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ABSTRACT While deep convolutional neural networks (DCNNs) have demonstrated superiority in their
ability to classify image data, one of the primary downsides of DCNNs is that their training normally
requires large sets of labeled ‘‘ground truth’’ images. For that reason, DCNNs do not provide an effective
solution in many real-world problems in which large sets of labeled images are not available. Here we
propose to use the quick learning of SVMs to provide a solution for learning from small image datasets in a
non-parametric manner. Experimental results show that while ‘‘conventional’’ DCNN architectures such as
ResNet-50 outperform SVMnet when the size of the training set is large, SVMnet provides a much higher
accuracy when the number of ‘‘ground truth’’ training samples is small.

INDEX TERMS Artificial neural networks, image classification, machine learning, support vector machines.

I. INTRODUCTION
Deep convolutional neural networks (DCNNs) are powerful
tools for multiple tasks of automatic image analysis, demon-
strating paramount success and consequently gaining sub-
stantial popularity over the past decade. By analyzing the
pixels directly, CNNs can be applied to various types of image
content without the need to develop task-specific algorithms,
and can easily be applied to a broad range of domains with
excellent performance [1].

One of the major weaknesses of modern DCNNs is their
dependence on a large set of examples for training. Cutting-
edge DCNNs can have hundreds of layers, each with thou-
sands of trainable parameters. For instance, the common
ResNet-50 [2] contains over 2 · 106 artificial neurons. There-
fore, to achieve meaningful performance and avoid overfit-
ting, DCNNs normally rely on relatively large training sets.

Training DCNNs normally requires large datasets of
labeled ground truth images. Commonly used datasets
include benchmarks such as ImageNet or the Modified
National Institute of Standards and Technology (MNIST)
dataset of handwritten characters. These benchmark datasets
provide tens of thousands of images with high-quality anno-
tations for training deep CNNs, and are commonly used for
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testing their performance. However, in many cases of real-
world image classification problems, large datasets of clean,
labeled ground truth are not available.

For instance, in the biomedical domain machine learn-
ing is often used for the purpose of image-based diagnos-
tics [3]. However, the acquisition and annotation of each
image can require the use of costly medical instrumentation,
technicians, and medical staff who can annotate each sample
manually [4], [5]. Acquiring a single MRI image can take
30 minutes or more of using the instrument, excluding the
time required to prepare the subject. The cost involved in
the acquisition of such image is non-negligible. Even when
using a quicker and less expensive imaging such as x-rays,
the annotation of the data normally requires two or more
trained experts, and the time they invest in the annotation
is both expensive and time-demanding. That bottleneck has
substantial impact on the ability of researchers in the medical
domain to acquire large datasets.

Additionally, in the biomedical domain, human protection
procedures and protocols are required for the acquisition of
each sample, making the preparation of large datasets less
practical. Therefore, biomedical image datasets are normally
far smaller than the modern datasets commonly used to train
DCNNs such as MNIST or ImageNet.

Rare cases can also make it difficult to acquire a suitable
training set [6]. For instance, to prepare an image-based

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 24029

https://orcid.org/0000-0003-2135-8813
https://orcid.org/0000-0002-6207-1491
https://orcid.org/0000-0002-4870-1493


H. Goddard, L. Shamir: SVMnet: Non-Parametric Image Classification Based on Convolutional Ensembles of SVMs

diagnostics system that can automatically detect a rare clin-
ical condition, a sufficiently large number of images of that
rare case is required. In many cases, even when the resources
are not limited by neither time nor cost, a sufficiently large
number of cases is difficult to find.

In some cases the acquisition of images can involve sub-
stantial pre-processing, preparation of slides, staining, and
imaging of each slide [7]. That is often the case when per-
forming histological analysis for the purpose of diagnostics
using machine learning [8]–[10].

