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Abstract— In this paper, we propose a novel framework
capable of generating various walking and running gaits for
bipedal robots. The main goal is to relax the fixed center of
mass (CoM) height assumption of the linear inverted pendulum
model (LIPM) and generate a wider range of walking and
running motions, without a considerable increase in complexity.
To do so, we use the concept of virtual constraints in the
centroidal space which enables generating motions beyond
walking while keeping the complexity at a minimum. By a
proper choice of these virtual constraints, we show that we
can generate different types of walking and running motions.
More importantly, enforcing the virtual constraints through
feedback renders the dynamics linear and enables us to design a
feedback control mechanism which adapts the next step location
and timing in face of disturbances, through a simple quadratic
program (QP). To show the effectiveness of this framework,
we showcase different walking and running simulations of
the biped robot Bolt in the presence of both environmental
uncertainties and external disturbances.

I. INTRODUCTION

Legged robots can perform a wide range of complex

maneuvers through synchronous joint motions that satisfy

very limiting contact interaction constraints. However, the

underlying dynamics of these robots are highly nonlinear and

hybrid that renders the problem of generating and controlling

these different motions highly complicated. Traditionally,

common practice has been to have various template models

to control different motions, e.g., the linear inverted pen-

dulum model (LIPM) [1] for walking and the spring-loaded

inverted pendulum (SLIP) [2] for running. While using these

models to generate plans and controllers for locomotion has

led to promising results [3], [4], [5], little effort has been

dedicated to their unification through a more formal and

general framework [6].

More recently, the community has tried to use more

general models that enable generating a more comprehen-

sive range of motions through the use of the centroidal

momentum dynamics [7], [8], [9]. Centroidal momentum

dynamics capture the relationship between external forces

and centroidal states, exactly [10]; hence it can be seen as

a general model for locomotion problems. However, since

the dynamics are nonlinear, this gives rise to non-convex
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optimization problems that need to solve several convex sub-

problems for converging to a local minimum. While very

efficient solvers for this problem have been developed [9],

[11], [12], [13], they are still at least one order of magnitude

slower than template-based approaches [5], and in general,

they can provide little guarantees in terms of constraint

satisfaction and convergence to a good local minimum.

Another model-based approach for controlling legged

robots relies on the (hybrid) zero dynamics (HZD) concept

[14]. In this approach, all the computations required for

generating a cyclic gait based on whole-body dynamics are

carried out offline through a highly non-convex optimization

problem that usually minimizes energy consumption [15].

The main idea in this framework is to use virtual constraints

for the desired joints motions (or some important points

on the robot such as ankle, base, etc.,) parameterized by

Bezier polynomials and to optimize the boundary conditions

of the Bezier curve such that the resulting motion is peri-

odic. Feedback linearization is then used to ensure that the

resulting lower dimensional dynamics (zero dynamics) are

attractive and invariant under the continuous time dynamics

of the system. Since all the computations for generating

periodic gaits are carried out offline, a library of gaits is

developed for different walking/running speeds. Then, they

are interpolated such that the resulting gaits also satisfy

constraints and guarantee invariance, for instance, using

control barrier functions [16] or control Lyapunov functions

[17] through a quadratic programming (QP)-based inverse

dynamics framework. While this approach gives impressive

formal guarantees and has shown experimental success [18],

[15], its effectiveness is highly dependant on the quality of

the solution provided by the constrained nonlinear optimiza-

tion problem. Again, little can be asserted in advance about

general constraint satisfaction and convergence of this non-

convex optimization problem.

