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Abstract—In this letter, we study dynamic game optimal
control with imperfect state observations and introduce
an iterative method to find a local Nash equilibrium. The
algorithm consists of an iterative procedure combining a
backward recursion similar to minimax differential dynamic
programming and a forward recursion resembling a risk-
sensitive Kalman smoother. A coupling equation renders
the resulting control dependent on the estimation. In the
end, the algorithm is equivalent to a Newton step but has
linear complexity in the time horizon length. Furthermore,
a merit function and a line search procedure are introduced
to guarantee convergence of the iterative scheme. The
resulting controller reasons about uncertainty by planning
for the worst case disturbances. Lastly, the low computa-
tional cost of the proposed algorithm makes it a promising
method to do output-feedback model predictive control on
complex systems at high frequency. Numerical simulations
on realistic robotic problems illustrate the risk-sensitive
behavior of the resulting controller.

Index Terms— Game theory, Optimal control.

I. INTRODUCTION

OING output-feedback Model Predictive Control (MPC)

while being robust to the estimator uncertainty is a
notoriously difficult problem [1]. In optimal control, when the
state measurement is partial and corrupted by noise, a common
practice is to treat the estimation problem independently from
the control and rely on the most likely outcome. However, in
some scenarios, one might want to design a controller robust
to the worst case estimation error. Such controllers can be
obtained through dynamic game control [2], [3]. As Mayne [1]
advocates, one meaningful way to properly take into account
the measurement uncertainty is to use a minimax formulation
linking control and estimation.
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This problem has been extensively studied in [4], [5], which
shows that a specific dynamic game formulation leads to MPC
approaches with bounded state trajectories and provides an ex-
plicit characterization of these bounds. However, the minimax
problem was solved with an interior point method without
taking into account the specific structure of the problem and
the sparsity induced by time. In this work, we derive an explicit
iterative solution that fully exploits sparsity, resulting in an
algorithm that linearly scales with the time horizon length and
which can be easily warm-started for use in MPC schemes [6].

In the linear dynamics and quadratic cost case, Jacob-
son [7] showed that dynamic game control is equivalent to
risk sensitive control and derived a closed form solution.
Later, Whittle [8] extended the results to the linear quadratic
case with imperfect state observations. In [9], a first iterative
version of Whittle’s solution was introduced to tackle the
nonlinear risk sensitive problem with imperfect observations.
However, the stochastic nature of the problem hindered the
development of theoretical guarantees. Although, dynamic
game and risk sensitive control are equivalent in the linear
quadratic case [7], this is no longer the case in the nonlinear
setting [10]. Nonetheless, dynamic game control is tightly
connected to robust and risk sensitive control. In [2], [10],
James and Campi showed that dynamic game control can
be interpreted as the limit case of risk sensitive control
when noise tends to zero. Recently, Basar [11] presented a
detailed overview of the connections between both problems
in continuous time. Additionally, Bagsar and Bernhard [3], [12]
established the connections between dynamic game control
and H°°-Optimal Control both in the perfect and imperfect
state information case.

For nonlinear systems, estimating a state trajectory corre-
sponding to some given measurements is usually intractable
analytically. A common approach is to model the noise
as Gaussian and to maximize the Maximum A Posteriori
(MAP) [13]. If the dynamics are affine, then the problem can
be solved analytically with the so-called Rauch—Tung—Striebel
(RTS) smoother [14]. The RTS smoother is made of a forward
recursion which resembles the Kalman Filter (KF) and a
backward recursion. In the nonlinear case, iterative schemes
are usually used. A popular choice is the iterative Kalman
smoother which is equivalent to a Gauss-Newton method on
the MAP [15]. The estimation part of our proposed solution
resembles a risk sensitive version of this smoother.

In optimal control or dynamic game control with perfect
state information, various numerical optimization algorithms



have been developed to iteratively find solutions in the non-
linear case. In optimal control, the most analogous to our
work are Differential Dynamic Programming (DDP) [16] and
the stagewise implementation of the Newton’s method [17].
The stagewise Newton method is an exact implementation
of Newton’s method that exploits the specific structure of
the Hessian matrix in order to scale linearly with the time
horizon. DDP is an iterative algorithm that takes an update
step on the control input by applying dynamic programming
on a quadratic approximation of the value function. In [16],
Murray showed that DDP is very similar to a Newton step and
inherits its convergence properties. For dynamic game control
with perfect state information, the seminal work from [18],
[19] introduced minimax DDP showing that DDP could be ex-
tended to zero-sum two players games. Recently, [20] further
extended the concepts of stagewise Newton method and DDP
to nonzero-sum games with an arbitrary number of players in
the full information case.