Clearly, situations in which the dataset is small are not
limited to the biomedical domain. Scientific experiments that
require annotated data are very often limited by the resources
required to annotate them. One of the solutions that the
scientific community proposed is the use of crowdsourc-
ing [11]–[13]. By crowdsourcing, non-expert volunteers can
help annotating images or other data. With a large number of
volunteers, the annotation of large datasets becomes feasible,
and the resulting annotated datasets can be used to train
machine learning systems. However, such crowdsourcing
campaigns can take several years to complete [14], and are
subjected to human error and human perceptional bias [15].
In many cases the annotation requires an expert, and the
task cannot therefore be performed by anonymous untrained
volunteers. In practice, experimentalists are often limited in
their ability to utilize crowdsourcing for annotating a specific
dataset.

The need for a large number of training samples is a
practical downside of DCNNs, making them difficult to use
optimally in many real-world cases. A common solution to
increasing the size of the training set is data augmentation,
in which different modifications of the images in the original
dataset can create more training samples. However, that strat-
egy can also lead to biases by overusing the same examples.
In some cases transfer learning can be used to fine-tune neural
networks using pre-trained models. Transfer learning is a
proven tool to reduce the required training set size, but for
domains with very small datasets for fine-tuning, the pre-
trained models may remain too sensitive to their original task.

The problem of small training sets has been addressed in
the past by using previous knowledge for few-shot training [6]
and even one-shot training [16]–[20]. These methods reduce
the number of required samples dramatically to as low as
just one, but also require prior knowledge that is not neces-
sarily available in all cases. Other related solutions include
3-D octave convolution with the spatial-spectral attention
network [21] or deep attention graphs [22] for the problem
of hyperspectral image classification.

This paper explores a new form of non-parametric image
classification in cases when the number of samples is lim-
ited. Based on an ensemble composition of support vec-
tor machines (SVMs), the method can work with no prior
knowledge, in a similar manner to ‘‘standard’’ supervised
machine learning. Inspired by CNN architecture, SVMnet
utilizes a large number of small SVMs to quickly analyze
image patches, structured in layers that allow for stacking or

custom ensemble techniques. An SVM [23] is less sensitive to
high-dimensionality feature spaces [24]–[26], and can learn
from a relatively small number of training samples [27]–[30]
compared to other supervised machine learning approaches.

The primary advantage of the proposed method is that it
outperforms the common DCNN architectures in cases when
the number of labeled training images is small. As discussed
above, such cases are not uncommon in real-world settings.
Another advantage of the method is its much shorter training
time compared to the time required to train deep neural
networks.

II. ARCHITECTURE OF SVMNET
The proposed SVMnet architecture is designed as a stacked
ensemble of numerous simple SVM classifiers organized into
one or more layers. Each layer is an array of SVMs which
functions similarly to a convolutional layer in a CNN. Each
SVM in a layer is independent and all are assigned an equal-
sized patch of the layer’s input, referred to as a window.
Variable stride length and padding, as described in Chapter 2
of [31], are specified as hyperparameters. Each input to the
following layer is the output of one SVM.

When a layer is evaluated, each SVM in the layer is trained
on ground truth labels. The input to the SVM is the flattened
portion of each input image that is within the SVM’s window.
Each pixel channel within the window is essentially treated as
one input feature. For instance, a 5× 5 window would create
a 25-feature SVM for grayscale input and a 75-feature SVM
for 3-channel RGB input. During this step, the SVMs may
be given weights based on the accuracy of the fit, used for
ensemble classification. Each SVM then predicts a class label
or a vector of class probabilities for its window of each input,
creating an input tensor for the next layer.

Fig. 1 shows a simple layer in SVMnet. Each node in the
layer is one SVM, trained using the ground truth labels for
the input samples. The weights are determined based on the
classification accuracy of the SVM compared to the ground
truth of the training set. The weight function is configurable
and will be described later in this Section.

