)

Fig. 2: A Simple Network With |[N] =6, |€] =7, |G| = 1,
and |£] = 4.

of (pf, qf, pd, 2, pd, 4): the vector (p] 5, qf 5, v3) encodes all
the information from area 2 needed to compute the generator
setpoint. Hence, one may attempt to express (p3,q5) as a
: d d f f ; ;
function of (pf,qf,py 3,44 3,v3) which decreases the input
size from 8 to 5. The input size decreases by 3 in this example
but the size reduction is significantly larger in actual systems.
With this in mind, the mappings in Equation 8 become

k —k —k k —k k k
ok . R2|E |[+HINTF421E77| 5 R‘N \NTF|+E7|+2|G"| 9)

where the coupling lines, buses of region k are defined as
E7F = {(i,j) e ET ieNF vje Nt}
N7F = NFAN®

O maps the loads in area k, the flows to area k, and
the voltage of the coupling buses to the optimal generator
setpoints in the area, i.e., the active and reactive outputs of the
regional generators, the phase angle differences of the regional
branches, and the voltage setpoints for the non-coupling buses
of the region. For large transmission systems, the input/output
dimensions of each mapping O are significantly smaller that
those of . The learning tasks can proceed in parallel and
their complexity is reduced, since each mappings OF is an
order of magnitude smaller in size than O.

Unfortunately, this approach has a key limitation: each
mapping OF can be learned from historical data but cannot
be used for prediction since the coupling flows and voltages
are not known at prediction time. Indeed, during training,
the learning task has access to the coupling values for each
instance. However, this is not true at prediction time. The next
section shows how to overcome this difficulty.

V. TWO-STAGE LEARNING OF AC-OPF

The fast training method for AC-OPF is a two-stage ap-
proach: the first stage is a NN that predicts the flow on the
coupling lines and the second stage is a collection of NN,
each of which approximates a mapping OF.

A. Learning Coupling Voltages & Flows
The goal of the first stage is to learn the mapping

O RULT 5 RVTIHIET (13)

Algorithm 1: The First-Stage Coupling Training.

1 Ae < 0,YVce C™
2 for i =1,2,...,epochs) do
3 for j = 1,2,...,epochs,, do

s (8°,A8") « 0 [w")(p?, q?)
LA, w0)  Lo(8%, A0°) + X ocpo Aeie(8°, 20"

5
6 w0 w® — aV 0L\ w?))
7 end
s Ae  Ae + ple, Vee CT
9 end

Result: Weights (w?)*

g%

(0", (¢")) ("), (¢"))

(9"
(p(lvq(l)

(r9,9%)

Fig. 3: Illustration of the Decomposition.

from the loads to the voltages magnitude v° of the coupling
buses and the phase angle difference A6° of the coupling
branches. Although the mapping considers all loads, it can be
learned fast (e.g., under 30 minutes) even for large networks,
because of the small number of coupling buses and lines. The
coupling flows are then computed indirectly via constraints
(5r) and (57). Let C* denote the set of constraints (2) for
i € N, and (4) and (57), (5¢) for (i,7) € £. The learning
task uses a neural network O** [w"] parameterized by weights
w" and predicts the coupling voltages (6073\9 ). The loss
function is given by:

—0 —0
Lo\ w’) =Lo(8°, A0 ) + Y Awe(d°,A0)
ceCe
The training follows equation (12) and the resulting optimal
weights (w®)* lead to the first-stage predictions

(8°,20") = 0= [(w°))(p, g%

and the resulting first-stage coupling flow predictions
(p%)°, (¢%)°. The first stage is summarized in Algorithm 1.

B. Training of Regional Systems

The training of the regional systems uses the first-stage
predictions for the coupling flows and voltages. Note however
that it could use the ground truth present in the instance data,
but experimental results have shown that this degrades the
overall prediction accuracy. The decoupling is illustrated in
Figure 3, where the voltages of the coupling buses 3 and 4
and the incoming/outgoing flows for each region are fixed to
the first-stage predictions.

