Scaffolding Game Design: Towards Tool Support
for Planning Open-Ended Projects in an
Introductory Game Design Class

Alexander Card, Wengran Wang, Chris Martens, and Thomas Price
{acard, wwang33, crmarten, twprice} @ncsu.edu
Department of Computer Science
North Carolina State University
Raleigh, NC, USA

Abstract—One approach to teaching game design to students
with a wide variety of disciplinary backgrounds is through team
game projects that span multiple weeks, up to an entire term.
However, open-ended, creative projects introduce a gamut of
challenges to novice programmers. Qur goal is to assist game
design students with the planning stage of their projects. This
paper describes our data collection process through three course
interventions and student interviews, and subsequent analysis in
which we learned students had difficulty expressing their creative
vision and connecting the game mechanics to the intended player
experience. We present these results as a step towards the goal
of scaffolding the planning process for student game projects,
supporting more creative ideas, clearer communication among
team members, and a stronger understanding of human-centered
design in software development.

Index Terms—game design, game development, design docu-
ments, planning support tools, education, open-ended program-
ming projects

1. INTRODUCTION

With the growing popularity of digital games as a form of
entertainment, an art form, and teaching tool [1], the need to
educate students in game design has grown. Students from
varying disciplines and fields of study take game design courses,
meaning instructors cannot rely on students prepared by a single
disciplinary foundation (such as Design or Computer Science).
This increase in the number and diversity of students, especially
those not in programming related disciplines, necessitates an
improvement in the available support tools for students in
computer science-based game design courses.

One method of teaching emerging in modern classrooms
is project-based learning [2]. In one implementation of such
a model, students engage in a semester-long project that
requires synthesizing all key learning objectives for the
course, including design, playtesting, and implementation. This
course structure necessitates rapidly introducing programming
concepts to students without prior experience, but without
centering programming as the primary learning objective:
students primarily need to learn how to design games in a

978-1-6654-4592-4/21/$31.00 ©2021 IEEE

way that allows them to map from player experience goals to
low-level mechanics and their implementations.

In an effort to better support students we posit the following
research question: What challenges do novice game design
students encounter when planning game design projects?

In this paper, we present a study and subsequent analysis
of student game design in an 200-level computing course.
Our study was designed to find challenges that students
face in the design process for creative, open-ended game
projects. We designed the study starting with a digitized paper
prototype, which we used to prompt students to describe game
mechanics in a semi-formal “If-Then” structure and connect
these mechanics to the game’s dynamics and player experience
phenomena. After analyzing the results of this prototype and
corpus of student design documents, and conducting interviews
about students’ experiences with the class project, we identified
weaknesses in students’ ability to delineate player experience
goals and connect them to their choices of game mechanics.
We then collected and analyzed a corpus of games implemented
in PuzzleScript (one of the main game engines used for class
projects), which led us to a curated set of mechanics to use as
examples for students to browse.

This paper describes our study design and subsequent
analysis process, a participatory design procedure in which we
collected assignment data and conducted student and instructor
interviews from an introductory game design course at North
Carolina State University. From the study we found students
struggled with expressing their creative vision and connecting
the game mechanics to the intended player experience.

II. RELATED WORKS

Project-based learning is defined by Thomas [2] as a model
which organizes the student’s learning around projects; complex
tasks which have a basis in realistic and difficult questions
or issues which give students the opportunity to synthesize
the learning objectives of the course into a single, extended
task. Such a model involves the student in the design and
planning phase of creation which, in other models, may be
overlooked [3], [4]. Investigating the importance of planning
in student projects, tools such as the prototype design by

Nelson and Mateas [5], assist game designers with planning
their game space. Similarly, PlanIT! [6] is another planning
tool which helps students create and plan projects in the
Snap [7] environment by providing implementation and Snap
specific assistance. However, at times students hold incorrect
beliefs, as Gorson et al notes in [8], 15.42% of students in the
research indicated the belief that planning before programming
showed low expertise, yet the students negatively self-assessed
when becoming frustrated from difficulties starting a project.
Another study on undergraduate students found that students
demonstrated a weakness in creating plans to be implemented
as a functioning program [9]. Our research continues the spirit
of these by focusing on ascertaining where undergraduate
students in project-based game design courses struggle with
design and planning, and why the struggle exists.

