
Stagewise Newton Method for Dynamic Game
Control with Imperfect State Observation

Armand Jordana, Bilal Hammoud Student Member, IEEE , Justin Carpentier Member, IEEE and Ludovic

Righetti, Senior Member, IEEE

Abstract— In this letter, we study dynamic game optimal
control with imperfect state observations and introduce
an iterative method to find a local Nash equilibrium. The
algorithm consists of an iterative procedure combining a
backward recursion similar to minimax differential dynamic
programming and a forward recursion resembling a risk-
sensitive Kalman smoother. A coupling equation renders
the resulting control dependent on the estimation. In the
end, the algorithm is equivalent to a Newton step but has
linear complexity in the time horizon length. Furthermore,
a merit function and a line search procedure are introduced
to guarantee convergence of the iterative scheme. The
resulting controller reasons about uncertainty by planning
for the worst case disturbances. Lastly, the low computa-
tional cost of the proposed algorithm makes it a promising
method to do output-feedback model predictive control on
complex systems at high frequency. Numerical simulations
on realistic robotic problems illustrate the risk-sensitive
behavior of the resulting controller.

Index Terms— Game theory, Optimal control.

I. INTRODUCTION

DOING output-feedback Model Predictive Control (MPC)

while being robust to the estimator uncertainty is a

notoriously difficult problem [1]. In optimal control, when the

state measurement is partial and corrupted by noise, a common

practice is to treat the estimation problem independently from

the control and rely on the most likely outcome. However, in

some scenarios, one might want to design a controller robust

to the worst case estimation error. Such controllers can be

obtained through dynamic game control [2], [3]. As Mayne [1]

advocates, one meaningful way to properly take into account

the measurement uncertainty is to use a minimax formulation

linking control and estimation.
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École normale supérieure, CNRS, PSL Research University, Paris,
France (e-mail: justin.carpentier@inria.fr).

This problem has been extensively studied in [4], [5], which

shows that a specific dynamic game formulation leads to MPC

approaches with bounded state trajectories and provides an ex-

plicit characterization of these bounds. However, the minimax

problem was solved with an interior point method without

taking into account the specific structure of the problem and

the sparsity induced by time. In this work, we derive an explicit

iterative solution that fully exploits sparsity, resulting in an

algorithm that linearly scales with the time horizon length and

which can be easily warm-started for use in MPC schemes [6].

In the linear dynamics and quadratic cost case, Jacob-

son [7] showed that dynamic game control is equivalent to

risk sensitive control and derived a closed form solution.

Later, Whittle [8] extended the results to the linear quadratic

case with imperfect state observations. In [9], a first iterative

version of Whittle’s solution was introduced to tackle the

nonlinear risk sensitive problem with imperfect observations.

However, the stochastic nature of the problem hindered the

development of theoretical guarantees. Although, dynamic

game and risk sensitive control are equivalent in the linear

quadratic case [7], this is no longer the case in the nonlinear

setting [10]. Nonetheless, dynamic game control is tightly

connected to robust and risk sensitive control. In [2], [10],

James and Campi showed that dynamic game control can

be interpreted as the limit case of risk sensitive control

when noise tends to zero. Recently, Başar [11] presented a

detailed overview of the connections between both problems

in continuous time. Additionally, Başar and Bernhard [3], [12]

established the connections between dynamic game control

and H∞-Optimal Control both in the perfect and imperfect

state information case.

For nonlinear systems, estimating a state trajectory corre-

sponding to some given measurements is usually intractable

analytically. A common approach is to model the noise

as Gaussian and to maximize the Maximum A Posteriori

(MAP) [13]. If the dynamics are affine, then the problem can

be solved analytically with the so-called Rauch–Tung–Striebel

(RTS) smoother [14]. The RTS smoother is made of a forward

recursion which resembles the Kalman Filter (KF) and a

backward recursion. In the nonlinear case, iterative schemes

are usually used. A popular choice is the iterative Kalman

smoother which is equivalent to a Gauss-Newton method on

the MAP [15]. The estimation part of our proposed solution

resembles a risk sensitive version of this smoother.

In optimal control or dynamic game control with perfect

state information, various numerical optimization algorithms



have been developed to iteratively find solutions in the non-

linear case. In optimal control, the most analogous to our

work are Differential Dynamic Programming (DDP) [16] and

the stagewise implementation of the Newton’s method [17].