To learn mappings OF (k € [K]), let C* denote the set
of constraints associated with region k, i.e., constraint (2) for
buses i € N* \ N7k, constraints (3r), (3i), (67), and (67)
for buses i € N'*, and constraints (4), (57), (53) for branches
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Algorithm 2: The Second-Stage Training For Sub-
Network k.

1 Ae + 0,YceCk

2 (89,88 O [(w)")(p?, ¢?)

3 Compute (pF)OF (GF)0F% via (57), (51)

4 for i =1,2,...,epochs) do

5 for j = 1,2,...,epochs,, do

6 (08, 28", (p9)*, (49)F)
OF[wk]((ph)*, (ah)*, 80*, (B7)"F, (7))
7 LE (X, wk)  Lo(8*, A8", ($9)*, (49)*) +

S ecck Aete((D, A0, p9,49,9°, (57)°, (§7)°)*)
wk — wk —aV i (LA, wh))

9 end
10 Ae < Ac + pie, Ve € Ck
11 end

Result: Weights (w”)*

(i,7) € EF. In particular, the power balance constraint (67),
(62) for region k becomes

P-i— Y )= > i ien*
(i) €€~ (if) EE"

== D @)= > d ien*
(i,§)€EEE (i,§)€EE

The learning task uses a collection {OF[w*]},c(x) of NNs
and the loss function for each regional net is given by

—k
LF(X, w") = Lo(9%, A0, (59)F, (§7)%)+

S Az(85, A8, (59, (§9)",8°F, (57)0F, (¢)°)
ceCFk
where %% is the first-stage prediction for the voltage magni-
tude of the coupling buses of region k& and (p¥)%*, (Gf)%*
the first-stage predictions for the incoming/outgoing flows
of region k. The training, summarized in Algorithm 2, is
performed using the approach in equation (12) and each region
can be trained in parallel. Line 2 predicts the voltage setpoints
for the coupling buses and the phase angle differences of
the coupling lines. Line 3 computes the predicted coupling
flows from these predictions. Line 6 computes the predictions
for region k given the current NN parameters and constraint
weights. Line 8 performs the back-propagation to update the
weights and line 10 updates the constraint weights.

C. Feasibility Restoration

Since the proposed learning method is a regression task, its
predictions will violate some constraints. This section proposes
two methods to obtain AC-feasible solutions.

1) Projection onto the AC-Feasible Set: This first method,
denoted by PROJ, is an optimization model to project the
prediction onto its closest feasible AC-OPF solution, i.e.,

min |[p? — p9|[5 + ||v — B|[3
st (2) - (6)

5
Find v,0,p9,q?
subject to:
v; = max(min(9;,;),v;),0; =0, Vi € N1
p! =0,¢] =0, Vi € N
v; = max(min(d;,7;),v;),pf = max(min(ﬁf,ﬁf),gf), Vi e N3

(57), (57), (67), (67)

Fig. 4: The Power-Flow Formulation.

2) Power Flow: The second method follows the approach
used in practice and applies the ubiquitous Power Flow (PF)
to the predictions. See, for instance, [31][Chapter 6] for a
detailed presentation of the power flow problem. PF partitions
the buses of the system in three categories, i.e., the slack bus
(N1), the P-Q buses (N>), and the P-V buses (NV3), and fixes
two variables at each bus depending on its type. The Power-
Flow model is a system of 2|\/| equations depicted in Figure
4 and the predictions are used to fix variables p?,v; for the
P-V buses. Since these predictions may have slight bound
violations, they are clamped between their lower and upper
bounds. PF ignores the operational bound constraints and the
cost of the dispatch, but it returns a solution that satisfies the
physical constraints of the system.

Power flow algorithms used in practice are substantially
more involved than the model shown in Figure 4 and excutes
multiple phases. It is outside the scope of the paper to
reproduce them. However, to improve the satisfaction of the
bound constraints, the experimental results use a two-phase
approach. Since the constraint violations arising when solving
PF mostly concern reactive power bounds, a second PF phase
frees the voltage variables from the PV buses and transforms
them into P-Q buses using the reactive power predictions.

VI. EXPERIMENTAL RESULTS

This section presents the core experimental results. Section
IX-A in the appendix discusses the sensitivity of the models
to the size of the training dataset, and Section IX-B illustrates
how the proposed approach can be used to train a machine-
learning model quickly when operating conditions change.

