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Robust walking based on MPC with viability guarantees®
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Abstract—Model predictive control (MPC) has shown great
success for controlling complex systems such as legged robots.
However, when closing the loop, the performance and feasibility
of the finite horizon optimal control problem (OCP) solved at
each control cycle is not guaranteed anymore. This is due to
model discrepancies, the effect of low-level controllers, uncer-
tainties and sensor noise. To address these issues, we propose a
modified version of a standard MPC approach used in legged
locomotion with viability (weak forward invariance) guarantees.
In this approach, instead of adding a (conservative) terminal
constraint to the problem, we propose to use the measured
state projected to the viability kernel in the OCP solved at
each control cycle. Moreover, we use past experimental data
to find the best cost weights, which measure a combination
of performance, constraint satisfaction robustness, or stability
(invariance). These interpretable costs measure the trade off
between robustness and performance. For this purpose, we use
Bayesian optimization (BO) to systematically design experiments
that help efficiently collect data to learn a cost function leading
to robust performance. Our simulation results with different
realistic disturbances (i.e. external pushes, unmodeled actuator
dynamics and computational delay) show the effectiveness of our
approach to create robust controllers for humanoid robots.

I. INTRODUCTION

Thanks to the increase of computational power, employing
model predictive control (MPC) to control complex mechani-
cal systems such as legged robots is feasible nowadays. Using
MPC for controlling legged robots is desirable, because 1)
these robots are expected to perform tasks in dynamically
changing environments 2) they have highly limiting interaction
constraints and 3) MPC affords the prediction of steps in the
future as a response to current disturbances.

Although MPC has been shown to be a successful paradigm
for controlling legged robots [1], [2], [3], dealing with un-
certainties in the underlying optimal control problem (OCP)
is only tractable for simplified cases [4], [5]. Furthermore,
it is crucial to add a terminal constraint to the problem
to guarantee the invariance of the finite horizon OCP, in
which case ensuring feasibility of this constrained optimization
problem becomes an issue rarely addressed in the field [4]. It
is however important to consider this problem because the
dynamic model used for MPC does not take into account the
true dynamics of the robot nor the effect of the low-level
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controllers and it rarely models sensor noise and environmental
uncertainty. As a consequence, merely using the measured
state of the robot in the OCP can lead to an infeasible problem
when a conservative terminal constraint is considered, or cause
divergence of the center of mass (CoM) motion when no
terminal constraint is imposed, despite the robot remaining
capable to maintain balance. Additionally, it becomes very
difficult to find a cost function for the OCP that improves
robustness and performance in face of all these unmodeled
effects.

In this paper, we tackle the problems of invariance of the
desired CoM trajectory and constraint satisfaction robustness
of constrained MPC for humanoid walking. We propose a
novel approach to adapt the estimated current state of the
system used in the constrained MPC to prevent the desired
CoM trajectory from divergence at all times. We use the
viability kernel bounds to compute a feasible state while
minimizing departure from the measured state of the system.
Furthermore, we propose to adapt the cost function of the
OCP to increase the robustness of the controller to unknown
dynamics and environmental uncertainty and to implicitly
take into account the, possibly complex, low-level controllers.
We aim to find this cost function in as few experiments as
possible using Bayesian Optimization (BO). We demonstrate
the capabilities of our approach in a complete system that also
includes a complex low-level model predictive controller and
realistic uncertainties in a full-body simulation.

A. Related work

1) MPC for locomotion: One of the earliest works that em-
ployed MPC for controlling legged robots is [6]. In this work,
Wieber modified the formulation in [7] and introduced MPC
as a strong tool for controlling walking of highly constrained
and inherently unstable legged robots. After this work, MPC
has become one of the dominant approaches for controlling
legged robots. Apart from walking, where linear MPC can be
implemented thanks to the linear inverted pendulum model
(LIPM) [1], [8], there has been a tremendous effort in the
community to make this feasible for more complex models
and tasks [9], [10], [11].

All of the aforementioned approaches use a deterministic
representation of the problem and rely on the low-level feed-
back control and the inherent robustness of MPC for dealing
with disturbances and uncertainties. To make the controller
robust, [12] took the effects of uncertainties into account and
proposed a robust approach to constraint satisfaction in the
low-level instantaneous feedback controller. [9], [13], [14]
addressed the problem of robust trajectory optimization, where
the goal is to generate trajectories that are far from the
boundaries of constraints (constraint satisfaction robustness).



Although similar in constraint satisfaction aspect, tackling
robustness in MPC problems introduces two more issues with
respect to the robust trajectory optimization problem. First,
since it is not clear what the final cost/constraints of the
locomotion problem are, ensuring invariance properties or
stability of the system is very challenging. Second, when
a (conservative) terminal constraint is taken into account,
the finite horizon OCP can easily become infeasible in the
presence of uncertainties.

Recently, uncertainties have been considered in the MPC
synthesis using robust (RMPC) [4] and stochastic (SMPC) [5]
approaches. Using the measured state of the system directly
inside MPC problem may render the OCP infeasible (in the
presence of any state constraint). This is a well-known problem
of constrained MPC in general and if the OCP is feasible at all
time instants given that it is feasible at initial time, it is said
to be recursively feasible [15]. To ensure recursive feasibility,
[4] employed the RMPC approach in [16] and introduced
the current state of the system as decision variable to be
determined as a function of the state measurement. In general,
there exist other approaches apart from [16] to guarantee
recursive feasibility for linear MPC, e.g., adding additional
constraints [17], or using a backup strategy when the problem
is infeasible [18]. Guaranteeing recursive feasibility in the
general case for linear systems can end up in theoretically very
complicated algorithms [19], or it may enforce very limiting
constraints that degrade the performance [20].

In this paper, we propose a novel approach that uses MPC
to generate trajectories for bipedal walking and guarantees
viability of the gaits without any terminal constraint. Our
approach is based on computation of the viability kernel
and projecting the measured state inside it. We ensure that,
contrary to [4], the measured state is only modified if it is
outside of the viability kernel.

2) Bayesian Optimization for locomotion: Bayesian opti-
mization (BO) is a form of black-box and derivative-free op-
timization [21]. BO has been successfully applied to different
parameter/gain tuning problems in robotics [22], [23]. BO is
especially useful when we have a relatively low number of
parameters to tune (e.g., n < 20). In other words, BO is
practical when we have an efficiently searchable control policy
representation (e.g., PID [23], LQR [22], etc.) in contrast with
expressive policy representation without any prior (e.g., Neural
Networks) [24].

