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Abstract—Model predictive control (MPC) has shown great
success for controlling complex systems such as legged robots.
However, when closing the loop, the performance and feasibility
of the finite horizon optimal control problem (OCP) solved at
each control cycle is not guaranteed anymore. This is due to
model discrepancies, the effect of low-level controllers, uncer-
tainties and sensor noise. To address these issues, we propose a
modified version of a standard MPC approach used in legged
locomotion with viability (weak forward invariance) guarantees.
In this approach, instead of adding a (conservative) terminal
constraint to the problem, we propose to use the measured
state projected to the viability kernel in the OCP solved at
each control cycle. Moreover, we use past experimental data
to find the best cost weights, which measure a combination
of performance, constraint satisfaction robustness, or stability
(invariance). These interpretable costs measure the trade off
between robustness and performance. For this purpose, we use
Bayesian optimization (BO) to systematically design experiments
that help efficiently collect data to learn a cost function leading
to robust performance. Our simulation results with different
realistic disturbances (i.e. external pushes, unmodeled actuator
dynamics and computational delay) show the effectiveness of our
approach to create robust controllers for humanoid robots.

I. INTRODUCTION

Thanks to the increase of computational power, employing

model predictive control (MPC) to control complex mechani-

cal systems such as legged robots is feasible nowadays. Using

MPC for controlling legged robots is desirable, because 1)

these robots are expected to perform tasks in dynamically

changing environments 2) they have highly limiting interaction

constraints and 3) MPC affords the prediction of steps in the

future as a response to current disturbances.

Although MPC has been shown to be a successful paradigm

for controlling legged robots [1], [2], [3], dealing with un-

certainties in the underlying optimal control problem (OCP)

is only tractable for simplified cases [4], [5]. Furthermore,

it is crucial to add a terminal constraint to the problem

to guarantee the invariance of the finite horizon OCP, in

which case ensuring feasibility of this constrained optimization

problem becomes an issue rarely addressed in the field [4]. It

is however important to consider this problem because the

dynamic model used for MPC does not take into account the

true dynamics of the robot nor the effect of the low-level
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controllers and it rarely models sensor noise and environmental

uncertainty. As a consequence, merely using the measured

state of the robot in the OCP can lead to an infeasible problem

when a conservative terminal constraint is considered, or cause

divergence of the center of mass (CoM) motion when no

terminal constraint is imposed, despite the robot remaining

capable to maintain balance. Additionally, it becomes very

difficult to find a cost function for the OCP that improves

robustness and performance in face of all these unmodeled

effects.

In this paper, we tackle the problems of invariance of the

desired CoM trajectory and constraint satisfaction robustness

of constrained MPC for humanoid walking. We propose a

novel approach to adapt the estimated current state of the

system used in the constrained MPC to prevent the desired

CoM trajectory from divergence at all times. We use the

viability kernel bounds to compute a feasible state while

minimizing departure from the measured state of the system.

Furthermore, we propose to adapt the cost function of the

OCP to increase the robustness of the controller to unknown

dynamics and environmental uncertainty and to implicitly

take into account the, possibly complex, low-level controllers.

We aim to find this cost function in as few experiments as

possible using Bayesian Optimization (BO). We demonstrate

the capabilities of our approach in a complete system that also

includes a complex low-level model predictive controller and

realistic uncertainties in a full-body simulation.

A. Related work

1) MPC for locomotion: One of the earliest works that em-

ployed MPC for controlling legged robots is [6]. In this work,

Wieber modified the formulation in [7] and introduced MPC

as a strong tool for controlling walking of highly constrained

and inherently unstable legged robots. After this work, MPC

has become one of the dominant approaches for controlling

legged robots. Apart from walking, where linear MPC can be

implemented thanks to the linear inverted pendulum model

(LIPM) [1], [8], there has been a tremendous effort in the

community to make this feasible for more complex models

and tasks [9], [10], [11].

All of the aforementioned approaches use a deterministic

representation of the problem and rely on the low-level feed-

back control and the inherent robustness of MPC for dealing

with disturbances and uncertainties. To make the controller

robust, [12] took the effects of uncertainties into account and

proposed a robust approach to constraint satisfaction in the

low-level instantaneous feedback controller. [9], [13], [14]

addressed the problem of robust trajectory optimization, where

the goal is to generate trajectories that are far from the

boundaries of constraints (constraint satisfaction robustness).
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Although similar in constraint satisfaction aspect, tackling

robustness in MPC problems introduces two more issues with

respect to the robust trajectory optimization problem. First,

since it is not clear what the final cost/constraints of the

locomotion problem are, ensuring invariance properties or

stability of the system is very challenging. Second, when

a (conservative) terminal constraint is taken into account,

the finite horizon OCP can easily become infeasible in the

presence of uncertainties.