In this paper, we aim to formalize the use of template

models through the notion of virtual constraints in the

centroidal space. Note that virtual constraints are different

from physical constraints in that they are enforced through

the use of feedback [19]. To this end, we propose an approach

to design natural and gait-dependant virtual constraints that

are parameterized using intuitive parameters and render the

problem of step location and timing adjustment a simple

quadratic program (QP) for both bipedal walking and run-

ning. This controller guarantees weak forward invariance

(viability) of the gait by limiting the distance between

the divergent component of motion (DCM) and next step

location inside the viability kernel. Within this framework,

we propose a unified control approach capable of realizing
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various bipedal walking and running gaits. In contrast with

[16], [15], [20], we do not need to generate offline a gait

library and then interpolate between them online, but we can

generate walking and running at different desired velocities

on the fly. The main contributions of the paper are as follows:

• We formalize the use of template models for motion

planning for bipedal robots through the concept of

virtual constraints in the centroidal space,

• We present a fast feedback controller that adapts both

step locations and duration in response to external

disturbances for both walking and running motions,

• We show that we can generate and transition between

different walking and running motions on the biped

robot Bolt [5] in simulation, in the presence of both

external disturbances and irregularities of the ground

height.

A. Definitions and notations

Each step consists of two phases: the stance phase with

a duration of Ts > 0 when one foot is in contact with the

ground, and possibly the flight phase when both feet are

lifted for Tf ≥ 0. Note that there is no double-support phase.

Walking does not include a flight phase and the next foot to

land is the one raised before. The stance and swing foot

alternate in running and there is a non-zero flight duration.

II. FUNDAMENTALS

A. Centroidal momentum dynamics

The centroidal momentum dynamics capture the relation-

ship between the external forces and the centroidal states,

i.e., CoM states and angular momentum [10]:

n
∑

i=1

f i = m(ẍ+ g),

n
∑

i=1

(pi − x)× f i = L̇,

(1a)

(1b)

where f i is the external force exerted by the end-effector

i, x = [x, y, z]T is the CoM position, m is the robot mass,

and g = [0, 0,−g]T is the gravity vector. pi stands for the

point of action of force from the end-effector i, and L =
[lx, ly, lz]

T is the angular momentum around the CoM [21].

We focus on walking and running motions in this paper

and exclude the multi-contact case from our analysis. Com-

bining (1a) in z direction with (1b) in x, y directions, we

end up in the following set of equations [22]:

(z − zcop)ẍ = (z̈ + g)(x− xcop)−
l̇y
m
,

(z − zcop)ÿ = (z̈ + g)(y − ycop) +
l̇x
m
.

(2a)

(2b)

In the above, rcop = [xcop, ycop, zcop]
T is the center of

pressure (CoP) of the foot in contact with the ground surface.

In the vertical direction, force balance imposes that

z̈ = fz/m− g, (3)

where fz is the vertical component of the contact forces.

B. Virtual constraints

This section introduces virtual constraints (that need to

be enforced later using feedback control), enabling us to

unify motion generation and control for both walking and

running of bipedal robots. The considered virtual constraint

is to enforce the external forces to point towards the CoM,

f = ms(x− rcop). (4)

The constant s in (4) is positive by the unilaterally of

contact forces, and hence, replaced by s := ω2. This virtual

constraint gives us two appealing features; first, as the

external force is directed from the CoP towards the CoM,

the rate of change of angular momentum around the CoM is

zero, i.e.,

l̇x = l̇y = 0. (5)

Given (5) and the fact that we do not want to have a constant

non-zero angular momentum around the CoM, (2) becomes:

(z − zcop)ẍ = (z̈ + g)(x− xcop),

(z − zcop)ÿ = (z̈ + g)(y − ycop).

(6a)

(6b)

The second implication of the virtual constraint (4) when

combined with (3) is:

z̈ = ω2(z − zcop)− g. (7)

Substituting (7) back into (6) yields:
{

ẍ = ω2(x− xcop),

ÿ = ω2(y − ycop).
(8)

Interestingly, the virtual constraint (4) leads to identical

dynamical structure in all three directions, as in (7) and (8).

We further merge the effects of gravity and external forces

through the concept of virtual repellent point (VRP) [23],

rvrp = [xvrp, yvrp, zvrp]
T := rcop + [0, 0, g/ω2]T , (9)

and end up in the following unified dynamics in 3D:

ẍ = ω2(x− rvrp). (10)

It is important to note that to have valid linear 3D dynamics

(10), it is necessary to enforce the virtual constraint (4)

through feedback in the whole-body controller. The main

parameter defining the virtual constraint (4) is the frequency,

ω. In the rest of this paper, we will see that different walking

and running patterns can be generated by changing ω.