Since humanoid robots are inherently unstable and high-
dimensional systems, the application of BO to humanoid
locomotion control (and in general legged robots) is limited to
simplified cases such as planar bipeds [25], [26], [27] or one-
legged hoppers [28]. [25] optimized eight parameters using
BO for a planar biped walking. [26] applied BO to a more
complex model of a planar biped robot, where they used
16 neuromuscular policy variables to parametrize walking of
a planar biped robot on uneven and sloped surfaces. They
applied a generalized version of this approach to the simulation
and experiments of the biped robot ATRIAS [27]. Even for
these simplified situations, both [25] and [26] argued that
only a very small percentage of the parameter space leads
to a feasible gait, which shows the difficulty of generating

feasible motions for humanoid robots using only black-box
optimization.

Recently [29], [30] used BO to find the parameters of
a whole-body controller (inverse dynamics) for a humanoid
robot, yielding robust performance for the control. Our work
can be seen as complementary to these works, because we
propose to use BO to find the best cost weights of the reactive
planner for a given whole-body controller. In fact, we use BO
to find plans that can be best tracked and can result in robustly
achieving the task.

B. Proposed framework and contributions

The block diagram of our proposed control framework is
shown in Fig. 1. The first layer of the MPC (slow MPC)
regenerates at 10 Hz plans for the CoM and next contact
location with two walking steps for the receding horizon
length [7], [6], [1]. In the lower level, we use iterative linear-
quadratic Gaussian (iLQG) [31] at 100 Hz with a 0.3 s horizon
(fast MPC) to generate joint torques based on the full robot
dynamics and the desired trajectories from the first stage. To
ensure that the first stage generates trajectories that are robust
and can be tracked by the low-level controller, we use BO to
find the best cost weights of slow MPC that yield a robust
performance.

In a preliminary version of this paper, we used BO to
tune the cost weights of the trajectory optimization problem
[14]. We showed that BO can efficiently find cost weights
that lead to robust performance in the presence of different
disturbances and uncertainties. This article extends [14] in
the following directions, which can be seen as the main
contributions of this paper:

e We derive boundaries of the viability kernel for LIPM
with finite size foot considering the swing foot effects.

« We propose a viability-based projection method to mod-
ify the measured state used in the MPC to guarantee the
existence of at least one solution for the OCP.

o We propose a two-level MPC framework (fast MPC and
slow MPC, see Fig. 1) with interpretable cost terms in the
slow MPC that can be learned to trade-off performance
against robustness.

o We demonstrate the importance of feasibility of the slow
MPC problem as well as generating robust trajectories,
through extensive full-humanoid simulation with various
realistic uncertainties.

The rest of this paper is organized as follows: Section
IT presents the formulation that we use for slow MPC. In
Section III, we compute the boundaries of the viability kernel
and propose a novel approach for projecting initial states
of slow MPC inside it. Section IV briefly presents the fast-
MPC algorithm (iLQG). In Section V, we present the black-
box optimization problem for automatically adapting the slow
MPC cost weights using BO. In Section VI we present
extensive full-humanoid simulations to show the effectiveness
of our control framework. Finally, Section VII summarizes the
findings.
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Fig. 1: A high-level block diagram of the proposed approach.
The first layer (slow MPC) replans the CoM and next contact
location, while the second layer computes joint torques based
on the full robot dynamics and the updated trajectories from
the first stage. Then, BO performs a few number of simula-
tions/experiments to find the best cost weights of slow MPC
that yield a robust performance.

II. SLow MPC PROBLEM

In this section, we present the constrained MPC problem
that we use for generating desired CoM trajectories and step
locations (slow MPC in Fig. 1). We use a modified version of
the MPC formulation in [1], [4]:

N+k—1
min, 723 (el = X+ B2 27 P+
, i
m
D1 = XTI e - Z P (a)
Jj=1
s.t. Z; € support polygon , Vi=1,...,N. (1b)
X]f — Xﬂl € reachable area, Vj =1,....,m (1c)
1
(X{ — x/) € swing vel. range. (1d)
lyd — Uk
where X = [cg,c,]T is the horizontal CoM position. Z =
[22,2,]T is the zero moment point (ZMP) position. X/ =
[z/,y7]T is the footstep location (X is the location of the

stance foot and le is the swing foot landing location) and
X! = [zf,yf]" is the swing foot current position. t4 is the
landing time of the swing foot, while 7 is the current time.
E=X+ %0 is the 2-D divergent component of motion (DCM)
[32] (which is equal to the instantaneous capture point [33])
and T is the discretization time. Furthermore, I' = [«, 3, 8, ]
is the vector of cost weights, where each component is a 2D
vector, e.g., & = [ay, ay]T. Finally, N is the horizon of the
MPC problem, while m encodes the number of walking steps
in the horizon.

In (1), each cost term corresponds to an interpretable index.
The first term in the cost (la) stands for the performance,
which means that increasing o improves the tracking of
the desired walking velocity X"¢/. The second term can be
interpreted as robustness to ZMP constraints and increasing

{3 brings the ZMP to the center of the support polygon Z"¢/
(which implicitly pushes away the ZMP from the boundaries
of the support polygon). The third term prevents the footstep
locations to be far from a nominal stepping with zero walking
velocity X/7¢f. We can interpret the second and third terms
in the cost function as constraint satisfaction robustness terms.
Finally, the last cost term guides the solutions towards being
capturable at the end of the horizon, which can be seen
as a stability index: when the DCM is inside the support
polygon there exists a simple controller that stabilizes the
robot. Finding the best set of cost weights I' = [, 8,9, n]T is
crucial, as it ensures a robust solution consistent with available
uncertainties, while performance is maximized.

The constraints on the ZMP (1b) make sure that the ZMP
remains inside the support foot. Constraints (1c) and (1d)
ensure that the contact locations are kinematically feasible
and the next step location is consistent with the current state
of the swing foot and its maximum speed [1]. Using LIPM
dynamics and polyhedral approximation of the friction cone,
(1) can be written as a quadratic program (QP). To make sure
that the QP remains always feasible, we modify the current
state of the DCM based on the viability kernel bounds. We
will explain the computation of the viability kernel and the
proposed modification on (1) in Section III.

Remark 1: In the MPC (1), we did not take into account
friction cone constraints for walking, as ZMP is the most
restricting interaction constraint for walking on flat terrains
[34] (and even rough terrain [35]). Adding friction cone
constraints to this problem is straightforward [36] and we
remove them from our formulation for brevity of presentation
in the viability kernel computations (Sect. III-A).

Remark 2: Compared to [4], our MPC formulation in (1)
does not take into account any uncertainty in the problem con-
struction. We argue that finding a realistic set of uncertainties
in the space of the simplified model, here LIPM, is a very
challenging task. For example, it is hard (if not impossible) to
map bounds on the tracking error of the swing foot or other
joint space uncertainties to bounds on the CoM states. Instead,
we propose to use the deterministic MPC formulation (1) in
the simplified model space and add data-driven robustness
to the solutions using realistic uncertainties in the full robot
simulations. Furthermore, we need not make any assumption
on the uncertainty structure, e.g., multiplicative or additive,
with normal distribution or bounded, etc. This approach also
suggests a systematic way to improve the performance using
the data collected from the previous experiments.

