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Abstract— Robots operating in households must find olyfE=
on shelvesynder tablesand in cupboarddn such environ-
ments, it is crucial to search efficiently at 3D scale while «
with limited field of view and the complexity ofsearching
for multiple objectsPrincipled approachd® objectsearch
frequently use Partially Observable Markov Decision Proc ,

(POMDP) as the underlying framework for computing seaE=tems— — )
strategies, but constrain the search space in 2D. In this pga —""_'7
present a POMDP formulation for multi-object search in a
region with a frustum-shaped field-of-Viewfficiently solve
this POMDP, we propose a multi-resolution planning algo
based on online Monte-Carlo tree seérdhis approachwe
design a novebctree-based belieépresentation to capture
uncertainty of the target objects at different resolution le
then derive abstra®OMDPs at lower resolutions with dra-
matically smaller state and observation spBeahiation in
a simulated 3D domain shows that our approach finds obfdgtsl: An example of the 3D-MOS problem where a torso-actuatec
more efficiently and successfully compared to a set of bagefihiée robot is tasked to search for three objects placed at differe
without resolution hierarchy in larger instances under thehsaghés in a lab environfbatobjects are represented by paper
computationabquirementle demonstrate our approach oAR tags marked by red bodste thathe robommustactively

a mobile robot to find objects placed at different heights imawe itselflue to limited field efew,and the objects can be
10mx2m regions by moving its base and actuating its tomszsluded by the attached obstacles if viewed from the side.
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I. INTRODUCTION

Robots operating in human spaces must find object$SUeR hapewe introduce 3D Multi-Object Search (3D-
as glassesbooks,or cleaning suppli¢batcould be on yg) 5 genera®OMDP formulation for the multi-object
the floorshelvespr tablesThis search space is naturallh;rch task with 3D state and action spatagealistic
3D. When multiple objects mstsearched f@uch as opseryvation spade the form of labeled voxelsvithin
a cup ano_l a moblle phor®, |nt_u|t|ve strategy is to ﬁrﬂ:]e iewing frustum from a mounted canfettowing
hypothe5|z.e likely search regions for gach target obm@téa “Oriented POMDP (OO-POMDP) framework pro-
on semantic knowledge or past experience [1, 2], thef.egd¢Nvandzel et al. [6], the state, observation spaces a
carefully within those regions. Since the latter direciy. "by independsijectsallowing the belispace

mines the success of the saaistessential for the robgf, scae linearly instead ekponentially in the number
to produce an efficiesgarch policy within a designateg spjectswe addresghe challengesf computational
search region under limited field of view (FOV), WheE%rtr?b)ﬂS&

; , ; ity in solving 3D-MOS by developing several tech-
objects could be partiallyampletely occludémithis g es thabnverge to an online multi-resolution planning

work,we consider the problem setting where entsltoty o orithnFirst,we propose a per-vosietervation model

search fomultiple objects in a search region by actiVgly -, grastically reduces the size of the observation space

moving its camera, with as few steps as possible (Figuegskhry for planning. Next, we present a novel octree-bas
Searching foobjectsn a large search region requirgs,|ief representation that captures beliefs at different resolt

ac'tmg lovehong .hOFIZOI’\S undearlous. sources ohcer- “tions and allows efficieantd exacbeliefupdatesThen,

tainty in a partially observable environment. For thig,feasdfivithe octree structure and derive abstractions of

previous works have used Partially Observable Markgy.[25und problendifterentesolution levels leveraging

cision Process (.POMDP) as a principled decision-theq)iti¢;ction theory fdDPs [11, 12]. Finally,a Monte-

framework fasbjecsearch [34, 5]. Howeverto ensure 4o Tree Search (MCTS) based online planning algorithm,

the POMDP is manageable to sphesjous works reducgy)ieq partially-Observable Ugpemfidence boundsr

the search space or robot mobility to@D]laJthough Tree5(pOUCT) [8], is employed to solve these abstract

objects exist in rich 3D environments. The key challgnges lie i, parallehd the action with highestue in
in the intractability of maintainingbetieftdue to largejts McTS tree is selected for execution.

