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Computationally hard problems, including combinatorial optimization, can be mapped into 
the problem of finding the ground-state of an Ising Hamiltonian. Building physical systems 
with collective computational ability and distributed parallel processing capability can 
accelerate the ground-state search. Here, we present a continuous-time dynamical system 
(CTDS) approach where the ground-state solution appears as stable points or attractor states 
of the CTDS. We harness the emergent dynamics of a network of phase-transition nano-
oscillators (PTNO) to build an Ising Hamiltonian solver. The hardware fabric comprises of 
electrically coupled injection-locked stochastic PTNOs with bi-stable phases emulating 
artificial Ising spins. We demonstrate the ability of the stochastic PTNO-CTDS to 
progressively find more optimal solution by increasing the strength of the injection-locking 
signal – akin to performing classical annealing. We demonstrate in silico that the PTNO-
CTDS prototype solves a benchmark non-deterministic polynomial time (NP)-hard Max-Cut 
problem with high probability of success. Using experimentally calibrated numerical 
simulations and incorporating non-idealities, we investigate the performance of our Ising 
Hamiltonian solver on dense Max-Cut problems with increasing graph size. We report a high 
energy-efficiency of 1.3x107 solutions/sec/Watt for 100-node dense Max-cut problems which 
translates to a 5x improvement over the recently demonstrated memristor-based Hopfield 
network and several orders of magnitude improvement over other candidates such as CPU 
and GPU, quantum annealer and photonic Ising solver approaches. Such an energy efficient 
hardware exhibiting high solution-throughput/Watt can find applications in industrial 
planning and manufacturing, defense and cyber-security, bioinformatics and drug 
discovery. 
 
Combinatorial optimization is ubiquitous in various fields such as artificial intelligence, 
bioinformatics, drug discovery, cryptography, quantitative finance, operations research, resource 
allocation, trajectory and route planning. Such problems belong to the NP-hard or NP-complete 
complexity class, requiring computational resources (time and/or energy) that scale exponentially 
with the problem size. Interestingly, many combinatorial optimization problems can be translated 
into another fundamental physics problem of finding the ground state of an Ising model (1) (or its 
equivalent Quadratic Unconstrained Binary Optimization (QUBO) problem (2)). The Ising model, 
describing the property of spin glass, was put forward as a tool of statistical physics to explain the 
phenomenon of ferromagnetism. The Ising Hamiltonian with 𝑁 discrete spins 𝜎#$%$& ∈ {−1,+1}& 
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and a symmetric coupling matrix 𝐽 in the absence of an external magnetic field is given by 𝐻 =
−∑ 𝐽%2&

%3# 𝜎%𝜎2.  
 
Finding the ground state of Ising model belongs to the NP-hard complexity class (3) and can be 
extended to other NP-hard and NP-complete problems including all of Karp's twenty-one NP-
complete problems through polynomial time mapping (4). Solving the Ising model using exact 
methods such as the branch-and-bound algorithm are often limited to problem sizes of only a few 
hundred variables. Alternatively, approximate algorithms or heuristics  and stochastic approaches 
such as semidefinite program (5), breakout local search (6), metropolis algorithm (7) and simulated 
annealing (8) are widely used in digital computers to find an optimal or near-optimal solution. 
Even for moderately sized problem instances, the time to find a near-optimal solution can become 
prohibitively large. Hence, there is a growing interest towards finding hardware approaches, 
beyond digital CMOS, that can solve large-scale constrained optimization problems efficiently. 
Recently, various schemes for building annealing-inspired non-von Neumann processors, called 
Ising machines, have been devised on a variety of technology platforms. These include super-
conducting qubit-based adiabatic quantum computing (AQC) and quantum annealing (9, 10), 
digital and mixed-signal complementary metal-oxide-semiconductor (CMOS) annealers (11–13) 
and coherent networks of degenerate optical parametric oscillators (14, 15). Qubit-based quantum 
annealers incur high cost and complexity arising from operation in cryogenic environment. The 
optical coherent Ising machine has shown competitive performance compared to the quantum 
annealer (16), but requires long fiber ring cavity for implementing Ising spins using temporal 
multiplexing and extremely fast (and power hungry) field-programmable gate array (FPGA) for 
implementing coupling in a measure-and-feedback scheme (15). Digital CMOS annealers (11–13) 
rely on an external source for random number generation for introducing stochasticity and find it 
technologically challenging to maintain true randomness in CMOS implementation,  while 
requiring significant post-processing. 
 
In this work, we propose and demonstrate an electronic phase-transition nano-oscillator (PTNO)-
based Ising Hamiltonian solver utilizing the concept of continuous-time dynamical system 
(CDTS). Specifically, the “phase” state variable 𝜃(𝑡) is used to represent the Ising spin and the 
coupling between the oscillators mimic the Ising interaction. By carefully choosing the coupling 
matrix, the optimization problem can be encoded onto the PTNO network such that the Ising 
energy is represented as the internal “energy” or the Lyapunov function 𝐸(𝜃) of the PTNO 
network and the stable point (or the attractor state) of the network represents the solution of the 
problem. The continuous-time dynamics of the PTNO network and the evolution of the oscillator 
phases 𝜃(𝑡) will then be determined by the inherent energy minimization property of the network 

and can be described by 
9:(;)
9;

= − <=(:)
<:

. A vast repertoire of such emergent dynamics exhibited 
by dynamical systems has been exploited across a wide range of fields from understanding neural 
activity (17–19) to robotic locomotion control (20, 21) to solving optimization problems using 
discrete-time Hopfield networks (22, 23). The main advantage provided by PTNO-based Ising 
solver is its inherent distributed nature and continuous-time dynamics that allows completely 
synchronous updates of all the Ising spins. This drastically brings down the time for each anneal 
cycle to one oscillation time period and consequently the time-to-solution. Additionally, the 
PTNOs operate at room temperature and consume extremely low power which translates to an 
extremely competitive energy-efficiency. 
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Overview of PTNO-based CTDS as an Ising Hamiltonian solver  
The combinatorial optimization problem is reformulated in terms of the Ising Hamiltonian 𝐻 
defined by the spin vector 𝜎⃗,	 and the symmetric coupling matrix 𝐽 and mapped onto the Ising 
solver as shown in Fig. 1(a) and (b). Each Ising spin, representing a node in the graph is emulated 
by an insulator-to-metal phase-transition (IMT) nano-oscillator. A PTNO comprises a two-
terminal phase-transition hysteretic device in series with a transistor as shown in Fig. 1(c). We use 
Vanadium Dioxide (VO2) as a prototypical IMT material in our experiments (24). A false-colored 
SEM image of a two-terminal VO2 of length = 100nm used in our experiments is shown in Fig. 
1(c). The working principle of VO2-based PTNO has been reported earlier elsewhere (20, 25, 26). 
Below the phase-transition temperature and under zero external electric field or current, VO2 
shows insulating behavior. Upon application of an electric field across the two terminals of the 
device that forces current to flow through, the material undergoes an abrupt phase transition from 
insulating to metallic state. The hysteretic phase transition is reflected as an abrupt hysteretic 
current-voltage (I-V) characteristic of the device. Pairing a conventional n-type metal–oxide–
semiconductor (NMOS) transistor in series with the VO2 such that the load line passes through the 
unstable region of the I-V curve results in self-sustained oscillations as show in fig. 1(c). We used 
VDD = 2V and a gate voltage VGS = 0.8V in our experiments. We create a highly interconnected 
PTNO-network where the coupling matrix W is derived from the adjacency or coupling matrix 𝐽 
of the Ising model as shown in Fig. 1(a) and (b). In this example of Ising model with 
antiferromagnetic interactions, the presence of an edge between two nodes is denoted as 𝐽 = −1 
and is represented by a coupling capacitance 𝐶A .  
 