The stagewise Newton method is an exact implementation

of Newton’s method that exploits the specific structure of

the Hessian matrix in order to scale linearly with the time

horizon. DDP is an iterative algorithm that takes an update

step on the control input by applying dynamic programming

on a quadratic approximation of the value function. In [16],

Murray showed that DDP is very similar to a Newton step and

inherits its convergence properties. For dynamic game control

with perfect state information, the seminal work from [18],

[19] introduced minimax DDP showing that DDP could be ex-

tended to zero-sum two players games. Recently, [20] further

extended the concepts of stagewise Newton method and DDP

to nonzero-sum games with an arbitrary number of players in

the full information case.

Despite having been widely studied theoretically, to the

best of our knowledge, dynamic game control with imperfect

state observations has not been approached from a numerical

optimization point of view. In this work, we consider the

general problem of dynamic game control with imperfect

state observation and present a numerically efficient provably

convergent algorithm to solve it. The solution presented gener-

alizes commonly used techniques such as the extended Kalman

smoother and Differential Dynamic Programming. The pro-

posed solution fully exploits the sparsity of the problem and

scales linearly with time, making it a promising method for

model predictive control.

Contributions. In this paper, we derive a stagewise New-

ton method for dynamic game control with imperfect state

observations. The proposed approach scales linearly in the

time horizon. Furthermore, a merit function and a line search

procedure are introduced to guarantee convergence. To our

knowledge, this is the first iterative procedure with con-

vergence guarantee for the dynamic game control problem

with imperfect state observation. The proposed solver couples

estimation and control by merging an iterative optimal control

algorithm similar to minimax DDP and an iterative risk

sensitive Kalman smoother. We illustrate the behavior of the

resulting controller on two realistic robotic problems.

Notations. The derivative of a function f with respect

to a vector v is denoted by fv , similarly for second order

derivatives with respect to vectors u, v is denoted as fuv .

If (vi)i∈N is a sequence of vectors, then vk:t is a vector

concatenating vk . . . vt. 1x∈A is the indicator function which

equals 1 if x ∈ A and 0 otherwise. In denotes the identity

matrix of size n by n.

II. PROBLEM STATEMENT

Similar to [4], [5], this work studies a special class of

nonlinear dynamic games with imperfect state observation [2].

Given a history of measurements y1:t, a history of control

inputs, u0:t−1 and a prior on the initial state x̂0, we aim

to find a control sequence ut:T−1 that minimizes a given

cost ℓ while an opposing player aims to find the disturbances

(w0:T , γ1:t) that maximize this cost ℓ minus a weighed norm

of the disturbances. Such a problem is formally written as:

min
ut:T−1

max
w0:T

max
γ1:t

T−1
∑

j=0

ℓj(xj , uj) + ℓT (xT ) (1)

−
1

2µ



ωT
0 P

−1ω0 +

t
∑

j=1

γT
j R

−1
j γj +

T
∑

j=1

wT
j Q

−1
j wj





subject to x0 = x̂0 + w0, (2a)

xj+1 = fj(xj , uj) + wj+1, 0 ≤ j < T, (2b)

yj = hj(xj) + γj , 1 ≤ j ≤ t. (2c)

where µ > 0. xj is the state, ωj the process disturbance, γj
the measurement disturbance, T the time horizon, t the current

time. The transition model fj , the measurement model hj and

the cost ℓj are assumed to be C2. The measurement uncertainty

Rj , the process uncertainty Qj and the initial state uncertainty

P are positive-definite matrices.

Interestingly, this problem encompass various formulations

of control and estimation. If t = 0 and if w0 is fixed to zero, we

recover dynamic game control with perfect state information.

Additionally, if t = 0, in the limit where µ tends to zero, we

find the generic optimal control formulation [10]. And lastly,

if t = T and if we consider all the cost ℓj to be null, then,

(1) is equivalent to maximizing the MAP.

III. METHOD

A. First order conditions for a Nash equilibrium

The main challenge in the problem formulation (1) is the

equality constraint maintaining the dynamic feasibility. A

popular approach [19] is to derive a DDP-like algorithm by

sequentially taking quadratic approximations of the value func-

tion recursion. However, a stagewise Newton step can readily

be derived. One of the key features of the dynamic game (1) is

that by changing the decision variable of the opposing player,

one can transform the problem into an unconstrained one [2].