Recently, uncertainties have been considered in the MPC

synthesis using robust (RMPC) [4] and stochastic (SMPC) [5]

approaches. Using the measured state of the system directly

inside MPC problem may render the OCP infeasible (in the

presence of any state constraint). This is a well-known problem

of constrained MPC in general and if the OCP is feasible at all

time instants given that it is feasible at initial time, it is said

to be recursively feasible [15]. To ensure recursive feasibility,

[4] employed the RMPC approach in [16] and introduced

the current state of the system as decision variable to be

determined as a function of the state measurement. In general,

there exist other approaches apart from [16] to guarantee

recursive feasibility for linear MPC, e.g., adding additional

constraints [17], or using a backup strategy when the problem

is infeasible [18]. Guaranteeing recursive feasibility in the

general case for linear systems can end up in theoretically very

complicated algorithms [19], or it may enforce very limiting

constraints that degrade the performance [20].

In this paper, we propose a novel approach that uses MPC

to generate trajectories for bipedal walking and guarantees

viability of the gaits without any terminal constraint. Our

approach is based on computation of the viability kernel

and projecting the measured state inside it. We ensure that,

contrary to [4], the measured state is only modified if it is

outside of the viability kernel.

2) Bayesian Optimization for locomotion: Bayesian opti-

mization (BO) is a form of black-box and derivative-free op-

timization [21]. BO has been successfully applied to different

parameter/gain tuning problems in robotics [22], [23]. BO is

especially useful when we have a relatively low number of

parameters to tune (e.g., n ≤ 20). In other words, BO is

practical when we have an efficiently searchable control policy

representation (e.g., PID [23], LQR [22], etc.) in contrast with

expressive policy representation without any prior (e.g., Neural

Networks) [24].

Since humanoid robots are inherently unstable and high-

dimensional systems, the application of BO to humanoid

locomotion control (and in general legged robots) is limited to

simplified cases such as planar bipeds [25], [26], [27] or one-

legged hoppers [28]. [25] optimized eight parameters using

BO for a planar biped walking. [26] applied BO to a more

complex model of a planar biped robot, where they used

16 neuromuscular policy variables to parametrize walking of

a planar biped robot on uneven and sloped surfaces. They

applied a generalized version of this approach to the simulation

and experiments of the biped robot ATRIAS [27]. Even for

these simplified situations, both [25] and [26] argued that

only a very small percentage of the parameter space leads

to a feasible gait, which shows the difficulty of generating

feasible motions for humanoid robots using only black-box

optimization.

Recently [29], [30] used BO to find the parameters of

a whole-body controller (inverse dynamics) for a humanoid

robot, yielding robust performance for the control. Our work

can be seen as complementary to these works, because we

propose to use BO to find the best cost weights of the reactive

planner for a given whole-body controller. In fact, we use BO

to find plans that can be best tracked and can result in robustly

achieving the task.

B. Proposed framework and contributions

The block diagram of our proposed control framework is

shown in Fig. 1. The first layer of the MPC (slow MPC)

regenerates at 10 Hz plans for the CoM and next contact

location with two walking steps for the receding horizon

length [7], [6], [1]. In the lower level, we use iterative linear-

quadratic Gaussian (iLQG) [31] at 100 Hz with a 0.3 s horizon

(fast MPC) to generate joint torques based on the full robot

dynamics and the desired trajectories from the first stage. To

ensure that the first stage generates trajectories that are robust

and can be tracked by the low-level controller, we use BO to

find the best cost weights of slow MPC that yield a robust

performance.

In a preliminary version of this paper, we used BO to

tune the cost weights of the trajectory optimization problem

[14]. We showed that BO can efficiently find cost weights

that lead to robust performance in the presence of different

disturbances and uncertainties. This article extends [14] in

the following directions, which can be seen as the main

contributions of this paper:

• We derive boundaries of the viability kernel for LIPM

with finite size foot considering the swing foot effects.