Despite having been widely studied theoretically, to the
best of our knowledge, dynamic game control with imperfect
state observations has not been approached from a numerical
optimization point of view. In this work, we consider the
general problem of dynamic game control with imperfect
state observation and present a numerically efficient provably
convergent algorithm to solve it. The solution presented gener-
alizes commonly used techniques such as the extended Kalman
smoother and Differential Dynamic Programming. The pro-
posed solution fully exploits the sparsity of the problem and
scales linearly with time, making it a promising method for
model predictive control.

Contributions. In this paper, we derive a stagewise New-
ton method for dynamic game control with imperfect state
observations. The proposed approach scales linearly in the
time horizon. Furthermore, a merit function and a line search
procedure are introduced to guarantee convergence. To our
knowledge, this is the first iterative procedure with con-
vergence guarantee for the dynamic game control problem
with imperfect state observation. The proposed solver couples
estimation and control by merging an iterative optimal control
algorithm similar to minimax DDP and an iterative risk
sensitive Kalman smoother. We illustrate the behavior of the
resulting controller on two realistic robotic problems.

Notations. The derivative of a function f with respect
to a vector v is denoted by fv, similarly for second order
derivatives with respect to vectors u,v is denoted as f"V.
If (v;);en is a sequence of vectors, then vy is a vector
concatenating vy ...v;. 14 is the indicator function which
equals 1 if z € A and 0 otherwise. I,, denotes the identity
matrix of size n by n.

Il. PROBLEM STATEMENT

Similar to [4], [5], this work studies a special class of
nonlinear dynamic games with imperfect state observation [2].
Given a history of measurements y;.;, a history of control
inputs, ug.t—1 and a prior on the initial state Z,, we aim
to find a control sequence w;r_; that minimizes a given
cost ¢ while an opposing player aims to find the disturbances

(wo.T,71:t) that maximize this cost ¢ minus a weighed norm
of the disturbances. Such a problem is formally written as:

T-1
min max max Z Ci(xj,uy) + br(zr) (1)
Ut:T—1 Wo:T Y1:t =0
1 t T
T p— T p—1 T -1
T (@l o+ g BNy Y wi Q5 ey
j=1 j=1
subject to oy = Zo + wo, (2a)
Tjp1 = fj(xj,uj) + wjq1, 0<5<T, (2b)
y; = hi(z;) + 75, 1<5<t (20

where p > 0. x; is the state, w; the process disturbance, ;
the measurement disturbance, 7" the time horizon, ¢ the current
time. The transition model f;, the measurement model h; and
the cost ¢; are assumed to be C2. The measurement uncertainty
R;, the process uncertainty (); and the initial state uncertainty
P are positive-definite matrices.

Interestingly, this problem encompass various formulations
of control and estimation. If ¢ = 0 and if wy is fixed to zero, we
recover dynamic game control with perfect state information.
Additionally, if ¢ = 0, in the limit where y tends to zero, we
find the generic optimal control formulation [10]. And lastly,
if t =T and if we consider all the cost ¢; to be null, then,
(1) is equivalent to maximizing the MAP.

1. METHOD
A. First order conditions for a Nash equilibrium

The main challenge in the problem formulation (1) is the
equality constraint maintaining the dynamic feasibility. A
popular approach [19] is to derive a DDP-like algorithm by
sequentially taking quadratic approximations of the value func-
tion recursion. However, a stagewise Newton step can readily
be derived. One of the key features of the dynamic game (1) is
that by changing the decision variable of the opposing player,
one can transform the problem into an unconstrained one [2].
Indeed, we can use the equality constraints of Eq. (2) to replace
disturbance maximization into a maximization over the state
sequence. Then the problem loses its equality constraints and
can be formulated as the search of the saddle point of

T—1
J(xo.r, upr—1) = Y Li(xj,u5) + br(or) 3)
=0
1
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~ o (i1 — fi(ws,u))" QL (wyn — fi(wj, uy).
=0

