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Abstract— In this paper we explore the use of block coor-
dinate descent (BCD) to optimize the centroidal momentum
dynamics for dynamically consistent multi-contact behaviors.
The centroidal dynamics have recently received a large amount
of attention in order to create physically realizable motions for
robots with hands and feet while being computationally more
tractable than full rigid body dynamics models. Our contribu-
tion lies in exploiting the structure of the dynamics in order
to simplify the original non-convex problem into two convex
subproblems. We iterate between these two subproblems for a
set number of iterations or until a consensus is reached. We
explore the properties of the proposed optimization method for
the centroidal dynamics and verify in simulation that motions
generated by our approach can be tracked by the quadruped
Solo12. In addition, we compare our method to a recently
proposed convexification using a sequence of convex relaxations
as well as a more standard interior point method used in the off-
the-shelf solver IPOPT to show that our approach finds similar,
if not better, trajectories (in terms of cost), and is more than
four times faster than both approaches. Finally, compared to
previous approaches, we note its practicality due to the convex
nature of each subproblem which allows our method to be used
with any off-the-shelf quadratic programming solver.

I. INTRODUCTION

The use of optimization to generate movements for robots

with hands and feet has been studied extensively over

the past years. The problem is inherently complex due to

the nonlinear nature of the dynamics, the non-convex cost

landscape, and the requirement that computed trajectories

must eventually be executable on real robots.

In order to generate trajectories for online control, early

research focused on planning using template models [1].

These simplified models are low-dimensional approxima-

tions that capture the nature of the dynamics and frequently

remove the nonlinearities and non-convexities which allows

fast online re-computation due to their linear nature. The

most widely studied simplified model in humanoid con-

trol has been the linear inverted pendulum and its many
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Fig. 1. Simulation of a trajectory computed using our method on complex
terrain with the quadruped Solo12.

variations [2], [3], [4], [5]. In these works, the linearity is

exploited to efficiently solve for center of mass trajectories,

footstep locations, or both, online. Although these methods

have proven to be highly effective, they do not generalize

to arbitrary terrains due to the inherent assumptions made

in their formulations and focus on legged locomotion rather

than the arbitrary multi-contact problem (e.g. using hands)

which limits their versatility. Recently, there has been an in-

creasing interest in developing full body motions for floating

base robots using the centroidal dynamics model [6]. The

centroidal dynamics are a reduced order representation of

the full dynamics of the robot that considers the momentum

wrench at the center of mass. One of the main benefits to

this approach is the ability to utilize the full potential of the

entire robot (e.g. arms and legs) to interact with arbitrary

environments while also obeying the rigid body dynamics.

So far, these methods have shown impressive results [7], [8],

[9], [10], with the latter two demonstrating capabilities on

hardware itself.

The centroidal dynamics, however, are non-convex, which

makes motion planning problems difficult to solve. The

authors of [11] use a worst-case ℓ1 bound on the angular

momentum in order to make the problem convex. [9] used

an efficient multiple shooting approach, but to the best of

our knowledge, this implementation is closed-source due to

use of a proprietary solver, MUSCOD-II. In [8], the non-

convexity was dealt with by using a difference of quadratic

functions which was further exploited and optimized in [10].

In addition to providing the decomposition approach, [8], [7]

also proposed a method for creating full-body motions using
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an iterative approach of alternating the optimization of the

centroidal dynamics and whole-body kinematics. Although

the results from [10] were impressive, their framework

needs to solve second-order cone programs which are more

computationally demanding than solving simple quadratic

programs (QP). Specifically, they used a customized variant

of the ECOS solver [12], an interior-point solver which is

therefore difficult to warm-start for model-predictive control

applications.

In this paper, we propose a block coordinate descent

(BCD) approach to solve the centroidal dynamics trajectory

optimization problem [13]. The main idea of the approach

is to leverage the inherent structure of the problem in

order to simplify the non-convexity into two simpler, convex

subproblems. By utilizing the sparse structure of the multi-

contact locomotion problem, we show that we are able to

efficiently generate and track different types of whole-body

motions including challenging maneuvers that require tight

tracking of angular momentum.