• We propose a viability-based projection method to mod-

ify the measured state used in the MPC to guarantee the

existence of at least one solution for the OCP.

• We propose a two-level MPC framework (fast MPC and

slow MPC, see Fig. 1) with interpretable cost terms in the

slow MPC that can be learned to trade-off performance

against robustness.

• We demonstrate the importance of feasibility of the slow

MPC problem as well as generating robust trajectories,

through extensive full-humanoid simulation with various

realistic uncertainties.

The rest of this paper is organized as follows: Section

II presents the formulation that we use for slow MPC. In

Section III, we compute the boundaries of the viability kernel

and propose a novel approach for projecting initial states

of slow MPC inside it. Section IV briefly presents the fast-

MPC algorithm (iLQG). In Section V, we present the black-

box optimization problem for automatically adapting the slow

MPC cost weights using BO. In Section VI we present

extensive full-humanoid simulations to show the effectiveness

of our control framework. Finally, Section VII summarizes the

findings.





system starting from this set remains in this set (in this case

it would be called forward invariant or positively invariant

set [39]). Note that in the case of legged robots, a more

conservative concept than viability is often used, namely N-

step capturability [33]. Viability is very similar in nature to

∞-step capturability, with a subtle difference that the viability

kernel is a closed set while the ∞-step capturable region is

an open set.

It is shown in [40], [34] that viability of a legged robot

is guaranteed, if one minimizes any derivative of the CoM

motion over a long enough horizon in the MPC cost function.

However, if the measured state of the CoM is not viable (due to

estimation error, measurement noise, or external disturbances),

the MPC problem will diverge and tracking the resulting CoM

trajectories by the whole body controller (WBC) will result

in a fall. We argue that with LIPM assumptions, which have

been proven to be reasonable for walking, and given different

constraints, we can compute realistic bounds for the viability

kernel. As a result, we can constrain the robot state to remain

inside the viability kernel of the simplified model.

It is important to note that the viability kernel bounds

based on LIPM dynamics are computed assuming zero vertical

CoM acceleration and angular momentum around the CoM.

Therefore, even if the measured state of the system is outside

the viability kernel computed based on LIPM assumption, it is

possible that the WBC brings back the state inside the viability

kernel. By projecting the measured state inside the computed

viability kernel we make sure that slow MPC finds a solution

that does not lead to divergence of the CoM motion starting

from the modified state. Then, we rely on the WBC to exploit

the full control authority of the robot and bring it to a nominal

safe motion.

In the remainder of this section, first we compute the

viability kernel using the LIPM with constraints on the step

location as well as swing foot maximum velocity. Then, we

review the approach in [4] and propose an alternative approach

to modify the OCP (1) to ensure weak invariance of the motion

while remaining always feasible. Finally we comment on the

differences and implications of each approach.

Remark 3: In our MPC formulation, we considered two

walking steps as the horizon. However, as shown in [8], one

step horizon could be enough, provided that a proper terminal

constraint is considered that accounts for the viability of the

gait. Finding this time invariant terminal constraint for the

LIPM is practical, when the contact switch is the terminal

point in the horizon. In that case, we end up having a shrinking

horizon MPC formulation. To resort to the standard fixed

horizon MPC formulation, the common practice traditionally

was to just consider two walking steps in the horizon as

walking is a two-step periodic gait. In this approach, the

hope is that minimizing any derivative of the CoM velocity is

enough to ensure gait invariance [40]. However, it is shown

in [41] that a terminal constraint is essential to guarantee the

invariance of the gait. Finding this terminal constraint amounts

to making some assumptions on the gait after the terminal

time (the tail of the MPC). Adding a terminal constraint

also makes it essential to find a way to guarantee recursive

feasibility. In this paper, we use two steps in the horizon

without any terminal constraint and leverage the approach in

[8] for computing the viability kernel to provide the MPC

formulation in (1) with viability guarantees.

A. Viability kernel

In this section we follow procedures similar to [8] to

compute the bounds of the viability kernel for the case of

an LIPM with finite-size foot (rectangular shape) and box

constraints for the step location. We could also compute this

bound analytically (or through a convex optimization problem)

with the same procedure for other convex constraints on foot

step location and other convex foot shapes. Compared to [8],

[33] that did not consider the current state of the swing foot,

here we take into account constraint (1d) to compute the

viability kernel. In this way we can make sure that the viability

kernel bounds are consistent with the reachability constraint

of the current state of the swing foot.