Indeed, we can use the equality constraints of Eq. (2) to replace

disturbance maximization into a maximization over the state

sequence. Then the problem loses its equality constraints and

can be formulated as the search of the saddle point of

J(x0:T , ut:T−1) =

T−1
∑

j=0

ℓj(xj , uj) + ℓT (xT ) (3)

−
1

2µ
(x0 − x̂0)

TP−1(x0 − x̂0)

−
1

2µ

t
∑

j=1

(yj − hj(xj))
TR−1

j (yj − hj(xj))

−
1

2µ

T−1
∑

j=0

(xj+1 − fj(xj , uj))
TQ−1

j+1(xj+1 − fj(xj , uj)).

However, without convexity and concavity assumptions, we

cannot aim at finding global solutions of the minimax problem.

Hence, we restrict our attention to local Nash equilibrium,

namely a point (x⋆
0:T , u

⋆
t:T−1) such that there exits δ > 0



such that for any (x0:T , ut:T−1) satisfying ||x0:T −x⋆
0:T || < δ

and ||ut:T−1 − u⋆
t:T−1|| < δ, we have

J(x0:T , u
⋆
t:T−1) ≤ J(x⋆

0:T , u
⋆
t:T−1) ≤ J(x⋆

0:T , ut:T−1). (4)

A standard approach to this problem is to search for a

stationary point [21]:
(

∂J
∂x0:T

(x⋆
0:T , u

⋆
t:T−1)

∂J
∂ut:T−1

(x⋆
0:T , u

⋆
t:T−1)

)

= 0 (5)

Interestingly, the change of decision variable in Eq. 3 turned

the problem into an unconstrained one but made no assumption

on the structure of the cost. The only required assumption is

that each disturbance is in a one to one map with the state at

each time step.

B. About the Linear Quadratic case

In the linear quadratic case, Whittle has shown that under

some conditions, the saddle point of (4) is global and can

be computed analytically. More precisely, the order of the

minimization and maximization in (1) can be interchanged,

namely the lower value and upper value of the game are equal.

Despite this result, one of the difficulties of the problem (1) is

that it links estimation and control. One the major contribution

of Whittle is the introduction of the notion of past stress and

future stress showing that the KF and LQR principles can

still be applied. In other words, the problem can be solved by

performing a backward recursion on the controls and future

states and a forward recursion on the past states. The future

stress recursion can be interpreted as a value function recursion

similar to LQR, while the past stress can be interpreted as a

rollout of KF. Here, we use these two principles to efficiently

solve iteratively the nonlinear case.

C. A stagewise Newton’s method

In this section, a stagewise formulation of the Newton

method to find a stationary point of J is introduced. While

a naive implementation of the Newton method would yield a

complexity of O(T 3), it is shown that the special structure

of the Hessian induced by time can be exploited in order to

obtain a linear complexity in time O(T ). In the perfect state

observation case, [17] and [20] derived a stagewise Newton

method with a backward recursion on the controls. However,

with imperfect state observation, it is no longer clear how to

do this with only one recursion. Instead, we show that the

principles introduced by Whittle can be applied.

To ensure that the proposed method is well defined and

to guarantee convergence, we assume that the cost satis-

fies smoothness and non-degeneracy conditions required for

the convergence of Newton’s method [22]. As the cost (3)

is unconstrained, the gradients and Hessian of the cost

can readily be computed. At iteration i, given a guess

xi
0, x

i
1 . . . , x

i
T , u

i
t . . . , u

i
T−1, also referred as the nominal tra-

jectory, the Newton step, denoted by p, satisfies








∂2J

∂x0:T∂x0:T

∂2J

∂x0:T∂ut:T−1

∂2J

∂ut:T−1∂x0:T

∂2J

∂ut:T−1∂ut:T−1









p =









∂J

∂x0:T

∂J

∂ut:T−1









(6)

Here, p =
(

pTx0:T
pTut:T−1

)T
where px0:T

∈ R
(T+1)nx is a

stack of vectors pxk
∈ R

nx with nx being the dimension of the

state space. Similarly, put:T−1
∈ R

(T−t)nu is a stack of vectors

puk
∈ R

nu with nu being the dimension of the control space.

To simplify the notations, we define an augmented Hessian

of the cost that contains the second order derivatives of the

dynamics for all k < T .