Fig.1(d) shows an overview of the experimental setup of the PTNO-based CTDS. The main 
computing kernel comprises eight PTNOs connected using coupling capacitance following the 
coupling matrix W. The fabricated VO2 device array (labeled as 1-8 in Fig. 1(d)) is connected with 
eight NMOS transistors in series to create eight PTNOs. To emulate artificial Ising spins 𝜎⃗, an 
external injection locking signal 𝑆C&D  is applied to all the oscillators using injection capacitances 
𝐶C&D. As explained later, this creates bi-stable oscillator phases	𝜃 that are used as state variables 
for computing. The continuous-time dynamics of the network is dictated by an “energy” or the 
Lyapunov function 𝐸(𝜃) that closely resembles the Ising Hamiltonian 𝐻. The dynamics of the 
network evolves continuously in time, so as to naturally minimize 𝐸(𝜃), and in the process 
minimizes the Ising Hamiltonian to reach the ground state as shown in Fig. 1(e). Once the network 
reaches an energy minima state, the output of the network is read out in terms of the state variables 
𝜃 and subsequently reformulated to provide the optimal solution of the original optimization 
problem. One formidable challenge in solving combinatorial optimization problem is the 
inevitable increase in the complexity of the energy landscape with the problem size. Specifically, 
the presence of a large number of local minima degrades the probability of reaching a global 
optimum. Stochasticity is a well-known technique utilized in Boltzmann machines and simulated 
annealing, to overcome the issue of getting trapped in local minima. In the latter case, a stochastic 
noise is used to perturb the state of the system and the magnitude of noise is reduced slowly over 
time (replicated as a change in the temperature parameter in the algorithm) as the system 
approaches the global optimum. In our system, we exploit the inherent stochasticity present in the 
IMT material (27) to escape the local minima as well as introduce a novel way of gradually 
reducing the temporal fluctuations in the oscillator phases by increasing the strength of the 
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injection locking signal 𝑆C&D . This allows us to perform classical annealing operation and obtain 
progressively better solutions as illustrated schematically in Fig. 1(e). 
 
Artificial Ising spin 
The binary degrees of freedom in the phase space of PTNOs arises from the phenomenon of second 
harmonic injection locking. We apply a sinusoidal injection locking signal 𝑆%E2 =
𝑉%E2𝑠𝑖𝑛(2𝜋𝑓%E2𝑡) with 𝑓%E2 = 2𝑓M as an external input to the oscillators across the capacitor  𝐶%E2 =
20	𝑝𝐹 as shown in Fig. 1(d). When 𝑉%E2 = 0, the oscillator is free running. Fig. 2(a, i) shows the 
voltage output waveform 𝑉QR; measured over multiple runs. The corresponding phase of the 
oscillator, measured with respect to a reference sinusoidal signal of same frequency 𝑓M, shows a 
constantly varying phase with a uniform probability distribution over the entire phase space as 
seen Fig. 2(b, i). In contrast, when the oscillator is perturbed with 𝑆%E2  at the first harmonic, i.e. 
𝑓%E2 ≈ 𝑓M also referred to as first harmonic injection locking (FHIL), 𝑉QR; shows a constant 800 
phase locking configuration with 𝑆%E2  as seen in Fig. 2(a, ii). The probability distribution of the 
phase, measured over multiple runs, shows a single gaussian distribution as shown in Fig. 2(b, ii). 
Interestingly, when 𝑓%E2 ≈ 2𝑓M, the oscillator waveform shows both in-phase (400) and out-of-
phase (2200) injection locking configuration when measured over multiple runs as seen in Fig. 2(a, 
iii). The corresponding probability distribution shown in Fig. 2(b, iii) exhibits a double gaussian 
distribution highlighting an equiprobable and bi-stable phase portrait. This bi-stability provides an 
ideal means to encode the Ising spin in the electrical domain, where phase 400 represents up-spin, 
i.e., = +1 , and phase 2200 represents down-spin, i.e., 𝜎 = −1.  
 
The continuous-time dynamics of the phase difference 𝜃 between the oscillator and the injection 
locking signal can be described by a generalized version of Adler’s equation (Gen-Adler) given 
by  
                          9:(;)

9;
= −T𝑓%E2 − 𝑛U𝑓QV + 𝐾%E2U ∫ 𝜉(𝜃(𝑡) + 𝜗)	𝑐𝑜𝑠(𝜗)	𝑑𝜗^_

M                               (1) 
 
where 𝑛U is the nth harmonic of the IMT nano-oscillator and 𝐾%E2U = 	2𝜋𝑛U𝑓Q𝑓%E2𝐶%E2𝑉%E2 	. The first 
term describes the frequency mismatch between 𝑉QR; and 𝑆%E2 , which contributes to phase slipping. 
The second term depends on the phase delay incurred due to the perturbation caused by 𝑆%E2  and 
is described in terms of the perturbation-projection-vector (PPV), 𝜉 (see Supplementary 
information section S1 and S3 for details). The corresponding “energy” function or Lyapunov 
function of the oscillator is given by 
 
                          𝐸(𝜃) = T𝑓%E2 − 𝑛U𝑓MV𝜃 − 𝐾%E2U ∫ ∫ 𝜉(𝜙 + 𝜗)	𝑐𝑜𝑠(𝜗)	𝑑𝜗^_

M
:
M 𝑑𝜙                             (2) 

 
The first energy term comes from the contribution of the frequency mismatch that creates an 
overall bias in the energy landscape. However, this being a linear term does not introduce any 
additional valleys or peaks in the energy landscape. The second term describes the interaction 
between the injection locking signal and the oscillator. The corresponding probability distribution 

of the oscillator’s phase can be calculated as 𝑃(𝜃%) =
bcdTefV/h

i
, where 𝑍 = ∑ 𝑒l=(:f)/m%  is the 

partition function and 𝜂 is analogous to the  𝑘𝑇 term in the Boltzmann distribution and can be 
interpreted as a measure of the stochastic noise in the IMT oscillator. Expectedly, with zero 
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injection locking, the “energy” function of the oscillator stays flat as shown in Fig. 2(b) indicating 
a uniform distribution over the phase space as is experimentally obtained in Fig. 2(a). For first 
harmonic injection locking (FHIL), as long as the relative frequency difference T𝑓%E2 − 𝑓QV is small 
compared to the second term in equation, 9:(;)

9;
= 0 exhibits one stable point at 𝜃 ≅ 0.4𝜋, i.e. one 

injection-locked equilibrium phase and the calculated 𝐸(𝜃) (assuming zero frequency mismatch) 
displays a single energy minima. This results in a single gaussian peak in the probability 
distribution of the oscillator’s phase as verified experimentally. In the case of SHIL, 9:(;)

9;
 exhibits 

two stable points at 𝜃 ≅ 0.2𝜋 and 𝜃 ≅ 1.2𝜋, i.e. two equilibrium phases. The calculated 𝐸(𝜃) 
(assuming zero frequency mismatch) evolves into a double well energy landscape that results in a 
double gaussian distribution in the phase space as reproduced faithfully in the measurements (see 
Supplementary information section S1 and S3 for further details). 
 