To produce one class label for each input, SVMnet may
perform a weighted vote after the final layer. This vote com-
bines the results of the final layer by treating each value as a
vote for that class label. If the final layer is weighted, these
are used to weigh the votes in favor of SVMs with higher
accuracy.

Sc = 6iη(Ai)[Pi = c] (1)

The total voting score Sc of each class c is calculated by (1),
where Ai is the accuracy score of SVM i in the final layer,
η is the weight function, and Pi is the class label predicted by
SVM i. That is, if the predicted label Pi of SVM i is class c,
the weighted score η(Ai) is added to the vote for that class.
The weight function emphasizes the predictions of the SVMs
with higher accuracy during training. The class that has the
highest score Sc is chosen as the predicted label by the model
for the given sample. The weight function η is configurable
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FIGURE 1. Example of a simple weighted layer of SVMnet. Each node in
the layer is an SVM, trained with a subset of the inputs (pixels). Weight
outputs are optional for a given layer.

and in our experiments is defined as η(x) = x2, where x is
the classification accuracy of the SVM determined during
training.

While the layers support arbitrary estimators, here we
use only support vector machines (SVM), hence the name
SVMnet. The SVMs are trained with a Radial Basis Func-
tion (RBF) kernel [32] and scaling gamma value, and they
continue to iterate until convergence with a 0.001 tolerance.
The ability to choose different estimators in each layer can be
compared to the ability to use different activation functions in
the layers of neural networks.

Fig. 2 illustrates one possible two-layer SVMnet architec-
ture. Each SVM in the first layer analyzes a specific patch
of each image and is fitted independently against ground
truth labels. These SVMs then produce a vector of class
probabilities for the same pixel region which forms the input
matrix for the following layer. The SVMs in the second layer
are fitted on a region of these probabilities and predict a class
label for the image. These labels are then tallied in a final
vote to produce one label for the input. The motivation for
multiple layers is that layers after the first can in essence
learn which of the SVMs in their window are more accurate
or ‘‘trustworthy’’, as their predictions are being compared to
ground truth labels in each layer.

A. DROPOUT
Not every patch is expected to produce awell-informed SVM.
Some regions of the images, particularly towards the edge,
often lack the details necessary to distinguish samples from
each other. This can cause the outputs of these SVMs to act
as noise in a vote tally. Even with the expected low accuracy
score of the SVM depressing the weight of its vote, if the low-
information regions are large then enough inaccurate votes
may overwhelm the more accurate votes. To help prevent this,
a dropout system is implemented for the vote tally.

When using dropout, which SVMs to drop are calculated
when fitting SVMnet. First, the SVMs are ordered from the
highest weight to the lowest. Votes are then cumulatively
tallied one SVM at a time with the accuracy of the votes
measured between each tally. SVMnet then finds the global
maximum accuracy of the cumulative tally. This marks the

point where including the votes of the less-accurate SVMs
lowers the overall accuracy of the tally, so those SVMs are
marked for dropout and are not included in the final vote.
When the model is used to make predictions, the vote will
only include the outputs of the SVMs that contributed to the
most accurate tally.

In most cases during testing, automatic dropout resulted
in equal or better performance than without dropout,
as the least informative regions of the image were ignored.
However, as with all hyperparameters, performance some-
times decreased and required fine-tuning. In each of the
experiments described in Section III, the SVMnet model
presented is the onewith the highest-performing hyperparam-
eters among the combinations tested.

B. FORMAL DEFINITION OF SVMNET
SVMnet can be defined formally as a 4-tuple as shown by
Equation 2:

SVMnet = (T ,C, S0,8), (2)

where T is the topology of the network, C is the initial
constants, So is the initial state of the network, and8 is the set
of SVM classifiers. The components that make the SVMnet
are defined by Equation 3.