ℓ̄xxk = ℓxxk + µ−1wi
k+1

T
Q−1

k+1f
xx
k + µ−1

11≤k≤tγ
i
k

T
R−1

k hxx
k ,

ℓ̄xuk = ℓ̄ux
T

k = ℓxuk + µ−1wi
k+1

T
Q−1

k+1f
xu
k ,

ℓ̄uuk = ℓuuk + µ−1wi
k+1

T
Q−1

k+1f
uu
k , (7)

where the derivatives are evaluated at the current guess and

where wi
k+1 := xi

k+1 − fk(x
i
k, u

i
k) and γi

k := yk − hk(x
i
k).

Here, the second order derivatives of the dynamics are tensors.

The exact definition of the tensor indexing and the tensor

product is provided in the supplementary material [23].

The next three propositions are analogous to the principles

introduced by Whittle: the past stress recursion, the future

stress recursion and the coupling of the past and future stress

recursions. The first proposition, analogous to the future stress

recursion, expresses every future state and control update steps

as a function of pxt
.

Proposition 1 (Future stress). In Equation (6), the last

(T − t)(nx + nu) rows are equivalent to:

∀k ≥ t, puk
= Gkpxk

+ gk (8)

pxk+1
= (I − µQk+1Vk+1)

−1
(fx

k pxk
+ fu

k puk

+ µQk+1vk+1 − wi
k+1)

where Vk and vk are solutions of the backward recursion:

Γk+1 = I − µVk+1Qk+1 (9)

Quu = ℓ̄uuk + fu
k
TΓ−1

k+1Vk+1f
u
t

Qux = ℓ̄uxk + fu
k
TΓ−1

k+1Vk+1f
x
k

Qu = ℓuk + fu
k
TΓ−1

k+1

(

vk+1 − Vk+1w
i
k+1

)

Gk = −Q−1
uuQux

gk = −Q−1
uuQu

Vk = ℓ̄xxk + fx
k
TΓ−1

k+1Vk+1f
x
k +QT

uxGk

vk = ℓxk + fx
k
TΓ−1

k+1

(

vk+1 − Vk+1w
i
k+1

)

+QT
uxgk

with the terminal condition

VT = ℓxxT , vT = ℓxT . (10)

In those equations, µ intervenes only in Γk and the aug-

mented terms of the cost. Interestingly, Γ−1
k shifts, at each

time step, the value function terms Vk and vk. Then, the second

proposition, analogous to the past stress recursion, expresses

every past state update steps as a function of pxt
.

Proposition 2 (Past stress). In Equation (6), if t ≥ 1, the first

(t− 1)nx rows are equivalent to: ∀k = 0, . . . , t− 1,

pxk
= E−1

k+1

(

fx
k
T
Q−1

k+1(w
i
k+1 + pxk+1

) + P−1
k µ̂k + µlxk

)

(11)



where Pk and µ̂k are solution of the forward recursion:

Ek+1 = P−1
k + fx

k
T
Q−1

k+1f
x
k − µl̄xxk

P̄k+1 = Qk+1 + fx
k (P

−1
k − µℓ̄xxk )−1fx

k
T

Kk+1 = P̄k+1h
xT

k+1(Rk+1 + hx
k+1P̄k+1h

xT

k+1)
−1

Pk+1 = (I −Kk+1h
x
k+1)P̄k+1

µ̂k+1 = (I −Kk+1h
x
k+1)(f

x
k µ̂k − wi

k+1) +Kk+1γ
i
k+1

+ µPk+1Q
−1
k+1f

x
kE

−1
k+1(ℓ̄

xx
k µ̂k + ℓxk) (12)

with the initialization

P0 = P, µ̂0 = x̂0 − xi
0. (13)

Interestingly, if all the cost terms ℓj are zero and if t = T ,

the method is equivalent to a Newton method on the MAP.

Furthermore, if the second order derivatives of the measure-

ment function are omitted, then, the algorithm is equivalent to

the iterative Kalman Smoother. Finally, the third proposition

shows how both past stress and future stress recursions can be

coupled to find the update step pxt
.

Proposition 3 (Coupling). In Equation (6), the remaining rows

(from tnx to tnx − 1) are equivalent to

pxt
=
(

P−1
t − µVt

)−1 (
P−1
t µ̂t + µvt

)

. (14)

In the limit case when µ tends to zero, the estimation and

control are decoupled and we recover the usual certainty equiv-

alence principle: pxt
= µ̂t. The algorithm is then equivalent

to an iterative estimator and an iterative controller running

independently. More precisely, at each iteration the controller

uses the current estimate of the smoother.