The steady-state analysis of the Gen-Adler equation in the case of SHIL also predicts that, in the 
presence of a frequency mismatch between the oscillator and the injection locking signal, there 
exists a critical amplitude of the injection signal 𝑉%E2  below which no stable solution exists. In our 
experiments, this critical amplitude is close to 1V for a frequency mismatch of 0.1% as observed 
in the measurements. Above this threshold, the bi-stability in the phase space begins to appear. 
Fig. 2(c) shows the measured oscillator phase as a function of the amplitude of the injection signal, 
𝑉%E2 . For very low 𝑉%E2  close to the critical value, the phase of the oscillator measured over multiple 
runs shows a wide distribution in the phase space, with the distribution narrowing as 𝑉%E2  increases. 
This behavior can be understood by considering the perturbation in the energy landscape as shown 
in Fig. 2(e) for 𝑉%E2  = 1V, 3V and 5V. For 𝑉%E2 = 1𝑉, the energy barrier 𝐸t  separating the two 
stable equilibrium phases is low (around 𝐸t =0.006 calculated from Eq. 3). Hence, in the presence 
of stochastic noise, the oscillator’s phase constantly fluctuates between the two stable phases as 
seen in the Fig. 2(d). An increase in 𝑉%E2	to 3V and 5V increases the barrier height 𝐸t  to 0.012 and 
0.02, respectively. This reduces the fluctuations in the measured oscillator’s phase. This is 
reflected in the experimentally measured mean time between each phase flip, referred to as the 
dwell time 𝜏vwbxx  (analogous to Neel relaxation time for magnetization) as a function of 𝑉%E2 as 
shown in Fig. 2(f). The increase in 𝜏vwbxx  with increasing 𝑉%E2  accurately follows the  Arrhenius’s 

relation 𝜏vwbxx = 𝛼𝜏M𝑒
dz
h , where 𝜏M =

#
{|

 is the characteristic or attempt time (equal to the  time 
period of the oscillator), 𝛼 is the fitting parameter and 𝜂 is the stochastic noise in the IMT oscillator. 
This characteristic of reduction in the temporal fluctuations of the oscillator’s phase with 
increasing amplitude of injection locking signal proves to be key knob towards performing 
classical annealing in our hardware. 
 
Replicating the interaction term in the Ising Hamiltonian  
To implement a PTNO-based Ising solver that can replicate an artificial Ising spin system, the 
oscillators need to be connected to one another using coupling elements that emulate the 
ferromagnetic and antiferromagnetic nature of interaction. We first study the nature of interaction 
in a pairwise coupled oscillator system as shown schematically in Fig. 3(a) using capacitance 𝐶A  
as the coupling element. Fig. 3(b) shows the experimentally measured phase distribution of the 
two oscillators using an injection locking capacitance 𝐶%E2 = 20	𝑝𝐹 and coupling capacitance 
𝐶A = 56	𝑝𝐹. The oscillators remain out-of-phase with each other and the two configurations: (400, 
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2200) and (2200, 400) are two equally probable states. We measured the probability of out-of-phase 
configuration for varying coupling strength as shown in Fig. 3(c). The probability remains close 
to 0.5 for low coupling capacitance, meaning both in-phase and out-of-phase configurations are 
equally probable, and increases close to 1 for stronger coupling. We also compare our experimental 
results with experimentally calibrated PPV-based numerical simulations (methodology described 
in the Materials and Methods section later) as shown in Fig. 3(c) showing excellent agreement. To 
understand the exact nature of capacitive coupling, we compare it with a 2-spin Ising model with 
antiferromagnetic interaction (negative 𝐽) where the individual spins prefer to remain anti-parallel 
with one another. In such a system, the probability of one of the possible configurations- (↑↑, ↓↓, ↑
↓, ↓↑) is determined by the Boltzmann distribution 𝑃(𝜎#, 𝜎^) = 𝑒lU(ÅÇ,ÅÉ)/ÑÖ 𝑍⁄ , where 𝑇 is 
temperature and 𝑍 = ∑ 𝑒lU(ÅáÇ,ÅáÉ)/ÑÖÅáÇ,ÅáÉ  is the partition function. With antiferromagnetic 
interaction (negative 𝐽), the probability for anti-parallel configuration (↑↓, ↓↑) increases upon 
varying the interaction strength from 𝐽 = 0	to −2. Thus, the antiferromagnetic interaction in an 
Ising Hamiltonian can be faithfully replicated using capacitive coupling in this IMT nano-
oscillator-based system.  
 
Mathematically, the continuous-time dynamics of such a PTNO network can be further described 
by extending Eq. 2 and Eq. 3 to incorporate an additional coupling term and is given by  
 

9:f(;)
9;

= −T𝑓%E2 − 𝑛U𝑓Q,%V + 𝐾%E2,%U ∫ 𝜉%(𝜃%	(𝑡) + 𝜗)	𝑐𝑜𝑠(𝜗)	𝑑𝜗
^_
M                                                                                            

																																						+𝑓M ∑ ∫ 𝜉%(𝜃(𝑡) + 𝜗)	𝐼Qâä,2	𝑑𝜗
^_
M

&
23#,2ã%                         (3) 

 
where 𝐼Qâä,2 = 𝐶A,2

9åçéè,2
9;

. The additional third term describes the coupling interaction energy 
between pairs of oscillators. The corresponding “total energy” function or the global Lyapunov 
function of the PTNO-CTDS is then given by  

𝐸T𝜃V = 	êT𝑓%E2 − 𝑛U𝑓MV𝜃%

&

%3#

− 𝐾%E2U êë ë 𝜉%(𝜙 + 𝜗)	𝑐𝑜𝑠(𝜗)	𝑑𝜗
^_

M

:f

M

𝑑𝜙
&

%3#

 

																													−𝑓M ∑ ∫ ∫ 𝜉%(𝜙 + 𝜗)𝐼Qâä,2𝑑𝜗
^_
M

:f
M 𝑑𝜙&

%,23#,%ã2                                                  (4) 
 
We use Eq. 4 to calculate the two-dimensional energy landscape for pairwise capacitively coupled 
IMT nano-oscillators as shown in Fig. 3(b). The calculated energy landscape exhibits four stable 
points or attractor states – two degenerate global minima at the out-of-phase configuration and two 
degenerate local minima at in-phase configuration. By increasing the strength of the capacitive 
coupling, the attractor states for the out-of-phase configuration becomes more prominent.  
 
