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Abstract— Robots operating in households must find objects
on shelves,under tables,and in cupboards.In such environ-
ments, it is crucial to search efficiently at 3D scale while coping
with limited field of view and thecomplexity ofsearching
for multiple objects.Principled approachesto objectsearch
frequently use Partially Observable Markov Decision Process
(POMDP) as the underlying framework for computing search
strategies, but constrain the search space in 2D. In this paper, we
present a POMDP formulation for multi-object search in a 3D
region with a frustum-shaped field-of-view.To efficiently solve
this POMDP, we propose a multi-resolution planning algorithm
based on online Monte-Carlo tree search.In this approach,we
design a noveloctree-based beliefrepresentation to capture
uncertainty of the target objects at different resolution levels,
then derive abstractPOMDPs at lower resolutions with dra-
matically smaller state and observation spaces.Evaluation in
a simulated 3D domain shows that our approach finds objects
more efficiently and successfully compared to a set of baselines
without resolution hierarchy in larger instances under the same
computationalrequirement.We demonstrate our approach on
a mobile robot to find objects placed at different heights in two
10m2×2m regions by moving its base and actuating its torso.

I. INTRODUCTION

Robots operating in human spaces must find objects such
as glasses,books,or cleaning suppliesthatcould be on
the floor,shelves,or tables.This search space is naturally
3D. When multiple objects mustbe searched for,such as
a cup and a mobile phone,an intuitive strategy is to first
hypothesize likely search regions for each target object based
on semantic knowledge or past experience [1, 2], then search
carefully within those regions. Since the latter directly deter-
mines the success of the search,it is essential for the robot
to produce an efficientsearch policy within a designated
search region under limited field of view (FOV), where target
objects could be partially orcompletely occluded.In this
work,we consider the problem setting where a robotmust
search formultiple objects in a search region by actively
moving its camera, with as few steps as possible (Figure 1).

Searching forobjectsin a large search region requires
acting overlong horizons undervarious sources ofuncer-
tainty in a partially observable environment. For this reason,
previous works have used Partially Observable Markov De-
cision Process (POMDP) as a principled decision-theoretic
framework forobjectsearch [3,4, 5]. However,to ensure
the POMDP is manageable to solve,previous works reduce
the search space or robot mobility to 2D [2,6,7],although
objects exist in rich 3D environments. The key challenges lie
in the intractability of maintaining exactbelief due to large
state space [8],and the high branching factor for planning
due to large observation space [9,10].
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Fig. 1: An example of the 3D-MOS problem where a torso-actuated
mobile robot is tasked to search for three objects placed at different
heights in a lab environment.The objects are represented by paper
AR tags marked by red boxes.Note thatthe robotmustactively
move itselfdue to limited field ofview,and the objects can be
occluded by the attached obstacles if viewed from the side.

In this paper,we introduce 3D Multi-Object Search (3D-
MOS), a generalPOMDP formulation for the multi-object
search task with 3D state and action spaces,and a realistic
observation spacein the form of labeled voxelswithin
the viewing frustum from a mounted camera.Following
the Object-Oriented POMDP (OO-POMDP) framework pro-
posed by Wandzel et al. [6], the state, observation spaces are
factored by independentobjects,allowing the beliefspace
to scale linearly instead ofexponentially in the number
of objects.We addressthe challengesof computational
complexity in solving 3D-MOS by developing several tech-
niques thatconverge to an online multi-resolution planning
algorithm.First,we propose a per-voxelobservation model
which drastically reduces the size of the observation space
necessary for planning. Next, we present a novel octree-based
belief representation that captures beliefs at different resolu-
tions and allows efficientand exactbeliefupdates.Then,
we exploitthe octree structure and derive abstractions of
the ground problem atdifferentresolution levels leveraging
abstraction theory forMDPs [11,12]. Finally,a Monte-
Carlo Tree Search (MCTS) based online planning algorithm,
called Partially-Observable UpperConfidence boundsfor
Trees(POUCT) [8], is employed to solve these abstract
instances in parallel,and the action with highestvalue in
its MCTS tree is selected for execution.

We evaluate the proposed approach in a simulated,dis-
cretized 3D domain where a robotwith a 6 degrees-of-
freedom camera searches for objects of different shapes and
sizes randomly generated and placed in a grid environment.



The results show that,as the problem scales,our approach
outperforms exhaustive search as well as POMDP baselines
withoutresolution hierarchy under the same computational
requirement. We also show that our method is more robust to
sensor uncertainty against the POMDP baselines. Finally, we
demonstrate our approach on a torso-actuated mobile robot
in a lab environment(Figure 6).The robotfinds 3 outof 6
objects placed at different heights in two 10m2×2m regions
in around 15 minutes.