III. RESEARCH CONTEXT

We conducted our research in the context of the introductory
game design course at our university, North Carolina State
University, CSC 281, a 3-credit undergraduate course. In a
typical semester, this course enrolls 100-125 students with a va-
riety of programming backgrounds (including no programming
experience). There are no prerequisites for this course, but
most students who take it are sophomores. The course satisfies
a university requirement for “Interdisciplinary Perspectives,’
drawing students from a variety of majors and departments,
including but not limited to STEM.

CSC 281 aims to teach students how to analyze and build
games, both individually and as a team. We have collaborated
with the faculty teaching this course over multiple semesters,
spring and fall 2020, to ensure that our research goals align
with the course’s learning objectives. The course’s contains a
semester project in which students are organized into teams
and asked to design, implement, and playtest a digital game.

Successfully realizing their designs as implementations re-
quires students to understand the “MDA” framework proposed
by Hunicke et al [10]. MDA is comprised of Mechanics,
Dynamics, and Aesthetics, which the framework weaves
together to describe games. From a designer’s perspective,
mechanics feed into the dynamic system behavior, which sets
the aesthetic experience. The player’s perspective is reversed,
the aesthetic tone is born through the observed dynamics
implemented though mechanics. Thusly, a game’s mechanics,
dynamics, aesthetics are mutually constrained. The course
intends for students to be human-centered in their design, to
put aesthetics first and understand how choices of low-level
implementation details affect high-level experiential qualities.
Where the aesthetics of the game are the “fun”, the dynamics
are how the mechanics facilitate the conveyance of that “fun”.

In order to design from a player-centered perspective,
students also need to have a more nuanced understanding
of player experience than “fun,” a typical starting point for
novice designers attempting to articulate their design goals.
GAME 101 introduces students to typologies of pleasure via the
game design textbook Rules of Play [11]. For example, Marc
LeBlanc describes categories of pleasure experienced from

gameplay that include sensation, fantasy, narrative, challenge,
fellowship, and discovery.

A. The Design Document

One major component of the project is the design document,
which describes their game’s backstory, player goal, mechanics,
art and sound motifs, and level design, and how these elements
contribute to the intended player experience. Students are asked
to draft the design document as a first assignment for the
project and encouraged to maintain and revise it throughout
implementation. Our research focuses on this assignment,
seeking to understand its role in practice for teams of student
game designers, where it helps them meet learning objectives,
and where it fails.

B. PuzzleScript

PuzzleScript is an open-source web-based puzzle game
engine designed to help users make tile-based puzzle games.
PuzzleScript uses a turn-based approach alongside rule-based
programming to allow for succinct rules to encode games in.
Rules in PuzzleScript have a pre-condition and post-condition,
and are iterated as often as can be. Player movement triggers
the rule iteration process for this stage, with an optional extra
stage which allows for rules to be applied at the end of a turn.

In both spring and fall 2020 semesters, for pedagogical
reasons, students were heavily encouraged to develop their
semester project games using the PuzzleScript game engine,
however were not required to do so.

IV. Darta COLLECTION

On our quest to address our research question and understand
where novice game design students struggled, we started
by staging interventions in the course CSC 281 for data
collection. We developed a digital paper prototype of a planning
assistance tool intended to assist the students in their creative
design process in the introductory game design course. These
documents provided a structured lexicon of nouns, verbs, and
miscellaneous words, allowing student extension. In “Natural
Programming” [12], Myers and Pane found that the students
used event-based or rule-based structures to describe the
mechanics of Pac Man, and we used a similar semi-formal
“if-then” syntax to define gameplay mechanics. These were
intended to encourage the students to consider what conditions
were necessary for the mechanic to trigger, as well as how
this would change and affect the game state at a higher level
than implemented code. This extensible vocabulary provided
generic keywords alongside default terms from PuzzleScript.
We had two primary anticipations of these interventions: one
being that restrictions breed creativity, and the other being the
students more completely addressing the provided mechanics
to prevent underspecification.