A. Experimental Setting

The AC-OPF, ProJ, and PF optimization models were
solved in a centralized fashion using the under JuMP package
for with Julia 1.5.4 with the nonlinear solver IPOPT [32] and
with the linear solver MAS57 and tolerance 10~°. The linear
solver MAS7 significantly decreases solving times compared
to the default linear solver. The configuration uses 2.5 GHz-
i7 Intel Cores and 16GB of RAM. In total, 10* load pro-
files, which correspond to feasible AC-OPF problems, were
generated for each test case. 80% of these instances were
used for training and the remaining 20% for testing. The
learning models were implemented using PyTorch [33] and
trained using NVidia Tesla V100 GPUs with 16GB of memory.
The Pytorch package automatically computes gradients. The
training of each network utilizes mini-batches of size 120 and
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the learning rate o was set to be decreasing from 1073 to
1075, while p was set to 1073, All the data utilized by the
learning and optimization procedures are in per-unit.

This section includes a comparison between model O that
directly approximates mapping O with the proposed two-stage
approach . The first-stage learning model of D is a NN with
two fully connected subnetworks with ReLLU activation with
sizes 2|L| x N x [N | and 2| L] x |E¥7| x |E¥?] for the volt-
age magnitudes and phase angle differences respectively. For
each region, each NN topology consists of 4 fully connected
subnetworks with ReLU activation, one for each predicted
variable. The subnetworks have one hidden layer and size
2|LF| x 3|LF| x |G¥|. Model O is similar in structure and has
four fully-connected subnetworks of size 2|L| x 3|L] x |G|.
The learning models were allocated 90 minutes of training
time. Model O was trained using the centralized equivalent of
Algorithm 2 which was presented in [8]. For D, 30 minutes
is allocated to the first stage, and 60 minutes to the second
stage. The training window does not necessarily need to be 90
minutes. Depending on the operational needs, larger or smaller
windows may be considered.

B. Load Profiles

The test cases (Table II) are parts of the actual French
Transmission System. France is the French transmission
system, France_EHV is the very high-voltage French system,
and France_LYON is France_EHV with a detailed repre-
sentation of the Lyon region. The French system is organized
in 12 geographical regions. The dataset is generated by taking
into account this geographical information. A load [ in region
k with nominal value (p?, ¢%)° is generated by

(r?,q%) = (a+ " +4")((r")°, (¢1)°)

where the following coefficients are randomly drawn from the
following distributions

o ~ Uniform[0.875,0.975]
B ~ Uniform[—0.025,0.025], Vk € [K]
4! ~ Uniform[—0.0025, 0.0025], Vi€ L

The term o captures the system-wide load level, while 5* is
associated with differences in the loads between regions (e.g.,
due to potentially different weather conditions). The difference
in coefficients may be up to 5% for two different regions.
Finally, 7' is the uncorrelated noise added to each individual
load with a range of 0.5% of its nominal value.

The resulting dataset captures realistic load profiles: the
uniform load perturbation, the load level differences between
the regions, and the fixed active, reactive power ratio repre-
sent the typical behavior for aggregated demand in a large-
scale topology spanning several geographic regions. Randomly
perturbing each individual load in an uncorrelated fashion
would produce unrealistic load profiles: they would lead to
an unnecessarily challenging learning task that would need to
capture an exponential number of unrealistic behaviors of the
power system. To highlight this point, Figure 5 depicts the
actual consumption for three French regions over a 12 hour

Consumption (MW)
11000

10500
10000
9500
9000

8500

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00

——Auvergne-Rhéne-Alpes Grand-Est Hauts-de-France

Fig. 5: Consumption for Three Regions in the French System
over a 12-hour Interval.

interval. Observe the strong correlation of the demand between
the three regions. However, the correlation is not perfect and
the ratios between the regional loads vary by small factors.
The term S, is used to account for this behavior. The resulting
load profiles range from 0.85 of the nominal to the nominal
load. This 15% difference is typical over a 12-hour interval as
shown in Figure 5.