II. BACKGROUND

POMDPs compactly representthe robot’s uncertainty in
targetlocations and its own sensor [13],and OO-POMDPs
factor the domain in terms of objects,which fits the object
search problem naturally [6]. Below, we first provide a brief
overview of POMDPs and OO-POMDPs.Then,we discuss
related work in object search.

A. POMDPs and OO-POMDPs

A POMDP models a sequentialdecision making prob-
lem wherethe environmentstateis not fully observ-
able by the agent.It is formallydefinedas a tuple
hS ,A,O, T, O, R, γ i, whereS ,A,O denote the state, action
and observation spaces,and thefunctionsT (s, a, s ′ ) =

Pr(s′|s, a ), O(s′ , a, o ) = Pr( o|s′ , a ), andR(s, a ) ∈ R
denote the transition,observation,and reward models.The
agenttakes an actiona  ∈A thatcauses the environment
state to transition froms  ∈S to s′  ∈S . The environment
in turn returns the agentan observationo  ∈O and reward
r ∈R. A historyht = (ao)1:t−1 captures all past actions and
observations.The agentmaintains a distribution over states
given currenthistorybt(s) = Pr( s|ht). The agentupdates
its beliefaftertaking an action and receiving an observa-
tion bybt+1(s′ ) = ηPr(o|s′ , a )

P
s Pr(s′|s, a )bt(s) where

η =
P

s

P
s′ Pr(o|s′ , a ) Pr(s′|s, a )bt(s) is the normalizing

constant.The task of the agentis to find a policyπ(bt) ∈
A which maximizesthe expectation offuture discounted
rewardsV π (bt) = E

P∞
k=0 γkR(st+k , π (bt+k )) |bt with

a discount factorγ.
An Object-Oriented POMDP (OO-POMDP) [6] (general-

ization ofOO-MDP [14])is a POMDP thatconsiders the
state and observation spaces to be factored by a setof n
objects where each belongs to a class with a set of attributes.
A simplifying assumption is made for the 2D MOS domain
thatobjects are independentso thatthe belief space scales
linearly rather than exponentially in the number of objects:
bt(s) =

Q
i b

i
t(si ). We make this assumption for the same

computational reason.
Offline POMDP solvers are often too slow to be practi-

cal for large domains [15].State-of-the-artonline POMDP
solvers leverage sparse belief sampling and MCTS to scale
up to domains with large state spaces and to address the
curse of history [8, 16, 9]. POMCP [8] is one such algorithm
which combines particle belief representation with Partially
Observable UCT (POUCT),which extends the UCT algo-
rithm [17] to POMDPs and is proved to be asymptotically
optimal [8]. We build upon POUCT due to its optimality and
simplicity of implementation.

B. Related Work

Previous work primarily address the computationalcom-
plexity of object search by hypothesizing likely regions based
on objectco-occurrence [1,18],semantic knowledge [2]
or language [6],reducing the state space from 3D to 2D
[6, 19, 20, 21], or constrain the sensor to be stationary [5, 22].
Our work focuses on multi-object search within a 3D region
where the robotactively movesthe mounted camera,for
example,through pan or tilt,or by moving itself.

Severalworks explicitly reason over the arrangementof
occluded objects based on given geometry models of clutter
[3, 21, 23].Our approach considersocclusion aspartof
the observation thatcontainsno information abouttarget
locations and we do not require geometry models.

Many works formulate objectsearch as a POMDP.No-
tably,Aydemiret al. [2] first infera room to search in
then perform search by calculating candidate viewpoints in
a 2D plane.Li et al.[7] plan sensor movements online,yet
assume objects are placed atthe same surface levelin a
container with partial occlusion. Xiao et al. [3] address object
fetching on a cluttered tabletop where the robot’s FOV fully
covers the scene,and thatoccluding obstacles are removed
permanently during search.Wandzelet al. [6] formulates
the multi-objectsearch (MOS)task on a 2D map using
the proposed Object-Oriented POMDP (OO-POMDP).We
extend thatwork to 3D and tackle additionalchallenges by
proposing a new observation model and belief representation,
and a multi-resolution planning algorithm.In addition,our
POMDP formulation allows fully occluded objects and can
be in principle applied on differentrobots such as mobile
robots or drones.

