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ABSTRACT

We have formulated the Fréchet kernel computation using the
adjoint-state method based on a fractional viscoacoustic wave
equation. We first numerically prove that the 1/2- and the 3/2-
order fractional Laplacian operators are self-adjoint. Using this
property, we find that the adjoint wave propagator preserves
the dispersion and compensates the amplitude, whereas the
time-reversed adjoint wave propagator behaves identically to
the forward propagator with the same dispersion and dissipation
characters. Without introducing rheological mechanisms, this for-
mulation adopts an explicit Q parameterization, which avoids the
implicit Q in the conventional viscoacoustic/viscoelastic full-
waveform inversion (Q-FWI). In addition, because of the decou-
pling of operators in the wave equation, the viscoacoustic Fréchet

kernel is separated into three distinct contributions with clear
physical meanings: lossless propagation, dispersion, and dissipa-
tion. We find that the lossless propagation kernel dominates the
velocity kernel, whereas the dissipation kernel dominates the at-
tenuation kernel over the dispersion kernel. After validating the
Fréchet kernels using the finite-difference method, we conduct a
numerical example to demonstrate the capability of the kernels to
characterize the velocity and attenuation anomalies. The kernels
of different misfit measurements are presented to investigate their
different sensitivities. Our results suggest that, rather than the trav-
eltime, the amplitude and the waveform kernels are more suitable
to capture attenuation anomalies. These kernels lay the foundation
for the multiparameter inversion with the fractional formulation,
and the decoupled nature of them promotes our understanding of
the significance of different physical processes in Q-FWI.

INTRODUCTION

Full-waveform inversion (FWI) (see, e.g., Virieux and Operto,
2009), as well as the more general adjoint tomography (e.g., Tromp
et al., 2005), uses the adjoint-state method (see, e.g., Plessix, 2006)
to minimize the misfit between observed and synthetic seismograms
by iteratively adjusting the model parameters. This method has wide
applications ranging from near-surface imaging, to exploration-
scale inversion, and to global tomography. For a broader overview,
the reader can refer to the reviews on this topic (Fichtner, 2010; Liu
and Gu, 2012). In FWI, the Fréchet kernel (i.e., the gradient of the
objective function with respect to the model parameters) is com-
puted by interacting the forward and adjoint wavefields at each iter-
ation. It provides the (opposite) direction for model parameters to
update, refining a low-resolution initial model into a high-resolution

final model. The accuracy of the final model depends critically on
whether the modeling takes into account all of the relevant wave
physics (Tarantola, 1988). Although the classic FWI algorithm is
focused on the inversion of seismic velocity, seismic attenuation,
quantified by the quality factor Q, plays an important role, espe-
cially in the study of shallow and deep earth geology having partial
melt (see, e.g., Wiens et al., 2008), high temperature (e.g., Romano-
wicz, 1995), or fluid-saturated rocks (see, e.g., Müller et al., 2010).
Physically, attenuation distorts the seismic waveform by reducing
the amplitude (dissipation) and altering the phase (dispersion).
Thus, to accurately account for the dissipation and the dispersion
effects, it is crucial to incorporate seismic attenuation into the
FWI workflow via the computation of the Fréchet kernel. In this
way, the resultant velocity kernel can enhance the accuracy and reli-
ability of the final velocity model; the attenuation kernel can lead to
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an additional high-resolutionQmodel, which provides complemen-
tary constraints of subsurface structure (Zhu et al., 2013, 2017).
Nevertheless, incorporating seismic attenuation brings about

complications. First, the state-of-the-art time-domain viscoacous-
tic/viscoelastic FWI (Q-FWI) algorithms represent seismic attenu-
ation by superposing rheological mechanisms to approximate the
widely accepted frequency-independent-Q (also known as con-
stant-Q) (McDonal et al., 1958; Knopoff, 1964). As a consequence,
Q is usually parametrized implicitly by different relaxation times
characterizing their corresponding rheological mechanisms, which
brings complexity to the Q inversion. Recently, Fichtner and van
Driel (2014) and Yang et al. (2016) propose a special parameteriza-
tion to enforce the explicit representation of Q, which involves an
additional curve-fitting procedure parametrizing the weight and re-
laxation time of each rheological mechanism to fit the constant-Q;
and the accuracy of Q between 50 and 500 was satisfied with three
rheological mechanisms. Second, the attenuation-associated physi-
cal processes, that is, dissipation and dispersion, are always coupled
with each other and with lossless wave propagation. This coupling
complicates forward and inversion problems, and it hinders our
understanding of the contribution to the Fréchet kernel (and thus
to the Q-FWI) from each individual physical process. Bai et al.
(2014) build the adjoint-based theoretical framework for viscoa-
coustic monoparameter (velocity) inversion; with the “unrelaxed”
velocity as the model parameter, the velocity gradient (i.e., Fréchet
kernel) has the same form as lossless acoustic FWI, and the input of
dissipation and dispersion vanish. The formulations of Fichtner and
van Driel (2014) and Yang et al. (2016) involve the forward or ad-
joint memory variables into the wavefield interaction to compute the
velocity (or modulus) and attenuation kernels. The contributions
from the dissipation or dispersion process are implicitly embedded
in these memory variables. Another Q-FWI method (Tromp et al.,
2005) obtains the attenuation kernel with an additional adjoint sim-
ulation excited by a Q adjoint source (Zhu et al., 2013), instead of
conducting the wavefield interaction involving the memory varia-
bles. This method is derived from encoding the Q information with
the complex velocity (or modulus; Aki and Richards, 2002), and it
has been applied to the real vertical seismic profile data set for
velocity/attenuation inversion (Pan and Innanen, 2019). Although
the dispersion and dissipation terms are separated in the Q adjoint
source, it is still unclear how each of the decoupled terms contrib-
utes to the Fréchet kernel. Third, the coupling between elastic
(velocity) and anelastic (attenuation) model parameters gives rise
to the crosstalk artifacts (Kamei and Pratt, 2013; Keating and In-
nanen, 2019), which causes difficulties in determining whether
the data residual should be attributed to velocity or attenuation.
Recently, a variety of viscoacoustic/viscoelastic wave equations