C. First-stage Predictions

This section presents the prediction errors of the first stage.
The training time was limited to 30 minutes. Table III contains
aggregate results for the active and reactive powers of the
coupling branches, as well the voltage magnitudes, for all
three test cases. The results are an average over all instances
and coupling branches. The average error is close to 1 MW
for the largest two test cases: France and France_Lyon.
Meanwhile, the 95-Quantile indicates that 95% of the pre-
dictions result in an error less that 5 MW. In the smaller
France_EHV, the errors are slightly higher reaching 3.5 MW
on average. Given that the nominal load of the France system
is 50,000 MW) and the nominal flow values are greater than
100 MW and up go to 1,000 MW), these results indicate
that the prediction errors are small in percentage for all test
cases. Table III also shows that the voltage magnitudes are
predicted very accurately. Figure 6 contains detailed results on
the active part of the flows of the coupling branches for the
France test case, showing consistent results across all tested
instances. The 95% quantile graph indicates that the prediction
errors exceed 5 MW only for a very small percentage of the
test cases and branches. 9241_pegase has a total load of
300,000 MW (others have a load around 50,000 MW), which
explains why the prediction error seems larger: in percentage
terms, the accuracy is similar.

D. Performance of the Learning Models

This section compares the model O that directly approx-
imates the mapping O (Equation 7) with the proposed two-
stage approach . The results show that D outperforms O
and is more scalable. The comparison is performed on the
smaller systems, France_EHV and France_LYON, which
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TABLE II: The Power System Networks with Regional Information

Benchmark ‘ [N €| |£] |G| ‘ K |NEIE Fhad ‘ Nom. Load
France_EHV | 1737 2350 1731 290 | 12 [338, 280, 233, 179, 143, 126, 124, 72, 67, 64, 57, 54] 148 | 51949 MW
France_Lyon | 3411 4499 3273 771 | 12 [1158, 357, 294, 288, 264, 255, 231, 197, 184, 67, 62, 54] 219 | 52394 MW

4661_sdet | 4661 5997 2683 724 | 22 [921, 724, 661, 352, 306, 197, ..., 73, 69, 66, 61, 58, 50] 269 | 88204 MW

France 6705 8962 6262 1708 | 12 [1156, 796, 748, 746, 627, 517, 497, 395, 325, 322, 298, 278] 326 | 54708 MW
9241_pegase | 9241 16049 4895 1445 | 24  [1354, 1203, 1078, 985, 809, 682, ..., 59, 54, 52, 33,22, 13] 402 | 312354 MW
7 (MW) | v (P.U) Model O Model D
Benchmark Avg  95% Quantile Avg 95% Quantile Benchmark Avg 95% Avg 95%
— - — Quantile Quantile
France_EHV 3.43 11.91 25 -10 76 - 10
France Lyon | 125 4.89 27 105 82.10-5 France_EHV | 39-1075 125-107° | 22-1075 61-107°
1661_sdet | 2.15 7.86 117 -10-°  305-10-° France_Lyon | 45-107° 127.107° | 22.107° 78.107°
France 0.99 411 50 10-°  153-10° 0 4661_sdet | - - 78-107°  258-10°
9241_pegase | 9.96 35.59 701005 222.10°° France - - 25-107°  84-107°
9241_pegase | - - 39-107°  126-107°

TABLE III: Absolute Errors for the Voltage Magnitude at the
Coupling Buses and the Active Power Flow of the Coupling
Branches.

Active Power Flow error

25, —— Average
—— 95-Quantile
20
=15
=
10
5 L L i s b tb bt il Ll
1 sk bt b y . .
v
0
0 250 500 750 1000 1250 1500 1750 2000
Instances

Fig. 6: Prediction Errors (Average and 95% Quantile) over
all Testing Instances for the Active Flow of the Coupling
Branches for Testcase France. The Instances are Sorted in
Increasing Order of Average Error.

represent the high-voltage French system and the high-voltage
French with a detailed representation of the Lyon region.
Experimental results on the full French system are only given
for model D, since the original model exceeds the capacity
of the GPU memory. Results for model D are also reported
for two additional benchmarks from the pglib library [34],
4661_sdet and 9241_pegase which include zonal infor-
mation. The comparison consists of three parts. The first part
reports the accuracy for variables (9,p?) (that are directly
predicted) and the indirectly predicted j)f . The second part
considers constraint violations. The third part discusses how
the predictions can be used to seed an optimization model that
restores feasibility.