However, without convexity and concavity assumptions, we
cannot aim at finding global solutions of the minimax problem.
Hence, we restrict our attention to local Nash equilibrium,
namely a point (xj.,, u}.;_;) such that there exits 6 > 0



such that for any (xo.7, up.r—1) satisfying ||zo.r — xf.7|| < 6
and ||upr—1 — ulp_4]| < J, we have

J(xO:Tﬂu;Tfl) < J(x61T7u::T71) < J(xG:T/u’tiT*l)' (4)

A standard approach to this problem is to search for a
stationary point [21]:

aJ * *
Ty Uy
<a§0f< b i) ) Y )

Ous.T_1 (xS:Tﬂ u::T—l)

Interestingly, the change of decision variable in Eq. 3 turned
the problem into an unconstrained one but made no assumption
on the structure of the cost. The only required assumption is
that each disturbance is in a one to one map with the state at
each time step.

B. About the Linear Quadratic case

In the linear quadratic case, Whittle has shown that under
some conditions, the saddle point of (4) is global and can
be computed analytically. More precisely, the order of the
minimization and maximization in (1) can be interchanged,
namely the lower value and upper value of the game are equal.
Despite this result, one of the difficulties of the problem (1) is
that it links estimation and control. One the major contribution
of Whittle is the introduction of the notion of past stress and
future stress showing that the KF and LQR principles can
still be applied. In other words, the problem can be solved by
performing a backward recursion on the controls and future
states and a forward recursion on the past states. The future
stress recursion can be interpreted as a value function recursion
similar to LQR, while the past stress can be interpreted as a
rollout of KF. Here, we use these two principles to efficiently
solve iteratively the nonlinear case.

C. A stagewise Newton’s method

In this section, a stagewise formulation of the Newton
method to find a stationary point of J is introduced. While
a naive implementation of the Newton method would yield a
complexity of O(T?), it is shown that the special structure
of the Hessian induced by time can be exploited in order to
obtain a linear complexity in time O(T). In the perfect state
observation case, [17] and [20] derived a stagewise Newton
method with a backward recursion on the controls. However,
with imperfect state observation, it is no longer clear how to
do this with only one recursion. Instead, we show that the
principles introduced by Whittle can be applied.

To ensure that the proposed method is well defined and
to guarantee convergence, we assume that the cost satis-
fies smoothness and non-degeneracy conditions required for
the convergence of Newton’s method [22]. As the cost (3)
is unconstrained, the gradients and Hessian of the cost
can readily be computed. At iteration ¢, given a guess

xh, b wh ul. . ub. |, also referred as the nominal tra-
jectory, the Newton step, denoted by p, satisfies
0%J 0%J aJ
Oxo.70r0.T Oxo.70ur.T 1 _ | Owor ©)
927 027 P aJ

Oupr—10x0.,7  Oupr—10upr_1 Oupr—1

Here, p = (pZ, . p{tiT*l)T where p,,., € RT+Hm s a
stack of vectors p,, € R™* with n, being the dimension of the
state space. Similarly, p,, ., € R(T=9" is a stack of vectors
Du, € R™ with n,, being the dimension of the control space.
To simplify the notations, we define an augmented Hessian
of the cost that contains the second order derivatives of the
dynamics for all k£ < T

= 15 TA_q _ T 1
B = 7+ T QSR i kel BB,
— — T _ B T _

G =0 = QR

— 1 T .1

G = 4w Qb ™
where the derivatives are evaluated at the current guess and
where wj | =2}, — fk(:cz,uZ) and 7} = yk — hi(z},).
Here, the second order derivatives of the dynamics are tensors.
The exact definition of the tensor indexing and the tensor
product is provided in the supplementary material [23].

The next three propositions are analogous to the principles
introduced by Whittle: the past stress recursion, the future
stress recursion and the coupling of the past and future stress
recursions. The first proposition, analogous to the future stress

recursion, expresses every future state and control update steps
as a function of p,,.

Proposition 1 (Future stress). In Equation (6), the last
(T — t)(ng + ny,) rows are equivalent fo:
Vk>t, pu, = GkPay + gk (3)
-1
Py = (I = pQry1Vit1) (fl?p?"k + frPux
+ pQk41Vk+1 — Wiy 1)

where Vi, and vy, are solutions of the backward recursion:

Pps1 =1 = pVip1Qp+1 €))
Quu = G + Fi Ty Vi ff
Quz = Z1Icm + ngF;i1Vk+1f]f
Qu =1} + f}jTF,;il (Vk+1 — Vip1wjp)
Gr = —Quu Qua
gk = = Q1 Qu
Vie = G5+ [ T Vien S+ QuaGi
v =l + fIfTFI;i1 (UkJrl - Vk+1w;:c+1) + Qfmgk
with the terminal condition

VT = %ac, vr = E% (10)

In those equations, p intervenes only in I'y, and the aug-
mented terms of the cost. Interestingly, F,:l shifts, at each
time step, the value function terms V}, and vy. Then, the second
proposition, analogous to the past stress recursion, expresses
every past state update steps as a function of p,.