featuring fractional Laplacian operators (Chen and Holm, 2004)
have been proposed for seismic modeling (e.g., Zhu and Carcione,
2014; Zhu and Harris, 2014; Chen et al., 2016; Xing and Zhu, 2019)
as well as inversion (e.g., Chen et al., 2017, 2020; Yang et al.,
2020). Their unique features suggest the potential to deal with the
aforementioned issues in the Q-FWI. First, the forward and inver-
sion algorithms based on these fractional equations fundamentally
differ from the traditional methods: Traditional methods manage the
attenuation effects through exploiting the temporal wavefield his-
tory by either storing it (e.g., Carcione et al., 2002; Zhu, 2017)
or introducing memory variables to “record” the necessary part
of it (e.g., Carcione et al., 1988; Fichtner and van Driel, 2014; Yang

et al., 2016); whereas algorithms based on fractional equations
retrieve the attenuation fingerprints embedded in the spatial variation
of the wavefield. Second, these fractional equations, derived from the
Kjartansson model that analytically characterizes the constant-Q
property (Kjartansson, 1979), have an explicit representation of Q,
instead of the implicit Q parameterization using relaxation times
of rheological mechanisms. Third, this type of equations has an ex-
ceptional characteristic that they decouple the attenuation-associated
effects, that is, dissipation and dispersion, from the lossless wave
propagation, with separate operators for different physical processes
(Zhu, 2014). Previous studies showed that the decoupled operators
enable Q-compensated reverse time migration and time-reversal im-
aging by only flipping the sign of the dissipation operator (Zhu, 2014;
Zhu et al., 2014). Xue et al. (2018) demonstrate that the Q-compen-
sated velocity FWI can accelerate the convergence, where the for-
ward and adjoint simulations are compensated. This compensation
acts as a preconditioner in FWI to balance the illumination by boost-
ing the gradient at depth that suffers from “double damping” (attenu-
ated for source-side and receiver-side wavefields), especially for the
reflection acquisition system.
Taking advantage of these features, in this study, we provide a de-

tailed derivation of the formulation for the Fréchet kernel computa-
tion based on a decoupled fractional viscoacoustic wave equation
(Xing and Zhu, 2019), which improves the accuracy of simulating
the wavefield in heterogeneous Q media using fixed fractional Lap-
lacian powers. As with the wave propagator that is decoupled into
lossless propagation, dispersion, and dissipation operators, we dem-
onstrate that the resultant Fréchet kernel can also be decoupled into
contributions from these three physical processes, which could
promote our understanding of the significance of each process in
the Q-FWI. We also explore the Fréchet kernels of various misfit
measurements (objective functions) to investigate its potential to
disentangle the coupling between the velocity and attenuation.
We first introduce the forward modeling using the fractional vis-

coacoustic wave equation derived from the Kjartansson constant-Q
model. In the next section, we formulate its associated adjoint wave
propagator and the Fréchet kernel computation for various misfit
measurements. In the “Numerical examples” section, we conduct
experiments to validate the kernel computation algorithm, and we
demonstrate the decoupling property and the sensitivities of veloc-
ity/attenuation anomalies of the kernels. Meanwhile, the advantages
and challenges of this algorithm are discussed, followed by our pre-
sentation of the conclusions.

FORWARD MODELING

The Kjartansson model represents frequency-independent-Qme-
dia with only three parameters (Kjartansson, 1979): the reference
angular frequency ω0, its corresponding phase velocity c0, and a
dimensionless parameter γ ¼ 1∕π arctanð1∕QÞ that represents the
strength of the attenuation. Based on this model, Xing and Zhu
(2019) propose a viscoacoustic wave equation featured by the frac-
tional Laplacian operators:

Lu ¼ ðL0 þ L1 þ L2Þu ¼ f; (1)

L0 ¼
1

c2
∂2

∂t2
− ∇2; (2)

T62 Xing and Zhu
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L1 ¼ −γ
ω0

c
ð−∇2Þ12 þ γ

c
ω0

ð−∇2Þ32; (3)

L2 ¼
�
πγ

1

c
ð−∇2Þ12 − πγ2

1

ω0

∇2

�
∂
∂t
; (4)

where u is the pressure wavefield, f is the source term, and
c ¼ c0 cosðπγ∕2Þ is the “propagation velocity.” As shown in equa-
tion 1, the viscoacoustic wave propagator L is decoupled into three
parts: L0 is the lossless acoustic wave propagator, L1 is the phase
dispersion corrector, and L2 is the amplitude loss (dissipation) cor-
rector. Each operator corresponds to a unique physical process. This
equation characterizes the attenuation features by interrogating the
spatial variation of the wavefield via operators L1 and L2. To
numerically implement equations 1–4, we follow Xing and Zhu
(2019) to use the pseudospectral method to model the viscoacoustic
wavefield with good accuracy and efficiency. Note that to guarantee
the accuracy of the numerical simulation, the reference angular fre-
quency ω0 should be selected, without loss of generality, to be the
center of the frequency band of interest, and the corresponding
phase velocity c0 should thus be adjusted accordingly based on
the velocity dispersion of the Kjartansson model.