T = (V ,E)

C = {W ,2}

S0 = {ψi}

8 = {(4i, γi,Ci)} (3)

The topology T = (V ,E) reflects the structure of the
network, where V is the nodes and E is a set of connections
Ei,j between the nodes Vi→ Vj, where Vi and Vj are two
connected nodes. A pair of nodes Vi,Vj ∈ V can have one
or zero connections between them. Like in artificial neural
networks, the topology T = (V ,E) determines the number
of layers, number of nodes per layer, and the kernel size.

The constants C include the thresholds W , which are the
threshold values used for ignoring the output of an SVM
classifier as explained in Section II-A. Each connection Ei,j
between two nodes is assigned with a threshold Wi,j, which
determines whether the output of the SVM node i is used as
an input to SVM node j. Unlike neural networks, in SVMnet
these threshold values are constants, as they are not changed
during training. Whether these threshold values impact the
analysis depends on the consistency of the input, such that an
inconsistent SVM node is ignored if its consistency observed
using the ground truth training data does not meet the thresh-
old. The use of these thresholds is explained in detail in
Section II-A. Another constant is 2, which is the number of
classes.

The initial status of the network S0 is a collection of
SVM hyperplanes ψ , such that the hyperplane ψi is the
initial hyperplane of the SVM in node i. The hyperplanes
are changed during the training of the SVMnet, as the SVMs
learn from the data.
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FIGURE 2. Example SVMnet architecture containing two SVM layers (in green) and a class label vote. Each SVM is trained on a patch of the
layer’s input. An n × m SVM layer produces n × m × d output (d ≥ 1).

The set of SVM classifiers 8 is defined by {(4i, γi,Ci)},
such that each SVM classifier 8i is defined by its kernel
4i, its gamma parameter γi, and its C parameter Ci. In the
implementation shown in this paper all SVMs are defined
by the same parameters, but other implementations are also
possible in which different SVMs have different kernels or
other parameters.

III. EXPERIMENTAL RESULTS
To test the efficacy of SVMnet compared to a ‘‘conventional’’
CNN, several experiments were performed using common,
relatively small datasets. The purpose of SVMnet is not to
outperform CNNs in the general case, but to achieve higher
accuracy when the number of labeled training images is
limited. Therefore, the experiments were made with different
sizes of training sets to compare the classification accuracy
as the training set increases.

The performance of the SVMnet was compared to the
performance of residual network, or ResNet, models with
18, 34, and 50 layers [2]. ResNet is a powerful architecture
that was designed to reduce the number of required training
samples for deep learning tasks and has demonstrated excel-
lent efficacy in image classification. Each ResNet model was
compared when trained from scratch and when fine-tuned
using pretrained ImageNet weights. Following the practice
in [2], the final convolutional layer is followed by a global
average pooling layer, then by a single fully-connected layer
with softmax activation and as many units as class labels
in the respective task. Models were trained using stochastic
gradient descent (SGD) optimization with a linearly decaying
learning rate (given by 0.999(1− s/2)+ 0.001 where s is the
training step) and Nesterov momentum of 0.9. The models
were trained for a maximum of 200 epochs but were stopped
early if the loss on the validation dataset did not improve
by at least 0.01 over 20 epochs. The number of epochs is
limited in order to keep the ResNet training times comparable
to SVMnet. The resulting accuracy and training time for each
model was averaged over 5 repetitions of each experiment.

While the height and width of inputs can be adjusted for
ResNet, the architecture always expects 3-channel RGB color
images. Grayscale images were modified for use by ResNet
by duplicating the pixel values into three equal channels. This
approach was used in Section III-C and Section III-D. Before
training and classification by ResNet, images were also
passed through a preprocessing filter provided by the Keras
library to prepare the data for ResNet models. All inputs
were normalized by dividing by the mean and subtracting the
variance before being used to train SVMnet. For RGB color
inputs, the images were normalized per-channel.

All experiments and analysis presented in this section used
the same hardware environment. SVMnet was parallelized
across 16 cores of Intel Xeon Gold 6130 CPUs, and ResNet
models were trained on an nVidia GeForce GTX 2080 GPU.