III. INVARIANCE OF THE SLOW MPC

In this paper, we propose to use the concept of viability
kernel to ensure that the CoM trajectories obtained from (1)
do not diverge. A dynamical system state is said to be viable,
if starting from this state there exists at least one solution
that does not lead to a failed state [37]. The set of all viable
states constitutes the viability kernel, as the boundary of this
set splits the state space into viable and non-viable states.
The viability kernel is also called weak forward invariant set
[38], as it does not imply that every solution of the dynamical



system starting from this set remains in this set (in this case
it would be called forward invariant or positively invariant
set [39]). Note that in the case of legged robots, a more
conservative concept than viability is often used, namely N-
step capturability [33]. Viability is very similar in nature to
oo-step capturability, with a subtle difference that the viability
kernel is a closed set while the oco-step capturable region is
an open set.

It is shown in [40], [34] that viability of a legged robot
is guaranteed, if one minimizes any derivative of the CoM
motion over a long enough horizon in the MPC cost function.
However, if the measured state of the CoM is not viable (due to
estimation error, measurement noise, or external disturbances),
the MPC problem will diverge and tracking the resulting CoM
trajectories by the whole body controller (WBC) will result
in a fall. We argue that with LIPM assumptions, which have
been proven to be reasonable for walking, and given different
constraints, we can compute realistic bounds for the viability
kernel. As a result, we can constrain the robot state to remain
inside the viability kernel of the simplified model.

It is important to note that the viability kernel bounds
based on LIPM dynamics are computed assuming zero vertical
CoM acceleration and angular momentum around the CoM.
Therefore, even if the measured state of the system is outside
the viability kernel computed based on LIPM assumption, it is
possible that the WBC brings back the state inside the viability
kernel. By projecting the measured state inside the computed
viability kernel we make sure that slow MPC finds a solution
that does not lead to divergence of the CoM motion starting
from the modified state. Then, we rely on the WBC to exploit
the full control authority of the robot and bring it to a nominal
safe motion.

In the remainder of this section, first we compute the
viability kernel using the LIPM with constraints on the step
location as well as swing foot maximum velocity. Then, we
review the approach in [4] and propose an alternative approach
to modify the OCP (1) to ensure weak invariance of the motion
while remaining always feasible. Finally we comment on the
differences and implications of each approach.

Remark 3: In our MPC formulation, we considered two
walking steps as the horizon. However, as shown in [8], one
step horizon could be enough, provided that a proper terminal
constraint is considered that accounts for the viability of the
gait. Finding this time invariant terminal constraint for the
LIPM is practical, when the contact switch is the terminal
point in the horizon. In that case, we end up having a shrinking
horizon MPC formulation. To resort to the standard fixed
horizon MPC formulation, the common practice traditionally
was to just consider two walking steps in the horizon as
walking is a two-step periodic gait. In this approach, the
hope is that minimizing any derivative of the CoM velocity is
enough to ensure gait invariance [40]. However, it is shown
in [41] that a terminal constraint is essential to guarantee the
invariance of the gait. Finding this terminal constraint amounts
to making some assumptions on the gait after the terminal
time (the tail of the MPC). Adding a terminal constraint
also makes it essential to find a way to guarantee recursive
feasibility. In this paper, we use two steps in the horizon

without any terminal constraint and leverage the approach in
[8] for computing the viability kernel to provide the MPC
formulation in (1) with viability guarantees.

A. Viability kernel

In this section we follow procedures similar to [8] to
compute the bounds of the viability kernel for the case of
an LIPM with finite-size foot (rectangular shape) and box
constraints for the step location. We could also compute this
bound analytically (or through a convex optimization problem)
with the same procedure for other convex constraints on foot
step location and other convex foot shapes. Compared to [8],
[33] that did not consider the current state of the swing foot,
here we take into account constraint (1d) to compute the
viability kernel. In this way we can make sure that the viability
kernel bounds are consistent with the reachability constraint
of the current state of the swing foot.

Starting from (1d), we can compute the reachable area for
the landing of the swing foot in sagittal direction

l2d — 2f| < Ty(ta — 1) )

where t;4 is the touch down time and 7, is the maximum
average foot velocity. Note that U, is a simplified upper-bound
on the average velocity of the swing foot proposed in [1] as
a proxy constraint that is used in (1d). Note also that, we
use underline and overline to show minimum and maximum
of a variable all over the paper. Using (2), we can compute
the maximum and minimum reachable locations for the swing
foot landing, given the maximum swing foot velocity

= =2l + 0, (tg — 1) (3a)
g{ = acf: — Up(tea — t) (3b)

Taking into account the kinematic reachability constraint for
the step length, we compute the maximum and minimum step
length for the current step as

7 = (2] — 2)mae = min (T — 2], T) (4a)
2" = (2] = 2{)min = max (z] —2f,-L)  (@b)

Where L is the maximum step length and the superscript rea
stands for reachable.

Using the results in [8], we can write down the evolution of
the DCM offset b, which is the distance between the center of
the stance foot and the DCM. When the DCM is in front of the
stance foot (i.e. by , > % with L; being the foot length), the
best ZMP location to slow down the DCM divergence is the
tip of the foot. This results in the following DCM evolution
(see Appendix A for details):

L L
bT,x - ?f + T = (bt,z - 2f) ewO(Ts_t) + x(])‘ (Sa)
where b; and by are the DCM offset at the beginning of the
current time and next step, 7 is the single support period.
When the DCM is instead behind the stance foot, i.e. by , <

L
— =L, we have:

L L
by + 7f + x{ = (bt}z + 21“) ewo(To=t) 4 :cg (5b)



From these equations we can compute b; ., the boundary of
the viability kernel in sagittal direction as a function of the
maximum/minimum step length (x{ - arg )maz/min and the
maximum DCM offset at the next step ET,(T/:

bra —Li/24 (@] —2))max Ly

btw = ewo(Ts—t) + 2 (62)
Ztx T ewo(Tsft) 2

Since ET,‘T refers to the beginning of the (next) step, we can
reasonably assume that it is independent of the swing foot
state. Therefore, we know from [8] that it can be computed
as:

— L L
bT,a: = !

ewoTs —1+ 2

Substituting this equation and (4) into (6) yields

- L L
_ —/frea —wo(Ts—t f
bz = (e‘*’0T<—l + 1 ) e~ wol ) + > (7a)
—L rea —wo(Ts—t) Lf
b = (G oy el ™) -G v
where L is the maximum step length, Z/""° and 2" are

the maximum and minimum reachable locations for the swing
foot in sagittal direction computed in (4). Finally, Bt,x is the
maximum DCM offset at time ¢ in sagittal direction. To apply
the viability constraint in sagittal direction, the DCM offset
(b¢,) must lie between the bounds of (7).