Proposition 2 (Past stress). In Equation (6), if t > 1, the first
(t — 1)n, rows are equivalent to: Yk =0,...,t — 1,

— T ~— 7 -1~ T
Day, = Ekil ( k Q]Hl.l(wk+1 + Payin) + Py Yok + /~le>

Y



where Py, and [i}, are solution of the forward recursion:
By =Pt + T Qia ff — i
Pt = Qe + fE (P — plg") T
Kpp = Pk+1hiil(Rk+1 + hzﬂpkﬂhf;iﬂ_l
Pey1 = (I = Kpy1hi 1) P
ﬂk+1 = (I - Kk+1hi+1)(flfﬂk - w1i<+1) + Kk+1’Vli+1

+ 1P Qi S B (G, + €F) (12)
with the initialization
Py=P, flo = Lo — . (13)

Interestingly, if all the cost terms ¢; are zero and if ¢t =T,
the method is equivalent to a Newton method on the MAP.
Furthermore, if the second order derivatives of the measure-
ment function are omitted, then, the algorithm is equivalent to
the iterative Kalman Smoother. Finally, the third proposition
shows how both past stress and future stress recursions can be
coupled to find the update step p,,.

Proposition 3 (Coupling). In Equation (6), the remaining rows
(from tn, to tn, — 1) are equivalent to

e = (P71 = Mvt)il (P fie + prve) -

In the limit case when p tends to zero, the estimation and
control are decoupled and we recover the usual certainty equiv-
alence principle: p,, = fi;. The algorithm is then equivalent
to an iterative estimator and an iterative controller running
independently. More precisely, at each iteration the controller
uses the current estimate of the smoother.

(14)

Proof. The proof follows from the analytical derivations of
the gradient and the Hessian of (3), a forward induction from
0 to t and a backward induction from T to t. The complete
proof is provided in the supplementary material [23]. [

Algorithm 1: Stagewise Newton step

Input: z}, ¢ ... 28, ul. .. ul_ |
// Estimation forward pass
Py + P, o + &0 — x}
for k=0,..t —1do
| Prt1, k1 < Eq. (12)
// Control backward pass
Vi LEE v — f%
for k=T —1,...t do
L Vk,vk «— Eq. )
// Estimation and control coupling

Pxy (P;l - Nvt) ' (P;lﬂt + l“]t)
// Estimation backward pass
for k=t—1,...0 do
L Pz, < Eq. 11
// Control forward pass
10 fork=t,... T —1do
1 L PupsPzpqq Eq. (8)

Output: PzgsPxqy -+ sPzpsPuy - - -

w R o=

= ENRVIFN

e %

sPur_q

In the end, the update step, p, can be computed with a
forward recursion on the past indexes, a backward recursion on
the future indexes, a coupling equation, a backward recursion

on the past indexes and a forward recursion on the future
indexes. Algorithm 1 summarizes those steps. Clearly, the
complexity is linear in time. Instead of inverting a matrix
of size ((T'+ 1)ng + (T — t)ny), Algorithm 1 only operates
with matrix of size n, or n, and this number of operation is
proportional to T'.

D. Line-search and convergence

In the linear quadratic case, Algorithm 1 is equivalent to
Whittle’s derivations and only one iteration is required to find
a solution. However, in the general nonlinear case, several
iterations of Newton’s step are required. A common approach
to guarantee the convergence of the overall iterative procedure
is to introduce a line search and a merit function [22]. Given a
guess at iteration ¢ and a direction p, the next guess is defined

by
i+1 i
( xjng > — ( :,E%J:T ) + oy < Pzo.r >
u;T—l u;T—l Puyr o

where the step length «; is chosen in order to decrease the
merit function. As advocated by Nocedal et al. [22], a Newton
step provides a descent direction for the merit function

2 1T1
52

Jj=t

5)

2

0J . (16)

0;

o1

T
1
f/\/l (SUO;T, ut:T—l) = 5 Z 8U]

Jj=0

This merit function can be derived analytically. The exact
derivations of each gradient are provided in the supplementary
material [23]. By construction, the expected decrease of the
direction p derived by Algorithm 1 is p?Vfy = —||VJ|[3
and the following convergence guarantees hold.