Similar to the 2D case, now we can split (10) into two

first-order equations:

ξ̇ = ω(ξ − rvrp),

ẋ = ω(ξ − x),

(11a)

(11b)

where ξ = [ξx, ξy, ξz]
T is the 3D-DCM [23]. The DCM has

unstable dynamics (11a) and is pushed away by the VRP,

while (11b) is stable and the CoM converges to the DCM.

To have a stable motion, it is enough to bound the DCM

which can be done either by modulating the VRP, taking a

step, or combining both. Since we are interested in proposing
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an approach that applies to biped robots with different ankle

actuation and foot geometry (point foot, active ankle, and

passive ankle), we rely only on taking steps at the desired

location and time to stabilize the gait. The linear dynamics

in (11) enables us to construct an optimization problem based

on [24] that adapts both step locations and timings for 3D

walking and running through a convex optimization problem

with convergence and viability guarantees.

Remark 1: The virtual constraint (4) enforces zero angu-

lar momentum around the CoM. It is a common practice

when designing trajectories using the centroidal momentum

dynamics to simply minimize the angular momentum around

the CoM, as angular momentum is a function of the robot’s

whole-body trajectories [25], [8]. However, as explained

clearly in [10], this simplifying assumption should not be

interpreted as if the angular momentum is not needed for lo-

comotion. More advanced trajectory optimization approaches

use a kinematic optimizer and try to track the angular

momentum and the CoM trajectories from the centroidal tra-

jectory optimizer and alternate between them until reaching a

consensus in terms of linear and angular momenta [7], [26],

[11]. Interestingly, we also can adapt the virtual constraint (4)

by adding a time-dependent term from a full-body kinematic

optimizer that accounts for the angular momentum trajectory.

Hence, we believe that our approach based on virtual con-

straints can be used within the kino-dynamic framework [7]

likewise. Note that, as mentioned earlier, we exclude multi-

contact scenarios from our analyses.

C. Walking and running dynamics

Solving (11a) as an initial value problem in the stance

phase yields:

ξt = eωt(ξ0 − rvrp,0) + rvrp,0 , 0 ≤ t ≤ Ts, (12)

in which rvrp,0 is the fixed VRP position in the current

step and ξt is the DCM at time t. Plugging (12) into (11b)

specifies the CoM trajectory, xt, during the stance phase,

xt =
1

2
(ξt + rvrp,0 + e−ωt(2x0−ξ0−rvrp,0)) , 0 ≤ t ≤ Ts.

(13)

The stance phase is proceeded by a non-zero flight phase in

running. During the flight phase, the robot’s CoM follows

a parabolic trajectory starting from xTs
and at the initial

velocity of ẋTs
,

xt =
(t−Ts)

2

2
g + (t−Ts)ẋTs

+ xTs
, Ts ≤ t ≤ T, (14)

where T := Ts+Tf denotes the end time of the current step.

In the absence of contact forces, the CoP cannot be defined.

Still, it is facilely determined from the DCM definition

per (11b) that the DCM travels through a free-fall motion

as well,

ξt =
(t−Ts)

2

2
g + (t−Ts)(ẋTs

+
1

ω
g) + ξTs

, Ts ≤ t ≤ T.

(15)

We can consider different walking and running patterns

depending on the initial condition of the CoM states and the

desired frequency for motions. In the rest of this paper, we

only discuss running and LIPM walking, but other types of

walking are imaginable, as discussed in Appendix A.