thetetosﬁrcee[?gﬁsi:\?aetiglgg bargglcégmg factor for plannlrwe evaluate the proposed approach in a simtlisated,
9 P ! cretized 3D domain where a rolwdth a 6 degrees-of-

tBrown Universithrovidenc®l. *MIT CSAIL, CambridgdJA. freedom camera searches for objects of different shapes an
Email: {kzhengl0, gdk, stefiel0}@cs.brown.edu, yooncs8@csaingsaandomly generated and placed in a grid environment



The results show theg the problem scakasy approach B. Related Work

ogtperforms e_xhau_stive search as well as POMDP basg}}gg%us work primarily address the computatienal
withoutesolution hierarchy under the same computfilafal of object search by hypothesizing likely regions base
requirement. We also s_how that our methodlls mor_eo'F?BHfécttEo-occurrence [18], semantic knowledge [2]
sensor uncertainty against the POMDP baselines. F”b?")én\ﬂ@age [6teducing the state space from 3D to 2D
demonstrate our approach on a torso-actuated mobjle A0Sy 211, or constrain the sensor to be stationary [5, 2
in a lab environméeRigure 6)The robofinds 3 oudf 6  oyr work focuses on multi-object search within a 3D region
pbjects placed gt different heights in fxamomgions where the robatctively movethe mounted camefar,
in around 15 minutes. exampléhrough pan or tdt,by moving itself.
Il. BACKGROUND Severaworks explicitly reason over the arrangafment
POMDPs compactly represévet robot’s uncertainty i ccluded objects based on given geometry models of clutte

- . , 21,23].Our approach considersclusion apartof
t t t hal -POMDP ; . ; ;
fggggﬁ%ae Ié’g;:{:]digst:rmr; Sé)?ncfgyrd&ksh]gtcs) thoe objescihe observation thantainso information abotdrget
search problem naturally [6]. Below, we first provid oﬁpfé?s and we do not require geometry models.

overview of POMDPs and OO-POMDPsenwe discuss any work_s formulatg opijrch asa POMDNO'.
related work in object search. tably, Aydemiret al. [2] firstinfera room to search in

then perform search by calculating candidate viewpoints in
A. POMDPs and OO-POMDPs a 2D pland.i et al.[7] plan sensor movements opdine,

A POMDP models a sequentidecision making prob-assume objects are placetha&tsame surface leviela
lem wherethe environmerdtateis not fully obseryv- container with partial occlusion. Xiao et al. [3] address obje
able by the agent.lt is formallydefinedas a tuple fetching on a cluttered tabletop where the robot’s FOV fully
(S< A OT:O<R<y ), where« A< O denote the state, actig@vers the scemed thabccluding obstacles are removed
and observation spacesd thefunctiong'(s«ass ) = Permanently during seavtandzeet al. [6] formulates
Pr(s &a), O(s<ao) =Pr( o&<a), andR(ssa) € R the multi-objesearch (MOSkask on a 2D map using
denote the transitiobservatioand reward modélhe the proposed Object-Oriented POMDP (OO-POMI®).
agentakes an action €4 thatcauses the environmegtend thatork to 3D and tackle additionallenges by
state to transition frof&S tos E€S. The environmentProposing a new observation model and belief representatic
in turn returns the agembbservationE® and reward and a multi-resolution planning algokitadditionour
r €ER. A historji, = (ao)l:t—l captures all past actions £WDP formulation allows fully occluded objects and can
observatioriEhe agentaintains a distribution over st&x@4n principle applied on differeibbts such as mobile
given curretiistoryb;(s) = Pr( s&:). The agentipdates robots or drones.
its beliefaftertaking an action and receiving an observa- Il MULTI-OBIECT SEARCHIN 3D
tion bybe1(s) = NPr(od<a )Y, Pr(s dea)be(s) where : "B
N= > Pr(o&<a) Pr(s &a)b(s) is the normalizing The robois tasked to search forstatic targebjects
constanfhe task of the agdstto find a policw(b) € (e.g.cup and book) of known type but unknown location in
A which maximizethe expectation fifture discounteda search space that also contains static non-target obstacle
reward¥" (b)) = E Y, Y¥R(st+k T (br+k)) &b with  We assume the robot has access to detectors for the object
a discount factar thatit is searching fdihe search region is a 3D grid map