Proof. The proof follows from the analytical derivations of

the gradient and the Hessian of (3), a forward induction from

0 to t and a backward induction from T to t. The complete

proof is provided in the supplementary material [23].

Algorithm 1: Stagewise Newton step

Input: xi

0
, xi

1
. . . , xi

T
, ui

t
. . . , ui

T−1

// Estimation forward pass

1 P0 ← P , µ̂0 ← x̂0 − xi

0

2 for k = 0, ...t− 1 do

3 Pk+1, µ̂k+1 ← Eq. (12)

// Control backward pass

4 VT ← ℓxx
T

, vT ← ℓx
T

5 for k = T − 1, ...t do

6 Vk, vk ← Eq. (9)

// Estimation and control coupling

7 pxt
←

(

P−1
t
− µVt

)

−1 (

P−1
t

µ̂t + µvt

)

// Estimation backward pass

8 for k = t− 1, ...0 do

9 pxk
← Eq. 11

// Control forward pass

10 for k = t, . . . T − 1 do

11 puk
, pxk+1

← Eq. (8)

Output: px0
, px1

. . . , pxT
, put

. . . , puT−1

In the end, the update step, p, can be computed with a

forward recursion on the past indexes, a backward recursion on

the future indexes, a coupling equation, a backward recursion

on the past indexes and a forward recursion on the future

indexes. Algorithm 1 summarizes those steps. Clearly, the

complexity is linear in time. Instead of inverting a matrix

of size ((T + 1)nx + (T − t)nu), Algorithm 1 only operates

with matrix of size nx or nu and this number of operation is

proportional to T .

D. Line-search and convergence

In the linear quadratic case, Algorithm 1 is equivalent to

Whittle’s derivations and only one iteration is required to find

a solution. However, in the general nonlinear case, several

iterations of Newton’s step are required. A common approach

to guarantee the convergence of the overall iterative procedure

is to introduce a line search and a merit function [22]. Given a

guess at iteration i and a direction p, the next guess is defined

by
(

xi+1
0:T

ui+1
t:T−1

)

=

(

xi
0:T

ui
t:T−1

)

+ αi

(

px0:T

put:T−1

)

, (15)

where the step length αi is chosen in order to decrease the

merit function. As advocated by Nocedal et al. [22], a Newton

step provides a descent direction for the merit function

fM(x0:T , ut:T−1) =
1

2

T
∑

j=0

∥

∥

∥

∥

∂J

∂xj

∥

∥

∥

∥

2

+
1

2

T−1
∑

j=t

∥

∥

∥

∥

∂J

∂uj

∥

∥

∥

∥

2

. (16)

This merit function can be derived analytically. The exact

derivations of each gradient are provided in the supplementary

material [23]. By construction, the expected decrease of the

direction p derived by Algorithm 1 is pT∇fM = −||∇J ||22
and the following convergence guarantees hold.

Proposition 4. Assuming that the norm of the inverse of the

Hessian of J is bounded and that the step length αi satisfies

the Wolfe conditions for the merit function (16), the sequence

(xi
0:T , u

i
t:T−1)i defined by the update rule (15) with steps from

Algorithm 1 is globally convergent to a stationary point of

(3). Furthermore, when the iterate is sufficiently close to the

solution, the sequence has quadratic convergence.

Proof. This proposition is a direct consequence from the fact

that Algorithm 1 yields a Newton step. A detailed proof of

the convergence guarantees of Newton method is provided in

[22].

One may ask under which conditions the Hessian of J is

non-degenerate. Intuitively, large values of µ can make the

problem ill-defined. Indeed, if the opposing player can choose

large disturbances, then the controller might not be able to

compensate. In the linear quadratic case, Whittle [8] studied

this maximum value for µ that makes the problem ill-defined.

Although, we do not study this limit value in the nonlinear

case, we note that analogously to the linear quadratic case, the

algorithm is well defined if Γk and P−1
k − µℓ̄xxk are positive-

definite which is the case when µ is small enough.

E. About the cooperative case

So far, only the case, µ > 0 has been considered, but,

the case µ < 0 is also well defined. Indeed, the search for