A. COIL-100 OBJECT RECOGNITION
Columbia Object Image Library (COIL-100) is a common
dataset used for basic object recognition [33]. It contains
RGB color images of 100 different objects, each pho-
tographed 72 times at 5 deg increments about the vertical
axis. Background details were removed in all images and
the objects are centered and enlarged to fill the frame. Some
objects contained in this dataset include coffee mugs, small
toy cars, and various fruits and vegetables.

The SVMnet in this experiment used one layer with a
25×25 window (giving each SVM 1875 input features) and a
stride length of 7, followed by a weighted vote with dropout.
The SVMnet and ResNet models were fitted with 100-500
training images in increments of 100, each controlled to have
an equal number of samples for each object. A separate subset
of 200 images was used as validation data for ResNet models.

Fig. 3 shows the results of this experiment. When fit-
ted on the smallest training set, containing only one exam-
ple per object, SVMnet correctly predicted labels for over
60% of the remaining images. With the same training
set, ResNet-50 showed about the same accuracy and only
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FIGURE 3. Test-set accuracy (left) and training time (right) of SVMnet and ResNet on COIL-100 images when fitted with different training set
sizes.

pretrained ResNet-34 exceeded SVMnet; however, SVMnet
was significantly faster to train in all cases.

B. IMAGENETTE
Imagenette is a fairly small, 10-class subset of the ImageNet
dataset [34]. Several versions of this dataset exist; here we use
version 2 of the 160 px dataset with noiseless labels. Many of
these images are rectangular with their shortest side scaled to
160 px. In this experiment, we symmetrically zero-pad each
image along its shorter axis to make it square, then downscale
the images to have the same dimensions of 160× 160 px.

The SVMnet used here contains one layer with a win-
dow size of 22 and stride length 7, followed by a weighted
vote with no dropout. Imagenette is pre-divided into train-
ing and testing subsets containing 9,469 and 3,925 images,
respectively. Models were trained using 20, 40, 80, 160, and
320 images from the provided training set and evaluated
using the provided testing set. An additional 100 images were
selected from the training set as validation data for the ResNet
models.

Fig. 4 shows the results of this experiment. SVMnet
achieved higher accuracy than all ResNet models for all
training sets except the largest, where the ResNet-50 model
pretrained with ImageNet weights improved drastically. The
generally low accuracy of these models could be explained
by the method used to conform each image to the same
dimensions, which introduces a significant amount of empty
space in many images. However, even under these conditions,
SVMnet attained the highest accuracy in the least time for the
smaller training sets.

C. COVID-19 RADIOGRAPHY
During the COVID-19 pandemic, machine learning tech-
niques have been applied to various kinds of data to
assist the medical community in making accurate diagnoses
[35]–[37]. During the early stages of a disease outbreak,
diagnostic data is expected to be limited or sparse, making
it difficult to train most kinds of machine learning models.

A type of model capable of learning from a small number of
samples would be the most effective in this time frame.

Here we apply SVMnet to a database of chest x-ray
images from healthy patients and patients diagnosed with
COVID-19 [38], [39]. In this experiment, only the images
labeled as ‘‘Normal’’ and ‘‘COVID’’ are used. Images were
downscaled to 128× 128 pixels (approx. 43% of the original
size). An equal number of images were selected from each
class, totaling 7232 samples. Models were fitted with 10, 20,
50, 100, and 200 training samples, with 50 separate images
used as validation data for the ResNet models. The SVMnet
uses two layers: the first with window size 19, stride 7, and
class probability outputs; the second with window size 5 and
stride 5, followed by an unweighted vote. During the archi-
tecture experiments described in Section III-G, the 2-layer
SVMnet was shown to outperform the 1-layer models for this
dataset.