An Object-Oriented POMDP (OO-POMDOA)(peneral- environmemtenoted by:. Letg € G < R3 bea 3D
ization of0O-MDP [14])is a POMDP thatconsiders the grid cellin the environmehle useG' to denote a grid
state and observation spaces to be factored of a sedtresolution levieEN, andg' €G' to denote a grid cell
objects where each belongs to a class with a set of aittibigtlesiel. Whieis omitted, it is assumedtisait the
A simplifying assumption is made for the 2D MOS d@r@ind resolution leWs. introduce the 3D-MOS domain
thatobjects are independerithathe belief space scalegs an OO-POMDP as follows:
linearly rather than exponentially in the number of obfdete spacg An environment statdls;c <<=,
be(s) = [I; bi(si). We make this assumption for the saiméactored in an object-orientedwhayss, €S, is the
computational reason. state of the robamnds; €S; is the state of target object

Offline POMDP solvers are often too slow to be pra&tiebot state is defined;as (p< F) €S, where is the
calfor large domains [1Sfate-of-the-anrline POMDP 6D camera pose #hid the set of found objects. The robot
solvers leverage sparse belief sampling and MCTS tetatalés assumed to be observable to tive ttobotork,
up to domains with large state spaces and to addressetltensider the object state to be specified by one attribute
curse of history [8, 16, 9]. POMCP [8] is one such algbetBBhobjeqghose afts center of masrresponding to
which combines particle belief representation with Padddlily gridG. We denote a stateeS! to be an object
Observable UCT (POUCTWhich extends the UCT algostate at resolution léwehereS! = G'.
rithm [17] to POMDPs and is proved to be asymptoticdllgservation spac2 The robot receives an observation
optimal [8]. We build upon POUCT due to its optimakbyargh a viewing frustum projected from a mounted camel
simplicity of implementation. The viewing frustum forms the FOV of the dudted



stochastic dynamics functiom action IKD (icg ) adds
to the sebf found objects in the rolsbate only ify is

viewing frustum

robot camera

{8y or vew angie within the FOV determined,by
h ); : — Reward functiork. The correctness of declarations can
‘ only be determined bfgr examplea human who has
| knowledge abdhie targetbjecor additionamteractions
& Free ‘ @ with the objecthereforaye considedeclarations to be
@ Object i€ {1, n} oy expensiva.he robotreceive®max > 0 if an objectis
g i"“‘“‘ Fetlemn} correctly identified by s actionptherwise thand

action incursimin< 0 penaltyMove and lOOK receive
Fig.2: lllustration of the viewing frustum and volumetric opsrsgartive step CBskp< 0 dependeot the robatate

tion.The viewing frustum V consists of JgXelswhere each ian i i i
vV €V can be labeled asi € {1, - . FREE or UNKNOWN. and the action its&His is a sparse reward function.

A. Observation Model

byV, which consists&f&voxels. Note that the resolutiole have previously described how a volumetric observa-
of a voxekhould be no lower than thfad 3D grid cell tiono can be factored by objectwinto<<,. Here,we
g. We assume both resolutions to be the same in thidgapiye a method to moBigb; & <a ), the probabilistic
for notationadonvenienckencd/ < G, butin general distribution over an observatfon object
a voxelwith higheresolution can be easily mapped to aModeling a distribution over a 3D volume is a challenging
corresponding grid cell. problemZ4].To develop an efficienbdelwe make the
For each voxel € V, a detection functiémw) labels simplifying assumption tigect is contained within a
the voxeto be either an objecEq1- <<=« <; FREE, or single voxelocated athe grid cely = s,. We address
UNKNOWN (Figure 2).HEE denotes that the voxel is a filee case ofsearching foobjectof unknown sizewith
space or an obstacle. We include thexhadpgh Uo take ourplanning algorithm (Sectiorthgtplans atmultiple
into accourndcclusion incurred by targafects ostatic resolutions in parallel.
obstacles. In this case, the correspondiny doeslmot  Under this assumptign), = FREE deterministically for
give any information about the environment. An obsegvatiamd the uncertaintyisfreduced to the uncertainty
o = Y(vd (v))d € V< is defined as a seff voxel-label of d(s;). As a result,Pr(oj&<a) can be simplified to
tuplesThis can be thougfttas the resudf voxelization Pr(d(si)& <a ). Whens; & Vi, eitherl(s;) = UNKNOWN
and object segmentation given a raw point cloud. (occlusion) ar €V (not in FOV)In this caséhere is no
We can factar by objects in the following whiyst, information regarding the vald@;9fin the observation
given the robetates, atwhicho is receivedhe voxels o;, thereforBr(d(s;)& <a) is a uniform distributithen
in V have known locatiotmderthis conditiori; can s; € Vi, thatis, the non-occluded region within the FOV
be reduced to exclude voxels labededwh while still coverss;, the case ofi(s;) = i indicates corredetec-
maintaining the same inform@tien,V can be decom-tion whiled(s;) = FREE indicates sensing erndle let
posed by objects intg: <<%/, where fomnyv € Vi, Pr(d(s;) = i <a) = o andPr(d(s;) = FREE&a) = B.
d(v) €9i<FREE{ which retain the same information ast should be noted thatandB do notnecessarily sum
for a given robot statence, the observatien J_; oj to one because the belief update equation degsinet
where; = q(vd (v))& EVi$: the observation modelbe normalizeds explained in
Action spacel. Searching for objects generally req@eesion II-AThus hyperparameter@ndB independently
three basic capabilitm®vinglookingand declaring ancontrol the reliability of the observation model.
objectto be found akome locatioformallythe action