We conducted three classroom interventions: an in-class
activity, an extended game design assignment, and an aug-
mented design document. For the in-class activity, students
analyzed Sokoban, a game in which the player pushes boxes
onto triggers to complete levels. The students briefly played the

game, then were asked to describe the game using the lexicon
and “if-then” structure for mechanics. The second intervention
tasked the students with extending Sokoban with a new level
and mechanic. The final intervention was a modification of
the Design Document assignment for the students final project:
a culmination of the other interventions expanded by asking
the students to explicitly connect their mechanics and design
choices to their intended gameplay experience. The paper
prototype provided a large amount of scaffolding to address
components of the documentation expected by course staff.

To understand students’ own perspectives of their design
experience, at the conclusion of the semester we conducted
one-on-one interviews with 4 students from the Game 101 class,
in which we asked them about their design experiences and
creating games in class, as well barriers and struggles which
arose. Additionally, at the end of the course, instructors selected
some student teams to present their games at a showcase.

Out of the 116 students, 94 agreed to participate in the
research. However, as the design documents were part of group
projects, we were unable to collect data from all participants
in the case of groups which had students who declined to
participate in the research. Of the 18 groups composed solely of
consenting students, course staff provided us with anonymized
Design Document assignments for analysis.

V. ANALYSIS

We analyzed the 18 design documents by identifying the me-
chanics which were provided, how thoroughly these addressed
potential edge cases, mechanical coverage: how completely and
thoroughly mechanics described possibilities in the proposed
gameplay, the detail of the player experience description, and
the cohesion with which the mechanics addressed the player
experience. We also examined the documents for references to
existing games and how the intended experience was described
as taking inspiration from the referenced media.

For mechanical coverage of the proposed gameplay, we
considered mechanics in two sets: first level mechanics which
are immediate consequences of the player’s action, and inci-
dental mechanics which are indirect results of player actions.
An example first level mechanic is player movement: a key is
pressed, and the player character moves. An example incidental
mechanic is crate removal: when three boxes are in a row, the
boxes are removed from the game world.

We analyzed the interview data using the 6-phase thematic
analysis by Braun et al. [13]. In this process we first “familiarize
ourselves with data” by reading, transcribing the data (Phase 1);
next “generating initial codes” by having one researcher coded
all interview data, noting down codes that describes students’
experience with planning and implementation while receiving
feedback from the other researchers (Phase 2); we next “search
for themes”, where the researcher presented the initial codings
with quotes to the other researchers to find high-level themes
(Phase 3); After that, the researchers reviewed and defined
themes over 3 iterations by summarizing the core meanings
and rejecting themes which were not expressed sufficiently

in the data set (Phase 4 and 5). We present the result in the
following section (Phase 6).

VI. REsurrs

We organize our results by emergent themes from our
interviews, identified in our thematic analysis. In each section,
we discuss the challenges that students reported in interviews,
and present the summaries relevant to each theme in table I.

A. Expressing Mechanics

In our interviews, students expressed challenges describing
game mechanics in a way that communicated their ideas and
set them up for successful implementation. One student noted
difficulties identifying the core mechanics of their game, and
were “overwhelmed with the amount of things that I can put
into it” [P1]. They noted that this large possibility space caused
problems during implementation: “it was easy to list the amount
of mechanics we wanted to include. It’s hard to just implement
them all within this time span” [P1].

Our analysis of the design documents corroborates the chal-
lenge of expressing mechanics. Students struggled expressing
their game’s mechanics, which did not occur when describing
Sokoban. When linking mechanics to the gameplay experience,
students often used vague language in their descriptions.

Mechanics were lacking in the coverage of proposed game-
play. 5 of the 18 documents did not cover how the player
could move or interact with the world in any detail, only
including one or two mechanics. Another 5 of the remaining
13 documents covered the mechanics which were mentioned
in the document, and the remaining 8 implicitly contained
mechanics which were mentioned elsewhere in the document
but were unspecified. Of the 18 design documents collected,
only 9 contained any mechanics which considered edge cases
or results of player actions.