Equation (7) is a generalization of the viability kernel
bounds computed in [8], that takes into account the maximum
swing foot velocity, as well as the foot length effect. We can
verify that the bounds of [8] are a special case of (7) by setting
T, —t=T, Ly =0and 77" = L

L

bT,Qf = eUJOTs _ 1

In lateral direction, we have asymmetric reachability constraint
sets because of self-collision constraints. Hence, we consider
two cases for computing the viability kernel, i.e. inward
direction for the case where swing foot adaptation is prone to
self-collision, and outward direction where the swing foot is
only limited by kinematic reachability constraint. The viability
kernel bounds for the lateral direction are (see the Appendix
B for derivation details)

By = )

(i B oo W

i [ty

(71)"&1*: Zf:f [erentrio H)"% (8b)
where y{""**"" is computed using (21) or (27) and y{"**"* is

computed using (30) or (36) based on which foot is stance, Wy

is the foot width. W and W are the minimum and maximum
step width with respect to the nominal step width which is
pelvis width L, (note that W and W could also be negative
[8]); » = 1 when the right foot is stance, and n = 2 when
the left foot is stance. Again, setting Ty, —t = T, W; =
0’ y{,rea,in _ (Lp +W), and y{,rea,out _ (Lp + w) and
assuming the right foot is stance, we obtain the same result
as in [8]

sn _ L W — WewoT:
tyy eons + 1 1— eZwOTS

BOUt N Lp W — EGWOTS
ty ewoTs 11 1 — e2woTs

B. Approach I: Initial condition as decision variable

The first approach we consider to ensure a non-divergent
motion of the CoM in (1) is similar in spirit to the one
proposed in [16] and used in [4] for bipedal walking. In this
approach, we add a conservative terminal constraint to (1), i.e.
capturability. Then, in order to make sure that the OCP in (1)
remains always feasible, we consider the initial states of the
CoM as decision variable. The modified OCP is

minimize J
Xo0,X0,2:,X]
s.t.  (Ib),(1c), (1d).
&k N € support polygon

(10)

In this formulation, the initial state is allowed to be changed
such that the OCP remains always feasible. The initial state
can be arbitrarily selected by the program such that the cost
is minimized and in this way the feasibility of the program is
guaranteed by construction.

As we will show later, since the initial condition can be
selected arbitrarily by the optimizer, using (10) can result in a
discontinuous trajectory of the CoM. One can think of adding a
cost term to reward initial states that are close to the measured
state; however, in practice we observed that we would need
a very high weight for this term to have a smooth CoM
trajectory. This would be problematic for the tuning of our
(interpretable) cost terms to be weighted automatically using
BO. To circumvent this, we propose an alternative approach
that does not suffer from this problem.

C. Approach II: Projection of measured state inside viability
kernel

In the second approach, we propose a new way to adapt
the measured state to guarantee viability while remaining
always feasible. We construct the following QP to project
the measured (estimated) CoM states X%, X(;”ea inside the
viability kernel before passing it to (1)

minimize || Xo — X% 4 w|| Xo — X572
Xo0,Xo

(11a)

1 .
s.t. & = Xo + —Xo € viability kernel. (11b)
wWo

where w is a constant weight. In this way we can guarantee
existence of at least one solution for (1) that does not lead
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Fig. 2: A schematic view of the walking pattern showing the footprints, the DCM, and the DCM offset. The right foot is in
stance. (left) The DCM is on the right of the stance foot. (right) The DCM is on the left of the stance foot.

to a divergence of the CoM motion, starting from initial state
X, Xo computed by (11). This QP will simply output the
measured state as long as it is viable, otherwise it will project
the measured state inside the viability kernel. This is a desired
behaviour compared to the previous approach in Section III-B
where the initial condition can be arbitrarily selected by the
OCP to minimize the cost function. In Section VI, we will
compare the performance of each approach in both LIPM
simulation and full-humanoid simulation.

Remark 4: We proposed to use the viability kernel bounds
to map the measured state of the system to the viability kernel.
One might wonder why we did not also use the viability kernel
as a terminal constraint set of the MPC (1). The answer is
since the bounds we computed for viability are functions of
the swing foot state and we do not know the state of the
swing foot at the end of the horizon (and the optimal location
of the step after that), we cannot know the viability bounds
at the end of the horizon. There are three ways around this
problem; 1) Assuming the state of the swing foot at the end of
the horizon is equal to its current state (as the horizon of our
MPC is exactly two walking steps). However, it might be the
case that the robot is disturbed (or the commanded walking
velocity is changed), hence the step locations are not periodic
anymore, leading the state of the swing foot to be different in
two steps. 2) Changing the MPC horizon at each time such
that the start of the second step in the horizon is always the
end of the horizon. In this case there would be no state of the
swing foot of the last step in the horizon, and we could use the
viability bounds computed without considering the swing foot.
However, we would need to change the matrix sizes and the
problem structure at every loop and solve a shrinking horizon
MPC rather than a well-understood fixed horizon MPC. 3)
Adding viability constraints at the switching times which are
independent of the swing foot states. This way we would
only need to change inequality constraint matrices and solve a
fixed horizon MPC. But again in this case we are making the
terminal state free, and in our experiments we could not find a
noticeable difference between the result of this approach and
the one we propose in the paper, i.e. to just project the current
state of the CoM into the viability kernel, while having a
capturability terminal cost, whose weight is traded-off against
other terms using BO. As a result, we decided not to use any
of the above three options.

IV. FAST MPC PROBLEM

We use iLQG to track the CoM and feet trajectories obtained
using slow MPC. The controller maps the desired CoM and
feet trajectories from the first stage to joint torques, while
penalizing the full-body constraints [31], [42]. Typically, an
inverse dynamics/kinematics controller is used to track the
trajectories [43], [44], [10], but instead we use iLQG in a
closed-loop MPC fashion, i.e. we solve the OCP starting from
the measured state of the robot. The reasons behind this choice
are 1) to enable the whole-body controller to find a consensus
between foot trajectory and CoM trajectory, being able to
generate realistic angular momentum trajectories, 2) to make
the generated control commands less aggressive, 3) thanks to
recent advances in DDP-like algorithms based on analytical
derivatives of rigid body dynamics [45], solving the whole-
body MPC problem in real-time is becoming computationally
feasible.

In our problem, the cost function consists of several error
terms representing the following desired tasks. The values in
parentheses show the range of the cost weights for each task
we used in all our simulations:

« Smooth-abs [31] of the tracking error of reference feet

and CoM trajectories (100, 500).

o Square of two-norm of the tracking error of reference feet
and CoM velocities (50, 500).

« Square of two-norm of joint torques (100), joint velocities
(0.001, 10), angular velocity of the pelvis (10, 100), and
linear velocity of the torso in vertical direction (300).

e Square of two-norm of deviation between the global
orientations and the orientations of the torso (100), pelvis
(100), and feet (10,100).