A similar investigation is performed for pairwise resistively coupled oscillators as shown 
schematically in Fig. 3(d). Contrary to the previous case, the measured oscillator phases as well as 
numerical simulations reveal a higher probability to be in-phase with each other in either (400,400) 
or (2200,2200) configuration as shown in Fig. 3(e) for a coupling resistance of 𝑅A = 40𝑘Ω. To 
establish the nature of resistive coupling, the probability of in-phase configuration is measured as 
a function of varying 𝑅A  and compared to a 2-spin Ising model with ferromagnetic interaction 
(positive 𝐽). Note that a lower 𝑅A  represent a higher coupling strength and hence a higher 𝐽. The 
increase in the probability of in-phase configuration with decreasing 𝑅A , i.e. increasing coupling 
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strength, agrees well with the theoretical Ising model that predicts an increase in probability of 
parallel configuration (↑↑, ↓↓) for increasing 𝐽 as shown in Fig. 3(f). We also use Eq. 4 with 𝐼Qâä,2 =
− åçéè,î

ïñ,î
 to calculate the two-dimensional energy landscape as shown in Fig. 3(e), revealing two 

global and two local energy minima for in-phase and out-of-phase configurations, respectively. 
This establishes that a ferromagnetic interaction can be replicated using resistive coupling in out 
PTNO-CTDS based Ising solver. By increasing the strength of the resistive coupling, the attractor 
states for the in-phase configuration becomes more prominent. 
 
Experimental Demonstration of Max-Cut and Performance Enhancement with Annealing 
We investigate the performance of the PTNO-CTDS-based Ising Hamiltonian solver on a NP-hard 
graph problem of Max-Cut for an undirected and unweighted graph. The Max-Cut problem 
statement is defined as: Given an undirected graph G = (V, E) with V nodes and E non-negative 
weights on its edges, the problem requires partitioning G into two subsets W and X such that the 
total weight on the edges connecting the two subsets is maximized. The Max-Cut problem can be 
formulated into an equivalent Ising problem using antiferromagnetic interaction (𝐽 = −1) and we 
assume the linear Zeeman term to be zero. The cut size for a given spin configuration 𝜎⃗ has a direct 
mapping to the Ising Hamiltonian 𝐻(𝜎⃗), given by 𝐶(𝜎⃗	) = − #

^
∑ 𝐽%2#$%ó2$& − #

^
𝐻(𝜎⃗). As such, 

minimizing the Ising Hamiltonian 𝐻 maximizes the cut-set 𝐶. We chose an undirected and 
unweighted Mobius Ladder graph with 8 nodes as shown in Fig. 4(a) for our experiment. The 
phases of the oscillators 𝜃 are converted to the Ising spins 𝜎⃗ using discretization windows in the 
phase space (see Methods section for detail). The PTNOs are connected following the adjacency 
(or connectivity) matrix of the given graph G using coupling capacitances of equal magnitude. The 
sinusoidal injection locking signal at twice the oscillator frequency 𝑓M is applied across the 
injection capacitances. We implement a linear annealing schedule where the amplitude of the 
injection locking signal 𝑉%E2  is linearly ramped from zero to a maximum of 10V peak-to-peak over 
an annealing time 𝑇òEEbòx. This is followed by a phase readout time 𝑇ôbò9QR;. Thus, the total 
computation time 𝑇äQöõ = 𝑇òEEbòx + 𝑇ôbò9QR;. To experimentally investigate the efficacy of 
annealing, we vary the annealing time 𝑇òEEbòx as shown schematically in Fig. 4(b). For all the 
cases, we keep 𝑇ôbò9QR; fixed at 100 oscillation cycles, while 𝑇òEEbòx is varied from 0 (representing 
no anneal scenario) to 660 oscillation cycles. 
 
Fig. 4(c) shows, for a single run, the evolution of the phases of the PTNOs for 𝑇òEEbòx = 3.7	𝑚𝑠. 
The equivalent number of oscillations is calculated as 𝑁Qâä = 250	𝑐𝑦𝑐𝑙𝑒𝑠. The temporal evolution 
of the Ising energy and the resultant cut set 𝐶 is shown in Fig. 4(d) for the case of no anneal and 
250 cycle anneal. For the case of no anneal, the application of a high 𝑉%E2  immediately binarizes 
the phases of the PTNOs. Hence, the corresponding temporal evolution of the Ising energy shows 
a steep descent. However, as highlighted in Fig. 2(f), the high 𝑉%E2  results in a high dwell time that 
significantly reduces the temporal fluctuations in the oscillator phases. Thus, with very little 
freedom to escape the local minima, the network converges to a sub-optimal solution with a higher 
energy. On the other hand, when we linearly increase 𝑉%E2  over 250 cycles, the dwell time 
exponentially increases as highlighted in Fig. 2(f) and the temporal fluctuations in the oscillator 
phases gradually reduce. The network slowly performs energy minimization with more freedom 
to escape the local minima and converges to the optimal solution with a higher probability as 
shown in Fig. 4(d). Thus, we can perform classical annealing in our PTNO-CTDS by controlling 
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the temporal fluctuation in the oscillator phases which is very similar to that of simulated annealing 
with a decaying noise (or temperature). To quantify the performance of the PTNO-CTDS for 
varying annealing conditions, we run the network multiple times to calculate the success 
probability for finding the Max-Cut on this graph instance. The success probability is defined as 
the ratio of the number of trials that returned the true ground-state energy to the total number of 
trials. To obtain the  true ground-state energy for comparison, we run the same graph instance 
using the BiqMac solver that executes an exact algorithm (branch-and-bound) on a digital CPU 
(28) and using a QUBO software called qbsolv (29) developed by D-Wave. Fig. 4(e) shows the 
success probability increasing with the annealing cycles. The scenario of no anneal resulted in a 
success probability of 30% obtained experimentally while increasing 𝑇òEEbòx to over 600 cycles 
resulted in a success probability of 96%. It is to be noted that the measured performance of our 
Ising solver is limited by the parasitics introduced by the experimental setup. One major 
contributor is the parasitic coupling capacitances 𝐶A,°  arising from the breadboard.  The presence 
of a large 𝐶A,° (estimated to be around 22pF in our experiment) introduces undesired coupling 
among the oscillators in addition to the intended coupling 𝐶A  determined by the adjacency matrix 
and hence lowers the success probability (see supplementary section S8 for details). To compare 
with experimental results, we perform numerical simulations for an 8-oscillator network coupled 
using capacitances as shown in Fig. 4(a). We use a PPV-based framework with experimentally 
calibrated device and circuit parameters. The simulation details are delineated in the Methods 
section and supplementary section S2 and S8. We also introduce the same annealing scheme as 
our experiments. The success probability obtained from the simulations show very good agreement 
with our experimental results as shown in Fig. 4(e). Overall, the experimental and simulation 
results validate our proposed methodology of progressively obtaining better solutions through 
annealing. The excellent agreement of our numerical simulations with experimental results also 
enables us to use the simulation framework to predict the performance of the PTNO-CTDS for 
larger problem size. 
 