Unlike previous methods which rely on complicated de-

composition procedures and customized solvers (both of

which are difficult to implement), our approach can instead

be easily implemented using any off-the-shelf QP solver.

The proposed method also has guaranteed convergence to

a feasible solution under the assumption that the problem

is well-posed unlike methods that rely on off-the-shelf

nonlinear solvers such as IPOPT [14]. Although the solutions

may not converge to a local minima, we are guaranteed

to converge to feasible motions at every iteration [15]. We

argue that feasibility, in terms of constraint satisfaction, is

more important than optimality, as the local minima found

by off-the-shelf solvers are often arbitrary. We show that

in practice, our algorithm converges quickly and finds high

quality trajectories that can be tracked in simulation.

Finally, we find that our method is often multiple times

faster than the state of the art. Due to the structure of our

optimal control problem as well as the convexity of each

subproblem, we are able to leverage the maturity of QP

solvers that offer features that can inherently exploit the

sparsity patterns in our problem.

II. WHOLE BODY TRAJECTORY OPTIMIZATION

The equations of motion for a floating-based rigid body

dynamics robot can be written as

M(q)q̈ + h(q, q̇) = ST τj +

nc
∑

i=0

JT
i λi (1)

where q = [xT qT
j ]

T describes the robot configuration and

comprises both the floating base position and orientation ex-

pressed with respect to a fixed inertial frame, x ∈ SE(3), and

joint positions, qj , of the robot. M(q) ∈ R
(nj+6)×(nj+6)

is the mass inertia matrix, h(q, q̇) ∈ R
(nj+6) contains

the Coriolis, centrifugal, gravity, and friction forces, S =
[0nj×6 Inj×nj ] is the actuator selection matrix that defines

the underactuation of the robot, τj ∈ R
nj is the vector of

joint torques, Ji are the end-effector jacobians and λi are

the forces due to external contacts acting on the robot.

For underactuated robots (i.e. robots with more degrees

of freedom than number of controllable joints), we can

decompose our dynamics into the actuated (subscript a) and

unactuated (subscript u) dynamics as follows

Ma(q)q̈ + ha(q, q̇) = τj +

nc
∑

i=0

JT
i,aλi (2a)

Mu(q)q̈ + hu(q, q̇) =

nc
∑

i=0

JT
i,uλi (2b)

Equation (2b) describes the change in momentum of the

robot given external forces, λ. As previously described in

[8], the actuated part of the dynamics provides the necessary

torques to achieve combinations of the desired accelerations,

q̈, and contact forces, λ. Under the assumption of enough

actuation torque, this allows us to ignore the actuated part of

the dynamics, and focus solely on creating motions for the

underactuated floating base using purely the external forces

and torques. The underactuated dynamics are equivalent

to the centroidal dynamics of the robot [16] and when

expressed at the robot center of mass (CoM) can be written

as

ḣ =





ṙ

l̇

k̇



 =





1
m
l

mg +
∑

e fi
∑

e(pe +R
x,y
e,t ze − r)× fe + τe



 . (3)

Here, r is the center of mass location, l is the linear momen-

tum of the center of mass, k is the angular momentum of the

center of mass, fe are the external forces on the robot, pe are

the robot end-effector locations in the inertial frame, ze the

centers of pressure for each contact, R
x,y
e,t ∈ R

3×2 are the

first two columns of the rotation matrix Re,t which rotates

maps quantities from end-effector frame to inertial frame, τe
the torques at each center of pressure (e.g. torques induced

by flat feet of a robot leg), m, is the robot mass, and g is

the gravity vector.

Using this form, [8] and [7] suggested a decomposition

to create whole-body motions. [8] proposed an alternating

method for the kinematics and dynamics of the robot by

finding dynamically feasible trajectories using the centroidal

dynamics then solving an inverse kinematics problem for

the whole body of the robot. The output of this alternating

process are whole-body motions that can then be tracked by

a controller such as in [17].