1) Prediction Accuracy: Figure 7 illustrate the convergence
of the two models for the predicted variables ©,p? for a
specific bus and generator from the France_LYON test case.
The x-axis corresponds to test instances sorted by increasing
system load. There is significant volatility in the ground
truth values since instances that are close in the x-axis do

TABLE IV: Prediction Errors for Voltage Magnitudes.

Model O Model D
Benchmark Avg  95% Quantile | Avg  95% Quantile
France_EHV 8.41 50.82 0.84 3.27
France_Lyon | 8.93 47.54 0.30 0.94
4661_sdet - - 2.45 12.27
France - - 0.19 0.70
9241_pegase - - 3.31 16.52

TABLE V: Prediction Errors (MW) for Active Power.

Model O Model D
Benchmark Avg  95% Quantile | Avg  95% Quantile
France_EHV 4.53 16.88 2.01 4.20
France_Lyon | 8.43 32.20 0.82 1.91
4661_sdet - - 1.38 4.48
France - - 0.45 1.04
9241_pegase - - 0.91 3.95

TABLE VI: Prediction Errors (MW) for Active Power Flows.

Model O Model D
Benchmark v pI v p9I
France_EHV | 99.90 98.46 | 99.74 99.94
France_Lyon | 99.72 99.24 | 99.91  99.99
4661_sdet - - 99.78  99.79
France - - 99.97  99.99
9241_pegase - - 99.50  99.50

TABLE VII: Percentage of AC-OPF bound Constraints with
Violations under 1 MW (for p9) and under 10~* P.U. (for 9)

not necessarily correspond to similar load vectors. Indeed, a
similar overall system load may exhibit significant regional
load differences. The results demonstrate that, for voltage
magnitudes, model O has significant errors. The same hold
for active power. In constrast, model D closely follows the
ground truth for voltage magnitudes and exhibits minor errors
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Fig. 7: Convergence of O and D Illustrated for a Bus and Generator.
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Fig. 8: Prediction Errors for the France System using Model D.
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Model O Model D
Benchmark Avg  95% Quantile | Avg  95% Quantile
France_EHV 4.49 16.20 4.82 9.77
France_Lyon 18.65 100.36 1.91 4.67
4661_sdet - - 2.56 9.76
France - - 1.05 2.39
9241_pegase - - 1.04 3.41

TABLE VIII: Violations of Active Power Balance Constraints

(MW).
PrOJ(0) ProOI(D) PF(D)

Benchmark Avg Max Avg Max Avg Max
France_EHV 0.036 0.193 | 0.026 0.119 | 0.012 0.053
France_Lyon | 0.281 0.987 | 0.016 0.071 | 0.002 0.022
4661_sdet - - 0.058 0.093 | 0.013 0.031
France - - 0.012 0.030 | 0.006 0.023
9241_pegase - - 0.029 0.059 | 0.014 0.032

TABLE IX: Differences in Objective Values (in %) between
the Feasibility Restorations and the AC-OPF Objective.

for active power predictions. The difference between the two
models is quite striking.

Tables IV, V, and VI summarize the prediction errors over
all testcases, buses, generators, and lines, as well the 95%
Quantile. The tables omit all power results for generators that
are either off for all instances (due to potentially high cost) or

0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

l Benchmark [ Model PrROJ(Q)  Model PrOJ(D) ‘
France_EHV 23 17
France_Lyon 35 13

4661_sdet — 72
France — 146
9241_pegase — 172

TABLE X: Average [y Distances (in MW) Between the Pro-
jection Restorations and the AC Dispatch.