Starting from (1d), we can compute the reachable area for

the landing of the swing foot in sagittal direction

|xf
1 − xf

s | ≤ vx(ttd − t) (2)

where ttd is the touch down time and vx is the maximum

average foot velocity. Note that vx is a simplified upper-bound

on the average velocity of the swing foot proposed in [1] as

a proxy constraint that is used in (1d). Note also that, we

use underline and overline to show minimum and maximum

of a variable all over the paper. Using (2), we can compute

the maximum and minimum reachable locations for the swing

foot landing, given the maximum swing foot velocity

xf
1 = xf

s + vx(ttd − t) (3a)

xf
1 = xf

s − vx(ttd − t) (3b)

Taking into account the kinematic reachability constraint for

the step length, we compute the maximum and minimum step

length for the current step as

xf,rea
1 = (xf

1 − xf
0 )max = min (xf

1 − xf
0 , L) (4a)

xf,rea
1 = (xf

1 − xf
0 )min = max (xf

1 − xf
0 ,−L) (4b)

Where L is the maximum step length and the superscript rea
stands for reachable.

Using the results in [8], we can write down the evolution of

the DCM offset b, which is the distance between the center of

the stance foot and the DCM. When the DCM is in front of the

stance foot (i.e. bt,x ≥
Lf

2 , with Lf being the foot length), the

best ZMP location to slow down the DCM divergence is the

tip of the foot. This results in the following DCM evolution

(see Appendix A for details):

bT,x −
Lf

2
+ xf

1 =

(

bt,x −
Lf

2

)

eω0(Ts−t) + xf
0 (5a)

where bt and bT are the DCM offset at the beginning of the

current time and next step, Ts is the single support period.

When the DCM is instead behind the stance foot, i.e. bt,x ≤

−
Lf

2 , we have:

bT,x +
Lf

2
+ xf

1 =

(

bt,x +
Lf

2

)

eω0(Ts−t) + xf
0 (5b)



From these equations we can compute bt,x, the boundary of

the viability kernel in sagittal direction as a function of the

maximum/minimum step length (xf
1 − xf

0 )max/min and the

maximum DCM offset at the next step bT,x:

bt,x =
bT,x − Lf/2 + (xf

1 − xf
0 )max

eω0(Ts−t)
+

Lf

2
(6a)

bt,x =
−bT,x + Lf/2 + (xf

1 − xf
0 )min

eω0(Ts−t)
−

Lf

2
(6b)

Since bT,x refers to the beginning of the (next) step, we can

reasonably assume that it is independent of the swing foot

state. Therefore, we know from [8] that it can be computed

as:

bT,x =
L

eω0Ts − 1
+

Lf

2

Substituting this equation and (4) into (6) yields

bt,x =

(

L

eω0Ts − 1
+ xf,rea

1

)

e−ω0(Ts−t) +
Lf

2
(7a)

bt,x =

(

−L

eω0Ts − 1
+ xf,rea

1

)

e−ω0(Ts−t) −
Lf

2
(7b)

where L is the maximum step length, xf,rea
1 and xf,rea

1 are

the maximum and minimum reachable locations for the swing

foot in sagittal direction computed in (4). Finally, bt,x is the

maximum DCM offset at time t in sagittal direction. To apply

the viability constraint in sagittal direction, the DCM offset

(bt,x) must lie between the bounds of (7).

Equation (7) is a generalization of the viability kernel

bounds computed in [8], that takes into account the maximum

swing foot velocity, as well as the foot length effect. We can

verify that the bounds of [8] are a special case of (7) by setting

Ts − t = Ts, Lf = 0 and xf,rea
1 = L:

bT,x =
L

eω0Ts − 1

In lateral direction, we have asymmetric reachability constraint

sets because of self-collision constraints. Hence, we consider

two cases for computing the viability kernel, i.e. inward

direction for the case where swing foot adaptation is prone to

self-collision, and outward direction where the swing foot is

only limited by kinematic reachability constraint. The viability

kernel bounds for the lateral direction are (see the Appendix

B for derivation details)

b
in

t,y =

[

yf,rea,in1 (−1)n
Lp

1 + eω0Ts
+

(−1)n
W −Weω0Ts

1− e2ω0Ts

]

e−ω0(Ts−t)(−1)n−1Wf

2
(8a)