III. NOMINAL GAIT GENERATION

Assuming a desired average velocity, v =
[

vx, vy, vz
]T

,

we design a symmetric and periodic stable nominal gait

characterized by the horizontal displacement in each step,

together with the stance and flight duration. Note that this

periodic gait encodes the desired behaviour that the feedback

controller tries to converge to and can always be changed

by the user. However, it is also possible to give the robot

any arbitrary type of gait that is not periodic by specifying

the desired length, width, and time of the flight and stance

phases. For simplicity, moving on flat horizontal surfaces

with vz = 0 is considered; still, the scheme can be extended

to traversing on stepping stones or uneven scenarios. We use

superscript nom to denote nominal value for each variable.

A periodic gait requires identical relative positions of the

CoM, VRP, and DCM at the beginning of all steps,

|ξnomT − xnom
T | = |ξnom

0
− xnom

0
|,

|ξnomT − rnomvrp,T | = |ξnom
0

− rnomvrp,0|. (16)

The absolute operator can be removed in x and z directions,

but the signs must be flipped in y coordinate. Additionally,

moving on a flat surface implies znomT = znom
0

.

The nominal flight duration, Tnom
f , which brings back

both the CoM and the DCM to their initial altitude, znomT =
znom
0

and ξnomz,T = ξnomz,0 , is given by:

Tnom
f =

2ω(Γnom − 1)

g(Γnom + 1)
(znom

0
− znomvrp,0), (17)

where Γ := eωTs . Walking with Tnom
f = 0 happens when

ω = ω0 =
√

g/(znom
0

− znomcop ), which simplifies the general

dynamics per (10) to LIPM.

The nominal change between two consecutive foot step

locations, denoted by u0 and uT , on flat terrains is:

∆unom := unom
T −unom

0
= [vxT

nom, vyT
nom−(−1)nlp]

T ,

(18)

where lp is the pelvis width, n = 1 if the right foot is stance,

and n = 2 otherwise. The x and y components of ∆u show

step length and width, respectively.

By introducing the 3D-DCM offset as the eventual offset

between the DCM and VRP at the end of a step (the 2D

version has been proposed by the authors in [27]), b :=
ξT − rvrp,T , and assuming the nominal step size ∆unom,
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the nominal DCM offset is simply:

bnomx =
∆unom

x − ẋnom
Ts

Tnom
f

Γnom − 1
,

bnomy =
(−1)nlp
Γnom + 1

+
∆unom

y

Γnom − 1
+

(−1)n(−ẏnomTs,r
Γnom − ẏnomTs,l

)Tf

Γnom2 − 1
,

bnomz =
2

Γnom + 1
(znom

0
− znomvrp,0), (19)

where the horizontal components of the CoM velocity at Ts

are conveniently described in terms of the desired velocity,

ẋnom
Ts

=
vxT

nom

Tnom
f +2(Γnom−1)/(ω(Γnom+1))

,

ẏnomTs
=

vyT
nom − (−1)nlp

Tnom
f +2(Γnom+1)/(ω(Γnom−1))

.

(20a)

(20b)

The lateral speed depends on which foot is on the ground,

as encoded by n earlier, and we indicate it using subscript r

or l, ẏTs,r when n = 1 or ẏTs,l when n = 2.

Interestingly, while we only imposed periodicity condition

through (16), the nominal CoM trajectory is symmetric as

well. In a symmetric stance phase, the stance foot settles at an

identical distance from the CoM at the beginning and end of

stance, |xnom
Ts

−rnomvrp,0| = |xnom
0

−rnomvrp,0|. The flight phase is

inherently symmetric, conditioned on landing the swing foot

when znomT = znomTs
. It is easy to see from (13) and (16) that

both conditions hold (all proofs are in Appendix C).

To summarize the procedure of finding nominal gait

values, we assume that the user specifies a desired walk-

ing/running velocity. We use (17) to derive the nominal flight

phase which is zero for LIPM walking. The user also needs

to specify three gait hyperparameters to fully define a desired

gait, i.e., frequency ω, nominal stance time Ts and the initial

CoM height (znom
0

−znomvrp,0). Then, the nominal change of the

foot location per step is calculated from (18). Finally, using

(19), we compute the nominal DCM offset. The main goal

of our control framework is to achieve the nominal DCM

offset defined in (19). By trying to approach the desired

DCM offset at the end of each step, we ensure that it is

possible to have the desired gait in the next step in the ideal

situation. More importantly, we make sure that the unstable

part of the dynamics, i.e. DCM, remains bounded.