constantly producing at their respective upper bounds (due to
low cost). For voltage magnitudes, model D divides the error in
half compared to model Q. This difference is significant for the
prediction of the power flows and constraint violations. Figure
8 demonstrates that model ID scales to the size of the France
system and continues to produce highly accurate predictions.
For active power, model delivers predictions whose errors are
an order of magnitude smaller than those of model Q. The
average errors are below 1 MW, which is small compared
to the total system load (~ 50,000 MW). Again, Figure
8 demonstrates that model D) nicely scales to the France
system. The benefits of model D are abundantly clear for the
power flow predictions p/, which are indirectly predicted as a
function of the predictions ¢ and 6. For France_LYON, the
second largest test case, model O results in large errors (up
to 50 MW). In contrast, model D results in minor errors, with
95% of the predictions having an error of at most 1.04 MW
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(2) (3r) (39) 4)
Benchmark Sat (%) Avg (P.U) Sat (%) Avg (MW) | Sat (%) Avg (MVaR) | Sat (%) Avg (MVA)
France_EHV 99.47 1.6 x 1074 99.69 2.98 99.57 0.79 100.00 -
France_Lyon 99.77 1.2 x 1074 99.91 1.88 98.78 0.12 100.00 —
4661_sdet 99.88 2.9 x 1074 99.83 2.90 99.07 3.92 99.86 0.85
France 99.88 2.0 x 1074 99.95 0.94 99.78 0.13 99.99 1.10
9241_pegase 99.49 2.3 x 1074 99.97 5.65 98.86 1.43 99.98 3.80

TABLE XI: Percentage of Satisfied Constraints and Average Violations for Violated Constraints of PF(DD).

PrOJ(O) ProJ(D) PF(D) AC-OPF
Benchmark Avg Max Avg Max Avg Max Avg Max
France_EHV 2.98 4.49 2.90 4.04 0.57 0.75 4.42 5.31
France_Lyon | 6.41 11.35 | 6.33 9.30 1.19 1.46 9.10 14.47
4661_sdet - - 11.53 14.17 | 2.18 2.31 13.67 15.25
France - - 24.14  30.82 | 3.02 3.46 35.50 44.61
9241_pegase | - - 31.66 41.85 | 3.97 4.91 36.86  59.26

TABLE XII: Computing Times of the Feasibility Restorations and AC-OPF (in Seconds).

in the largest benchmark. Compared to the overall system
scale, these errors are small in percentage. Note that accurate
predictions for power flows are critical for low violation
degrees of the AC-OPF constraints.

2) Feasibility: Table VII reports the constraint violations
for the bounds on active power and voltage magnitude (con-
straints (2), (37)). Model D has minor violations for 99.9% of
the active balance constraints (Table VIII). Again, model D has
an average violations of 1.05 MW in the France test case,
which is insignificant compared to the scale of the system.

3) Feasibility Restoration Analysis: This section shows
how to use model D for applications requiring a high-quality
feasible solution. Table IX reports the differences in objective
values between the feasibility restoration and the AC-OPF
solution, i.e.,

cost

- | x 100%
cost oo

where cost denotes the cost after restoration and costac
denotes the AC-OPF cost. PROJ(D) is within < 0.06% on
average of the AC-OPF solution and one magnitude smaller
compared to PROJ(OQ) on France_Lyon. Moreover, the
objective value difference is on average < 0.015% for all
benchmarks when the predictions from D seed the power-
flow restoration. The power-flow restoration always satisfies
the physical constraints but may have some minor violations
of bound constraints. Table XI reports these violations and
shows that at least 98.5%, and typically 99.5%, of the bound
constraints are satisfied and that the violations are minor.
More advanced power flows would further reduce these minor
violations. Note that these violations explain why the objective
values of PROJ(ID) may be higher than those of PF(D).

In terms of computational efficiency, model D delivers a
prediction in a few milliseconds, which makes it sufficient
to compare the optimization results only. Table XII compares
the execution times of the feasibility restoration and the AC-
OPF optimizations. The results demonstrate that the power-

flow optimization is significantly faster compared to the AC-
OPF optimization for all the benchmarks. Its running time is
under 5 seconds even in the largest testcase. This indicates
that a combination of machine learning and optimization is
beneficial to speed-up AC-OPF optimization with neglibigle
objective difference and operational bound violations.