space consistsf these three typed primitive actions: . V. O.CTREE BELIEF RE.PRESENTATION .
MOVE(s;<g) action movekhe roboffrom pose ins; to Particle belief representatidr6|&uffers from particle

destinatiop € G stochasticalliook(6) changeshe depletion undiarge observation spabreoverif the
camera pose to look in the direction specified By, re.solut|on of is dense,llt may be p055|blg that most of 3D
and projects a viewing frust#mp (i<g ) declares objectgr'd cells do not cont_rlbu_te to the b_ehawor of the robot.
i to be found atocatiory. The implementationtbese e represent a belief sfiatefor objectas an octree,
actions may vary depending on the type of search sfRf€&6f to as an octree bétie&in be constructed incre-

robot. Note that this formulation allows macrsadtioRientally as observations are received and it tracks the belie
as “look after move” to be composed for planning. of objecttate adlifferentesolution levekurthermori,

Transition functiofi’. Targebbjects and obstacles afilows efficiemelief sampling and belief update using the
static objecthusPr(s,&a) = 1(s, = s;). For the robot, Per-voxel observation modell(S&f. _
the actions BVE(s,, ¢) and Look(6) change the camera An octree belief consists of an octree and a normalizer.

location and directionaodd following a domain-speciffth octree is a tree where every nodehisdrenin our
context, a node represents a ggld=a@l) wheré is the

. | .
1The FOV V is fixed for a given camera pose in the robot state, fiR3@ifdON level, such ghabvers a cubic _V0|U_m€‘2©F
excluding KKNOWN voxels does not lose information. ground-levgrid cellsthe ground resolution lesvglven



. Each node at - - n n
bi(s:) e Algorithm 1: OctreeBeliefUpdateo ;) - bl
grid cell g

input : bi: octree belief for objeat action taken
S by roboty; = §(v<d (v)& €V;<{x factored
reationtip observation for object

output:i, : updated octree belief

/I Let W(B) denote the octree underlyihg b

legend [ | >[]>H>H fOFU EM do
1=0 T=1 1=2 {high bellef) {low bellen Si « v, // State at grid cell corresponding to voxel v
Fig. 3: lllustration the octree belief represdstatidre kwolor if si €W(bf) then
on a node ¢ indicateshe beliefvaLi(g') thatthe objecis | Insert node attoW(b});
located withid.grhe highlighted grid cells indicate parent-child end
relationship between a gricatedkolution levie:= 1 (parent) i : i .
and one atplevel | = 0. ? P VALt11(si) « Pr(d(v) <a)VALi(si);

NORM¢4+1 « NORM¢ + VALL, 1(si) — VALL(si);

by ! = 0. The 8 children ofhe node equally subdivide "9

the volume a}' into smallevolumes atesolution level

I —1 (Figure 3)Each node stores a valueNg') €R,

which representbe unnormalized beligfats; = g¢', s €Vi, the unnormalized observation model is uniform, thus
thatis, objecti is located agrid cellg'. We denote the VaLL, ;(s;) = Pr(d(s;)& <a)VALL(si) = VALL(s;). There-

setof nodesat resolution levél <i thatreside ina fore,NORM11 = > ¢ ey VALL1(si) + X q eey VALL(si).