III. MULTI -OBJECT SEARCH IN 3D

The robotis tasked to search forn static targetobjects
(e.g.cup and book) of known type but unknown location in
a search space that also contains static non-target obstacles.
We assume the robot has access to detectors for the objects
thatit is searching for.The search region is a 3D grid map
environmentdenoted byG. Let g ∈ G ⊆ R3 be a 3D
grid cellin the environment.We useGl to denote a grid
atresolution levell ∈N, andgl ∈Gl to denote a grid cell
at this level. Whenl is omitted, it is assumed thatg is at the
ground resolution level.We introduce the 3D-MOS domain
as an OO-POMDP as follows:

State spaceS. An environment states = {s1,· · ·, s n , s r}
is factored in an object-oriented way,wheresr  ∈S r is the
state of the robot,andsi  ∈S i is the state of target objecti.
A robot state is defined assr = (p,F)  ∈S r wherep is the
6D camera pose andF is the set of found objects. The robot
state is assumed to be observable to the robot.In this work,
we consider the object state to be specified by one attribute,
the 3D objectpose atits center of mass,corresponding to
a cellin gridG. We denote a statesl

i  ∈S l
i to be an object

state at resolution levell, whereS l
i = Gl .

Observation spaceO. The robot receives an observation
through a viewing frustum projected from a mounted camera.
The viewing frustum forms the FOV of the robot,denoted



Fig.2: Illustration of the viewing frustum and volumetric observa-
tion.The viewing frustum V consists of |V |voxels,where each
v ∈ V can be labeled as i ∈ {1, · · · , n},FREE or UNKNOWN .

byV , which consists of|V|voxels. Note that the resolution
of a voxelshould be no lower than thatof a 3D grid cell
g. We assume both resolutions to be the same in this paper
for notationalconvenience,henceV ⊆ G, butin general
a voxelwith higherresolution can be easily mapped to a
corresponding grid cell.

For each voxelv ∈ V , a detection functiond(v) labels
the voxelto be either an objecti  ∈{1,· · ·, n}, FREE, or
UNKNOWN (Figure 2). FREE denotes that the voxel is a free
space or an obstacle. We include the label UNKNOWN to take
into accountocclusion incurred by targetobjects orstatic
obstacles. In this case, the corresponding voxel inV does not
give any information about the environment. An observation
o = {(v, d (v))|v ∈ V} is defined as a setof voxel-label
tuples.This can be thoughtof as the resultof voxelization
and object segmentation given a raw point cloud.

We can factoro by objects in the following way.First,
given the robotstatesr atwhicho is received,the voxels
in V have known locations.Underthis condition,V can
be reduced to exclude voxels labeled UNKNOWN while still
maintaining the same information.Then,V can be decom-
posed by objects intoV1,· · ·, V n where foranyv ∈ Vi ,
d(v)  ∈{i, FREE}which retain the same information asV
for a given robot state.1 Hence, the observationo =

Sn
i=1 oi

whereoi = {(v, d (v))|v ∈Vi}.
Action spaceA. Searching for objects generally requires

three basic capabilities:moving,looking,and declaring an
objectto be found atsome location.Formally,the action
space consistsof these three typesof primitive actions:
MOVE(sr , g ) action movesthe robotfrom pose insr to
destinationg ∈ G stochastically.LOOK(θ) changesthe
camera pose to look in the direction specified byθ ∈ R3,
and projects a viewing frustumV . FIND (i, g ) declares object
i to be found atlocationg. The implementation ofthese
actions may vary depending on the type of search space or
robot. Note that this formulation allows macro actions,such
as “look after move” to be composed for planning.

Transition functionT . Targetobjects and obstacles are
static objects,thusPr(s′

i|s, a ) = 1(s′
i = si ). For the robot,

the actions MOVE(sr , g) and LOOK(θ) change the camera
location and direction tog andθ following a domain-specific

1The FOV V is fixed for a given camera pose in the robot state, therefore
excluding UNKNOWN voxels does not lose information.

stochastic dynamics function.The action FIND(i, g ) addsi
to the setof found objects in the robotstate only ifg is
within the FOV determined bysr .

Reward functionR. The correctness of declarations can
only be determined by,for example,a human who has
knowledge aboutthe targetobjector additionalinteractions
with the object;therefore,we considerdeclarations to be
expensive.The robotreceivesRmax ≫ 0 if an objectis
correctly identified by a FIND action,otherwise the FIND

action incurs aRmin≪ 0 penalty.MOVE and LOOK receive
a negative step costRstep< 0 dependenton the robotstate
and the action itself.This is a sparse reward function.

A. Observation Model

We have previously described how a volumetric observa-
tiono can be factored by objects intoo1,· · ·, o n . Here,we
describe a method to modelPr(oi|s′ , a ), the probabilistic
distribution over an observationoi for objecti.