Fig. 5 shows the results of this experiment. SVMnet was
able to correctly label between 64% and 78% of unseen
x-rays depending on the number of training samples, but most
ResNet models failed to make significantly accurate predic-
tions. Only the 18- and 34-layer ResNet models trained from
scratch approached the accuracy of SVMnet. Additionally,
SVMnet was several times faster to train.

D. ASTRONOMICAL IMAGE DATA
To test the performance of SVMnet on a current real-world
image classification problem, a dataset of galaxy images from
the Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS) was used. The dataset is made of galaxies
separated into elliptical and spiral morphology. The galaxy
images were taken from the catalog of Pan-STARRS galaxies
classified by their morphological type [40].

An equal number of images were selected of each morpho-
logical type, totaling 26,732 samples. Each image is grayscale
and has a dimension of 120 × 120 px. SVMnet and ResNet
models were fitted with 10, 20, 40, 80, 160, and 320 training
samples, with 200 separate images used as validation data
for the ResNet models. The SVMnet uses one layer with a

VOLUME 10, 2022 24033



H. Goddard, L. Shamir: SVMnet: Non-Parametric Image Classification Based on Convolutional Ensembles of SVMs

FIGURE 4. Test-set accuracy (left) and training time (right) of SVMnet and ResNet on Imagenette when fitted with different training set sizes.

FIGURE 5. Test-set accuracy (left) and training time (left) of SVMnet and ResNet on COVID-19 chest x-ray images when fitted with different
training set sizes. The accuracy of the ResNet models displays considerable overlap.

FIGURE 6. Test-set accuracy (left) and training time (right) of SVMnet and ResNet on Pan-STARRS galaxy images when fitted with different training set
sizes.

window size of 22 and stride 5, followed by a weighted vote
with dropout.

Fig. 6 shows the results of this experiment. As the graph
shows, SVMnet outperformed almost every ResNet model

when trained with a relatively small dataset. The models
generally improve as the training set grows, with several
ResNets slightly overtaking SVMnet with the largest training
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TABLE 1. Comparison of the classification accuracy of WND-CHARM and
SVMnet when trained on a small number of samples from four datasets.

set. In all cases, SVMnet finished training many times faster
than all ResNet models.

E. WND-CHARM
To test a ‘‘traditional’’ approach of using an SVM after
extracting image features, we used the WND-CHARM open
source feature set [41] combined with an SVM with lin-
ear kernel implemented through SVMLib. Table 1 compares
the test set accuracy of WND-CHARM and SVMnet using
the experimental datasets described earlier in this Section.
WND-CHARM was trained on equal sized training subsets
and consistently showed lower classification accuracy than
SVMnet under the same conditions.

F. COMPUTATIONAL COMPLEXITY
The complexity of fitting an SVM is asymptotic and polyno-
mial. For a training set containing n samples, the algorithm
is dominated by either an n2 term or an n3 term based on the
formulation of the problem [42]. Therefore, training a large
number of SVMs can be a computationally demanding task,
and can lead to substantial computational complexity during
training.

The number of SVMs N in a layer receiving rectangular
input with width Ix and height Iy is given by (4). The window
sizeW (equivalent to the kernel size in other CNN literature),
stride length S, and padding amount P in their respective
dimensions follow from standard convolutional arithmetic.
When using a square window on square input, the formula
can be simplified to (5).

N =
(
Ix + 2Px −Wx

Sx
+ 1

)
·

(
Iy + 2Py −Wy

Sy
+ 1

)
(4)

N =
(
I + 2P−W

S
+ 1

)2

(5)

Fitting a layer in SVMnet requires fitting N SVMs -
a polynomial time operation. If the layer includes weights,
then the SVMs must predict a class label for each input
during the fit step, which scales linearly with the number of
samples n. When using dropout as described in Section II-A,

SVMnet performs an additional step during training that
scales linearly with n. Thus, fitting SVMnet is dominated by
the polynomial fit time of the SVMs. This relationship can be
observed experimentally in Fig. 8.
CNNs can theoretically be trained infinitely, but there is a

definitive point at which the SVMs within SVMnet converge.
This places a soft upper bound on the training time of SVMnet
based on the tolerance parameter of the SVMs. Additionally,
a firm upper bound may be placed on the number of iterations
of the SVM algorithm, allowing for a shortened training time
at the expense of some accuracy.