FRÉCHET KERNELS

Following the Lagrangian multiplier method (Plessix, 2006), we
can formulate the computation of Fréchet kernel K with equation 1
for forward modeling and two extra equations for adjoint modeling
and wavefield interaction, respectively:

L�λ ¼ a ¼ ∂χ
∂u

; (5)

K ¼ dχ
dm

¼ −
�
λ;
∂L
∂m

u

�
; (6)

where � denotes adjoint, λ is the adjoint wavefield, χ is the objective
function, a ¼ ∂χ∕∂u is the adjoint source, and m is the model
parameter. The inner (dot) product h·; ·i of two wavefields u and
v is defined by

hu; vi ¼
Z

T

0

Z
V
uðx; tÞvðx; tÞdxdt; (7)

where ½0; T� and V are the duration and the region of simulation,
respectively. We will illustrate how to use equations 5 and 6 in
the following subsections.

Adjoint wave propagator L�

To use equation 5, we need to derive the explicit form of
L� ¼ L�

0 þ L�
1 þ L�

2. For an arbitrary operator P, its adjoint operator
P� satisfies hPu; vi ¼ hu;P�vi. Because we have known that
ð∇2Þ� ¼ ∇2 and ð∂∕∂tÞ� ¼ −∂∕∂t, we can infer from equation 2
that the acoustic propagator is self-adjoint: L�

0 ¼ L0. For the frac-
tional Laplacian operators ð−∇2Þ1∕2 and ð−∇2Þ3∕2, there is a lack of
mathematical proof of their self-adjoint property. In the following,
we conduct dot product tests to numerically prove that both of these
fractional Laplacian operators are self-adjoint.

The fractional Laplacians are spatial operators; therefore, we just
need to consider the dot product in only a single time slice without
the time integral in equation 7. Thus, we investigate two randomly
generated single-time-slice wavefields u (Figure 1a) and v (Figure 1b).
We apply fractional Laplacians (1/2 and 3/2 orders) to u and v, and we
obtain the wavefields ð−∇2Þ1∕2u (Figure 1c), ð−∇2Þ1∕2v (Figure 1d),
ð−∇2Þ3∕2u (Figure 1e), and ð−∇2Þ3∕2v (Figure 1f). Next, we conduct
element-by-element multiplications between ð−∇2Þ1∕2u (Figure 1c)
and v (Figure 1b) to obtain Figure 1g, and between ð−∇2Þ1∕2v (Fig-
ure 1d) and u (Figure 1a) to get Figure 1h. Although these two result-
ant wavefields involving 1/2-order Laplacians (Figure 1g and 1h)
appear to be correlated but different, the summation of all the ele-
ments in each wavefield, that is, the inner product, turns out to be
the same (0.18). Similarly, we conduct element-by-element multipli-
cation and summation over elements for the 3/2-order Laplacians,
and we obtain the equivalence (1.97) between hð−∇2Þ3∕2u; vi (Fig-
ure 1i) and hu; ð−∇2Þ3∕2vi (Figure 1j). Hence, for this random wave-
field pair (u and v), we have hð−∇2Þ1∕2u; vi ¼ hu; ð−∇2Þ1∕2vi and
hð−∇2Þ3∕2u; vi ¼ hu; ð−∇2Þ3∕2vi. Moreover, we conduct tests
for another 100 random wavefield pairs, and the comparisons
of the resultant inner products are shown in Figure 2. Because
the inner products are equivalent for each wavefield pair, we can con-
clude that fractional Laplacian operators are self-adjoint:
ðð−∇2Þ1∕2Þ�¼ð−∇2Þ1∕2 and ðð−∇2Þ3∕2Þ�¼ð−∇2Þ3∕2.

a) b)

c) d)

e) f)

g) h)

i) j)

Figure 1. The dot product test of the fractional Laplacian operators for
one random wavefield pair: (a) wavefield u; (b) wavefield v;
(c) ð−∇2Þ1∕2u; (d) ð−∇2Þ1∕2v; (e) ð−∇2Þ3∕2u; (f) ð−∇2Þ3∕2v; (g)
pixel-by-pixel multiplication of ð−∇2Þ1∕2u and v; (h) pixel-by-pixel
multiplication of u and ð−∇2Þ1∕2v; (g) pixel-by-pixel multiplication
of ð−∇2Þ3∕2u and v; (g) pixel-by-pixel multiplication of u and
ð−∇2Þ3∕2v.
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Hence, based on equations 3 and 4, we have L�
1 ¼ L1 and