Modeling a distribution over a 3D volume is a challenging
problem [24].To develop an efficientmodel,we make the
simplifying assumption thatobjecti is contained within a
single voxellocated atthe grid cellg = s′

i . We address
the case ofsearching forobjectsof unknown sizeswith
ourplanning algorithm (Section V)thatplans atmultiple
resolutions in parallel.

Under this assumption,d(v) = FREE deterministically for
v 6= s′

i , and the uncertainty ofoi is reduced to the uncertainty
of d(s′

i ). As a result,Pr(oi|s′ , a ) can be simplified to
Pr(d(si )|s′ , a ). Whens′

i 6∈ Vi , eitherd(s′
i ) = UNKNOWN

(occlusion) ors′
i 6∈V (not in FOV).In this case,there is no

information regarding the value ofd(s′
i ) in the observation

oi , thereforePr(d(s′
i )|s′ , a ) is a uniform distribution.When

s′
i ∈ Vi , thatis, the non-occluded region within the FOV

coverss′
i , the case ofd(s′

i ) = i indicates correctdetec-
tion whiled(s′

i ) = FREE indicates sensing error.We let
Pr(d(s′

i ) = i|s′ , a ) = α andPr(d(s′
i ) = FREE|s′ , a ) = β.

It should be noted thatα andβ do notnecessarily sum
to one because the belief update equation does notrequire
the observation modelto be normalized,as explained in
Section II-A.Thus,hyperparametersα andβ independently
control the reliability of the observation model.

IV. OCTREE BELIEF REPRESENTATION

Particle belief representation [8,16] suffers from particle
depletion underlarge observation spaces.Moreover,if the
resolution ofG is dense, it may be possible that most of 3D
grid cells do not contribute to the behavior of the robot.

We represent a belief statebit(si ) for objecti as an octree,
referred to as an octree belief.It can be constructed incre-
mentally as observations are received and it tracks the belief
of objectstate atdifferentresolution levels.Furthermore,it
allows efficientbelief sampling and belief update using the
per-voxel observation model (Sec.III-A).

An octree belief consists of an octree and a normalizer.
An octree is a tree where every node has8 children.In our
context, a node represents a grid cellgl ∈Gl , wherel is the
resolution level, such thatgl covers a cubic volume of(2l )3

ground-levelgrid cells;the ground resolution levelis given



Fig. 3: Illustration the octree belief representation bi
t(si ). The color

on a node gl indicatesthe beliefVAL i
t(g

l ) thatthe objectis
located within gl . The highlighted grid cells indicate parent-child
relationship between a grid cellatresolution levell = 1 (parent)
and one at level l = 0.

by l = 0 . The 8 children ofthe node equally subdivide
the volume atgl into smallervolumes atresolution level
l − 1 (Figure 3).Each node stores a value VAL i

t(g
l ) ∈R,

which representsthe unnormalized beliefthatsl
i = gl ,

thatis, objecti is located atgrid cellgl . We denote the
setof nodesat resolution levelk < l thatreside in a
subtree rooted atgl by CHk(gl ). By definition,bit(g

l ) =

Pr(gl|ht) =
P

c∈CHk (gl ) Pr(c|ht). Thus,with a normalizer
NORMt =

P
g∈G VAL i

t(g), we can rewrite the normalized
belief as:

bit(g
l ) =

VAL i
t(g

l )

NORMt
=

X

c∈CHk (gl )

VAL i
t(c)

NORM t
, (1)

which meansVAL i
t(g

l) =
P

c∈CHk (gl ) VAL i
t(c). In words,

the value stored in a node is the sum of values stored in its
children.The normalizer equals to the sum of values stored
in the nodes at the ground resolution level.

The octree does not need to be constructed fully in order
to query the probability at any grid cell. This can be achieved
by setting a defaultvalue VAL i

0(g) = 1 for all ground
grid cellsg ∈ G notyetpresentin the octree.Then,any
node corresponding togl has a default value of VAL i

0(g
l ) =P

c∈CH1(gl ) VAL i
0(c) =|CH1(gl )|.

A. Belief Update

We havedefineda per-voxelobservationmodelfor
Pr(oi|s′ , a ), which is reduced toPr(d(s′

i )|s′ , a ) if s′
i ∈Vi ,

or a uniform distribution ifs′
i 6∈Vi . This suggests thatthe

belief update need only happen for voxels that are inside the
FOV to reflect the information in the observation.

Upon receiving observationoi within the FOVVi , belief
is updated according to Algorithm 1. This algorithm updates
the value of the ground-levelnodeg corresponding to each
voxelv ∈ Vi as VAL i

t+1(g) = Pr( d(v)|s′ , a )VAL i
t(g). The

normalizer is updated to make surebit+1 is normalized
Lemma 1:The normalizer NORM t attimet can be cor-

rectly updated by adding the incremental update of values as
in Algorithm 1.