B. Understanding Possibilities

Students noted challenges being creative and designing game
mechanics when they did not know what was possible or
feasible in their game engine of choice. One student expressed
disappointment at being unable to “come up with a more unique
and original game” [P1]. They suggested that knowing more
about the capabilities of the Stencyl game engine beforehand
would have helped: “if I had at least known about Stencyl...
it probably would have been going much smoother” [P1].
Another team noted that it was difficult to plan without knowing
the affordances of the PuzzleScript game engine, and they
ultimately had to cut ideas that weren’t well suited to it: “a huge
issue is the fact that like we were working with PuzzleScript...
so we were limited in terms of ‘what can we do with this?’...
We had quite a few issues in the planning phase and we had to
shoot down quite a few ideas” [P2]. The mechanics they did
keep did not turn out as they expected: “[When planning], I was
never thinking, ‘how is this going to appear in PuzzleScript?’...
it ended up becoming really tricky because there are some
objects we have that are not exactly looking like what they are
intended to be [in PuzzleScript]... They aren’t bad mechanics

Theme

Supporting Evidence

Design Take-Away

Expressing Mechanics

Students struggled expressing their
game’s mechanics, which did not
occur when describing Sokoban, an
existing game.

Students need support narrowing the space of possible game mechanics, and
expressing game mechanics with specificity. Without such support, they may plan
games that are excessively ambitious or vague to receive high-quality feedback
from peers.

Understanding Possibilities

Students had issues planning for
mechanics and understanding how
the mechanics would be imple-
mented in their chosen platform.

Students want to create original games, but need support understanding the space
of possible mechanics for a given platform, such as Stencyl or PuzzleScript. In
the absence of such support, students’ games may end up being homogeneous,
with mechanics poorly suited to their medium.

Drawing Inspiration

Students indicated they took inspira-
tion from existing games, however
in some cases did not provide con-
nections from the cited games.

Remixing and re-imagining existing games is a straightforward strategy for
novice game designers to create their own games. However, without explicit
support, novices may turn only to well-known games, which may not be suitable
for their target platform. Therefore, students may benefit from additional support
browsing examples of game mechanics that are diverse, appropriate and feasible.

Connecting Player Experience

Students did not provide links be-
tween mechanics and desired player
experience, a core intent of the
MDA framework.

Students may not intuitively link game mechanics to a desired player experience,
or fail to express such connections if they exist. Students would therefore
benefit from scaffolding to make these links more explicit when selecting game
mechanics.

TABLE I

SUMMARY OF THE THEMES AND TAKE-AWAYS

per se—I don’t regret including them, even if it was kind of
like a stretch with what they’re currently represented by” [P2].

Our analysis of students’ design documents found similarities
between mechanics. Of the 18 games, only 1 game was
described as having different movement from the rest: 17
included keyboard input and 1 detailed grid-based mouse input.
While PuzzleScript and Stencyl were officially supported in
the course, 5 documents detailed using Unity. However, these
5 games used similar descriptions for mechanics.

C. Drawing Inspiration

Students also noted using other games as inspiration: “just
taking ideas from different games because the first few levels
kind of reminded me of jetpack joyride where you just have
to survive as long as possible” [P1]. They mentioned this as a
strategy for coming up with game mechanics: “I guess we kind
of thought about other games that did well in the same area and
got inspiration from there” [P4]. Taking a simple idea from an
existing game was well-suited to teams without game design
experience: “we’re not super great at designing the actual game,
the software that we used, so we didn’t want to do something
that was over complicated” [P4]. One student also noted that
it would be helpful to have suggestions of games that might
serve as inspiration, especially less well-known games: “if we
had a more diverse [game] reference section, rather than just
the most well known type of thing, we could look at more...
mechanics or how the design works differently” [P1].

From the 18 documents, 8 cited other games as inspiration.
However, students lacked specificity when explaining how such
references shaped their own games: 4 of the 8 provided no
details as to how the cited games connected to their project,
nor was it obvious which aspects of that game were intended
to be reflected in the student project design. The remaining 4

documents had a clearly linked theme to the referenced game.