Proposition 4. Assuming that the norm of the inverse of the
Hessian of J is bounded and that the step length o; satisfies
the Wolfe conditions for the merit function (16), the sequence
(xh.p,ul p_1); defined by the update rule (15) with steps from
Algorithm 1 is globally convergent to a stationary point of
(3). Furthermore, when the iterate is sufficiently close to the
solution, the sequence has quadratic convergence.

Proof. This proposition is a direct consequence from the fact
that Algorithm 1 yields a Newton step. A detailed proof of
the convergence guarantees of Newton method is provided in
[22].

One may ask under which conditions the Hessian of J is
non-degenerate. Intuitively, large values of p can make the
problem ill-defined. Indeed, if the opposing player can choose
large disturbances, then the controller might not be able to
compensate. In the linear quadratic case, Whittle [8] studied
this maximum value for y that makes the problem ill-defined.
Although, we do not study this limit value in the nonlinear
case, we note that analogously to the linear quadratic case, the
algorithm is well defined if I'y and P - uZiI are positive-
definite which is the case when p is small enough.

E. About the cooperative case

So far, only the case, x > 0 has been considered, but,
the case u < 0 is also well defined. Indeed, the search for



a stationary point of J can be done for an arbitrary sign
of u. However, such a stationary point would now be a way
to find a local minimum of J with respect to the variables
(0.7, up.7—1). Interestingly, this scenario can be interpreted as
a cooperative scenario between the controller and the opposing
player. In fact, the disturbances can be seen a second controller
minimizing the cost, ¢, and maximizing the likelihood of the
disturbances. Clearly, this change of sign does not affect the
derivation of the stagewise Newton method. However, it can
be noted that in that case, one can directly use the cost J as
a merit function.

V. EXPERIMENTS

A Python implementation of the proposed method is avail-
able online [23]. It is based on the Crocoddyl software [6],
a state of the art (risk-neutral) DDP solver which provides
analytical derivatives of robot dynamics. In this section, two
numerical examples illustrate the proposed method.

A. Planar quadrotor

We study a quadrotor moving in a plane aiming to reach the
position (p; py) = (2 0) starting at the origin without initial
velocity. The state is © = (p, py 0 P py 0)T where 0 is
the orientation of the quadrotor. The system dynamics is

mp, = —(u1 + ug) sin(6),

mpy = (u1 + uz) cos(0) — myg,
Jb = r(ug — uz), a7
where the control input v = (u; u2)? € R? represents

the force at each rotor and g is gravitational acceleration. An
exponential cost models the presence of an obstacle

(g, ur) = 0.3exp (—10(pgy, — 1)* — 0.5(py,, + 0.1)%)
+0.005||ug — |2 + 0.05(xy, — z,) T L(xy, — )
lp(xy) = (xp — x,) T L(zp — ), (18)

where u = %2(1 )T, 2, = (2 0 0 0 0 0)7, and
L = diag(100 100 100 1 1 1).Only the position, p,, p,, and
orientation 6 are part of the measurements. The integration and
discretization of the model is done with Runge Kutta 4 with a
time step of 0.05 and the total horizon, 7', is 60. Furthermore,
Py=Q=10"°Is, R=10"*diag(1 1 0.01) and & is the
origin. A backtracking line-search is used — a step is accepted

if f/l\—/[i_l < f/lvt +aiCp?,fj\4 where f}v{ = .fM(xg;Tyui;T_ﬂ
with ¢ = %. The iterative process is stopped when the decrease
in the merit function is lower than 10712,

Fig. 1 illustrates the solution obtained by the solver for
different values of p. The neutral controller, the limit when p
tends to zero, aiming at minimizing the cost without account-
ing for disturbances, is solved using DDP. Interestingly, when
1 1s positive (the non-cooperative case), the opposing player
chooses disturbances that will push the quadrotor towards to
the obstacle and when p is negative (the cooperative case),
the opposing player chooses disturbances that will push the
quadrotor away form the obstacle. For this experiment, we
found that the value of  for which T and P, ' — ;uf® are

no longer positive-definite matrices was around 20.