Proof: The normalizer mustbe equalto the sum of
node values at the ground level for the next beliefbit+1 to be
valid (Equation 1). That is, NORM t+1 =

P
si ∈G VAL i

t+1(si ).
This sum can be decomposed into two cases where the object
i is inside ofVi and outside ofVi ; For objectlocations

Algorithm 1: OctreeBeliefUpdate(bit, a, o i ) → bit+1

input : bit: octree belief for objecti; a: action taken
by robot;oi = {(v, d (v)|v ∈Vi}: factored
observation for objecti

output:bit+1: updated octree belief
// Let Ψ(bti ) denote the octree underlying bi

t .

for v ∈Vi do
si ← v; // State at grid cell corresponding to voxel v

if si 6∈ (Ψ bti ) then
Insert node atsi to (Ψ bti );

end
VAL i

t+1(si ) ← Pr(d(v)|s′ , a )VAL i
t(si );

NORMt+1 ← NORMt + VAL i
t+1(si ) − VAL i

t(si );
end

si 6∈Vi , the unnormalized observation model is uniform, thus
VAL i

t+1(si ) = Pr(d(si )|s′ , a )VAL i
t(si ) = VAL i

t(si ). There-
fore,NORMt+1 =

P
si ∈Vi

VAL i
t+1(si ) +

P
si 6∈Vi

VAL i
t(si ).

Note the set{si|si 6∈Vi} is equivalentas{si|si ∈G \Vi}.
Using thisfactand the definition ofNORMt, we obtain
NORMt+1 = NORMt +

P
si ∈Vi

VAL i
t+1(si ) − VAL i

t(si )

which proves the lemma.
This belief update is therefore exact since the objects are

static.The complexity of this algorithm isO(|V|log(|G|);
Inserting nodes and updating values of nodes can be done
by traversing the tree depth-wise.

B. Sampling

Octree belief affords exact belief sampling at any resolu-
tion level in logarithmic time complexity with respect to the
size of the search space|G|, despite notbeing completely
built. Given resolution levell, we samplefrom S l

i by
traversing the octree in a depth-first manner. Letlmax denote
the maximum resolution level for the search space.Let ldes

be the desired resolution levelatwhich a state is sampled.
If sldes

i is sampled,then allnodes in the octree thatcover
sldes

i , i.e,slmax
i ,· · ·, s ldes +2

i , s ldes +1
i , must also be implicitly

sampled. Also, the event thatsl+k
i is sampled is independent

from other samples given thatsl+k+1
i is sampled. Hence, the

task of samplingsldes is translated into sampling a sequence
of samplesslmax

i ,· · ·, s ldes +2
i , s ldes +1

i , s ldes
i , each according

to the distributionPr(sl
i|sl+1

i , h t) =
VAL i

t (s l
i )

VAL i
t (s l+1

i )
. Sampling

from this probability distribution is efficient,as the sample
space,i.e. the children ofnodesl+1

i is only of size 8.
Therefore, this sampling scheme yields a samplesldes exactly
according tobit(s

ldes ) with time complexityO(log(|G|)).

V. MULTI -RESOLUTION PLANNING VIA ABSTRACTIONS

POUCT expands an MCTS tree using a generative func-
tion(s′ , o, r )  ∼G (s, a ), which is straightforward to acquire
since we explicitly define the 3D-MOS models.However,
directly applying POUCT is subject to high branching factor
due to the large observation space in our domain.

Our intuition is thatoctree belief imposes a spatialstate
abstraction,which can be used to derive an abstraction over



observations,reducing the branching factorfor planning.
Below,we formulatean abstract3D-MOS with smaller
spaces, and propose our multi-resolution planning algorithm.

A. Abstract 3D-MOS

We adoptthe abstraction scheme in Lietal. [11] where
in general,the abstracttransition and reward functions are
weighted sumsof the originalproblem’stransition and
reward functions, respectively with weights that sum up to 1.
We define an abstract3D-MOS hŜ , Â, Ô, T̂ , Ô, R, , lγ i at
resolution levell as follows.