SVMnet trains multiple SVMs simultaneously using
process-based parallelism and shared memory, greatly
increasing its speed on typical multicore computers with min-
imal overhead. While this allows SVMnet to run quite easily
on relatively inexpensive systems, the potential performance
gain from extra hardware is minimal compared to the extreme
optimization of CNNs for GPU devices.

While the training of SVMnet is slower than CNNs when
the size of the training set becomes relatively large, SVMnet
is designed for situations in which the size of the training
set is small. Therefore, the computational complexity of the
training is not expected to introduce a major obstacle in
many real-world cases where the size of the training set is
limited, and the time required for training does not necessarily
explode to an unmanageable response time in the situations
where SVMnet is most effective.

1) INFERENCE TIME OF IMAGE CLASSIFICATION
Predicting a single class label of an image using SVMnet
typically requires a large number of individual SVMs to
predict a label followed by a vote tally. Despite its affinity for
parallelization, this process is expected to take longer than the
highly optimized matrix operations of a CNN. Table 2 com-
pares the inference time of SVMnet and ResNet on images in
the COIL-100 dataset.

TABLE 2. Comparison of the response time (in seconds) of SVMnet and
ResNet to predict class labels for 1, 10, 100, and 1000 samples of the
COIL-100 dataset.

The comparison shows that SVMnet is significantly slower
than ResNet for classifying samples, but the speed of clas-
sification is still practical for many real-world systems. The
parallelization of SVMnet greatly reduces the time needed
to make predictions, but the overhead of shared memory
operations is significant in the case of few samples.

G. ARCHITECTURE COMPARISON
As with CNNs, SVMnet can be configured into a variety
of architectures which are expected to differ in performance
depending on the classification task. Due to the high number
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FIGURE 7. Prediction accuracy of one-layer SVMnet architectures fitted to COIL-100. Each group of three box plots represents the same window size
with stride length 3, 5, and 7, respectively. Each box plot shows the distribution in model accuracy when using five training sets of 200-1000 examples.

FIGURE 8. Training times for one-layer SVMnet architectures fitted to COIL-100.

of possible models, determining which is the most effective
for a single task is non-trivial. In this section we show
how a variety of SVMnet configurations were tested on the
COIL-100 dataset to inform the choice of model used in
Section III-A. Similar methodswere used to select themodels
for other datasets. SVMnet models with multiple layers were
tested in the same manner.

Fig. 7 shows how the performance of a one-layer SVMnet
changes with the window size, stride length, voting method,
and number of training samples when fitted to COIL-100.
Prediction accuracy improves in all cases as the window
size increases but with diminishing returns. Increasing the
stride length tends to lower accuracy when the window is
small but incurs little to no penalty when the window is
large. When the vote of an SVM is weighted, model accuracy
improves in all cases compared to an unweighted vote; perfor-
mance increases further when using dropout as described in
Section II-A. This effect is more significant when the window
size is small.

Fig. 8 shows how the time required to fit SVMnet
on COIL-100 changes with the number of SVMs (see
Equation 5) and the number of features for each SVM

(in this case equal to 3W 2). Since increasing the stride length
significantly reduces the number of SVMs in the model,
an SVMnet with large windows can still be trained quickly
with only a minor increase in stride without sacrificing accu-
racy. Each SVMnet in this experiment was trained in parallel
using 16 CPUs.

IV. CONCLUSION
Deep convolutional neural networks provide excellent per-
formance in automatic classification of image data while
eliminating the need to develop and tailor algorithms for
specific image classification problems. With the availability
of open source libraries, DCNNs have become the de facto
first solution to image classification.