L�
2 ¼ −L2; thus, L� ¼ L0 þ L1 − L2. Physically, it means that

the adjoint viscoacoustic propagator compensates (antiattenuates)
the amplitude of the waves while preserving the velocity dispersion
character (Zhu, 2014; Zhu et al., 2014). This behavior is consistent
with the equations based on the traditional “temporal-history”
method, in which Tarantola (1988) derives the adjoint wave equa-
tion and highlights its feature of an “anticausal” relaxation function
that leads to the growth of energy (Komatitsch et al., 2016).
Contrary to the zero initial condition for forward modeling (equa-

tion 1), the adjoint wave equation (equation 5) is associated with a
zero final (terminal) condition (Plessix, 2006). Hence, in practice,
we simulate the adjoint wavefield in a time-reversed mode:

ðL�Þ‡λ‡ ¼ a‡; (8)

where ‡ indicates the time reversal. For variables (i.e., the adjoint
wavefield λ and the adjoint source a), the ‡ operator flips the time
order; for operators (i.e., the adjoint viscoacoustic propagator L�

as well as its constituents L�
0, L

�
1, and L�

2), it replaces t with −t.
As a result, we have ðL�

0Þ‡ ¼ L‡
0 ¼ L0, ðL�

1Þ‡ ¼ L‡
1 ¼ L1, and

ðL�
2Þ‡ ¼ −L‡

2 ¼ L2; thus, straightforwardly, the time-reversed ad-
joint viscoacoustic propagator ðL�Þ‡ ¼ L0 þ L1 þ L2 ¼ L. Hence,
instead of compensating, the time-reversed adjoint wavefield
attenuates the amplitude and preserves the velocity dispersion as
the forward wavefield:

Lλ‡ ¼ a‡: (9)

In other words, the behavior of the time-reversed adjoint wave
propagation is identical to that of the forward wavefield. Note that
this invariance should be satisfied as long as the source-receiver
reciprocity holds (Pratt et al., 1998).

Adjoint source ∂χ∕∂u

The right side of equation 5 suggests that the adjoint source ex-
citing the adjoint wavefield depends on the form of the objective
function χ, which is the measurement of the misfit between ob-
served and synthetic seismograms. In classic FWI, the waveform
misfit is adopted as the objective function:

χW ¼ 1

2

Z
ðu − dÞ2dt; (10)

where u and d are the synthetic and the observed seismograms,
respectively. For simplicity, we consider the single-source single-
receiver case; and we hereinafter omit the sampling operator at
the receiver location and the time window in which the measure-
ment is conducted. Hence, its corresponding adjoint source is
the data (waveform) residual, expressed as

aW ¼ ∂χW
∂u

¼ u − d: (11)

In addition, we consider two additional objective functions, that
is, the crosscorrelation traveltime shift and the amplitude difference.
The traveltime objective function is defined by

χT ¼ 1

2
ΔT2 ðΔT ¼ Tu − TdÞ; (12)

where Tu and Td are the traveltimes of the synthetic and observed
seismograms, respectively, and the traveltime shift ΔT is defined by
the time lag with the maximum crosscorrelation coefficient of u and
d. Using the implicit differentiation technique (Luo and Schuster,
1991; Tromp et al., 2005), we can formulate the adjoint source for
the traveltime objective function:

aT ¼ ∂χT
∂u

¼ −ΔT
_dðt − ΔTÞR

_uðtÞ _dðt − ΔTÞdt ; (13)

where the dot (in _d and _u) denotes time derivative.
We can define the amplitude objective function as

χA ¼ 1

2
ΔA2

�
ΔA ¼ Au − Ad

Ad

�
; (14)

where Au ¼ ð∫ u2dtÞ1∕2 and Ad ¼ ð∫ d2dtÞ1∕2 are the root-mean-
square amplitudes of the synthetic and observed seismograms, re-
spectively. Its corresponding adjoint source can then be formulated
(Dahlen and Baig, 2002; Tromp et al., 2005):

aA ¼ ∂χA
∂u

¼ ΔA ·
u

AuAd
: (15)

In practice, the amplitude information could be unreliable when the
signal-to-noise ratio is low. In such scenarios, other amplitude-based
objective functions such as the spectral amplitude ratio can also be
considered (Pan and Innanen, 2019; Pan and Wang, 2020).
In general, the traveltime and the amplitude captures the kin-

ematic and the dynamic information, respectively. We incorporate
these two misfit measurements as an attempt to understand the sen-
sitivity of traveltime and amplitude data to velocity and attenuation.

Wavefield interaction

The last step to compute the Fréchet kernel is to interact the for-
ward and adjoint wavefields, which requires an explicit formulation
of equation 6. As mentioned in the “Forward modeling” section,
one of the unique features of the fractional wave equation is its
capability to decouple the wave propagator L into three parts rep-
resenting different physical processes: the lossless propagator L0,
the dispersion corrector L1, and the dissipation corrector L2. As

Figure 2. The dot product test results of 100 wavefield pairs for
(a) ð−∇2Þ1∕2 and (b) ð−∇2Þ3∕2. Each black cross denotes the result
of a wavefield pair; the gray dashed line shows where the values of
the x- and y-axis are equal.
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a result, the Fréchet kernel K is perfectly separated into three parts
as L does

K ¼K0þK1þK2 where Ki ¼−
�
λ;
∂Li

∂m
u

�
ði¼ 0;1;2Þ:

(16)

Here, we regard c (propagation velocity) and γ (attenuation
strength∼1∕πQ) as the model parameters. Then, the operators
∂Li∕∂m can be directly derived from equations 2–4; thus, the
decoupled Fréchet kernels can be obtained by