Remark 2: Our main result in [24] shows that the viability

kernel for LIPM walking can be characterized in terms of the

DCM offset. This conclusion is easily extended to the more

generalized dynamics of (10) by substituting ω0 with ω in

all derivations. For a given walking or running dynamics

specified by the frequency, ω, we argue that ensuring the

DCM offset is inside the viability region at every single step,

b < bmax, is sufficient for generating a stable gait: I) if

the DCM offset is larger than bmax, all possible choices of

step timing and location lead to divergence, II) otherwise,

at least one combination of step timing and location keeps

the DCM from diverging. It can be confirmed from (19) that

a shorter stance phase and greater step size push the gait

towards instability margin and make viability preservation

more laborious.

IV. FEEDBACK CONTROL

Given the nominal values of the gait in the previous

section, here we present a simple QP that tries to realize

the nominal gait utmostly while guaranteeing the viability

of the gait. This QP adapts the nominal values, e.g., step

location as well as stance and flight phases duration, such

that the gait remains viable in the presence of disturbances.

Note that we assign the virtual constraint in (4) as the main

task to our whole body controller, which is equal to having

no angular momentum around the CoM during motion.

The most critical constraint in our problem is the dy-

namics. Here, we are interested in specifying the dynamics

as a function of the next step location and duration such

that we can adapt position and timing based on the state

measurements online. We can express (12) and (15) in terms

of the current CoM and VRP, stance and flight duration, the

DCM offset, and the new VRP location:

rvrp,T =
1

2
T 2

f g + Tf (ṽt +
1

ω
g) + ξ̃t − b. (21)

In (21), ṽt and ξ̃t denote our belief at t about the CoM

velocity and DCM position at take-off time, Ts. If the

dynamics are studied during flight, ṽt is calculated from

measurement; otherwise, it is approximated by its nominal

value:

ṽt =

{

ẋnom
Ts

if t ∈ [0, Ts),

ẋt − (t− Ts)g if t ∈ [Ts, T ).

(22a)

(22b)

The DCM position at Ts is approximated by evolving current

measurements back or forth in time:

ξ̃t =























Γe−ωt(ξt − rvrp,t) + rvrp,t, if t ∈ [0, Ts],

xt −
(t− Ts)

2

2
g + (ẋt − (t− Ts)g)×

(
1

ω
+ Ts − t), if t ∈ [Ts, T ].

(23a)

(23b)

In (23), rvrp,t stands for the measured VRP at time t which

may deviate from rvrp,0 due to external disturbances.

The other constraint is the minimum time constraint in

the stance phase. For walking, this constraint limits the

maximum allowable acceleration of the swing foot. In fact,

this minimum time is required to bring the swing foot from

the current state to its final state because of the swing

foot dynamics. For running, however, this constraint makes

sure that the CoM height starts increasing during the stance

phase. Expressing this constraint in terms of our optimization

variable Γ obtains:

Ts ≥ Tmin =⇒ Γ ≥ eωTmin

, (24)

in which Tmin indicates the minimum time required for the

swing foot to take a step. While for walking we use a simple
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fixed value as in [24], for running we use the following time-

dependent lower-bound to make sure that the CoM height is

increasing (see Appendix B for proof)

Γmin = eωt

√

2max{zt, ξz,t} − ξz,t − zvrp,t
ξz,t − zvrp,t

. (25)

The next constraint is the foot reachability constraint

which ensures that the robot leg does not go to the kinematic

singularity or the CoM does not excessively approach the

ground. The distance between two step locations, ∆u, is

either travelled through the flight phase or proceeded by

stretching the leg to be landed next. In order to prevent self

collision and over-stretching of the legs, the second portion

must lie within a feasible range:

∆umin ≤ ∆u− Tf ṽ
x,y
t ≤ ∆umax. (26)

Equation (26) limits the step length and width while allowing

for bigger steps in running than in walking. Additionally, it

justifies the intuition that by increasing the stance duration

while running, the robot can fly more and thus, take larger

steps.