State spacêS. For each objecti, an abstraction function
φi : Si  →S l

i transforms the ground-level object statesi to an
abstract object statesl

i at resolution levell. The abstraction
of the fullstate iŝs = φ(s) = {sr} ∪

S
i φi (si ) where the

robot statesr is kept as is. The inverse imageφ−1
i (sl

i ) is the
set of ground states that correspond tosl

i underφi [11].
Action spaceÂ. Since state abstraction lowers the reso-

lution of the search space,we consider macro move actions
thatmove the robotoverlongerdistance ateach planning
step.Each macro move action MOVEOP(sr , g ) is an option
[25] that movessr to goal locationg using multiple MOVE

actions.The primitive LOOK and FIND actions are kept.
Transition functionT̂ . Targetsand obstaclesare still

static,and the robotstate stilltransitions according to the
ground-leveltransition function.However,the transition of
the found setfromF to F ′ is specialsince the action
FIND(i, g ) operates at the ground level whilesl

i has a lower
resolution (l > 0). Let fi be the binary state variable that
is true if and only if objecti  ∈F . Because the action
FIND(i, g ) affectsfi based only on whetherobjecti is
located atg, and thatthe problem is no longer Markovian
due to state abstraction [12],fi transitions tof ′

i following

Pr(f ′
i|fi , s

l
i , h t, FIND(i, g )) (2)

=
X

si ∈φ−1
i (s l

i )

Pr(f ′
i|si , f i , FIND (i, g )) Pr(si|sl

i , h t). (3)

The above is consistent with the abstract transition function
in the works [11, 12] where the first term corresponds to the
ground-level deterministic transition function and the second
termPr(si|sl

i , h t), stored in the octree belief,is the weight
that sums up to 1 for allsi  ∈S i .

Observation spacêO and functionÔ. For the purpose
of planning,we again use the assumption thatan objectis
contained within a single voxel(yetat resolution levell).
Then,given statês′ , the abstractobservationol

i is regarded
as a voxel-labelpair(sl

i , d (sl
i )). Since itis computationally

expensive to sum outall objectstates,we approximate the
observation model by ignoring objects other thani:

Pr(ol
i |̂s′ , a, h t) = Pr(d(sl

i )|̂s′ , a, h t) (4)

≈ Pr(d(sl
i )|sl

i , s r , a, h t) (5)

=
X

si ∈φ−1
i (s l

i )

Pr(d(sl
i )|si , s r , a ) Pr(si|sl

i , h t). (6)

This resemblesthe abstracttransitionfunction,where
Pr(d(sl

i )|si , s r , a ) is the ground observation function,and

Algorithm 2: MR-POUCT(P , b t, d ) → â

input : P: a set of abstract 3D-MOS instances at
different resolution levels;bt: belief at time
t; d: planning depth

output:̂a: an action in the action space of some
Pl  ∈P

procedure Plan(bt)
foreachPl  ∈P in parallel do

// Recall that Pl = hŜ, Â, Ô, T̂ ,Ô, R, γ, li

G ← GenerativeFunction(Pl );
QP (bt, â) ← POUCT(G, h t, d );

end
â ← argmaxâ{QP (bt , â)|P  ∈P};
returnâ

Pr(si|sl
i , h t) is again the weight.

For practicalPOMDP planning,it can be inefficientto
sample from this abstractobservation modelif l is large.
In our implementation,we approximate this distribution by
Monte Carlo sampling [26]: We samplek ground states from
φ−1

i (sl
i ) according to their weights.2 Then we setd(sl

i ) = i
if the majority of these samples haved(si ) = i, andd(sl

i ) =

FREE otherwise.A similarapproach is used forsampling
from the abstract transition model.

Reward functionR. The reward function is the same as
the one in ground 3D-MOS, since computing the reward only
depends on the robotstate which is notabstracted and the
abstract action space consists of the same primitive actions as
3D-MOS. Therefore, solving an abstract 3D-MOS is solving
the same task as the original 3D-MOS.

B. Multi-Resolution Planning Algorithm

Abstract3D-MOS is smallerthan the original3D-MOS
which may provide benefitin online planning.However,it
may be difficult to define a single resolution level, due to the
uncertainty of the size or shape of objects, and the unknown
distance between the robot and these objects.

Therefore,we propose to solve a number of abstract 3D-
MOS problems in parallel, and select an action fromÂ with
the highestvalue forexecution.The algorithm is formally
presented in Algorithm 2.The set of abstract3D-MOS
problems,P, can be defined based on the dimensionality
of the search space and the particular objectsearch setting.
Then,it is straightforward to define a generative function
G(ŝ, â) → (ŝ′ , ô, r ) from an abstract3D-MOS instance
P using itstransition,observation and reward functions.
POUCT usesG to build a search tree and plan the next action.
Thus, all problems inP are solved online in parallel, each by
a separate POUCT.The finalaction with the highestvalue
QP (bt, â) in its respective POUCT search tree ischosen
as the output(see [8] for details on POUCT).We callthis
algorithm Multi-Resolution POUCT (MR-POUCT).

2We tested k = 10 and k = 40 and observed similar search performance.
We used k = 10 in our experiments.