D. Connection to Player Experience

One theme that was notably absent from our interviews,
when we asked students how they went about designing their

game mechanics, was any mention of linking game mechanics
to a desired player experience. This is a core intent of the
MDA framework: mechanics support dynamics which create
aesthetics to define the player experience. When investigating
students’ design documents for justifying mechanics by player
experience, we found that students used vague descriptions for
their player experience, and did not connect the mechanics to
the player experience. Of the 18 documents, 9 included “fun’
or “feel challenged” in the intended player experience, without
offering more specific descriptors or tying their mechanics back
to these player experience goals. As discussed in Section 3,
students are intended to avoid terms like “fun” and “challenge”
when describing player experiences in favor of more specific
emotions and experiential qualities.

bl

VII. FuturRE WORK AND CONCLUSION

In this paper we presented the data and analysis of a study in
which we found novice game design students need support in
understanding the possible space of mechanics, expressing their
mechanics, and linking mechanics to the player experience.

Moving forward, we intend to implement a tool in the game
design course to replace the current paper documents, allowing
for data collection from consenting students. To this end we
are working with the instructors to ensure that all the criteria
desired for the design documentation are fulfilled in the tool.
We also intend to conduct interviews with students who used
the tool for the game design documentation to ascertain their
involvement and the usability and helpfulness of the features
and scaffolding we have added.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1917885. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

[1]

[2]
[3]

[5]

[6]

[7]

[8]

[10]

[11]
[12]

[13]

REFERENCES

A. Repenning, D. C. Webb, K. H. Koh, H. Nickerson, S. B. Miller,
C. Brand, I. H. M. Horses, A. Basawapatna, F. Gluck, R. Grover,
K. Gutierrez, and N. Repenning, “Scalable game design: A strategy
to bring systemic computer science education to schools through game
design and simulation creation,” ACM Trans. Comput. Educ., vol. 15,
Apr. 2015.

J. W. Thomas, “A review of research on project-based learning,” 2000.
W. Jin and A. Corbett, “Effectiveness of cognitive apprenticeship learning
(cal) and cognitive tutors (ct) for problem solving using fundamental
programming concepts,” in Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, SIGCSE 11, (New York,
NY, USA), p. 305-310, Association for Computing Machinery, 2011.
W. Jin, A. Corbett, W. Lloyd, L. Baumstark, and C. Rolka, “Evaluation of
guided-planning and assisted-coding with task relevant dynamic hinting,”
in International Conference on Intelligent Tutoring Systems, pp. 318-328,
Springer, 2014.

M. J. Nelson and M. Mateas, “An interactive game-design assistant,” in
Proceedings of the 13th International Conference on Intelligent User
Interfaces, 1UI "08, (New York, NY, USA), p. 90-98, Association for
Computing Machinery, 2008.

A. Milliken, W. Wang, V. Cateté, S. Martin, N. Gomes, Y. Dong,
R. Harred, A. Isvik, T. Barnes, T. Price, and C. Martens, “Planit! a
new integrated tool to help novices design for open-ended projects,”
in Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education, SIGCSE °21, (New York, NY, USA), p. 232-238,
Association for Computing Machinery, 2021.

A. D. Johnson, R. E. Handsaker, S. L. Pulit, M. M. Nizzari, C. J.
O’Donnell, and P. I. De Bakker, “Snap: a web-based tool for identification
and annotation of proxy snps using hapmap,” Bioinformatics, vol. 24,
no. 24, pp. 2938-2939, 2008.

J. Gorson and E. O’Rourke, “Why do csl students think they’re bad
at programming? investigating self-efficacy and self-assessments at
three universities,” in Proceedings of the 2020 ACM Conference on
International Computing Education Research, pp. 170-181, 2020.

K. Kwon, “Novice programmer’s misconception of programming reflected
on problem-solving plans,” International Journal of Computer Science
Education in Schools, vol. 1, p. 14, 10 2017.

R. Hunicke, M. LeBlanc, and R. Zubek, “Mda: A formal approach to
game design and game research,” in Proceedings of the AAAI Workshop
on Challenges in Game Al, vol. 4, p. 1722, San Jose, CA, 2004.

K. Salen, K. S. Tekinbas, and E. Zimmerman, Rules of play: Game
design fundamentals. MIT press, 2004.

B. Myers, J. Pane, and A. Ko, “Natural programming languages and
environments,” Communications of the ACM, vol. 47, pp. 47—, 09 2004.
V. Clarke and V. Braun, “Thematic analysis,” in Encyclopedia of critical
psychology, pp. 1947-1952, Springer, 2014.