¢ Square of two-norm of the deviation of the global height
of the torso from the fixed value used for the LIPM (300).

e Square of two-norm of the deviation between the joint
configuration and the initial posture (0, 100).

V. FINDING OPTIMAL COST WEIGHTS OF SLOW MPC

Based on the slow MPC formulation in (1), each cost
term stands for an interpretable index, namely performance
(first term), constraint satisfaction robustness (second and third
terms), and stability (last term). As a result, in the presence
of different uncertainties, one can choose different weights
I' = [a, 8,0,n]7 that can result in a robust performance. For
instance, let us consider the second cost term in (1). If we set



B to zero, the ZMP could likely reach the boundaries of the
support polygon, as normally the ZMP constraint (1b) is the
most restrictive constraint in (1). If we start increasing (3, we
favor solutions of the program in (1) that have a ZMP close to
the center of support polygon. However, increasing this weight
too much not only prevents the robot from achieving motions
with high walking velocities, but it may also activate other
constraints or even jeopardise stability. Hence, with a proper
choice of cost weights, we can make sure that the optimal
solution is the one that yields a robust performance.

A. Problem formulation

We are interested in solving the following optimization
problem (see Fig. 1):

N
e S real des (|12
minimize Jpo(T) = Zl [ X3(T) — X7

s.t. X™(T)is the output of simulation in Fig. 1, (12)

where X™(T") is the CoM velocity obtained from the simu-
lation of the robot full body with different (unknown) distur-
bances (or real experiment). In fact, here we are considering
the whole control procedure as a black box, where the cost
weights of the slow MPC are the parameters of the policy that
are decided by the BO.

If the robot falls down during one episode (the difference
between the desired and actual heights of the CoM exceeds
a constant threshold), we terminate that episode and return a
high penalty as the cost of the episode. This penalty, which
is chosen to be larger than the worst tracking performance
without falling down, is defined so that later falls receive
smaller penalty.

B. Bayesian optimization

In order to solve (12), we resort to BO, which has shown to
be very efficient for problems with a low number of parameters
to learn [46], [22], [27], [23]. Note that since we do not make
any assumption in terms of the uncertainties and disturbances
(we do black-box optimization), our approach is not limited
to uncertainties with a given shape or probability distribution,
which is the case for RMPC and SMPC problems [4], [5].
On the downside, contrary to [4], [S], we need to carry out
a few simulation experiments to achieve the robustness and
any change in the uncertainty set would need a new set of
simulation experiments.

BO is one of the most efficient algorithms for active learning
of policy parameters. In a nutshell, BO builds a surrogate
model of the cost function (in our case (12)) typically using
Gaussian processes (GP). Then, it optimizes an acquisition
Sfunction which is based on the surrogate model to find the next
set of parameters, given the history of the experiments until
now. The acquisition function tries to find a trade-off between
exploration (high-variance) and exploitation (high-value).

To solve the BO problem in this paper we use scikit-
optimize! and employ gp — hedge as acquisition function,

Ihttps://github.com/scikit-optimize/scikit-optimize

TABLE I: Physical properties of LIPM and gait parameters

Parameter Description Value
h LIPM height 0.8 (m)
Ly Foot length 0.2 (m)
Wy Foot width 0.1 (m)
Ly Pelvis length 0.2 (m)
L Maximum step length 0.6 (m)
Ly+W Maximum step width 0.4 (m)
L,+W Minimum step width 0.12 (m)
Tss Single support duration 0.5 (s)
Tas Double support duration 0.1 (s)
dT Time step 0.1 (s)

which is a probabilistic combination of lower confidence
bound, expected improvement and probability of improvement
[47]. More details on the BO technique that we used can be
found in [14].

VI. RESULTS AND DISCUSSION

In this section we present simulations of a full humanoid
robot to showcase the effectiveness of our framework. We used
MuJoCo [48] for all our full-body simulations on a laptop
with 3.6 GHz Intel i7 processor and 16Gb of RAM. The
considered humanoid robot is 1.37 m tall, it weighs 41 kg
and has 27 DoFs. Abdomen, shoulder, and ankle joints are 2-
DoF, while elbows, knees, and pelvis are 1-DoF, and hips are
3-DoF joints. Table I summarizes the physical properties of
the LIPM approximation of the robot and the gait parameters
used in walking simulations.

As shown in Fig. 1, we regenerate the CoM and feet
trajectories every 0.1 s using the LIPM with a two-walking-
step horizon (slow MPC), and the iLQG every 0.01 s for a
0.3 s horizon (fast MPC), both in closed-loop. Note that the
discretization times are the same as the replanning, i.e. 0.1 s
for slow MPC and 0.01 s for fast MPC. Simulations are run
at 1 KHz. Note that although we re-compute the iLQG policy
every 10 ms and the feedforward and feedback terms are fixed
during this period, we update the measured/estimated state of
the system every 1 ms in the control law

up = u; + K;(xp — x)) (13)

where x; and uy, are the state and control input at time step k
(updated every 0.001 s), K is the feedback gain matrix, and
(z*,u*) is the optimal state-control trajectory obtained from
iLQG.

In the rest of this section, we present three different sets
of simulations to illustrate the capabilities of the proposed
framework. In Subsection VI-A, we show the effectiveness of
the projection stage to ensure feasibility of the MPC problem.
In Subsection VI-B, we investigate the effects of different
uncertainties, i.e. computational delay and model uncertainties
on the performance of the control framework. Finally, in
Subsection VI-C, we show the effectiveness of BO in finding
the best cost weights of the MPC through a few episodes in
simulation.

A. Viability-based projection

In this subsection, we investigate the effectiveness of the
viability projection described in Section IIl. To do that, first



we compare our projection method, namely Approach II
presented in Section III-C to the Approach I presented in
Section III-B which is similar to the one proposed in [16]
and used in [4] for locomotion. We show systematically that
Approach II outperforms Approach I, and use that in the rest
of the simulations. Then, we compare the performance of our
projection method to the traditional MPC problem without
projection. For all the simulations in this section, we used
a combination of stepping in place, walking with a desired
forward velocity, and going back to zero velocity stepping in
place.
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Fig. 3: (top) CoM position and (bottom) velocity tracking

performance with projection based on Approach I.

To compare the performance of Approach I and Approach
II, first we used Approach I in the full-body robot simulation
with several sets of cost weights («a, 3, d,n). In this approach,
since the initial state is free to be chosen by the solver to
minimize the cost function, we ended up with discontinuous
trajectories as shown in Fig. 3, which resulted in instability
when applied to the full-body simulation. We tested this
projection with different weights of the cost function and
observed the same behaviour as shown in Fig. 3. To solve
this problem we defined a new cost term in (10) with the
cost weight of 6, which incentivizes the initial state towards
the measured state. When the cost weights are o, = oy =
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Fig. 4: Comparison between two approaches for the projection.