b
out

t,y =

[

yf,rea,out1 (−1)n
Lp

1 + eω0Ts
+

(−1)n
W −Weω0Ts

1− e2ω0Ts

]

e−ω0(Ts−t)(−1)n
Wf

2
(8b)

where yf,rea,in1 is computed using (21) or (27) and yf,rea,out1 is

computed using (30) or (36) based on which foot is stance, Wf

is the foot width. W and W are the minimum and maximum

step width with respect to the nominal step width which is

pelvis width Lp (note that W and W could also be negative

[8]); n = 1 when the right foot is stance, and n = 2 when

the left foot is stance. Again, setting Ts − t = Ts, Wf =

0, yf,rea,in1 = (Lp + W ), and yf,rea,out1 = (Lp + W ) and

assuming the right foot is stance, we obtain the same result

as in [8]

b
in

t,y =
Lp

eω0Ts + 1
+

W −Weω0Ts

1− e2ω0Ts

b
out

t,y =
Lp

eω0Ts + 1
+

W −Weω0Ts

1− e2ω0Ts

B. Approach I: Initial condition as decision variable

The first approach we consider to ensure a non-divergent

motion of the CoM in (1) is similar in spirit to the one

proposed in [16] and used in [4] for bipedal walking. In this

approach, we add a conservative terminal constraint to (1), i.e.

capturability. Then, in order to make sure that the OCP in (1)

remains always feasible, we consider the initial states of the

CoM as decision variable. The modified OCP is

minimize
X0,Ẋ0,Zi,X

f
j

J (10)

s.t. (1b), (1c), (1d).

ξk+N ∈ support polygon

In this formulation, the initial state is allowed to be changed

such that the OCP remains always feasible. The initial state

can be arbitrarily selected by the program such that the cost

is minimized and in this way the feasibility of the program is

guaranteed by construction.

As we will show later, since the initial condition can be

selected arbitrarily by the optimizer, using (10) can result in a

discontinuous trajectory of the CoM. One can think of adding a

cost term to reward initial states that are close to the measured

state; however, in practice we observed that we would need

a very high weight for this term to have a smooth CoM

trajectory. This would be problematic for the tuning of our

(interpretable) cost terms to be weighted automatically using

BO. To circumvent this, we propose an alternative approach

that does not suffer from this problem.

C. Approach II: Projection of measured state inside viability

kernel

In the second approach, we propose a new way to adapt

the measured state to guarantee viability while remaining

always feasible. We construct the following QP to project

the measured (estimated) CoM states Xmea
0 , Ẋmea

0 inside the

viability kernel before passing it to (1)

minimize
X0,Ẋ0

‖X0 −Xmea
0 ‖2 + w‖Ẋ0 − Ẋmea

0 ‖2 (11a)

s.t. ξ0 = X0 +
1

ω0
Ẋ0 ∈ viability kernel. (11b)

where w is a constant weight. In this way we can guarantee

existence of at least one solution for (1) that does not lead





β to zero, the ZMP could likely reach the boundaries of the

support polygon, as normally the ZMP constraint (1b) is the

most restrictive constraint in (1). If we start increasing β, we

favor solutions of the program in (1) that have a ZMP close to

the center of support polygon. However, increasing this weight

too much not only prevents the robot from achieving motions

with high walking velocities, but it may also activate other

constraints or even jeopardise stability. Hence, with a proper

choice of cost weights, we can make sure that the optimal

solution is the one that yields a robust performance.

A. Problem formulation

We are interested in solving the following optimization

problem (see Fig. 1):

minimize
Γ

JBO(Γ) ,

N
∑

i=1

‖Ẋ real
i (Γ)− Ẋdes

i ‖2

s.t. Ẋ real
i (Γ) is the output of simulation in Fig. 1, (12)

where Ẋ real
i (Γ) is the CoM velocity obtained from the simu-

lation of the robot full body with different (unknown) distur-

bances (or real experiment). In fact, here we are considering

the whole control procedure as a black box, where the cost

weights of the slow MPC are the parameters of the policy that

are decided by the BO.

If the robot falls down during one episode (the difference

between the desired and actual heights of the CoM exceeds

a constant threshold), we terminate that episode and return a

high penalty as the cost of the episode. This penalty, which

is chosen to be larger than the worst tracking performance

without falling down, is defined so that later falls receive

smaller penalty.