VII. DISCUSSION

There is a complexity trade-off between the two stages of
the approach. The size of the first-stage model depends on
the number of coupling branches (£7), while the complexity
of the second stage depends on the maximum region size
(maxye(g] N *|). Decomposing the system into fewer number
of regions leads to smaller |£¢7| and a smaller learning model
for the first stage, but results in larger second-stage models
which might be similar in size to the entire system, thus
negating any benefits of the two-stage approach. Conversely,
decomposing the system into a larger number of regions leads
to smaller second-stage models, but also a larger learning
model for the first stage.

In per-unit representation, small errors in voltage mag-
nitudes may translate into significant error in AC power
flows, due to the physics of power-flow equations (57)-(57)
which involve a series of multiplications between voltage and
admittance values. Branches with low impedance values (e.g.,
shorter lines) will result in large admittance values, hence
boosting the errors on the power flows due to voltage predic-
tion errors. It is an interesting research direction to investigate
how best to decouple a network for machine learning. Intu-
itively, the first-stage learning should differentiate branches
based on admittance values, with more focus on selecting
coupling branches with higher impedance, thus ensuring that
minor inaccuracies in voltage magnitude will not lead to large
errors for the indirectly predicted power flows.

There are several interesting avenues to broaden the scope of
the proposed approach, First, incorporating line and generator
contingencies is critical in actual operations. Appendix IX-B
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presents a transfer learning approach for /N —1 line contingen-
cies and preliminary results are encouraging. Second, actual
operations rely on a set of commitment decisions, generator
bids, and renewable generation predictions; these vary over
time and thus raise interesting challenges. In this context, the
fast training procedure proposed in this paper has a significant
advantage over slow training schemes since it can be trained
after the Day-ahead Unit Commitment where the generator
bids and commitments for the next day are known. A thorough
comparison of all these results is needed however, to compare
different approaches.

VIII. CONCLUSION

This paper considered the design of a fast and scalable
training for a machine-learning model that predicts AC-OPF
solutions. It was motivated by the facts that (1) more accurate
forecasts, topology optimization, and the stochasticity induced
in renewable energy may lead to fundamentally different AC-
OPF instances; and (2) existing machine-learning algorithms
for AC-OPF require significant training time and do not scale
to the size of real transmission systems. The paper proposed
a novel 2-stage approach that exploits a spatial network
decomposition. The power network is viewed as a set of
regions, the first stage learns to predict the flows and voltages
on the coupling buses and lines, and the second stage trains,
in parallel, the machine-learning models for each region.
Experimental results on the French transmission system (up
to 6,700 buses) and pglib test cases with up to 9,000 buses)
demonstrate the potential of the approach. Within a training
time of 90 minutes, the approach predicts AC-OPF solutions
with very high fidelity (e.g., an average error of 1 MW for
an overall load of 50 GW) and minor constraint violations,
producing significant improvements over the state-of-the-art.
The predictions can then seed a power flow to eliminate the
physical constraint violations, resulting in minor violations
only for the operational bound constraints. Future work will
focus on generalizing the approach to security-constrained
OPF, by studying how to merge the algorithm proposed in
[3] to the AC setting and the proposed 2-stage approach, and
applying the method to reinforcement-learning approaches to
real-time optimal power flows.
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IX. APPENDIX
A. Sensitivity to the Size of the Training Set

This section studies the sensitivity of the first-stage model
D, which learns the mapping O, to the size of the training
set. It considers the two largest test cases, France and
9241_pegase, and training sets that consist of 1, 10, 50, 100
percents of the original training set (8,000 entries). Figure 9
reports the accuracy as a function of the size of the training set
for 9241 _pegase: the testing error significantly decreases
when the size of the training set increases from 1% to 10%.
Moreover, there is a monotone decrease in the error, both
in the average and for the 95% quantile, when the training
size increases from 10% to 100%. The behavior is similar for
France (Figure 10). Note that the errors for the 100% entries
correspond to the values reported in Table III for the coupling
flows.
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B. Transfer Learning under Line Contingency

This section presents preliminary results about a very fast
procedure to re-train a learning model when a line contingency
occurs. The case study can be summarized as follows.

1) The operator has trained a collection of (first and second-
stage) models that approximate the behavior of the system
in the nominal case.