1,8z = By = 0y = 0y =1y =1y = 0, our tests showed that
it is sufficient to set 0 to a value greater than 200 to make the
CoM trajectories smooth enough to be tracked in the full-body
simulation and achieve walking.

There are three main drawbacks for this approach. First,
the new cost term has an explicit effect on MPC performance.
Therefore, its cost weight has to be re-tuned carefully to gen-
erate a smooth trajectory when the other cost weights change.
Second, it is desirable that the MPC starts from the measured
state, as long as the current state is viable. Considering the
initial state as decision variable and adding a cost to enforce
this may not necessarily provide this in all situations. Third,
the cost weights are our design parameters for the BO problem
(which are index of performance or robustness). Hence, it is
preferable to exclude this extra term from the cost function.
Despite these caveats, we have conducted BO for Approach
I with 6 as a new design variable and have observed that
Approach II outperforms it in the presence of different realistic
uncertainties (see VI-C).

To investigate this problem more clearly, we implement
Approach I in a full-body simulation with four lateral pushes
Fg=-35N, Fg =45 N, Fy = =60 N, and Fy = 70 N
uniformly to the robot at t = 4.2 s, ¢t = 84 s, t = 13.2 s,
and ¢t = 16.2 s, during At = 0.2 s. The cost weights that we
considered are a; = oy = 1000, 8, = By = 0y = 0y =1 =
1y = 0. Among different cost weights we tested and shown in
Fig. 4, only with # = 100000 the robot can recover from the
pushes and avoid falling. Thus, finding a proper value for 6 is
challenging and reasonable values change when changing the
other cost weights. However, as shown in Fig. 4, Approach II
generates trajectories that are tracked well in the simulation,
without adding any cost term and adding complexity to the
problem.

To demonstrate how Approach II works, we first perform an
LIPM simulation. In this simulation, we set the cost weights
of Dasay, =ay=1,0, =0y =0 =0y =0y =1y =0.
We disturb the state of the LIPM in y direction at ¢t = 2.0
s and t = 3.0 s with Ac, = 0.01 m, A¢, = 0.05 m/s and
Acy = 0.02m, A¢y = 0.1 m/s , and compare the output of our
MPC with viability projection (Approach II) to the one without
projection (named conventional MPC). Note that when we use
Approach II, we manually set the measured state (the LIPM
simulation outputs) the same as the projected values, once the
states are projected inside the viability kernel using Approach
Il (we do this only for the LIPM simulations, i.e. Fig. 5a and
Fig. 5b). This means that we assume the whole-body controller
would be able to track the desired CoM trajectory. In Fig. 5a
(right) after the second disturbance at ¢ = 3.0 s, the DCM
in lateral direction exits the viability kernel slightly. With
the conventional approach and no projection stage, the DCM
diverges towards infinity (Fig. 5a, left). Instead, Approach II
projects the state once at t = 3.0 s only in the lateral direction
when the disturbance is applied. As a result, the DCM remains
close to the upper limit for a while and goes back inside the
boundaries again at around ¢t = 5.0 s (Fig. 5a right and Fig. 5a
left).
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(c) Full-body robot simulation with external push.

Fig. 5: Comparison between MPC with the projection based on Approach Il and without projection, (a) LIPM simulation with
one lateral push (b) several lateral pushes, (c) Full body simulation.

To further investigate the performance of our proposed
projection Approach II, we apply every 0.1 s some random
disturbances in the range ¢, , € (0,0.5), and é,, € (0,0.1)
respectively, from ¢ = 5.0 s to ¢ = 6.0 s. Figure 5b (right)
shows the DCM position and Fig. 5b (left) is the resulting
walking velocity for this case. It is obvious that Approach II
is able to achieve the task (tracking the desired velocity v = 1
m/s) even in presence of random disturbances by projecting
the measured state.

To show how our projection can result in a robust walking
for the full humanoid robot, we perform a full body simulation
where we use the following weights for the slow MPC with
projection based on Approach II with o, = oy = 1,8, =
By = 100,0, = 5,0y = 20 and 1, = n, = 0. B, By is chosen
to be 100 to bring the reference ZMP close to the middle of
the stance foot. §,, is 5 to reduce the reference velocity slightly
in order to make the walking pattern more robust against the
disturbances and ¢, is 20 to force the resulting step width to

be equal to the pelvis length. This prevents the violation of the
minimum step width constraint, which can happen when the
swing foot is close to touching the ground. In this simulation,
we exert four lateral pushes Fyy = —35N, Fy =45 N, F; =
—60 N, and F; = 70 N uniformly to the robot at ¢ = 4.2
s,t =84s,t=13.2s, and ¢ = 16.2 s respectively, during
At = 0.2 s. Without projection, although the robot rejects the
first lateral push, it falls after the second push. This is because
the DCM starts to diverge rapidly after the second push at
t = 8.4 s and begins to move away from the boundaries of
the viability kernel around ¢ = 9.3 s (Fig. 5c right). In contrast,
by using Approach I1, the robot is able to reject all the external
pushes because the initial measured state is modified so that
the state of the nominal model remains inside the viability
kernel and the MPC problem remains feasible. Therefore, the
robot can preserve its balance and successfully achieve the
task (Fig. Sc left).

To systematically show the effectiveness of the proposed
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cases, Approach II performed better.

projection, we performed extensive simulation tests with dif-
ferent external uniform forces applied to the robot in every
direction (from 0° to 360°, every 10°) and every time step of a
complete footstep (every 0.1 s of 0.5 s) during At = 0.2 s. The
cost weights are a, = oy = 1, 8, = B, = 100, 6, = 6, = 20,
and 7, = 1y, = 0. Note that changing the cost weights affects
the amount of push that can be rejected, and here we only
aim to show the difference for one set of cost weights. As
we can see clearly in Fig. 6, the proposed projection increases
the robustness of the controller against external pushes in all
directions and all time instances in one step.

B. Effect of different realistic uncertainties

In this subsection, we study the effects of different realistic
uncertainties on performance. We perform these tests to quan-
tify the robustness of the proposed two-level MPC controller
with viability projection and to motivate how changing the
slow MPC cost weights can add extra robustness to the control
pipeline. We also compare the results of Conventional MPC
without viability projection with our proposed approach to
show how much robustness our method can add to the control
pipeline in the presence of different uncertainties. Then, in the
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next subsection, we use BO to systematically find the optimal
cost weights that trade-off performance and robustness.

1) Computational delay: Solving an iLQG problem rather
than a traditional instantaneous inverse dynamics problem (a
QP) for the whole-body controller comes at the price of
a higher computational cost [49]. Here we try to quantify
how this delay would affect the performance of our control
pipeline. We carry out walking simulations with three different
velocities, i.e. v = 0, 0.4, 0.8 m/s. We include a constant
time delay in our simulations to explore the maximum delay
that the robot can tolerate without falling down (Fig. 7), and
also to examine the effect of the slow MPC cost weights on
this maximum time delay for various walking velocities. We
have taken this computational delay 7 into account in our
simulation by applying the predicted control input based on
the measurement at ¢; — 7 for the current time ¢;.