Scaling with Problem Size 
Next, we use the experimentally calibrated PPV-based numerical simulation framework to explore 
and benchmark the performance of our PTNO-CTDS-based Ising solver for solving Max-Cut with 
increasing problem size. It is to be noted that such analog computing using CTDS exhibits an 
inevitable challenge arising from parasitics and variability as we scale up to larger network size. 
As such, in our simulation framework, we incorporate the non-idealities such as interconnect/wire 
parasitics in terms of line-to-ground capacitance, line-to-line capacitance and frequency variability 
among the oscillators. The coupling capacitance 𝐶A  is optimally chosen in our simulations such 
that the parasitic coupling capacitance remains an order or magnitude lower. This ensures that we 
obtain high success probability (see supplementary section S6 and S8). The simulation details are 
highlighted in the Method section and supplementary sections S6 and S7. We first start by 
investigating the performance of the Ising solver on a 100 node Mobius Ladder graph which is a 
regular cubic graph of degree 3 as shown in Fig. 5(a). We use a linear anneal scheme where the 
amplitude of the SHIL is increased over 500 cycles. Fig. 5(b) shows the temporal evolution of the 
oscillator phases governed by the process of energy minimization. Fig. 5(c) shows the decrease in 
the Ising energy accompanied by an increase in the cut size as the network evolves towards the 
ground state configuration. We run the simulation 100 times to calculate a success probability of 
94%. Next, we extend the investigation to random cubic graphs of degree 3 for different problem 
sizes ranging from 10 to 100 nodes. Fig. 5(d) shows the success probability with increasing 
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problem size. We compare simulation results for three different anneal cycles – 100, 500 and 1000. 
It is seen that, for 100 node problems, the success probability reduces to 15% for a short anneal 
time of 100 cycles. Increasing the anneal time to 500 and 1000 cycles boosts the success 
probability to 44% and 86%, respectively. Fig. 5(e) shows the success probability for dense Max-
Cut problems (connectivity of 50%) as a function of problem size and different anneal cycles. For 
the 100-node graph, the success probability increases from 10% for a short anneal time of 100 
cycles to 27% and 80% for 500 and 1000 cycles, respectively. Overall, we see that for increasing 
problem size, it becomes difficult to find the global optimal solution. However, reducing the 
reduction in success probability can be mitigated by increasing the number of cycles. Note that, 
here we report the success probability for obtaining the absolute ground state or the optimum Max-
Cut value. Relaxing the solution accuracy to 99% or 95% of the optimum Max-Cut value will incur 
a much higher success probability. This means that the PTNO-CTDS is capable of finding near-
optimal solutions with high probability of success, which has immense implication for tackling 
real-world industrial problems. 
 
Performance Evaluation of PTNO-based Ising Solver 
A key metric for benchmarking the performance of any Ising solver is the total computation time 
required to obtain at least one ground state solution. The total time to solution is calculated as 
𝑇âQxR;%QE = 𝑇äQöõ × 𝑁ôREâ. The computation time is given by 𝑇äQöõ = 𝑇òEEbòx + 𝑇ôbò9QR;, 
involving both the annealing and readout times.  The annealing time is calculated as 𝑇òEEbòx =
£ &
&§
𝑇äxQäÑ• × 𝑁ä¶äxbâ . Here, 𝑁 denotes the problem size, 𝑁ß denotes the batch size for updating 

the spins and 𝑇äxQäÑ is given by the operating frequency. The first term gives the time required to 
run one annealing cycle. To obtain a higher success probability, annealing has to be performed 
over a larger 𝑁ä¶äxbâ. Finally, with increasing graph size, the success probability 𝑃âRääbââ of a single 
run decreases exponentially, necessitating the solver to re-run the problem 𝑁ôREâ	times for 
ensuring a 99% cumulative success probability of obtaining at least one ground state solution. We 
calculate 𝑁ôREâ = [log	(1 − 0.99)] [log(1 − 𝑃âRääbââ)]⁄ . Since our PTNO network operates in 
continuous-time in a dynamical fashion, it allows synchronized updates of all the oscillator phases. 
Thus, effectively we have a batch size of 𝑁ß = 𝑁. In other words, the time for a single annealing 
cycle is not bounded by the batch size, but rather by the operating frequency. In our Ising solver, 
the operating frequency of the PTNOs decrease with increasing problem size due to the impact of 
parasitics and coupling capacitance. To incorporate such effects, we perform a detailed SPICE 
circuit simulation to calculate the slowdown in the operating frequency of the oscillator network. 
By including the parasitic capacitances in the simulation, we estimate an operating frequency of 
around 500MHz for a small network size while the frequency decreases to 87MHz for a 100-node 
oscillator network. Note that the upper limit for the frequency will be bounded by the intrinsic 
switching capacitance of the VO2 which is estimated to be around 41𝑓𝐹/𝑢𝑚 (30) (see 
supplementary section S6 for details). The number of annealing cycles required on the other hand 
is strictly determined by the energy minimization property of the solver. As shown in Figs. 5(d, e), 
we require 𝑁ä¶äxbâ = 1000 to obtain high success probability for larger problem sizes.  
 
Fig. 6(a) shows the total time-to-solution for dense Max-Cut problems with 50% connectivity as a 
function of the problem size 𝑁 follows an exponential nature (𝑎𝑒ß&) highlighting the NP-hard 
complexity of the problem. The different time-to-solution curves for different anneal times 
intersect each other for increasing problem size, thus highlighting a non-trivial dependence of 
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𝑇âQxR;%QE on 𝑇òEEbòx. Optimizing 𝑇âQxR;%QE reveals a tradeoff between the anneal time for a single 
run and the success probability. It is seen that shorter anneal time of 100 cycles is preferred for 
small problems up to 50 nodes where the success probability remains very high and is therefore 
insensitive to the anneal time. However, longer anneal of 1000 cycles is preferred for larger 
problems where the success probability dominates. Thus, the optimum anneal time required 
increases with the problem size. 
 
We also investigate another key metric for benchmarking the performance - the energy-to-solution 
for solving such graph problems. For the PTNO-CTDS, the average power consumption for the 
main compute kernel, i.e. the coupled oscillator network, is estimated to be around 20𝜇𝑊 per 
oscillator as obtained from our circuit simulations. Note that an additional energy overhead will 
arise from the peripheral readout circuit. As such, we propose a CMOS readout circuit consisting 
of an SR-latch, low pass filters and a digital comparator for reading out the phases of the oscillators 
(see supplementary section S9 for details). Simulating the readout circuit in SPICE reveals an 
average power of 5.51uW. The total consumed energy–to-solution is then estimated considering 
the total time-to-solution from Fig. 6(a). Fig. 6(b) shows the energy-to-solution for dense Max-
Cut problems with 50% connectivity for increasing problem size and for different anneal schemes. 
Similar to time-to-solution, we see that shorter anneal times are preferred for small problems where 
the success probability remains close to unity and is therefore insensitive to the anneal time. 
However, longer anneal cycles are preferred for larger problems where the success probability 
dominates.  
 