The next kinematic constraint concerns the CoM altitude

in the stance phase,

zmin ≤ zt ≤ zmax , 0 ≤ t ≤ Ts. (27)

The CoM goes higher as the stance time increases; hence,

the maximum Γ for not exceeding zmax is:

Γ ≤ Γmax =
eωt

ξz,t − zvrp,t
(zmax − zvrp,t+

√

(zmax − ξz,t)2 + 2(zmax − zt)(ξz,t − zvrp,t)) (28)

Also, to ensure a valid height at the beginning of the next

step, Tf must be in [Tmin
f , Tmax

f ], where

Tmin
f =max{t, (

√

2g(ξ̃z,t−ṽz,t/ω−zmax)+ṽ2z,t + ṽz,t)/g},

Tmax
f =(

√

2g(ξ̃z,t−ṽz,t/ω−zmin)+ṽ2z,t + ṽz,t)/g.

(29)

Finally, we refer the readers to Appendices D and B for

proofs and some considerations on the frictional constraints

that are not the main concern for walking and running.

The primary equality constraint of our problem is (21)

which is nonlinear with respect to Tf . To be able to adapt Tf

in the feedback controller while maintaining the convexity of

our optimization problem, we only consider equations in x, y
directions, while the desired behaviour in the z direction is

achieved by steering Tf to its nominal value. Now, we can

construct a QP that employs the current measurements of

the system and, if necessary, sacrifices the realization of the

nominal motion to keep the viability of the gait. Using the

current and next step locations u0 and uT , we have:

minimize
uT ,Γ,Tf ,b

x,y
α1‖uT − u0 −∆unom‖2+

α2|Γ− Γnom|2 + α3|Tf − Tnom
f |2+

α4‖b
x,y −

[

bnomx

bnomy

]

‖2

s.t. uT = Tf ṽ
x,y
t + ξ̃

x,y

t − bx,y.

uT − u0 ≥ ∆umin + Tf ṽ
x,y
t

uT − u0 ≤ ∆umax + Tf ṽ
x,y
t

Γmin ≤ Γ ≤ Γmax

Tmin
f ≤ Tf ≤ Tmax

f
[

bmin
x

bmax
y,out

]

≤ bx,y ≤

[

bmax
x

bmax
y,in

]

(30a)

(30b)

(30c)

(30d)

(30e)

(30f)

Due to self-collision, the bounds in the lateral direction are

not symmetric and we define by,in and by,out as in [24].

The first three terms in the cost function try to bring the

next step location and timing to their nominal values. The

last term encourages the DCM offset towards the nominal

DCM offset and is given a larger weight compared to the

other terms such that the optimizer adapts the current gait

parameters to ensure a viable next step. The system dynamics

are encoded in (30b), and (30c) ensures that the kinematic

reachability limitations of the next step are respected. (30d)

and (30e) are constraints on the stance and swing time.

Finally, (30f) guarantees the boundedness of the DCM offset,

which maintains the viability of the gait. This small QP can

be solved in a fraction of ms on a standard laptop using an

off-the-shelf QP solver [28].

V. RESULTS

In this section, we present the results of applying our

proposed controller for walking and running of the biped

robot Bolt [5] in Pybullet [29]. Bolt is a fully open-source

biped robot with passive ankles and 3 active degrees of

freedom per leg.

All simulations are carried out on a laptop with 2.8 GHz

Core i7 processor and 16GB RAM. We use the whole-

body controller in [30]. The main tracking tasks we have

are CoM control in z direction and the base roll and pitch

angles to keep the base as upright as possible. These three

tasks are enough to minimize the deviations from the virtual

constraint (4). As Bolt’s ankles are passive, we do not

control the CoM or DCM in horizontal directions and rely

only on (30) to adapt step location and timing based on

measurements to stabilize the motion. We carry out different

walking and running simulation experiments with different

velocities where the command velocity changes during walk-

ing and running. We also applied external disturbances and

performed walking on random uneven terrains to show the

robustness of our control framework. All simulations are

included in the accompanying video1.