2) A line contingency occurs in the system and the operator
would like a machine-learning model to approximate the
behavior of the power system under this contingency.

3) Training data for this contingency is available from
reliability studies and high-fidelity simulations.
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This section explores how to exploit the weights of existing
machine-learning models for the nominal case in order to
generate new machine-learning models for the contingency
state. For simplicity, it focuses on contingencies for the
coupling lines, which are particularly important. Indeed, the
experiments consider lines with some of the largest flows:
for France and 9241_pegase, these lines carry ~ 500
and ~ 1500 MW, respectively. Like in the nominal case,
the experiments assume a training set of 8,000 entries. The
training is given 15 minutes which is the frequency of the Look
Ahead Commitment (LAC) for an ISO like MISO. The first
stage is allocated 5 minutes and the second stage is allocated
the remaining time. The results compare two training methods:

e Cold: The cold-start training does not consider a-priori
information from the nominal case.

e Warm: The warm-start training uses the weights of the
nominal case as initial values for the contingency state.

Comprehensive results are reported in Table XIII for the
largest two benchmarks, France and 9241_pegase, where
five line contingencies are considered for each benchmark.
For comparison purposes, the results for the cold-start (90
minutes) training on the nominal case are displayed again
as the first line of each test case. The main take-away is
that the warm-start training (15 minutes) for a contingency
has prediction errors and constraints violations similar to the
cold-start training (90 minutes) for the nominal case, which
demonstrates the possibility of very fast training. The warm-
start training significantly outperforms the cold-start training
for these contingencies, indicating a strong correlation in the
OPF behavior between the nominal case and the contingency
cases. In terms of active power pY, the warm-start model
halves the error of the cold-start model for France and
produces noticeable improvements for 9241_pegase. The
error differences are significant for voltage magnitudes and
active power flows, with improvements by one order of mag-
nitude. Finally, the warm-start training benefits are evident for
constraint violations with one order of magnitude improvement
for the power balance constraint (67) in both benchmarks.
Regarding the operational bound constraints (2) and (3r), the
improvement is also clear especially in the 9241 pegase
case. Overall, these results highlight a promising avenue for
the decomposition methodology proposed in the paper: its
ability to train machine-learning models very fast in response
to contingencies.
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p9 error (MW) | v error (P.U. x107°) pf error (MW) | (67) viol. (MW) (2) sat. (%) (3r) sat. (%)
Benchmark Warm  Cold Warm  Cold Warm  Cold Warm  Cold Warm  Cold Warm  Cold
France - nom — 0.19 — 25 — 0.45 — 1.05 — 99.97 | — 99.99
France - 1 0.24 0.81 20 265 1.00 22.53 | 2.49 57.78 99.97 99.86 | 99.99 99.75
France - 2 0.27 0.53 19 152 1.02 15.10 | 2.51 38.63 99.78  99.68 | 99.98  99.90
France - 3 0.22 0.55 19 193 0.80 19.53 | 1.97 50.24 99.97 99.58 | 99.99 99.82
France - 4 0.27 0.55 19 188 0.85 17.42 | 2.06 44.67 99.97 99.64 | 99.98 99.82
France — 5 0.21 0.56 18 188 0.82 14.76 | 2.04 37.52 99.97 99.80 | 99.98 99.89
9241_pegase - nom | — 3.31 — 39 — 0.91 — 1.04 — 99.50 | — 99.50
9241_pegase - 1 3.80 6.80 39 204 1.05 10.11 | 1.43 28.71 99.31 98.81 | 99.14 97.31
9241_pegase - 2 4.82 5.46 40 165 1.11 5.85 1.66 15.27 99.74 98.32 | 98.86 97.77
9241_pegase - 3 3.46 4.54 34 116 0.99 6.49 1.29 17.49 99.63 98.83 | 99.34 97.84
9241_pegase - 4 4.51 5.32 37 131 1.11 6.22 1.58 16.58 99.53  99.01 | 98.90 97.07
9241_pegase - 5 3.50 4.89 35 164 0.96 5.98 1.16 15.73 99.61 97.54 | 99.42 97.89

TABLE XIII: Accuracy of Warm & Cold-Start Models For Contingency Case.
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