B. Bayesian optimization

In order to solve (12), we resort to BO, which has shown to

be very efficient for problems with a low number of parameters

to learn [46], [22], [27], [23]. Note that since we do not make

any assumption in terms of the uncertainties and disturbances

(we do black-box optimization), our approach is not limited

to uncertainties with a given shape or probability distribution,

which is the case for RMPC and SMPC problems [4], [5].

On the downside, contrary to [4], [5], we need to carry out

a few simulation experiments to achieve the robustness and

any change in the uncertainty set would need a new set of

simulation experiments.

BO is one of the most efficient algorithms for active learning

of policy parameters. In a nutshell, BO builds a surrogate

model of the cost function (in our case (12)) typically using

Gaussian processes (GP). Then, it optimizes an acquisition

function which is based on the surrogate model to find the next

set of parameters, given the history of the experiments until

now. The acquisition function tries to find a trade-off between

exploration (high-variance) and exploitation (high-value).

To solve the BO problem in this paper we use scikit-

optimize1 and employ gp − hedge as acquisition function,

1https://github.com/scikit-optimize/scikit-optimize

TABLE I: Physical properties of LIPM and gait parameters

Parameter Description Value

h LIPM height 0.8 (m)
Lf Foot length 0.2 (m)
Wf Foot width 0.1 (m)
Lp Pelvis length 0.2 (m)
L Maximum step length 0.6 (m)

Lp +W Maximum step width 0.4 (m)
Lp +W Minimum step width 0.12 (m)

Tss Single support duration 0.5 (s)
Tds Double support duration 0.1 (s)
dT Time step 0.1 (s)

which is a probabilistic combination of lower confidence

bound, expected improvement and probability of improvement

[47]. More details on the BO technique that we used can be

found in [14].

VI. RESULTS AND DISCUSSION

In this section we present simulations of a full humanoid

robot to showcase the effectiveness of our framework. We used

MuJoCo [48] for all our full-body simulations on a laptop

with 3.6 GHz Intel i7 processor and 16Gb of RAM. The

considered humanoid robot is 1.37 m tall, it weighs 41 kg

and has 27 DoFs. Abdomen, shoulder, and ankle joints are 2-

DoF, while elbows, knees, and pelvis are 1-DoF, and hips are

3-DoF joints. Table I summarizes the physical properties of

the LIPM approximation of the robot and the gait parameters

used in walking simulations.

As shown in Fig. 1, we regenerate the CoM and feet

trajectories every 0.1 s using the LIPM with a two-walking-

step horizon (slow MPC), and the iLQG every 0.01 s for a

0.3 s horizon (fast MPC), both in closed-loop. Note that the

discretization times are the same as the replanning, i.e. 0.1 s

for slow MPC and 0.01 s for fast MPC. Simulations are run

at 1 KHz. Note that although we re-compute the iLQG policy

every 10 ms and the feedforward and feedback terms are fixed

during this period, we update the measured/estimated state of

the system every 1 ms in the control law

uk = u∗

i +Ki(xk − x∗

k) (13)

where xk and uk are the state and control input at time step k
(updated every 0.001 s), K is the feedback gain matrix, and

(x∗, u∗) is the optimal state-control trajectory obtained from

iLQG.

In the rest of this section, we present three different sets

of simulations to illustrate the capabilities of the proposed

framework. In Subsection VI-A, we show the effectiveness of

the projection stage to ensure feasibility of the MPC problem.

In Subsection VI-B, we investigate the effects of different

uncertainties, i.e. computational delay and model uncertainties

on the performance of the control framework. Finally, in

Subsection VI-C, we show the effectiveness of BO in finding

the best cost weights of the MPC through a few episodes in

simulation.

A. Viability-based projection

In this subsection, we investigate the effectiveness of the

viability projection described in Section III. To do that, first







Fig. 6: Comparison between conventional MPC (without projection) and Approach II (with projection) in push recovery. θ = 90°

corresponds to a forward push, while θ = 0° and θ = 180° represent pushes to the right and left directions, respectively. The

radius shows the magnitude in N of the pushes applied for ∆t = 0.2 s uniformly that the controller was able to reject. In all

cases, Approach II performed better.

projection, we performed extensive simulation tests with dif-

ferent external uniform forces applied to the robot in every

direction (from 0° to 360°, every 10°) and every time step of a

complete footstep (every 0.1 s of 0.5 s) during ∆t = 0.2 s. The

cost weights are αx = αy = 1, βx = βy = 100, δx = δy = 20,

and ηx = ηy = 0. Note that changing the cost weights affects

the amount of push that can be rejected, and here we only

aim to show the difference for one set of cost weights. As

we can see clearly in Fig. 6, the proposed projection increases

the robustness of the controller against external pushes in all

directions and all time instances in one step.