1https://www.youtube.com/watch?v=Chz3CGDNkRQ
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APPENDIX

A. Modes of motion

Based on our formulation, we can categorize walking

and running in four groups and call them modes of motion

according to the CoM altitude pattern. The first three modes,

LIPM walking, walking, and sneaking, do not include a

flight phase, Tf = 0, while the last one is running and

involves non-zero flight phases. We argue that each mode

is associated with a frequency range and transiting between

different modes is done by changing ω in consecutive steps

(note that ω is kept constant during a single step).

Walking is classically defined as a gait in which at least

one leg is in contact with the ground at all times [31]. A

simplifying assumption is to maintain a constant CoM height

which is the principal assumption of the well-known LIPM

[1]. Using the natural frequency, ω = ω0 =
√

g/(z0 − zcop)
in (9) yields zvrp,0 = z0 that boils down (13) to zt = z0.

The general dynamics per (10) is reduced to LIPM in this

case, and we call the corresponding motion LIPM walking.

If ω < ω0, it follows from (9) that the CoM is initially

located below the VRP, z0 < zvrp,0, rises from t=0 to

t=Ts/2, and then falls until it reaches the initial height,

zTs
= z0, forming a sequence of vaults centered at contact

points. The described gait is the most compatible with human

walking with stretched legs, hence we call it simply walking.

In addition to the well-studied LIPM walking and the general

walking gait, we introduce another subdivision of walking

that we refer to as sneaking. Repeating the same procedure

for ω > ω0 shows that z0 − zvrp,0 > 0; so, the CoM

goes down at first and then rises. This motion can be useful

as an intermediate gait between walking and running. It is

important to note that for both walking and sneaking, a

double support phase is essential to bring the CoM states

at the end of current stance phase to the beginning of the

next stance phase.

Any motion with a non-zero flight duration in which both

feet are lifted up, is referred to as running. The stance dynam-

ics resembles a spring (in vertical direction) continuing to go

down after landing each foot for Ts/2, getting the closest to

the ground straightly above the contact point before being

pushed up and away from the stance foot for the second half

of the period. At the end of the stance phase, the foot is

lifted up and the CoM goes through a ballistic trajectory.
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To identify the concordant frequency range, note that the

flight duration per (17) must be positive, or equivalently

ξz,0 − zvrp,0 > 0, which is only plausible when ω > ω0.

Terrestrial locomotors decide between walking and run-

ning based on the motion velocity, simultaneously transiting

from walking to running as the pace increases. Biologist

have investigated various structural and metabolic triggers

to explain the speed threshold between walking and run-

ning; though, none could concretely justify the speed-up

and down switching ensemble. A dimensionless measure in

continuum mechanics referred to as Froude number (Fr) is

propitious in quantifying the transition speed [32]. Defined

as Fr := (v2x+v2y)/(g d), where d denotes the CoM distance

from the contact point, Froude number builds upon the

absolute velocity to leg length ratio. While walking at any

Froude number smaller than 1 is mathematically plausible,

observations suggest a switching point of Fr = 0.5 for many

biped species such as humans [33] and birds [34]. However,

in this paper we do not take these considerations into account

and implement walking and running for different walking

velocities from zero to their maximum range. We believe

that measures like energy efficiency and robustness need to

be taken into account to find an optimal gait for different

situations.

B. Friction cone constraints

To avoid stance foot slippage, the contact forces must

always lie inside the friction cone,

√

f2
x + f2

y ≤ µsfz, (31)

where µs is the static friction coefficient between the surface

and the stance foot. Using (4) to relate the external forces to

the CoM location during stance, (31) is rewritten as:

√

(xt − xvrp)2 + (yt − yvrp)2 ≤ µszt , 0 ≤ t ≤ Ts. (32)

The beginning and end of a step are the critical times, when

the sides of (32) are the closest to each other. Assuming

that the stance foot does not slip initially, (31) establishes

another upper bound on Γs.