Performance Comparison with Other Approaches  
Table 1 shows the performance of the PTNO-CTDS-based Ising solver compared with other 
approaches for solving 100-node random dense Max-Cut problems. We highlight the relevant 
metrices for comparison such as time-to-solution, energy-to-solution, power dissipated and 
energy-efficiency (calculated as solutions per second per Watt). For the comparative study, we 
include five different approaches - (a) well-known simulated annealing algorithm (8) running on 
an iMac computer with four 3.5 GHz Intel Core i5 processors, (b) a noisy mean-field annealing 
algorithm running on an NVIDIA GeForce GTX 1080 Ti GPU (31), (c) D-Wave’s 2000Q quantum 
annealer containing 2,048 qubits (16), (d) coherent Ising machine (CIM) based on optical 
parametric oscillator with an FPGA feedback loop (14, 15) and (e) a discrete-time memristor-
based hybrid analog-digital accelerator implementing Hopfield neural network (mem-HNN) (23). 
We see an overall similar time-to-solution for both the PTNO-CTDS and the mem-HNN approach. 
This is because the mem-HNN uses a hybrid scheme of updating 10 nodes per clock cycle (clock 
frequency 500MHzz). Since their best time-to-solution scenario utilize only 50 anneal cycles to 
obtain the Max-Cut solution, the total anneal time gets lowered to 1𝜇𝑠. However, with a success 
probability of 15% for 100 nodes, the mem-HNN needs to be re-run at least 25 times, resulting in 
an overall time-to-solution of 25𝜇𝑠. On the other hand, the PTNO-CTDS operating at 87MHz 
shows an optimum scenario of utilizing 1000 anneal cycles or 10𝜇𝑠 anneal time that allows us to 
achieve 80% success probability and needs to be re-run only 3 times to obtain the Max-Cut 
solution. This provides an overall time-to-solution of 30𝜇𝑠. In terms of energy-to-solution, we see 
a 5x improvement over mem-HNN due to the low power dissipation of the PTNOs. Overall, we 
obtain an energy-efficiency (measured in terms of solution per second per watt) of 1.3x107 which 
is 5x higher compared to mem-HNN. Compared to D-Wave’s 2000Q quantum annealer, we see a 
orders of magnitude improvement in time-to-solution and energy-to-solution for dense Max-Cut 
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problems. Note that the significantly high time-to-solution for D-Wave arises due to the fact that 
the dense problems with more that 61 nodes are not embeddable in the current DW2Q machine 
(16). The huge energy penalty for D-Wave comes from their cryogenic cooling need that requires 
around 25kW of power. We expect this overhead from cooling to be constant with scaling up to 
thousands of nodes. Thus, overall the benefits that might be obtained from D-wave’s potential use 
of quantum effects are negligible for the problems considered in this work. However, we 
acknowledge that quantum annealers in general might offer speed-ups for tasks such as simulating 
quantum processes. The coherent Ising machine (CIM) based on degenerate optical parametric 
oscillator (DOPO) requires kilometer long fiber cavity to accommodate the DOPO pulses. This 
incurs a cavity round trip time of microseconds and puts an upper limit on the time-to-solution. 
For 100-node dense Max-Cut problems, we see a 76x improvement in time-to-solution compared 
to CIM. This is because even though the CIM uses a pump repetition frequency of 1GHz, it incurs 
an additional overhead of around 2.5 due to the delays from the DAC/ADC feedback circuits, 
FPGA performing the coupling computation and stabilization of the feedback loop. Thus, the total 
round-trip time is around 2.5𝜇𝑠 × 𝑁, where N is the problem size. For a 100-node dense Max-Cut 
problem, the effective anneal time for CIM can be calculated as 250𝜇𝑠. For around 40% success 
probability, the total time-to-solution becomes around 2.3ms (16). In comparison, we obtain 80% 
success probability for an anneal time of 10𝜇𝑠, which yields a time-to-solution of 30𝜇𝑠. It must 
be noted that although the DOPOs in CIM operate in continuous-time, it is completely 
asynchronous in nature as one pulse is updated per cycle. Performing updates in batches will 
potentially be possible for CIM, but that will drastic increase the system complexity. However, 
despite of the lower time-to-solution and higher energy dissipation of CIM, it must be 
acknowledged that the CIM currently exhibits scalability up to 100k spins which is yet to be 
demonstrated by other technologies. The noisy mean field algorithm running on a GPU allows all 
the nodes to be updated synchronously. Compared to GPU running at 1GHz clock frequency, we 
get a 1.3x improvement in time-to-solution owing to a short annealing time of  12.3𝜇𝑠, similar to 
our Ising solver (31). However, the scaling of annealing time for GPU non-trivial for dense 
problems involving dense matrix-vector multiplications. As such, we may expect a quadratic 
dependence (23). In terms of energy-to-solution, we get a four-orders of magnitude compared to 
GPU. Finally, we outperform CPU which is running the conventional simulation annealing 
algorithm in terms of time-to-solution and energy-to-solution by orders of magnitude.  
 
Overall, report a high energy-efficiency of 1.3x107 solutions/sec/Watt which exhibits a 5x 
improvement over the recently demonstrated memristor-based Hopfield neural network and 
several orders of magnitude improvement over other candidates such as CPU and GPU, D-Wave 
and CIM. Such a performance gain can be attributed to (a) inherent advantage provided by the 
CTDS approach that allows synchronized updates of all the oscillator phases, (b) short annealing 
times to obtain high success probability and (c) low-power dissipation of PTNOs. While the 
success probability obtained in this work is by utilizing a linear annealing scheme, we believe 
further improvement is possible in terms of exploring better annealing methodologies or modifying 
the energy function to avoid non-solution attractor states that trap the system in local minima (32, 
33). Hybrid approaches can also be adopted to improve the quality of solution, such as augmenting 
the search of an Ising solver in the first phase with other metaheuristic local-neighborhood search 
algorithms such as Tabu search (34) in the second phase. While the concept of utilizing coupled 
oscillator-based networks for performing computation such as solving optimization problems have 
been recently explored (35–37), they involve bulky LC oscillators and ring oscillators with latch-
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based coupling. In comparison, we demonstrate a compact hardware using capacitively coupled 
one-transistor and one-resistor (1T-1R) PTNOs which provides marked area and energy benefit 
(see supplementary information section S10 for details). Finally, it is to be noted that, while we 
propose capacitive coupling through a programming transistor to achieve programmable coupling 
scheme for all the N*(N-1)/2 connections (see supplementary information section S6), in practice 
an all-to-all connected oscillator network may not be feasible for a large problem size due to effect 
of parasitics. However, there lies various avenue of research that are currently being undertaken 
to handle large-scale real-life problems. These involve decomposing large-scale problems into 
smaller Ising/QUBO problems that are might be tractable with practically achievable oscillator 
networks (29, 38). 
 