subtree rooted gt by CH*(¢'). By definitionhi(¢') = Note the sds;di & Vi is equivalems s €G NVi

Pr(g'®t) = > ceqi(g) Pr(cde). Thus,with a normalizerUsing thisfactand the definition dfiorm;, we obtain

NORM; = dee VALit(g), we can rewrite the normalizédioRM+1 = NORM¢ + > ¢ <y, VAL{,1(si) — VAL{(si)

belief as: which proves the lemma. [ |
- VALL(g") VAL (c) This belief updat_e is the_refore gxact ;ince the objects are
b(g) = b= > < (1) staticThe complexity of this algorithi(i& Rog(d&d;
NORM¢ NORM¢ ) .
CECH (g') Inserting nodes and updating values of nodes can be done

which mean¥aLl(g') — S ecot (@) VAL (). In words, by traversing the tree depth-wise.

the value stored in a node is the sum of values storesl Kaifspling

_chlldrenThe normalizer equals to the sum of values St%ggree belief affords exact belief sampling at any resolu-
in the nodes at the ground resolution level. .tion level in logarithmic time complexity with respect to the

The octree does not need to be constructed fully ID.OIdSh 1 o search spak despite ndieing completely
to query the probability at ?ny grid cell. This can be,gchieved " o1 vion levé] we samplefrom ! by
by.dsett;lng aétéefautttaltje \ALO(%) t: 1 f;)r g_nground traversing the octree in a depth-first mapnedebete
g:—)ldeCSo??es onrc]j(i)ny'eﬂmgrse:ednefaulf \(,)aC|J§A;_fi\e(n|';irly the maximum resolution level for the seardleshage.

VA?i —gCHl N N9) = be the desired resolution kewehich a state is sampled.

2ceai(g) VALo(e) = (9) If si*s is samplecthen alhodes in the octree thater
A. Belief Update sldes | jLesimex < <eglaes P2 loes 1 myst also be implicitly

We havedefineda per-voxebbservatiomodelfor ~S3mpled. Also, the evgnEiFﬁas sampled is independent
Pr(od @), which is reduced Fo(d(s )& -a) if s, €1, Tom other samples given|that is sampled. Hence, the
or a uniform distribution i€ V;. This suggests tfhe task of samplis'gr= is translated into sampling a sequence

belief update need only happen for voxels that are AERAMRleS™ - << s Tl !\jes » each according

FOV to reflect the information in the observation. to the distributidi(s| ™ <hr) = JA)-. Sampling
Upon receiving observagiomithin the FOW;, belief from this probability distribution is effasenie sample

is updated according to Algorithm 1. This algorithm sjgeitatee. the children oﬁodes}+1 is only of size 8.

the value of the ground-levdly corresponding to eachherefore, this sampling scheme yieldss&sarptly

voxel €V; as VAL{,1(g) = Pr(d(v)&<a)VAL{(g). The according tf(s'es) with time complexi¥flog(&'®).

normalizer is updated to maké|syrie normalized
Lemma IThe normalizerdim, attimet can be cor- V. MULTI -RESOLUTION PLANNING VIA ABSTRACTIONS

rectly updated by adding the incremental update of v®QBEasexpands an MCTS tree using a generative func-

in Algorithm 1. tion(s <or ) ~G (s<a), which is straightforward to acquire

Proof: The normalizer must equato the sum of since we explicitly define the 3D-MOS moHelsever,

node values at the ground level for the néczgt_ belf directly applying POUCT is subject to high branching factor

valid (Equation 1). ThatasM\,1 = >°¢ < VALt,1(si).  due to the large observation space in our domain.