As expected, larger walking velocities need faster control
loops (Fig. 7(top,left)). We can also observe that the maximum
time delay depends on the slow MPC cost weights; therefore,
finding proper cost weights can increase the robustness to
computational delay. For some sets of weights (Set2 and Set3
of Fig. 7) the maximum time delay is the same for all the
velocities because the weights result in walking velocities
close to zero. Also, selecting higher cost weights does not
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always guarantee further robustness (comparing the results of
Set2 and Set3 in Fig. 7). It is interesting also to observe
that Approach II does not improve robustness with respect
to computational delay at low and medium walking velocities
(v =0, 0.4 m/s). Based on the results reported for a state-of-
the-art solver [45], we would have roughly a computational
delay of 25 ms which, based on our analyses, seems to be
tolerable for real robot experiments.

2) Actuator uncertainties: To make our simulations more
realistic, we assume that the robot actuators are not perfect
and do not deliver the desired torques computed by iLQG.
We consider the main effects present in electric actuators with
gearboxes, i.e. viscous friction k,q, Coulomb friction f,, and
rotor inertia effects k;§. The torques applied to the joints (7,)
are computed as follows

Ta = TiLQG — kiG — kuvd — fs sgn(q), (14)

where ¢ and ¢ are the joint acceleration and velocity vectors,
respectively. k;, k,, fs are constant values depending on the
actuators, and sgn() stands for the sign function. Figure 7 re-
ports the maximum admissible values of k;, k,,, fs individually
for the same set of cost weights used in the previous section.
Again, as we move from right to left in each subplot of Fig. 7
(larger walking velocities), we can see a decrease in robustness
to actuator uncertainty. Interestingly, by changing the cost
weights, we might increase robustness to some uncertainties,
while decreasing it against other uncertainties. For instance,

for a walking velocity of 0.8 m/s, when o = 1 and other cost
terms are zero (Setl), we can see the least robustness against
different uncertainties. By increasing (3, d,7, we see that the
robustness against all uncertainties is increased; however, the
maximum robustness for different uncertainties is achieved
with different cost weights (compare different Sets with each
other). This again shows that the cost weights of the slow
MPC are crucial for robustness, but finding them is not trivial.
Finally, as expected, there is an increase in robustness in cases
where Approach II is used compared to the Conventional MPC
without any projection.

C. Using BO to find optimal cost weights

In this subsection we demonstrate the application of BO
(Section V) to generate robust gaits in the presence of external
disturbances and different uncertainties (i.e. computational
delay and actuator imperfection). The slow MPC cost weights
(i.e. a, B, 6, and 7) are the decision variables. The weights can
vary from 0 to 1000. In all simulation episodes, we consider
a constant computational delay 7 = 25 ms, which is based
on the results reported in [45]. We set the unknown actuator
parameters f, = 1.5 N, k; = 0.005 Nms?, and &k, = 1.5
Nms. For each new set of weights that BO proposes for each
episode, we carried out 50 simulations with random external
disturbances, which are decomposed into two simultaneous
external forces in sagittal and lateral directions, applied at
random times during a complete footstep (the six cases in



Fig. 6) for At = 0.2 s and used the average cost as the
cost of this BO query. Note that we first sampled 50 random
disturbances inside (—45, 35) N for lateral direction and inside
(—80,110) N for sagittal direction and applied the same
disturbance for each query to make sure that the cost of any
set of decision variables remains the same if recomputed.

We have initialized BO with o, = o, = 1 and the other
cost weights set to 1000. Although BO found the optimal cost
weights o, = 470, = 20,8, = 319,8, = 900,0, =
443,6, = 81,m, = 488 and 7, = 489 after 79 queries,
the cost have been settled after 13 iterations. For this set
of decent cost weights a; = 999, = 1,8, = 833,58, =
716, 6, = 134,90, = 312,n, = 0,7, = 1000 after 13 queries,
we observed that the robot can reject all 50 disturbances in
the presence of the computational delay and the actuators
uncertainties. Fig. 8 (top) shows the evolution of cost values
over all iterations and the minimum cost value among all BO
calls until the current iteration. Importantly, the fact that BO
could find a robust policy against different uncertainties and
external disturbances within a few iterations suggests that such
trial and error procedure could directly be done on a real robot
without any prior knowledge on the uncertainties.

We also repeated the same experiment using Approach
I, where the new parameters 7, and 7, could vary from
0 to 100000. Figure 8 (bottom) shows that our proposed
approach (Approach II) performs better than Approach I in the
presence of the same uncertainties. The optimal cost weights
for BO with Approach I are o, = 1000,0, = 108,53, =

355,8, = 690,96, = 355,0, = 968,n7, = 508,n, =
978,0, = 13560,0, = 90721, which are found after 14
queries. Interestingly, BO found large values for 6 which

confirms our observation that we need large 6 for a successful
walking. Although using these cost weights the robot is able
to track the desired velocity quite well, it falls down 9 times
out of the 50 episodes with random external pushes.

Finally, to demonstrate how challenging it is to find the slow
MPC cost weights based on expert knowledge, we tried to find
the optimal cost weights for this experiment using our intuition
and compared the results with BO in Table II. First, we started
from a set of cost weights that tries to move away the solutions
from the boundaries of all constraints (column 1 of Table II)
and observed that not only the velocity tracking is poor, but
the robot is also not able to reject all disturbances and fails
to keep balance 3 times out of 50 random disturbances. Then,
we started to decrease the cost weights to see how it affects
the robot performance (Columns 2 to 5) and observed that the
robot can track the velocity better but still it falls down a few
times. After 6 trial, we found a set of cost weights that the
robot is able to walk robustly without falling down (Table II),
but the velocity tracking still needs to be improved. Our next
efforts to increase the performance while avoiding a fall were
not successful as shown in Table II. Comparing this procedure
with BO shows that 1) it is far from trivial to find good cost
weights and 2) BO can find optimal parameters without any
expert knowledge better than the expert.
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Fig. 8: (top) BO search history with random external distur-
bances using Approach II. Note that BO could find a very
good solution in 13th iteration after which little improvement
in the cost value is observed. (bottom) comparison between
Approach I and Approach II when they were used with BO.
Approach II outperform Approach I in the same condition of
external disturbances and different uncertainties

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a two-level MPC framework
for generating robust walking for humanoid robots. In this
approach, the higher level (slow MPC) uses LIPM abstraction
of the robot dynamics and constructs a linear MPC problem
to track a desired velocity. To guarantee that the trajectories
from the slow MPC do not diverge, we proposed a novel
viability-based projection. The trajectories generated by the
higher level MPC (slow MPC) are then tracked by a low-level
MPC (fast MPC), which is based on iLQG. We showed the
effectiveness of this framework in dealing with different sets
of realistic uncertainties, i.e. external disturbances, unmodeled
actuator dynamics and computational delay of the fast MPC.
Finally, we presented a systematic approach based on Bayesian
Optimization to find the best cost weights of the slow MPC
that trades off performance and robustness.