Kc;0 ¼ −
�
λ;
∂L0

∂c
u

�
¼ −

�
λ;−

2

c3
∂2

∂t2
u

�
; (17)

Kc;1¼−
�
λ;
∂L1

∂c
u

�
¼−

�
λ;

�
γω0

c2
ð−∇2Þ1∕2þ γ

ω0

ð−∇2Þ3∕2
�
u

�
;

(18)

Kc;2 ¼ −
�
λ;
∂L2

∂c
u

�
¼ −

�
λ;−

πγ

c2
ð−∇2Þ12 ∂

∂t
u

�
; ð19Þ

Kγ;0 ¼ −
�
λ;
∂L0

∂γ
u

�
¼ 0; (20)

Kγ;1¼−
�
λ;
∂L1

∂γ
u

�
¼−

�
λ;

�
−
ω0

c
ð−∇2Þ1∕2þ c

ω0

ð−∇2Þ3∕2
�
u

�
;

(21)

Kγ;2 ¼−
�
λ;
∂L2

∂γ
u

�
¼−

�
λ;

�
π

c
ð−∇2Þ1∕2−2πγ

ω0

∇2

�
∂
∂t
u

�
:

(22)

Thus, we have decoupled the Fréchet kernels into contributions
from three different physical processes: lossless propagation kernel
K0 (equations 17 and 20), dispersion kernel K1 (equations 18 and
21), and dissipation kernel K2 (equations 19 and 22). Note that the
form of equation 17 is identical to the velocity gradient computation
in the classic acoustic FWI (e.g., Bunks et al., 1995). Taking Kc;0 as
an example (equation 17), its physical meaning is: how significantly
the misfit will change due to the velocity (c) perturbation when only
the lossless propagation process is considered. According to the
Kjartansson model (c is involved in L1 and L2), the velocity per-
turbation will slightly affect the dispersion and the dissipation. The
velocity kernel contributions from these two processes (equations 18
and 19) are expected to be far less significant than the lossless
propagation (equation 17). Equation 20 indicates that the misfit will

not change at all no matter how we manipulate the attenuation (γ) in
a lossless world; thus, the lossless propagation will not contribute to
the attenuation kernel. In addition to the dispersion contribution
(equation 21), we would expect the attenuation to have a significant
impact through the dissipation (equation 22) process, which will be
demonstrated in the “Numerical examples” section.

NUMERICAL EXAMPLES

Kernel gallery

We implement the adjoint-state method derived in the previous
section to compute the Fréchet kernels of a homogeneous model for
three different objective functions. To do that, we consider a case of
exploration scale, and we set up a 2D homogeneous target model on
a 401 × 201 grid with spacing of 10 m in both directions. The target
model has the reference phase velocity 3.05 km/s at 20 Hz and the
quality factor Q ¼ 80. We put a receiver at (3.7, 1) km and a source
at (0.3, 1) km with a 20 Hz Ricker wavelet. We run the simulation
with 1 ms time interval, and the resultant synthetic seismogram is
regarded as the ground-truth data.
Meanwhile, we set up an initial model on the same grid with

3 km/s reference phase velocity and Q ¼ 100. Using this model,
first, we simulate the forward wavefield according to equation 1.
Next, the synthetic data recorded at the receiver is compared with
the ground-truth data to generate the adjoint sources for different
objective functions according to equations 11, 13, and 15. After
that, the adjoint wavefield excited by each adjoint source is modeled
in a time-reversed mode using the same simulator as the forward
wavefield (equation 9). Finally, the forward and the adjoint wave-
fields are interacted following equations 17–22 to produce the Fré-
chet kernels contributed by different physical processes as well as
their summation. The resultant velocity and attenuation kernels (Kc

and Kγ) are displayed in Figures 3 and 4, respectively.
Figures 3 and 4 show the velocity and attenuation Fréchet ker-

nels, respectively, for the three objective functions (waveform: Kc;W

and Kγ;W ; traveltime: Kc;T and Kγ;T ; and amplitude: Kc;A and Kγ;A).
In both figures, the first three rows are the decoupled kernels, that is,
the contributions from lossless propagation (K0), dispersion (K1),
and dissipation (K2), respectively, whereas the bottom row is their
summation (K, i.e., Ktotal). As expected, for all of the objective
functions, the velocity kernels (Kc, Figure 3j–3l) are dominated
by the contribution of lossless propagation (Kc;0 in equation 17
and Figure 3a–3c), whereas the dispersion and dissipation counter-
parts (Kc;1 in equation 18 and Kc;2 in equation 19) are very small
and virtually invisible (Kc;1 in Figure 3d–3f and Kc;2 in Figure 3g–
3i). Contrarily, the attenuation has absolutely no sensitivity to the
lossless process (Kγ;0 in equation 20 and Figure 4a–4c), but it is
instead determined by the dispersion (Kγ;1 in equation 21 and Fig-
ure 4d–4f) and dissipation (Kγ;2 in equation 22 and Figure 4g–4i).
Although the dispersion kernel (Kγ;1) is relatively small, the dissi-
pation kernel (Kγ;2 in equation 22 and Figure 4g–4i) is much larger
for each of the objective functions.
To further quantify the kernel contribution from different processes