A. Trajectory Optimization of Centroidal Dynamics

In this paper, we focus on the optimization of the cen-

troidal dynamics, Eq. (3). Specifically, we are looking to find

dynamically feasible trajectories, i.e. motions that optimize

for the end-effector forces and torques subject to the non-

convex constraints of the centroidal momentum. We assume

that a contact surface is given and that the timing of each

contact is fixed. Contact sequences can be found using a

contact planner [18], [19], [20]. The optimization problem



we are trying to solve can be written as follows

min
h,pe,fe,τe,z

N
∑

t=0

Ψt(h, pe, ze, fe, τe) + φt(ht − hkin
t )

(4a)

s.t. ht =





rt
lt
kt



 =





rt−1 +
1
m
l∆t

lt−1 +mg∆t+
∑

e fe,t∆t
kt−1 +

∑

e κe,t∆t



 (4b)

κe,t = (pe,t − rt)× fe,t + γe,t (4c)

γe,t = (Rx,y
e,t ze,t)× fe,t + τe,t (4d)

pe,t ∈ U(S) (4e)

z
x,y
e,t ∈ [minzx,y,maxzx,y] (4f)

|fx
e,t| ≤ Re,tf

z
e,t, |fy

e,t| ≤ Re,tf
z
e,t, Re,tf

z
e,t ≥ 0 (4g)

‖ pe,t − rt ‖≤ Lmax (4h)

where constraints (4g) are the pyramidal friction cone con-

straints, (4h) is an ℓ1-norm approximation of the kinematic

limit of the end-effectors, and (4a) minimizes a quadratic

sum of the running cost on the discretized dynamics of the

state Ψ and cost of tracking the output of the kinematic opti-

mization, φt. We note that while some centroidal optimiza-

tion approaches [10] uses second-order cones (ℓ2-norms) for

both the kinematic limit and friction cone constraints, we

use linear approximations for both. Solving this problem

efficiently is in general hard due to the cross product in

(4c) and (4d) which introduce non-convex constraints.

III. BLOCK COORDINATE DESCENT

In this section, we give a brief overview of the block

coordinate descent method used in the subsequent sections of

the paper. We first detail the main idea and general approach,

and later discuss the convergence properties of the chosen

formulation and update methodology.

We are interested in optimization problems of the form

min
x∈X

F (x1, · · · ,xs) +

s
∑

i=1

ri(xi) (5)

where the variable x is decomposed into s blocks, the set

X is closed and a block multi-convex subset of R
n. Note

that the set X may be non-convex over x = (x1, · · · ,xs).
ri are extended value functions which mean ri(xi) = ∞
if xi /∈ dom(ri) and can be used as indicator functions for

convex sets.

We call a set X block multi-convex if each block of

variables is convex, that is, for each i and fixed (s − 1)
blocks x1, · · · ,xi−1, · · · ,xs the set

Xi(x1...xi−1,xi+1, ...xs) !

{xi ∈ R
n : (x1, ...,xi−1,xi,xi+1, ...xs) ∈ X}

(6)

is convex. We can then see, when all blocks except one are

fixed, the function, F is convex.

Block coordinate descent (BCD) of the Gauss-Seidel type

minimizes F cyclically over each of the individual blocks xi

while fixing the other blocks to their latest updated values

[13], [21].

xk+1
i = argmin

xi

fk+1
i (xk+1

i ) + ri(xi) (7)

The general block coordinate descent method for non-convex

problems, however, has no guarantees of convergence (either

to a local minimum or otherwise) and may cycle infinitely.

In order to address this, we use a proximal update when

updating and solving each block

xk+1
i = argmin

xi

fk+1
i (xk+1

i ) +
Lk
i

2
||xk+1

i −xk
i ||

2 + ri(xi)

(8)

where Lk
i is a non-zero regularization parameter and || · || is

the ℓ2-norm. The proximal parameter, Lk
i , is in practice used

to regularize the current solution to ensure we do not stray

too far from the previous solution (i.e. introduces damping)

and may change at every iterate. Using this method, we are

guaranteed to converge to a feasible solution [15].

An important note is that that this does not necessarily

mean we are guaranteed to converge to a local minimum

of the original optimization problem F . Rather, we are

only guaranteed a feasible trajectory (i.e. all constraints are

satisfied). We will see in the following subsections how an

appropriate choice of blocks and use of the proximal update

parameter allows us to converge to reasonable solutions for

the centroidal dynamics optimization.