Fig. 4: Simulated environmentfor 3D objectsearch.The robot
(represented as a red cube) can project a viewing frustum to observe
the search space,where objects are represented by sets of cubes.
Search space size scales from 43 to 323. The tuple (m, n, d) at
lower-right defines the problem instance.

VI. EXPERIMENTS

We assess the hypothesis that our approach, MR-POUCT,
improves the robot’s ability to efficiently and successfully
find objects especially in large search spaces.We conduct a
simulation evaluation and a study on a real robot.

A. Simulation Evaluation

Setup.We implementour approach in a simulated en-
vironmentdesigned to reflectthe essence ofthe 3D-MOS
domain (Figure4). Each simulated problem instanceis
defined by a tuple(m, n, d ), where the search regionG has
size|G|= m3 withn randomly generated, randomly placed
objects.The on-board camera projects a viewing frustum
with 45 degree FOV angle,an 1.0 aspectratio,a minimum
range of 1 grid cell,and a maximum range ofd grid cells.
Hence,we can increase the difficulty ofthe problem by
increasingm andn, or by reducing the percentage of voxels
covered by a viewing frustum through reducing the FOV
ranged. Occlusion is simulated using perspective projection
and treating each grid cell as a point.

There are two primitive MOVE actions per axis (e.g.+z,
−z) thateach moves the robotalong thataxis by one grid
cell. There are two LOOK actions peraxis,one foreach
direction.Finally,a FIND action is defined thatdeclares all
not-yet-found objects within the viewing frustum as found.
Thus, the total number of primitive actions is13. MOVE and
LOOK actions have a step costof -1. A successfulFIND

receives+1000 while a failed attemptreceives-1000.A
FIND action is successful if part of a new object lies within
the viewing frustum.If multiple new objectsare present
within one viewing frustum when the FIND is taken, only the
maximum reward of+1000 is received. The task terminates
eitherwhen the totalplanning time limitis reached orn
FIND actions are taken.

Baselines.We compare our approach (MR-POUCT) with
the following baselines:POUCT usesthe octreebelief
butsolves the ground POMDP directly using the original
POUCT algorithm.Options+POUCT uses the octree belief
and a resolution hierarchy,butonly the motion action ab-
straction (i.e.MOVEOP options) is used,meaning thatthe
agent can move for longer distances per planning step but do

not make use of state and observation abstractions. POMCP
uses a particle belief representation which is subject to par-
ticle deprivation.Uniform random rollout policy is used for
all POMDP-based methods.Exhaustive uses a hand-coded
exhaustive policy,where the agenttraverses every location
in the search environment. At every location, the agent takes
a sequence of LOOK actions,one in each direction.Finally,
Random executes actions at uniformly at random.

Each algorithm begins with uniform prior and is allowed
a maximum of 3.0s for planning each step. The total amount
of allowed planning time plus time spent on belief update is
120s,240s,360s,and 480s for environment sizes (m) of 4,
8,16,or 32,respectively.Belief update is not necessary for
Exhaustive and Random. The maximum number of planning
steps is 500.The discountfactorγ is setto0.99. For each
(m, n, d ) setting,40 trials (with random world generation)
are conducted.

Results.We evaluate the scalability of our approach with
4 differentsettings of search space sizem  ∈{4, 8, 16, 32}
and 3 settings of number of objectsn  ∈{2, 4, 6}, resulting
in 12 combinations.The FOV ranged is chosen such that
the percentage of the grids covered by one projection of the
viewing frustum decreases as the world sizem increases.3

The sensor is assumed to be near-perfect, withα = 105 and
β = 0. We measure the discounted cumulative reward, which
reflects both the search efficiency and effectiveness,as well
as the number of objects found per trial.

Results are shown in Figure 5. Particle deprivation happens
quickly due to large observation space,and the behavior
degenerates to a random agent,causing POMCP to perform
poorly.In small-scaledomains,the Exhaustiveapproach
works well,outperforming the POMDP-based methods.We
find that in those environments, the FOV can capture a signif-
icantportion of the environment,making exhaustive search
desirable. The POMDP-based approaches are competitive or
better in the two largestsearch environments (m = 16 and
m = 32). In particular, MR-POUCT outperforms Exhaustive
in all testcasesin the largerenvironments,with greater
margin in discounted cumulative reward;Exhaustive takes
more search stepsbut is lessefficient.When the search
space contains fewer objects, MR-POUCT and POUCT show
more resilience than Options+POUCT,with MR-POUCT
performing consistently better. This demonstrates the benefit
of planning with the resolution hierarchy in octree belief
especially in large search environments.