(at least to some extent), we extract the central vertical profile (at 2 km
of the horizontal coordinate) for each kernel and show them in Fig-
ure 5. The preceding observations can be confirmed: The lossless
propagation kernelK0 dominates the velocity kernel, whereas the dis-
sipation kernel K2 contributes to most of the attenuation kernel. In
addition, we noticed that the dispersion and dissipation attenuation
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kernels (Kγ;1 and Kγ;2) mildly anticorrelate with
each other (the correlation coefficients are
−0.31, −0.54, and −0.11 for the three objective
functions, respectively), as shown in Figure 5d–
5f. We also extract the value at the central depth
for each profile (i.e., the central point of the 2D
model), and we present the percentage of the con-
tributions from different processes in Table 1. It
turns out that the lossless propagation (K0) con-
tributes almost 100% of the velocity kernel,
whereas the dissipation (K2) is dominant by tak-
ing up more than 80% of the attenuation kernel,
compared to the dispersion (K1) contribution,
which is approximately 20%.
Because the target model has a higher velocity

compared to the initial model, we would expect
that most of the velocity kernel will be negative.
In this sense, the traveltime kernel (Kc;T in Fig-
ure 3) with the largest bluish area is more likely
to benefit the FWI convergence compared to the
others. On the other hand, the target model also
has higher attenuation (lower Q), which is well
captured by the waveform and the amplitude ker-
nels (Kγ;A in Figure 4) with negative values in the
Fresnel zone. However, the traveltime attenua-
tion kernel (Kγ;T in Figure 4) has a flipped polar-
ity. Because the attenuation is barely sensitive to
the traveltime phase shift, the traveltime attenu-
ation kernel generally should not be used to up-
date the model.
It is worth mentioning that the raw kernels, es-

pecially the attenuation kernels, have a cross-
shaped artifact near the source location. For ex-
ample, a part (the boxed area of Figure 4j) of the
raw waveform attenuation kernel is shown in
Figure 6a. This artifact is produced by applying
fractional Laplacian operators on the source-
point singularity when the wavefield interaction
is taken (equations 18, 19, 21, and 22). To sup-
press the artifact, we use a Gaussian function to
taper the source region of the forward wavefield
for all of the time steps before the wavefield in-
teraction. With this source region taper (SRT)
process, the attenuation kernel is shown in Fig-
ure 6b, and the cross-shaped artifact disappears.
By checking the difference between the kernels
with and without SRT (Figure 6c), we can see
that the artifact is mostly removed along with the
kernel of a small source region. Because the
model parameters are not updated at the source
region in practice, this SRT solution for the arti-
fact is valid. All of the Fréchet kernels in Fig-
ures 3 and 4 are generated with SRT.

Finite-difference validation

To validate our algorithm, in this subsection,
we use the finite-difference (FD) method to com-
pute the kernels of a small (61 × 31) model, and
we compare them with the ones obtained by the

a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 3. Velocity Fréchet kernels (Kc) for (a, d, g, and j) waveform, (b, e, h, and k) trav-
eltime, and (c, f, i, and l) amplitude objective functions: (a-c) K0, the contribution from
the lossless propagation (L0); (d-f) K1, the contribution from the dispersion (L1); (g-
i) K2, the contribution from the dissipation (L2); and (j-l) the total Fréchet kernels.

a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 4. Attenuation Fréchet kernels (Kγ) for (a, d, g, and j) waveform, (b, e, h, and
k) traveltime, and (c, f, i, and l) amplitude objective functions: (a-c) K0, the contribution
from the lossless propagation (L0); (d-f) K1, the contribution from the dispersion (L1);
(g-i) K2, the contribution from the dissipation (L2); and (j-l) the total Fréchet kernels.
The boxed area of (j) is used to illustrate the SRT process in Figure 6.
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adjoint-state (AD) method. Apart from the size, the setup of the
target and initial models is the same as the previous section. The
source and the receiver are located at (0.10, 0.15) km and (0.50,
0.15) km, respectively. The AD kernels are computed as illustrated
in the previous section but without SRT (for bet-
ter validation).
Based on equation 6, the FD Fréchet kernel ~K

can be defined by

~K ¼ Δχ
Δm

≈
dχ
dm

; (23)

when the model parameter perturbation Δm is
sufficiently small. To implement, we first com-
pute the original objective function, which is
the misfit between the observed data and the syn-
thetic seismogram generated by the initial model.
For a single grid point of the initial model, we
perturb the parameter by a small value Δm
(1 km/s for velocity Δc, 10−3 for attenuation Δγ).
Using this perturbed model, we simulate the new
synthetic data and compute the perturbed objec-
tive function, which has a subtle difference Δχ
compared to the original objective function.
The FD Fréchet kernel value at this grid point
is then set to be Δχ∕Δm, followed by undoing
the perturbation Δm. We iterate this process
for all of the grid points in the model to obtain
the FD Fréchet kernel ~K.
A comparison of the AD kernels and the FD

kernels is shown in Figure 7. Here, we only show
the kernels for the waveform and the amplitude
misfit because the tiny traveltime change caused
by the perturbation of one grid point cannot be
measured by the crosscorrelation method, which
results in zero-traveltime FD kernels. It turns out
that the kernels generated by both methods are
consistent with each other. For each objective
function, there is some residual near the source
location (Figure 7c, 7f, 7i, and 7l) because of its
singularity. Apart from that, the velocity kernel
residuals are negligible. The visible residuals
of the attenuation kernels are because the attenuation perturbation
(Δγ ¼ 10−3, here corresponding toΔQ ¼ 23.9) is not small enough
to guarantee the accuracy of the approximation in equation 23.
However, if we decrease Δγ, the objective function perturbation
ΔJ will fall below the level of numerical noise, which leads to a
noisy FD kernel. Nevertheless, we believe that the similarity be-
tween the attenuation AD and the FD kernels is fair enough to val-
idate our AD method for Fréchet kernel computation.