—— Neutral
7l1=_6
— u=6
u=12

0.6

_04
E
>
Q
0.2
0.0 é
0.00 025 0.50 0.75 1.00 125 150 1.75 2.00
px [m]
Fig. 1. Initial plan for different values of u. The larger p the more the

controller plans to be pushed against the obstacle.

Next, we illustrate the risk-sensitive behavior of the re-
sulting controller in closed loop in a simulation with dis-
turbances following Gaussian distributions: zo ~ N(Zq, Py),
wi ~N(0,Q) and v, ~N(0,R). We set 4 = 6 and at
each time step of the simulation, Algorithm 1 is run and
uy is applied to the system. Additionally, we compare to the
neutral controller — an iterative Kalman smoother is used for
the filtering and the controller uses DDP with the last state
estimate from the smoother as an initial condition. Fig. 2
depicts the average and standard deviation over one thousand
simulation. We can see that, in this MPC scheme, the dynamic
game controller maintains a larger distance from the obstacle,
resulting in safer behavior.

—— Neutral

0.6 — u=6

_04
E
>
Q
0.0 é
0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00
[

px [m]

Fig. 2. Average trajectory. Compared the neutral controller, the dynamic
game controller (1 = 6) exhibits a risk sensitive behavior as it remains
further from the high cost area representing the obstacle.

Fig. 3 shows the distribution of control trajectories. Inter-
estingly, the dynamic game controller has a larger standard
deviation.

=5
=) — Neutral
0 e

—7.5
Z
5'5.0

25700 05 1.0 15 2.0 25 30

time [s]
Fig. 3. Average control trajectories. Compared the neutral controller,

the dynamic game controller (. = 6) has a larger standard deviation.



B. An industrial robot

In this example, we consider the 7-DoF torque-controlled
KUKA LWR iiwa R820 14. The dynamics of the robot
are provided by Pinocchio [24]. The 14-dimensional state
is composed of the joint positions and velocities. We
consider the following prior on the initial condition
#o=(01 0.7 0. 0.7 —0.5 1.5 0.)".The control in-
put is a 7-dimensional vector of the torque applied on each
joint. The goal is to move the end effector to a desired position,
Prarget = (—0.4 0.3 0.7) with the following cost:

Cr(p, uk) = 1073 |2y, — Zol|3 + 1070 |lue — a(ap)l3
+ 1071||ptarget _ﬁ(xk)”g
br(27) = ||Prarget — D(@i)||3 + 1072 ||z — Zoll3,  (19)

where @(xy) is the gravity compensation and p(xy) the
position of the end-effector. For the measurement model,
we assume that only the joints position are measured. The
initial control inputs wug,...u;—1 are generated with DDP.
Given those t initial control inputs, ¢ measurements are
generated according to an undisturbed trajectory. More pre-
cisely, for 1 < k < t, the observations are defined by
yr = hi(f®) (0, ur.r—1)) where f*) (o, u1.x_1) denotes the
state value at the k'" step integrated from the initial guess
Zo. The horizon, 7', is 100 and t is 5 while the sensitivity
parameter is set to p = 1.2. Here Py = @Q = 0.01 x I14 and
R = 0.5 x I7. For this experiment, the second order derivatives
of the dynamics were approximated to be null as the former are
not provided by most standard rigid body dynamics libraries
such as Pinocchio [24]. Note that this is a common practice
for state of the art optimal control algorithms in robotics
[6]. Our solver converges nevertheless, suggesting that this
approximation might be used to scale to a large number
degrees of freedom for realtime computations (e.g. MPC).
In Fig. 4, we plot the solution of the dynamics game solver
compared to DDP in the end effector space, the shaded grey
area represents the estimation part of the solution. We can see
that the dynamic game controller plans that the disturbances
will slow down the reaching task.

04
é —— Neutral
i 0.0 — u=12
*_04lrmmmmn =SS
E 0.2
il s
S 0.0
€ 1.00
if
Q 0.75( e
00 02 04 06 08 1.0
time [s]

Fig. 4. End-effector position pEF vs time. The dashed lines represent
the target.

V. CONCLUSION

We introduced an iterative solver to find local Nash equi-
librium of dynamic game with imperfect state measurements.
The proposed algorithm is proven to be equivalent to Newton’s
method and benefits from its convergence properties while
scaling linearly with the time horizon.
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