This sum can be decomposed into two cases where th@wbijettition is thattree belief imposes a spsiiadé

1 is inside ofV; and outside oVj; For objectiocations abstractiowhich can be used to derive an abstraction over



observationseducing the branching fadmrplanning. Algorithm 2: MR-POUCTP<btd) = a
Below,we formulatan abstracB8D-MOS with smaller input : P: a set of abstract 3D-MOS instances at
spaces, and propose our multi-resolution planning algorithm.yifferent resolution leveibelief at time

A. Abstract 3D-MOS t; d: planning depth
) ) outputia: an action in the action space of some
We adopthe abstraction scheme iethi.[11] where P EP

in generathe abstrattta_nsfition and re)/vard f_u_nctions arBrocedure Plali
weighted sumef the orlglr?alprob'lem $r.an5|t|on and foreachP EP in parallel do
reward.funct|ons, respectively with weights that sum up to 1, o ca)i that P=1E, A 6, T.0,R, y, I
We define an abstraid-MOS (S« A< O<T* O<Rey< ) at G GenerativeFunctioh(
resolution levieas follows. _ _ Qp (b<d) « POUCTGh<d);
State splacé. For each objegtan abstraction function | &g
¢ : Si =S | transforms the ground-level objectstate ~ X oA .
abstract object sthtat resolution leveThe abstraction ?etu?;%maxaﬂ% (bre ) EPO;
of the fultate i$ = @(s) = 9s,OU U; ¢i(si) where the
robot stake is kept as is. The inverse igjdge ) is the
set of ground states that correspdnoht@rp; [11]. | ) . )
Action spacel. Since state abstraction lowers the rg&si%i t) is again the weight. S
lution of the search spaeeconsider macro move actiongor practicaPOMDP planningit can be inefficierib
thatmove the robowerlongeristance atach planningSample from this abstrabservation model is large.
stepEach macro move actia@VvbDP(s, <) is an option In our |mplementat_|wre,approxmate this distribution by
[25] that movesto goal locatignusing multipledwe ~ Monte Carlo sampling [26]: We sagmplend states from
actionsThe primitivedok and FND actions are kept. @i *(s}) according to their weigfitsen we sef(s;) = i
Transition functior> Targetand obstaclesre still if the majority of these sampled(kgvei, andi(s}) =
staticand the robattate stiltransitions according to tH&REE otherwiseA similarapproach is used feampling
ground-levétansition functidtoweverthe transition offrom the abstract transition model.
the found sefrom F to F is speciakince the action Reward functiork. The reward function is the same as
FIND (icg ) operates at the ground levelsivhile a lower the one in ground 3D-MQOS, since computing the reward onl
resolution > 0). Let f; be the binary state variable ti§igpends on the robtite which is nabstracted and the
is true ifand only ifobjecti €F . Because the actionabstract action space consists of the same primitive actions
FIND (i<g) affectsf; based only on whethebjecti is 3D-MOS. Therefore, solving an abstract 3D-MOS is solving
located af, and thathe problem is no longer Markoviéiae same task as the original 3D-MOS.
due to state abstraction fil@§nsitions % following

B. Multi-Resolution Planning Algorithm

Pr(f; & <s!<h<FIND (i<g)) (2)
_ Ty - ol AbstracBD-MOS is smallethan the originaD-MOS
N Z( l)Pr(f' ifiFIND (icg)) Pr(sidbi<h)> (3) which may provide beniefibnline planningoweverit
S €@~ (s;

may be difficult to define a single resolution level, due to th
The above is consistent with the abstract transition turtetitainty of the size or shape of objects, and the unknow!
in the works [11, 12] where the first term correspondistartte between the robot and these objects.
ground-level deterministic transition function and the Seeoefdraye propose to solve a number of abstract 3D-
termPr(si&!<h¢), stored in the octree beisefhe weight MOS problems in parallel, and select an actiomftbm
that sums up to 1 forspkeS;. R the highestalue forexecutiomhe algorithm is formally
Observation spaa@ and functiorO. For the purposepresented in Algorithm Zhe set of abstracBD-MOS
of planningye again use the assumptiorathabjecis problemsP, can be defined based on the dimensionality
contained within a single vdyetatresolution levBl. of the search space and the particulasedjeatsetting.
Thengiven stat®, the abstraabservatiaf is regarded Then,it is straightforward to define a generative function
as a voxel-labpair(s!«d (s})). Since itis computationallyG(s<a) - (5<6«) from an abstracdD-MOS instance
expensive to sum alltobjecstatesye approximate the® using itstransitionpbservation and reward functions.
observation model by ignoring objects otlier than POUCT use§ to build a search tree and plan the next action.
. . Thus, all problem$iare solved online in parallel, each by

Pr(ojd <ach ¢) = Pr(d(s}) % ach ) (4) 3 separate POUCThe finalction with the higheatue
~ Pr(d(s! )l <s r<a<h ¢) (5)  Qp (r<a) in its respective POUCT search treelmsen
— Z Pr(d(s )& <s <a) Pr(sidl<hy)> (6) @S the outplsee [8] for details on POUCWe calithis

s ot (s) algorithm Multi-Resolution POUCT (MR-POUCT).