Circular anomaly model

In this section, we demonstrate the capability of Fréchet kernels
with regard to a velocity anomaly (test 1) and an attenuation
anomaly (test 2). The initial model is the same homogeneous model
as in the first numerical example. Compared to the initial model, the
test 1 target model has a circular (radius 0.3 km) velocity anomaly
of 3.1 km/s centered at (1.5, 0.8) km. We have 56 sources (20 on
the top/bottom and 8 on the left/right) and 118 receivers (40 on the

top/bottom and 19 on the left/right) evenly distributed on the four
margins of the model. As in the previous examples, the sources are a
20 Hz Ricker wavelet, and the simulations are run with a 1 ms time
interval.

Figure 5. Central vertical profiles (at 2 km of the horizontal coordinate) of Fréchet ker-
nels for (a and d) waveform, (b and e) traveltime, and (c and f) amplitude objective
functions. (a-c) Velocity kernel (Kc) and (d-f) attenuation kernel (Kγ). The gray solid
line, the total kernel K; the blue dashed line, the lossless propagation kernel (K0); the
cyan solid line, the dispersion kernel (K1); and the green dashed line, the dissipation
kernel (K2).

Table 1. Kernel contributions from different operators at the central point of a
homogeneous model.

Kc;W Kc;T Kc;A Kγ;W Kγ;T Kγ;A

Loss propagation K0 (%) 100.17 99.17 100.17 0.00 0.00 0.00

Dispersion K1 (%) 0.14 0.12 0.13 10.02 −28.40 14.07

Dissipation K2 (%) −0.30 0.71 −0.29 89.98 128.40 85.93

a) b) c)

Figure 6. The effect of SRT. (a) The raw attenuation kernel without
SRT, (b) the attenuation kernel with SRT (a close-up of the boxed
area in Figure 4j), and (c) the difference between the kernels with
and without SRT.
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For each source, we compute the velocity and the attenuation
Fréchet kernels for all three objective functions, and we show
the ones generated by the source at (1.15, 0.15) km in Figure 8.
The waveform (Kc;W) and the traveltime (Kc;T ) have narrow fan-
shaped velocity kernels that are concentrated on the wavepaths
passing through the anomalous area, whereas the amplitude kernel
(Kc;A) is much wider with artifacts in adjacent zones. In addition,
the stacked Fréchet kernels from all of the sources are shown in
Figure 9. It appears that the velocity kernels of all three objective
functions (Figure 9a, 9c, and 9e) reveal the velocity anomaly. In

particular, the waveform kernel (Figure 9a) and the traveltime
kernel (Figure 9c) better capture the interior of the anomaly,
whereas the amplitude kernel (Figure 9e) emphasizes the boundary
of the anomaly with larger contrasts. Meanwhile, the attenuation
kernels (Figures 8b, 8d, 8f, 9b, 9d, and 9f) indicate the crosstalk
between the velocity and the attenuation.
Test 2 is conducted for a target model with a Q ¼ 50 anomaly at

the same anomaly location as test 1 and a homogeneous velocity
model. The resultant single source and the stacked kernels are
shown in Figures 10 and 11, respectively. As expected, the wave-

form (Kγ;W) and the amplitude (Kγ;A) attenuation
kernels delineate the anomaly well (Figure 11b
and 11f), whereas the traveltime (Kγ;T ) has little
sensitivity to the Q variation (Figure 11d). The
leakage to the incorrect parameter (velocity) also
exists in this test as shown by the velocity kernels
(Figures 10a, 10c, 10e, 11a, 11c, and 11e). Both
tests in this section manifest the crosstalk be-
tween velocity and attenuation.

DISCUSSION

This study aims to establish a new Fréchet ker-
nel computation algorithm based on a fractional
viscoacoustic wave equation, which may resolve
the three issues of Q-FWI: the implicit Q param-
eterization, dispersion-dissipation coupling, and
velocity-attenuation crosstalk. First, this wave
equation, and thus the kernel computation, in-
trinsically involves the explicit Q (parametrized
as attenuation strength γ) as a coefficient. Thus, it
avoids implicitQ representation (or the curve-fit-
ting process) of rheological-mechanism-based
methods (Fichtner and van Driel, 2014; Yang
et al., 2016).
Second, the decoupled wave equation operators

(L0, L1, and L2 in equation 1) lead to decoupled
Fréchet kernels (K0, K1, and K2 in equations 17–
22) that directly represent the contributions from

a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 7. The comparison between Fréchet kernels computed using the AD method and
the FD method: (a, d, g, and j) AD kernels, (b, e, h, and k) FD kernels, and (c, f, i, and
l) residual between the AD and the FD kernels. (a-c) Waveform velocity kernel (Kc;W
and ~Kc;W ), (d-f) waveform attenuation kernel (Kγ;W and ~Kγ;W), (g-i) amplitude velocity
kernel (Kc;A and ~Kc;A), and (j-l) amplitude attenuation kernel (Kγ;A and ~Kγ;A).