C. Proofs for Section III

For fixed ξ0 and rvrp,0, applying the periodicity condi-

tion (16) restricts possible CoM stance trajectories in 13 to:

xnom
t =0.5(eωt + Γe−ωtα)(ξ0 − rvrp,0) + rvrp,0, (33)

where α = [−1, 1, 1]T . The CoM trajectory (33) is symmet-

ric w.r.t the VRP.

1) Proof of Eq. (19): By the DCM offset definition,

bx =ξx,T − xvrp,T = (ξx,T−xvrp,0)−∆ux (by (9))

=Tf ẋTs
+ Γ(ξx,0 − xvrp,0)−∆ux (by (12),(15))

=Tf ẋTs
+ Γbx −∆ux (by gait periodicity (16)).

The last line holds since the DCM offset is the same in all

steps and obtains the formula of (19).

The proof in the lateral direction is similar, but the effect

of pelvis length must be taken into account. Repeating the

same procedure as for bx,

vyT + lp − ẏTs,r Tf = Γ by,r − by,l,

vyT − lp − ẏTs,l Tf = Γ by,l − by,r,

which together obtain by .

Finally, Eq. (33) at t = 0 is used for calculating bz:

z0 = 0.5(Γ + 1)(ξz,0 − zvrp,0) + zvrp,0

=⇒ ξz,0 − zvrp,0 = 0.5(Γ + 1)(z0 − zvrp,0).

The last line equals bz because of periodicity (16)

2) Proof of Eq. (20): We prove (20b) ((20a) is similar).

First, use (9), (16) and (33), to find the nominal step width:

∆unom
y = (yvrp,T+yvrp,0)− 2 yvrp,0

= (yT+y0)− 2 yvrp,0

= Tf ẏTs
+ (Γ + 1)(ξy,0 − yvrp,0)

= Tf ẏTs
+

2(Γ + 1)

ω(Γ− 1)
ẏnomTs

.

The last line is obtained from taking the derivative of (33)

and yields (20b) together with (18).

D. Proofs for Section IV

Most equations in this section involve approximating the

CoM or DCM position at Ts from measurements at t. A

general trick is to shift (12) and (13) in time such that current

measurements are used instead of initial values,

xTs
=

1

2
(Γe−ωt(ξt−rvrp,t)

+ Γ−1eωt(2xt−ξt−rvrp,t)) + rvrp,t. (34)

1) Proof of (21) to (23): Eq. (21) is derived by replacing

ẋTs
and ξTs

with their approximation at t. For proving (22)

and (23), compare (12)-(15) at t=t and t=Ts.

2) Proof of (25): If żt ≥ 0, the upward-moving re-

quirement is already satisfied and the stance phase can end

immediately, Γmin = eωt. Otherwise, ξz,t < zt and setting

żTs
≥ 0 in the time derivative of (34) obtains:

Γmin = eωt
√

(2zt − ξz,t − zvrp,t)/(ξz,t − zvrp,t).

The two cases based on żt can be summarised as in (25).

3) Proof of Eq. (28): Solving zTs
= zmax in (34) obtains

Γmax per (28), but the validity of the answer must be

checked, i.e. i) Γmax ≥ eωt, and ii) the term under the square

root should be non-negative. By triangle inequality,

Γmax ≥ eωt |zmax − ξz,t|+ zmax − zvrp,t
ξz,t − zvrp,t

≥ eωt.

Since z̈t ≥ 0, zt ≥ zvrp,t and ξz,t ≥ zvrp,t, so ii holds.

4) Proof of Eq. (29): In (14), approximate ẋTs
and xTs

by ṽt and ξ̃t − ṽt/ω. Then solve zT = zmax to get Tf,min

(similarly for Tf,max).
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