Conclusion 
The notion of solving hard optimization problems using the continuous-time dynamics of a 
physical system reveals new avenues of exploration of dynamical systems for compute 
applications. There is much enthusiasm in building special purpose machines (or accelerators) for 
solving graph problems belonging to the NP-hard and NP-complete complexity class as part of a 
strong push towards a heterogenous compute platform. There is a rapidly growing demand to 
analyze and uncover hidden relationships between similar or diverse datasets in real-time and 
service applications such as customer analytics, risk and compliance management, 
recommendation engines, route optimization, fraud detection, asset allocation and risk 
management.  We are witnessing a resurgence in building dedicated optimization processing units 
(such as Ising Hamiltonian solvers) that can complement general-purpose CPU and GPU. 
Specialized hardware or accelerators such as Ising solvers are gaining attraction in real-life as 
many relevant NP-hard and NP-complete problems can be reformulated into the problem of 
finding the ground state of an Ising model (4).  Here, we showcase that exploiting the vast 
repertoire of emergent complex dynamics exhibited by CTDS enables us to design special purpose 
hardware that are most appropriate for solving computationally hard optimization problems 
belonging to the NP-hard or NP-complete complexity class. We believe that the immense benefit 
of such a CTDS hardware in terms of operating speed and energy dissipation comes from the 
inherent capability of the system to perform collective computing in a distributed and highly 
parallel fashion.  
 
Methods 
Sample preparation  
10nm think Vanadium dioxide (VO2) is grown on a substrate of (001) TiO2 substrate using Veeco 
Gen10 molecular beam epitaxy (MBE) system. The widths of the two terminals are defined by dry 
etching with CF4. The device length is defined by depositing Pd/Au metal contacts using electron 
beam evaporation. The fabricated VO2 devices varied in length from 100nm to 1um with resulting 
insulator-to-metal transition threshold voltages ranging from 0.7V to 4V. All our experiments have 
been performed on device lengths of 200𝑛𝑚.  
 
Experimental setup  
Fig. 1(c) shows the schematic of a VO2-based PTNO realized by connecting an n-channel 
MOSFET (ALD1103) transistor in series with the two-terminal VO2 device. A VDD of 2V is 
applied and the amplitude of the relaxation oscillations is ~1.7V. A gate voltage VGS = 0.8V is 
applied to the series transistor that set the oscillation frequency 𝑓M ≈ 100	𝑘𝐻𝑧. Note that when the 
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PTNOs are capacitively coupled, due to loading effect the frequency gets reduced to around 60 −
70	𝑘𝐻𝑧. A schematic of the full experimental setup for the PTNO-based Ising solver is shown in 
Fig. 1(d). Eight VO2 devices placed in the Keithley 4200-SCS probe station were connected using 
multi-contact probes. The VDD and the analog gate voltages VGS of the 8 series transistors are 
applied using a multichannel analog voltage card connected to a computer. The injection locking 
signal was applied to the 8 oscillators across injection locking capacitances 𝐶%E2 = 20𝑝𝐹 using an 
external voltage generator. 𝐶%E2 was realized using discrete off-chip capacitors connected on a 
breadboard. The output voltage waveforms of the oscillators were measured using a multichannel 
digital oscilloscope. The coupling among the oscillators was realized using discrete off-chip 
coupling capacitances 𝐶ä = 56𝑝𝐹 connected on the breadboard.  
 
Data-processing 
The output voltage waveform of the oscillators was measured using a multichannel digital 
oscilloscope and subsequently analyzed and processed in MATLAB on a digital computer. The 
phase of an oscillator is calculated with reference to a reference sinusoidal signal with the same 
frequency 𝑓M as the oscillator and half of the injection locking signal. The phase is defined as the 
time difference between the minima point of the discharging phase of the IMT oscillator and the 
minima of the sinusoidal signal divided by the time period of the oscillator. The measured 
oscillator phases 𝜃 were converted to Ising spins 𝜎 using a discretization window in the phase 
space such that if 0M < 𝜃 < 180M, 𝜎 = 1, else 𝜎 = 0. Subsequently, the Ising energy and the cut 
set are calculated. The final energy state of the oscillator network and the corresponding final cut 
set is calculated during the readout phase as mentioned earlier. We readout the oscillator phases 
over 100 oscillation cycles.  
 
Numerical Simulation of PTNO network 
The numerical simulations for our PTNO network are based on the dynamical system theory as 
explained in the Supplementary Information section S1. We use a PPV-based numerical simulation 
methodology (35). For obtaining the PPV function 𝜉, we use a SPICE compatible macro-model of 
the IMT nano-oscillator (39) to quantitively match the dynamics of the oscillators under injection 
locking conditions, and perform cycle accurate time domain simulations of the PTNO using the 
Cadence Spectre circuit simulation framework (40). The details of PPV calculation are described 
in the supplementary section S3. The stochastic differential equations describing the PTNO 
network is numerically solved using the Euler-Maruyama method. In our simulations, we consider 
a scaled VO2 device of 100nm length. The insulator-to-metal transition voltage VIMT is considered 
as 0.7V and a VDD = 1V is used in our simulations. The simulation parameters are listed in Table 
S1 in supplementary section S2. The intrinsic capacitance of VO2 (device to ground) is taken as 
41𝑓𝐹/𝑢𝑚 (30).We use an insulating resistance of 200kΩ and a metallic resistance of 15kΩ. For 
realizing the PTNO, the transistor in series with the VO2 is designed using TSMC 28nm logic 
technology node such that the ON resistance matches closely with the metallic resistance of the 
VO2. Since the charging of VO2 happens through the metallic resistance while the discharging 
happens through the series transistor, it is important to match the two resistances in order to obtain 
a symmetrical voltage waveform and hence a symmetrical PPV without any undesired harmonics 
(see supplementary section S8 for further details). It is interesting to note that the that the success 
probability of our Ising solver for finding the Max-Cut is sensitive to the coupling strength. As 
such, we varied the strength of the capacitive coupling to find an optimal coupling value that can 
maximize the success probability (see supplementary information section S5 for details). For the 
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rest of the simulations, we use a coupling capacitance of 𝐶A = 6𝑓𝐹. The oscillator jitter noise is 
taken from our experiments as 0.5%, considering a Gaussian distribution in the time period. We 
also investigate the impact of frequency mismatch among the oscillators on the success probability 
(see supplementary information S7 for details). We consider a Gaussian distribution of the 
oscillator frequencies. For the rest of the simulations, we consider a frequency mismatch of 0.1%. 
We use an injection locking capacitance 𝐶%E2 = 1𝑓𝐹 in the simulations. We additionally 
incorporate the line-to-ground and line-to-line parasitic capacitances as highlighted in 
supplementary section S6. Incorporating the parasitic capacitances, we perform detailed SPICE 
circuit simulation to estimate the operating frequency as the network size increases  (see 
supplementary section S6 for details).  
 
Data availability 
The data that support the findings of this study are available from the corresponding author upon 
request.  
 