a) b)

c) d)

e) f)

Figure 8. Single-source Fréchet kernels for test 1 (the velocity-
anomaly model). (a, c, and e) Velocity kernels (Kc) and (b, d,
and f) attenuation kernels (Kγ). (a and b) Waveform, (c and d) trav-
eltime, and (e and f) amplitude.

a) b)

c) d)

e) f)

Figure 9. Stacked Fréchet kernels for test 1 (the velocity-anomaly
model). (a, c, and e) Velocity kernels (Kc) and (b, d, and f) attenu-
ation kernels (Kγ). (a and b) Waveform, (c and d) traveltime, and
(e and f) amplitude.
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different physical processes, that is, lossless propagation, dispersion,
and dissipation. Lossless propagation (K0) dominates the velocity
kernel, whereas dissipation (K2) dominates the attenuation kernel,
which indicates the significance of each physical process in Q-
FWI. Taking advantage of it, we could save some computational cost
using K0 as the velocity kernel and K2 as the attenuation kernel. In
addition, as with Q-compensated reverse time migration (Zhu, 2014;
Zhu et al., 2014; Xing and Zhu, 2019), the decoupling of the oper-
ators could also be used to construct the Q-compensated FWI algo-
rithm (Xue et al., 2018), in which the forward and time-reversed
adjoint wavefields are compensated to boost the kernel below the
low-Q areas.
Third, our derived formulation may provide an option to mitigate

the crosstalk between velocity and attenuation by involving different
misfit measurements other than the classic waveform residual (Pan
and Wang, 2020). In particular, the traveltime dominated by the kin-
ematic part of the data can well capture the interior of the velocity
anomaly, but it is hardly sensitive to attenuation, whereas the ampli-

tude primarily representing the dynamic part highlights the boundary
of the velocity anomaly, and it is particularly suitable for attenuation
inversion. Our formulation provides the flexibility to accommodate
any misfit measurements by casting the adjoint source corresponding
to the objective function (equation 5), although the kernels of the
three conventional misfits (waveform, traveltime, and amplitude)
in the circular anomaly example show the crosstalk between the
two parameter classes (the kinematic and dynamic information
can be attributed to either velocity or attenuation after all). Potential
solutions within the kernel-based (i.e., gradient-based) framework in-
clude involving more advanced misfit measurements such as the
envelope (e.g., Bozdağ et al., 2011), peak frequency (e.g., Dutta
and Schuster, 2016), or spectral ratio (e.g., Pan and Wang, 2020).
In addition, incorporating the second-order Fréchet derivative, that
is, the Hessian, might be a good option for mitigating crosstalk ar-
tifacts (e.g., Operto et al., 2013; Yang et al., 2018; Xing and Zhu,
2020). Future work should be focused on investigating how to pro-
mote the performance of the multiparameter inversion, in particular
how to make the most of kernels of different objective functions and
how to incorporate the Hessian information.
Furthermore, we would like to mention that derivation of the Fré-

chet kernels in this study is associated with a recently proposed vis-
coacoustic wave equation (Xing and Zhu, 2019). In fact, the kernels
with respect to the viscoelastic, anisotropic, and attenuation-aniso-
tropic properties (e.g., Qs, δ, and εQ) can be further derived based
on fractional wave equations incorporating viscoelasticity (Wang
et al., 2019) and anisotropy (Zhu and Bai, 2019).

CONCLUSION

We have established a new system of formulations to compute the
velocity and the attenuation Fréchet kernels for different objective
functions based on a fractional viscoacoustic wave equation. These
Fréchet kernels lay the foundation of the Q-FWI with fractional for-
mulation. We have numerically proved that 1/2- and 3/2-order frac-
tional Laplacian operators are self-adjoint, which facilitates the
derivation of the adjoint viscoacoustic wave propagator: It preserves
the phase dispersion while compensating the amplitude. In practice,
however, the time-reversed adjoint wavefield behaves identically to
the forward one with the same dispersion and dissipation characters.
This new formulation presents an explicitQ parameterization instead
of the implicit one in traditional methods. The resultant Fréchet ker-
nels for velocity and attenuation can be decoupled into K0 the loss-
less propagation kernel, K1 the dispersion kernel, and K2 the
dissipation kernel. We found that the lossless propagation kernel
K0 dominates the velocity kernel, whereas the dissipation K2 domi-
nates the attenuation kernel. Numerical experiments using different
objective functions suggest that the waveform and traveltime are sen-
sitive to the interior of the velocity anomaly, whereas the amplitude
emphasizes its boundary; rather than the traveltime, the waveform
and the amplitude misfits are more suitable for attenuation inversion.
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a) b)

c) d)

e) f)

Figure 10. Single-source Fréchet kernels for test 2 (the attenuation-
anomaly model). (a, c, and e) Velocity kernels (Kc) and (b, d, and
f) attenuation kernels (Kγ). (a and b)Waveform, (c and d) traveltime,
and (e and f) amplitude.

a) b)

c) d)

e) f)

Figure 11. Stacked Fréchet kernels for test 2 (attenuation-anomaly
model). (a, c, and e) Velocity kernels (Kc) and (b, d, and f) attenu-
ation kernels (Kγ). (a and b) Waveform, (c and d) traveltime, and
(e and f) amplitude.
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DATA AND MATERIALS AVAILABILITY

This paper includes only synthetic data.
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