A. Block Coordinate Descent for Centroidal Dynamics

In order to solve the centroidal optimization problem,

Eq. 4, using the block coordinate descent method we first

apply a change of variables similar to one introduced in [10].

Specifically, we apply a change of variables to the cross

products between the force, f and contact location (pe− r)

as well as the f and rotated ZMP in Eqs. (4c) and (4d) to

combine these into one variable, ℓ:

κe,t = (pe,t − rt +R
x,y
e,t ze,t)× fe,t + τe,t

= ℓ× fe,t + τe,t

=





0 −ℓze,t ℓ
y
e,t

ℓze,t 0 −ℓxe,t
−ℓ

y
e,t ℓxe,t 0









fx
e,t

f
y
e,t

f
y
e,t



+ τe,t

(9)

Using this change of variables, we see that the non-

convexity is in fact biconvex. Specifically, for a fixed set

of ℓ, the problem is convex with respect to our forces, f,

and vice-versa. This new change of variables then suggests

the use of two-block minimizations.

Our algorithm is outlined as follows: We first fix ℓi, and

solve for forces fi in one quadratic program which we will

call the Force-QP, ζ. We then use the forces to solve for ℓ

in a second QP which we call the Contact-QP, ν. We iterate

on this process until a consensus is found or a maximum

number of iterations is reached after which one final Force-

QP is run to generate fully dynamically consistent profiles

(i.e. forces for the appropriate CoM, momentum, and end-

effector location profiles). Algorithm 1 provides an outline

of the block coordinate descent algorithm.



B. Force Quadratic Program

The Force-QP solves the full centroidal dynamics prob-

lem, Eq. 4, for a fixed ℓ. During each iteration, k, we

increase the parameter Li by a factor α. Due to the use

of quadratic costs, the parameter Li in practice is used

to regularize the solution from the previous solution. The

Force-QP can be stated as follows

min
hk,fk

e ,τk
e ,zk

N
∑

t=0

[Ψt(h
k, zk

e ,f
k
e , τ

k
e ) +

φt(h
k
t − hkin

t ) + Lk,ζ(hk,ζ
t − h

k−1,ν
t )]

(10a)

s.t. hk
t =





rkt
lkt
kk
t



 =





rkt−1 +
1
m
lkt∆t

lkt−1 +mg∆t+
∑

e f
k
e,t∆t

kk
t−1 +

∑

e κ
k
e,t∆t



 (10b)

κk
e,t = (ℓk−1,ν)× fk

e,t + τe,t (10c)

|fx
e,t| ≤ Re,tf

z
e,t, |fy

e,t| ≤ Re,tf
z
e,t, Re,tf

z
e,t ≥ 0 (10d)

‖ p
k−1,ν
e,t − r

k,ζ
t ‖≤ Lmax (10e)

We note that the optimization problem does not regularize

the momentum dynamics from the previous Force-QP but

rather from the previous Contact-QP (in the case of the

first iteration when no Contact-QP has been run, we do not

regularize the center of mass location at all).

C. Contact Quadratic Program

The Contact-QP is then used to solve for the length of the

CoM wrench, ℓ, given the forces solved in the previous QP.

Rather than optimizing over ℓ directly, we need to remember

the physics of the problem we are trying to solve; specifically

that ℓt = pe,t−rt+R
x,y
e,t ze,t. In order to give us finer control

of individually tracking the end-effector location, pe,t, and

center of mass, rt, we separate these individually in our QP.

This gives us the following optimization problem:

min
rk,pk

e ,l
k,ze

N
∑

t=0

[Ψt(r
k,pk

e , l
k, zk)

+Lk,ν(hk,ν
t − h

k−1,ζ
t ,pk,ν

e − pk−1,ν
e )]

(11a)

s.t.