It is important to note that depending on the full capability
of the robot, at some point failure is unavoidable. In fact,
even though using our proposed approach we can all the time
project the measured state inside the viability kernel of the
simplified model, in some states the fast MPC fails to track
the desired trajectories from the slow MPC. In this case, if we
know that we are in a state that is impossible to recover from
(the full robot viability kernel), we can switch to a safe-fall
mode that minimizes damage to the robot hardware. While
computing the viability kernel for the full robot is extremely
hard, one can try to learn this kernel for a specific robot and



TABLE II: Selecting slow MPC cost weights manually in the presence of external disturbances and different uncertainties. *No.
of Falls’ shows the cases where robot fell down when subjected to 50 random external pushes. 'Performance’ is the average

velocity tracking cost over 50 episodes.

Set of Cost 2 3 4 5 6 7 8 9 o 11 12 13 14 15 16 8O
weights Result

e 10 10 10 10 10 10 10 10 10 10 10 100 100 10 200 250 999
ay 10 10 10 10 10 10 10 10 10 10 10 1000 50 10 10 250 1.0
Ba 1000 500 100 50 10 100 100 100 100 1000 100 700 100 100 500 700  832.61
By 1000 500 100 50 10 100 100 100 100 1000 100 700 100 100 500 700  716.09
8z 1000 500 100 50 10 50 30 10 30 30 30 500 50 50 500 500 133.95
3, 1000 500 100 50 10 S50 30 30 30 30 30 500 50 50 50 100 31170
e 1000 500 100 50 10 1000 1000 1000 1000 1000 1000 100 1000 1000 1000 1000 0.0
y 1000 500 100 50 10 1000 1000 1000 1000 1000 1000 500 1000 1000 1000 1000 1000

No. of Falls 3 5 2 3 12 0 0 3 13 6 6 2 9 11 7 23 0

Performance 382 356 294 238 7.5 253 185 117 36 68 43 42 21 47 33 26 51

a given control policy (for instance the optimal controller
obtained from BO) by sampling different initial states and
rolling out the robot motion in the simulation environment
and learning a bounded set (with a desired shape) that contains
only the viable states. This can be seen as a potential research
direction for future work. Another interesting extension of this
work is to use BO to modify simultaneously both the slow and
fast MPC cost weights. Finally, we intend to test the proposed
control framework on a real humanoid or biped robot.

APPENDIX A

LIPM dynamics in the sagittal direction can be formulated
as

Cp = wWa(Cy — 22) (15)

where 2, € [zf £ LQ—f] Considering the CoM ¢, and DCM
&x = ¢z + ¢ /wp as the state variables, the equations in state
space can be written as

(16a)
(16b)

Cy = wo(fx - Cz)

§x = WO(ELL' - Z»L)

Solving (16b) as a final value problem (with fixed z,), we
have

fre = (Ew—2z)e® T 42 0<t<T, (17)

Defining the DCM offset of current and next step as b , =
&0 —xf and by, = Ep, — 21, we have

b+ o] = (b 4ol = z) e ™0 4z, (18)
Considering the ZMP on the foot edge for computing maxi-

mum DCM offset z, = azg + %, we have

L L
bT,a: - 7f + Ty = (bt,z - 2f> ewO(Ts_t) + xg (19)
APPENDIX B

We describe here the computation of the viability kernel in
lateral directions based on the coordinate system in Fig. 2.

A. Lateral outward direction

Without loss of generality, we assume that the right foot
is in stance in the current step. Considering the swing foot
velocity constraint in lateral outward direction

7 =yl +0,(ta— 1) (20)

Combining this with the maximum step width constraint

in the current step, we compute the allowable foot landing
location for the outward direction in the current step as

y{,Tea,in = (y{ - yg)maz
=min [ —yJ, (L, + W)] 1)

We can write down the DCM time evolution in the current
step as

W, Wy i
byt — Tf +yl = (bt,w - 2f> ewoTs=) Lyl (22)

According to Fig. 2 (right), for the next two steps we can
write the DCM equation as

—(Lpy+W) = (bT,y,l - V?) el — <bT7y,'r - W;)
(23a)
(Lo +79) = (b = ) 7 = (b - )
(23b)
Using (23), we compute br,y, ;
_ W — woT's
o=y T o O

Substituting this equation and (21) into (22) we compute
the viability kernel boundary in lateral outward direction as

- Wf firea,in LP
btyrin = =~ + {yl T 1t ewoTs
W - W woTs
S Wowen } w0 (To—t) (25)
— e“wWols

For the case in which the left foot is in stance we have

7] =yl —7,(ta — t) (26)



and

i7" = (] — 1) mas
=max [7] — yf, — (L, + W) @7
With the same procedure we obtain
- Wy L
b7 inzfi firea,in e
t,y,l,in 9 + |: + 1+ e(»JoTs
W — WewoTs
= —wo(Ts—t)
1 — e2woTs :|e ’ (28)

B. Lateral inward direction

Again we assume that the right foot is in stance in the
current step. Considering the swing foot velocity constraint in
lateral inward direction

yl =yl =0, (ta —1) (29)

Combining this with the minimum step width constraint
in the current step, we compute the allowable foot landing
location for the inward direction in the current step as

fyrea,out (yl —yl )mzn
= max [y} —yf, (L + W) (30)

We can write down the DCM time evolution in the current
step as

W Wy _
bT,y,l + Tf +y = (btyr+ 2) wo (Ts—t) +yf (31)

According to Fig. 2 (left), for the next two steps we can
write the DCM equation as
W
(bT y,r + 2f )

_ _ w
—(L,+W) = (bT’y,l T Qf) wo

(32a)
W - W
(Lp + W) = <bT y,r + 2f> (bT,y,l + 2f>
(32b)
Using (32), we compute ETyy,l
- W L W — WewoTs
by = — =L — L = (33)

2 1+ ewols 1 — g2woTs

Substituting this equation and (30) into (31) we compute
the viability kernel boundary in lateral inward direction as

_ Wy L
b ou v fiyrea,out P
ty,rout — 9 + [ 1+ ewoTs
W — T
—-12iﬂ~}e‘w°”¥‘“ (34)
— e2woTs

For the case in which the left foot is in stance we have

yl =yl +70,(ta — 1) (35)
and
y{,rea,out _ (y{ N y(J;)mln
=min [y —yf, —(L, + W)  (36)

With the same procedure we obtain

- w ; L
bt,y,l,out W + |:y1 rea,zn+ P

2 1+ ewoTs

woT's
W — We :|e—w0(Ts—t)

R G7)
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