Code availability 
The custom simulation code written in Matlab and SPICE for this study are available from the 
corresponding author upon request.  
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Figure1 

 
Fig. 1. Overview of PTNO-based CTDS as an Ising Hamiltonian solver. (a, b) The 
combinatorial optimization problem is reformulated in terms of the Ising Hamiltonian 𝐻 defined 
by the spin vector 𝜎⃗,	 and the symmetric coupling matrix 𝐽 and mapped onto the Ising solver. Each 
Ising spin, representing a node in the graph is represented by an insulator-to-metal (IMT) phase-
transition nano-oscillator (PTNO). The PTNOs are coupled to each other using passive elements 
such as capacitances. The coupling matrix W for the PTNO network is derived from the adjacency 
or coupling matrix 𝐽 of the Ising model. (c) Schematic of a PTNO consisting of a two-terminal 
phase-transition hysteretic device (VO2) in series with a transistor. As the load line of the series 
transistor passes through the unstable hysteresis region of the VO2 device, self-sustained 
oscillations are created. (d) Experimental setup of our PTNO-based CTDS. The main computing 
kernel comprises eight PTNOs connected using coupling capacitance following the coupling 
matrix W. The phenomenon of second harmonic injection locking (SHIL) is used to create bi-
stable oscillator phases, emulating artificial Ising spin. (e) The inherent stochasticity present in the 
PTNO along with a novel technique of gradually reducing the temporal fluctuations in the 
oscillator phases by increasing the strength of the injection locking signal 𝑆C&D  is utilized to 
perform classical annealing and obtain progressively better solutions.  
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Figure2 

 
Fig. 2. Creating artificial Ising spin using second harmonic injection locking (SHIL). (a) 
Three different injection locking scenarios are shown. No synchronization case refers to free 
running oscillator with uniform of oscillator phase in the phase space. For first harmonic 
synchronization (FHIL), the oscillator remains injection locked with input signal at in-phase 
configuration. For second harmonic synchronization (SHIL), the oscillator phase gets binarized 
into in-phase and out-of-phase configuration with equal probability. (b) Measured distribution of 
the oscillator phases for the three scenarios along with the equivalent Ising energy for a single 
PTNO is shown depicting zero, one and two energy minima for stable phase locking, respectively. 
(c) Increasing the amplitude (Vinj) of SHIL forces the oscillator into bi-stable phase configuration. 
(d)  The increase in Vinj also reduces the temporal fluctuations between the two stable phases in 
the presence of noise. (e) Modulation of the energy landscape with Vinj. The three curves 
correspond to Vinj = 1V, 3V and 5V. Increasing Vinj increases the energy barrier between the two 
bi-stable energy minima states. This tightens the phase distribution as seen in (c). (f) The mean 
dwell time (𝜏vwbxx) spent by an oscillator before hopping between the two phases is plotted against 
the applied injection locking amplitude and is found to follow a Arrhenius type law (𝛼𝜏M𝑒

=z mµ ) 
with the inherent stochasticity (𝜂)	playing the role of temperature. 𝜏M =

#
{|

 is the characteristic or 
attempt time (equal to the time period of the oscillator) and 𝛼 is the fitting parameter.  
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Figure 3 

 
Fig. 3. Replicating ferromagnetic and anti-ferromagnetic Ising interactions. (a) Schematic of 
pairwise capacitively coupled PTNOs. (b)  Measured distribution of the phases of the two PTNOs, 
highlighting the preference of the oscillators to remain in a stable out-of-phase configuration. The 
calculated energy landscape for capacitive coupling also highlights the presence of global energy 
minima corresponding to the out-of-phase configuration. (c) The measured probability of out-of-
phase configuration as a function of varying capacitive coupling strength establishes the equivalent 
anti-ferromagnetic nature of interaction when compared to a 2-spin Ising model. (d) Schematic of 
pairwise resistively coupled PTNOs. (e) The measured phase distribution for resistive coupling 
along with the calculated energy landscape showing the preference for in-phase configuration. (f) 
The measured probability of in-phase configuration vs coupling strength highlights the 
ferromagnetic nature of interaction for resistively coupled oscillators.  
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Figure 4 

 
Fig. 4. Experimental demonstration of Max-Cut and performance enhancement with 
annealing. (a) An undirected and unweighted 8-node Mobius Ladder graph used for investigating 
the Max-Cut. The PTNOs are connected following the same adjacency (or connectivity) matrix of 
the graph using coupling capacitances. (b) Schematic of the annealing schedule used in the 
experiment. A sinusoidal injection locking signal at twice the oscillator frequency 𝑓M is applied 
with a linearly increasing amplitude over the annealing time 𝑇òEEbòxthat corresponds a linear 
annealing schedule. This is followed by a phase readout time 𝑇ôbò9QR;. Thus, the total computation 
time 𝑇äQöõ = 𝑇òEEbòx + 𝑇ôbò9QR;. The annealing time 𝑇òEEbòx is varied from zero (corresponding 
to no anneal) to 660 oscillation cycles. (c) Evolution of the phases of the 8 oscillators, settling to 
either in-phase or out-of-phase with the injection locking signal. (d) The calculated temporal 
evolution of the Ising Hamiltonian shows an energy minimization accompanied by an increase in 
the graph cut size. For no annealing scheme, the network converges to a sub-optimal solution with 
a higher energy while annealing over 250 cycles allows the network to converge to the optimal 
solution with a lower Ising energy with a higher probability. Numerical simulations using same 
annealing schemes show very good agreement with our experimental results. (e) Experimental 
data and numerically simulation results for the success probability for different anneal times 
showing a steady increase from 30% with no anneal to 96% for over 600 cycles of linear anneal. 
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Figure 5 

 
Fig. 5. Scaling with problem size. (a) Schematic of a 100 node Mobius ladder graph used for 
numerical simulation. (b) The evolution of the phases of the oscillators for a single run as a 
function of oscillation cycles. (c) Increase in the graph cut size accompanied by a decrease in the 
equivalent Ising energy as the system evolves towards the ground state configuration. The 
simulation was performed for 100 trials to calculate a success probability of 94%. (d) Success 
probability of finding the Max-Cut for random cubic graphs of varying size. We compare 
simulation results for three different anneal cycles – 100, 500 and 1000. (e) Success probability of 
solving dense Max-Cut problems with 50% connectivity for varying problem size. We consider 
three different anneal cycles – 100, 500 and 1000 for comparison. 
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Figure 6 

 
Fig. 6. Performance evaluation of PTNO-based Ising solver. (a)  The total time-to-solution for 
solving dense Max-Cut problems with 50% connectivity for different anneal times and increasing 
problem size. A non-trivial dependence of time to solution on the anneal time is seen where shorter 
anneal time is preferred for smaller problems where the success probability remains insensitive to 
the anneal time. Longer anneal is preferred for larger problems where the success probability 
dominates. (g) Energy-to-solution for solving dense Max-Cut problems is plotted for different 
anneal times and for varying problem size showing a similar trade-off is seen. 
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Table 1. Performance comparison between PTNO-CTDS-based Ising solver and other state-
of-the-art approaches. Comparison done for solving Max-Cut on 100 nodes random cubic 
graphs. 
 

 