[

rkt
kk
t

]

=

[

rkt−1 +
1
m
l
k,ζ
t ∆t

kk
t−1 +

∑

e κ
k
e,t∆t

]

(11b)

κk
e,t = fk

e,t × (rk,νt − pk,ν
e ) + γk

e,t (11c)

γk
e,t = −fk

e,t × (Rx,y
e,t z

k
e,t) (11d)

z
x,y
e,t ∈ [minzx,y,maxzx,y] (11e)

pν
e,t ∈ U(S) (11f)

‖ p
k,ν
e,t − r

k,ν
t ‖≤ Lmax (11g)

where we rearrange Eqs. (11c), (11d) using the cross

product identity

a× b = −b× a (12)

Once again, we use Li to regularize the solution from the

previous QP. However, because the momentum dynamics

ht appears in the Force-QP itself, we instead regularize

the trajectories with the values from the previous Force-QP

rather than the previous Contact-QP. As in the case of the

Force-QP, we increase the value of Li during each iteration.

We would also like to note the lack of state transition

constraints for the linear momentum, li. If we were to add

these constraints into our formulation, this would prevent the

center of mass from being able to alter and track the angular

momentum and would only rely on the contact location pe

and the ZMP, z. By relaxing these constraints, we instead

regularize the linear momentum from the previous Force-QP

which allows our optimization the freedom to use the center

of mass to reduce momentum. We once again note, that since

we use one final Force-QP before finishing the alternating

process, CoM trajectories that may be invalid due to the

removal of the linear momentum constraints are pushed

within the constraint set to satisfy the dynamic criteria.

D. Convergence Criteria

The convergence of the algorithm is dependent on the

weights chosen, in particular, the weighting factor, Li and

the scaling factor between iterations, α. In practice, we find

that a good stopping point is when the angular momentum

profiles from one iteration to the next fall below some

consensus threshold, ǫf or after K iterations. ǫf is defined

as follows:

ǫf =
||ℓk − ℓk−1||2

N
(13)

where N is the horizon of our optimal control problem.

Algorithm 1: Block Coordinate Descent for Bicon-

vex Optimization

Initialize optimization variables: f0, h0, ℓ0
set k = 0

while k < maximum iterations do

fk+1,ζ, hk+1,ζ = QPForce(hk,ν , ℓk,ν )

Lk+1,ζ = αLk,ζ

ℓk+1,ν = QPContact(h
k+1,ζ , fk+1,ζ)

Lk+1,ν = αLk,ν

if ||ℓk − ℓk−1||2/N ≤ ǫf then
terminate

fk+1,ζ, hk+1,ζ = QPForce(hk,ν , ℓk,ν )

IV. EXPERIMENTAL SETUP

A. Multi-contact control pipeline and platform

In order to verify and test the profiles generated by the

dynamics optimization, we utilize the open-source kino-

dynamic trajectory optimization package [22]. Contact se-

quences can either be computed using the MIQCQP [10]

or set manually and are then given to our block coordinate

descent framework. After our method finds a dynamically

feasible motion, these are then sent to the kinematics op-

timizer. The resulting output of the framework is a whole-

body motion which is then tracked by the whole-body con-

troller (WBC) outlined in [23]. The controller uses feedback

on the centroidal momentum combined with a desired task-

space impedance plus a joint space PD controller to solve a

QP for end-effector forces. These forces are then mapped to









We believe our algorithm is well-suited for model predic-

tive control or variable horizon control. In particular, we

can exploit our algorithm’s capability of finding feasible

trajectories at every iteration to reduce the number of cycles

required even further. We are also able to warm-start solu-

tions from previous solutions which may further decrease

our solve time. Due to the use of interior point methods,

this ability cannot be exploited by the relaxation methods

proposed in [10] as well as frameworks built upon IPOPT.

Additionally, these properties also enable us to efficiently

combine our method with pre-computed libraries or data-

driven techniques [28], [29], [30]. Finally, we believe BCD

is a versatile approach for trajectory optimization in robotics

due to its simplicity of implementation. In the future, we plan

to validate our trajectories using hardware experiments and

extend our method to real-time control.

APPENDIX

OSQP Solver Settings

Absolute Tolerance, ǫabs 1e− 7

Relative Tolerance, ǫrel 1e− 7

Primal Infeasibility Tolerance, ǫprim inf 1e− 6

Dual Infeasibility Tolerance, ǫdual inf 1e− 6

Polish True

Scaled Termination True

Adaptive Rho True

Check Termination 50

TABLE II

OSQP SOLVER SETTINGS FOR FORCE AND CONTACT QP
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