We then investigate the performance of our method with
respectto changes in sensing uncertainty,controlled by the
parametersα andβ of the observation model.According
to the beliefupdate algorithm in Section IV-A,a noisy
but functionalsensorshould increase the beliefVAL i

t(g)
for objecti if an observed voxelat g is labeledi, while
decrease the beliefif labeled FREE. This impliesthata
properly working sensor should satisfy >α 1 and  <β 1. We
investigate on 5 settings ofα  ∈{10, 100, 500, 103, 104, 105}
and 2 settings ofβ  ∈{0.3, 0.8}. A fixed problem difficulty

3The maximum FOV coverage for m = 4, 8, 16, and 32 is 17.2%(d =
4), 8.8%(d = 6), 4.7%(d = 10), and 2.6%(d = 16),respectively.



Fig. 5: Discounted cumulative reward and number of detected objects as the environmentsize (m) increases and as the of number of
objects (n)increases.Exhaustive search performs wellin small-scale environments (4 and 8)where exploration strategy is nottaken
advantage of.In large environments,ourmethod MR-POUCT performs betterthan the baselines in mostcases.The errorbars are
95% confidence intervals.The levelof statisticalsignificance is shown,comparing MR-POUCT againstPOUCT,Options+POUCT,and
Exhaustive,respectively,indicated by ns (p > 0.05),* (p ≤ 0.05),** (p ≤ 0.01),*** (p ≤ 0.001),**** (p ≤ 0.0001).

Fig. 6: Example action sequence produced by the proposed approach. The mobile robot first navigates in front of a portable table (1-2). It
then takes a LOOK action to observe the space in front (3),and no target is observed since the torso is too high.The robot then decides
to lower its torso (4),takes another LOOK action in the same direction,and then FIND to mark the object as found (5).This sequence of
actions demonstrate that our algorithm can produce efficient search strategies in real world scenarios.

of (16, 2, 10) is used to conduct this experiment.Results in
Figure 7 show that MR-POUCT is consistently better in all
parameter settings.We observe thatβ has almost no impact
to any algorithm’s performance as long as <β 1, whereas
decreasingα changes the agentbehavior such thatit must
decide to LOOK multiple times before being certain.

B. Demonstration on a Torso-Actuated Mobile Robot

We demonstratethatour approach isscalableto real
world settings by implementing the 3D-MOS problem as
well as MR-POUCT for a mobile robotsetting.We use
the Kinova MOVO Mobile Manipulator robot, which has an
actuated torso with an extension range between around 0.05m

and 0.5m,which facilitates a 3D action space.The robot
operates in a lab environment,which is decomposed into
two search regionsG1 andG2 of size roughly 10m2× 2m
(Figure.6),each with a semantic label (“shelf-area” forG1

and “whiteboard-area” forG2). The robotis tasked to look
fornG1 andnG2 objects in each search region sequentially,
where objects are represented by paper AR tags that could be
in clutter or not detectable at an angle. The robot instantiates
an instance of the 3D-MOS problem once itnavigates to a
search region.In this 3D-MOS implementation,the MOVE

actions are implemented based on a topologicalgraph on
top of a metric occupancy grid map.The neighbors ofa



Fig. 7: Discounted cumulative reward with 95% confidence interval
as the sensing uncertainty increases, aggregating over the β settings.

graph node form the motion action space when the robot is
at that node.The robot can take LOOK action in 4 cardinal
directions in place and receive volumetric observations;A
volumetricobservation isa resultof downsampling and
thresholding points in the corresponding pointcloud.The
robotwas able to find 3 outof 6 totalobjects in the two
search regions in around 15 minutes. One sequence of actions
(Figure 6) shows that the robot decides to lower its torso in
order to LOOK and FIND an object.4 A failure mode is that
the object may not be covered by any viewpoint and thus not
detected; this can be improved with a denser topological map,
or by considering destinationsof MOVE actionssampled
from the continuous search region.

VII. CONCLUSION

We present a POMDP formulation of multi-object search
in 3D with volumetric observation space and solve itwith
a novelmulti-resolution planning algorithm.Our evaluation
demonstrates thatsuch challenging POMDPs can be solved
online efficiently and scalably with practicality fora real
robotby extending existing generalPOMDP solvers with
domain-specific structure and belief representation.

One limitation of the presented work is that the assumption
of objectindependence,though beneficialcomputationally,
may discard usefulobjectdependence information in some
cases. Optimal search for correlated objects becomes impor-
tant.In addition,we do notexplicitly reason overobject
geometry in the observation model.Considering belief over
geometricappearancesis a challenging futuredirection.
Finally,incorporating a heuristic rolloutpolicy may be a
promising direction for more realistic object search problems
while sacrificing optimality.
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