This resembleshe abstractransitionfunction,where 2y tested k = 10 and k = 40 and observed similar search performance.
Pr(d(s}).bi <sr<a) is the ground observation funcéind, We used k = 10 in our experiments.



not make use of state and observation abstractions. POMCF
uses a particle belief representation which is subject to par-
ticle deprivatidmiform random rollout policy is used for

all POMDP-based methofighaustive uses a hand-coded
exhaustive poliayhere the agetraverses every location

in the search environment. At every location, the agent take
a sequence obbk actionspne in each directibmally,

Random executes actions at uniformly at random.

4,6) ,4,16) Each algorithm begins with uniform prior and is allowed

a maximum of 3.0s for planning each step. The total amoun

Fig. 4: Simulated environmfemt3D objectsearchThe robot ¢ 5)16\ed planning time plus time spent on belief update is
(represented as a red cube) can project a viewing frustun_]] céogz%v 60 d 480s f . t sidesf(4
the search spaedere objects are represented by sets of cipes~4YUs,0Usan s for environment sizesf(4,

Search space size scales frérto8B2. The tuple (m, n, d) at 8, 16,0r 32 respectiveBelief update is not necessary for
lower-right defines the problem instance. Exhaustive and Random. The maximum number of planninc
steps is 500 he discourfactory is setto0:99. For each
(men<d ) setting4O0 trials (with random world generation)
VI. EXPERIMENTS are conducted.

We assess the hypothesis that our approach, MR-POR ltsWe evaluate the scalability of our approach with

improves the robot’s ability to efficiently and succes@ ' 'reni;.ettings of search qucemiiéﬂ4< 8: 16 32.<>
P y y andI settings of number of obje€®R- 4 6; resulting

find objects especially in large search 8fmcenduct a ; I .
simulation evaluation and a study on a real robot. in 12 combinatiorhe FOV range is chosen such that

the percentage of the grids covered by one projection of the
A. Simulation Evaluation viewing frustum decreases as the world gizeeases.
. . . The sensor is assumed to be near-perfect witland
Setup.We implemergurapproach in a simulated ey = 0. We measure the discounted cumulative reward, whicl

V|ronr.nencﬂle5|gned to ref!ettte essence ohe 3.D'MQS reflects both the search efficiency and effec$werbtss,
domain (Figurdl). Each simulated problem instaige . X
as the number of objects found per trial.

defined by a tulen-d ), where the search regidras Results are shown in Figure 5. Particle deprivation happer

: 3
sizeded= m* withn randomly generated, randomly placec ly due to large observation spae the behavior
objectsThe on-board camera projects a viewing frustum

with 45 degree FOV angle,1.0 asperdtioa minimum €generates to a random.agaamg POMC.P to perform
. \ . poorly.In small-scalelomainsthe Exhaustivapproach
range of 1 grid cedind a maximum rangd gfid cells. .
) e works wellputperforming the POMDP-based methods.
Hencewe can increase the difficultytbe problem by

increasing andn, or by reducing the percentage of VQQg|that in those environments, the FOV can capture a sign

covered by a viewing frustum through reducing the |Ig6(}§port|on of the environmeratking exhaustive search

rangel. Occlusion is simulated using perspective proge:c,?illroanble' The POMDP-based approaches are competitive or

X . . erin the two largesrch environments<16 and
an‘l?h';rreeaglregtt\jva:fhr?r::ﬁi\c/zuﬂzlj];ftig?\lsnt.er axis ( m = 32). In particular, MR-POUCT outperforms Exhaustive
—.) thateach mO\F/)es the roblung thaaF;is by on(z%rid in all testcasedn the largerenvironmentwjth greater
cell. There are two ©OK actions peaxis,one foreach margin in discounteq cumulafciye refvaralystive takes
directiorkinallya FIND action is defined tdatlares all more search stepsitis lessefficientiWhen the search

not-yet-found objects within the viewing frustum as%ga%% contains fewer objects, MR-POUCT and POUCT show
y J L g Tru mortresilience than Options+POUGTh MR-POUCT
Thus, the total number of primitive adoMoigE and