Here we explore one of the primary weaknesses of
DCNNs, which is the need of a relatively high number of
labeled ‘‘ground truth’’ samples for effective training of the
network.While in the computer science literature DCNNs are
often tested on relatively large datasets such as MNIST or
ImageNet, in many real-world problems a very large number
of clean labeled samples that can be used for training is not
available.
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Medical datasets such as those prepared for the purpose
of image-based diagnostics are difficult to prepare due to the
long time required to assign a sample with a correct label [5],
consequently leading to a high cost. Additionally, acquiring
a radiograph can also require substantial resources, as med-
ical image acquisition systems such as Magnetic Resonance
Imaging (MRI) require expensive instrumentation and staff.
Additionally, the consent of the patient is required for the
preparation of each sample. These limitations make large
datasets of biomedical images substantially more expensive
and more difficult to prepare.

In many other cases labeled training samples are not avail-
able. For instance, when analyzing archaeological artifacts,
the number of training samples are limited by the number of
available artifacts, which is often a hard limit that cannot be
easily changed. A typical size of such datasets is normally
several hundred samples [43]. Using computer vision to ana-
lyze art [44] is limited by the number of paintings each artists
created, which can be a firm limit, especially when the painter
is no longer alive. These are obviously just a few examples out
of many possible real-world situations in which the number
of labeled samples is inherently small.

SVMnet aims at providing an effective solution for the
numerous real-world situations in which the number of
labeled image samples that can be used for training is lim-
ited. SVMnet utilizes the ability of an SVM to learn from
a smaller number of samples compared to other machine
learning approaches. The flexible structure of SVMnet allows
it to learn directly from the pixel values, and to utilize dif-
ferent layers that correspond to the convolutional and fully
connected layers in ‘‘conventional’’ deep neural networks.

Like DCNNs, SVMnet does not require the design of spe-
cific algorithms for a particular image classification problem.
Therefore, SVMnet can be used for a variety of image data,
as also demonstrated in Section III. One of its primary uses
can be the biomedical domain, where the acquisition and
annotation of images is expensive and time-consuming, and
therefore biomedical datasets are very often much smaller
than image datasets used in other tasks such as object
recognition.

The proposed approach is structured as a network to take
advantage of the stronger signal from neighboring pixels,
similar to the core idea in the basis of CNNs. SVMs are
known for their ability to learn quickly from relatively few
training samples. By training many SVMs on small pixel
regions across an image, this quick learning can be leveraged
to extract much information from small sets of images in
less time than it would take to fully train a deep neural
network.

Complexity analysis shows that the training time for
SVMnet scales more quickly with the number of input sam-
ples than DCNNs, suggesting that SVMnet might take sub-
stantial computational resources when trained using large
datasets. However, SVMnet is designed for situations in
which the labeled training set is relatively small. As shown
in our experiments, the training time might not be a practical

obstacle in many real-world situations in which SVMnet
can be used. While computing is an available resource, and
training SVMnet with a few hundred training samples scales
within reasonable response time, annotated clean or rare
training samples might in many cases be much more difficult
to obtain.

The underlying structure used to create SVMnet is very
flexible, allowing other kinds of machine learning algorithms
to be used rather than solely SVMs. Constructing the layers
with classifiers such as random forests or logistic regression
may result in better performance for some datasets. These
layers can be mixed in the same model as well, i.e. using one
layer of SVMs followed by a layer of random forests. These
possibilities present a promising avenue for future related
work.

SVMnet is not designed to become a general solution that
can outperform deep convolutional neural networks such as
ResNet-50. But experimental results show that it is an effec-
tive solution for cases in which the number of labeled training
samples is small. Since such cases are not rare, SVMnet can
complement conventional deep neural networks by providing
image classification in the cases where not many labeled
training samples are available.
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