Look actions have a step cot-1. A successfuFIND performing consistently better. This demonstrates the bene

receivest1000 while a failed attermpteives1000.A of planning with the resolution hierarchy in octree belief

FIND action is successful if part of a new object lies v%%?r?ia”y In large search environments.
C 'p . J e then investigate the performance of our method with
the viewing frusturf. multiple new objecése present

L Lo . respecto changes in sensing uncertednttyplled by the
within one viewing frustum wheintiHe €aken, only the arametes andpB of the observation modelcording

maximum reward+af)00 is received. The task termin g%he beliefupdate algorithm in Section IV-@noisy

ﬁ:ﬁgeg?i%%stgiéiﬁfnnnmg time limi& reached on butfunctionasensorshould increase the bel\éfii(g)
BaselinedVe com aré our approach (MR-POUCT) fcg objecti if an observed voxat g is labeled, while
P PP ! Iarease the beligflabeled REE. This impliesthata

the following baseline®OUCT usesthe octreebelief . .
butsolves the ground POMDP directly using the origi%@é);:ga\éveogﬂr;gsseigf]gﬁs:&;fl%‘;?;&%ﬁgg?;ﬁm‘évs

POUCT algorithn©Options+POUCT uses the octree bel ; . X s
and a resolution hierardutonly the motion action ab“-;%d 2 settings PR 0:3- 0:5¢ A fixed problem difficulty

straction (i.&10vEOP options)_ is usedheaning th‘?me 3The maximum FOV coverage form = 4, 8, 16, and 32 is 17.2%(d =
agent can move for longer distances per planning st®pstagi(dle 6), 4.7%(d = 10), and 2.6%(d = E&8pectively.
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Fig. 5: Discounted cumulative reward and number of detected objects as theiemyimdrinteaéses and as the of number of
objects (n)ncrease&xhaustive search performsiwethall-scale environments (4 anth@&)e exploration strategy isakein
advantage dh large environmerdsr method MR-POUCT performs bethem the baselines in moatesThe errotbars are
95% confidence interidie. levedf statisticaignificance is showamparing MR-POUCT agaiP@UCT, Options+POUCand
Exhaustivegespectiveipdicated by ns (p > 0.05)p = 0.05%* (p = 0.01y** (p = 0.001¥*** (p < 0.0001).

look - find

look
- —

torso-down

Fig. 6: Example action sequence produced by the proposed approach. The mobile robot first navigates in front of a portable
then takes @bk action to observe the space in frarid 3o target is observed since the torso is The hafpot then decides

to lower its torso (#kes anothewdk action in the same diredihfhenifd to mark the object as foundHs)sequence of

actions demonstrate that our algorithm can produce efficient search strategies in real world scenarios.

of (16<2<10) is used to conduct this experiRemnilts in and 0.5mwhich facilitates a 3D action spd¢e robot

Figure 7 show that MR-POUCT is consistently better apathtes in a lab environmeich is decomposed into

parameter settifgs.observe tiahas almost no impadiwo search regio@s andG, of size roughly 18m 2m

to any algorithm’s performance as I@rg aswhereas (Figureb),each with a semantic label (“shelf-aréa” for

decreasing changes the agbehavior such thetnust and “whiteboard-area'GigrThe robois tasked to look

decide todok multiple times before being certain. forng, andng, objects in each search region sequentially,

where objects are represented by paper AR tags that could

B. Demonstration on a Torso-Actuated Mobile Robot, «|ytter or not detectable at an angle. The robot instantiat
We demonstratbatour approach iscalabldo real an instance of the 3D-MOS problem onegiijates to a

world settings by implementing the 3D-MOS problerseasch regiom this 3D-MOS implementattbie, MovVE

well as MR-POUCT for a mobile robotettingWe use actions are implemented based on a topotpgialalon

the Kinova MOVO Mobile Manipulator robot, which hiaspasfa metric occupancy grid méipe neighbors af

actuated torso with an extension range between around 0.05m
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