B. Effect of different realistic uncertainties

In this subsection, we study the effects of different realistic

uncertainties on performance. We perform these tests to quan-

tify the robustness of the proposed two-level MPC controller

with viability projection and to motivate how changing the

slow MPC cost weights can add extra robustness to the control

pipeline. We also compare the results of Conventional MPC

without viability projection with our proposed approach to

show how much robustness our method can add to the control

pipeline in the presence of different uncertainties. Then, in the

next subsection, we use BO to systematically find the optimal

cost weights that trade-off performance and robustness.

1) Computational delay: Solving an iLQG problem rather

than a traditional instantaneous inverse dynamics problem (a

QP) for the whole-body controller comes at the price of

a higher computational cost [49]. Here we try to quantify

how this delay would affect the performance of our control

pipeline. We carry out walking simulations with three different

velocities, i.e. v = 0, 0.4, 0.8 m/s. We include a constant

time delay in our simulations to explore the maximum delay

that the robot can tolerate without falling down (Fig. 7), and

also to examine the effect of the slow MPC cost weights on

this maximum time delay for various walking velocities. We

have taken this computational delay τ into account in our

simulation by applying the predicted control input based on

the measurement at ti − τ for the current time ti.

As expected, larger walking velocities need faster control

loops (Fig. 7(top,left)). We can also observe that the maximum

time delay depends on the slow MPC cost weights; therefore,

finding proper cost weights can increase the robustness to

computational delay. For some sets of weights (Set2 and Set3

of Fig. 7) the maximum time delay is the same for all the

velocities because the weights result in walking velocities

close to zero. Also, selecting higher cost weights does not







TABLE II: Selecting slow MPC cost weights manually in the presence of external disturbances and different uncertainties. ’No.

of Falls’ shows the cases where robot fell down when subjected to 50 random external pushes. ’Performance’ is the average

velocity tracking cost over 50 episodes.

Set of Cost
weights

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
BO

Result

αx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10 10 10 100 100 10 200 250 999

αy 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10 10 1.0 1000 50 10 10 250 1.0

βx 1000 500 100 50 10 100 100 100 100 1000 100 700 100 100 500 700 832.61

βy 1000 500 100 50 10 100 100 100 100 1000 100 700 100 100 500 700 716.09

δx 1000 500 100 50 10 50 30 10 30 30 30 500 50 50 500 500 133.95

δy 1000 500 100 50 10 50 30 30 30 30 30 500 50 50 50 100 311.70

ηx 1000 500 100 50 10 1000 1000 1000 1000 1000 1000 100 1000 1000 1000 1000 0.0

ηy 1000 500 100 50 10 1000 1000 1000 1000 1000 1000 500 1000 1000 1000 1000 1000

No. of Falls 3 5 2 3 12 0 0 3 13 6 6 22 9 11 7 23 0

Performance 38.2 35.6 29.4 23.8 7.5 25.3 18.5 11.7 3.6 6.8 4.3 4.2 2.1 4.7 3.3 2.6 5.1

a given control policy (for instance the optimal controller

obtained from BO) by sampling different initial states and

rolling out the robot motion in the simulation environment

and learning a bounded set (with a desired shape) that contains

only the viable states. This can be seen as a potential research

direction for future work. Another interesting extension of this

work is to use BO to modify simultaneously both the slow and

fast MPC cost weights. Finally, we intend to test the proposed

control framework on a real humanoid or biped robot.

APPENDIX A

LIPM dynamics in the sagittal direction can be formulated

as

c̈x = ω2
0(cx − zx) (15)

where zx ∈ [xf ±
Lf

2 ]. Considering the CoM cx and DCM

ξx = cx + ċx/ω0 as the state variables, the equations in state

space can be written as

ċx = ω0(ξx − cx) (16a)

ξ̇x = ω0(ξx − zx) (16b)

Solving (16b) as a final value problem (with fixed zx), we

have

ξT,x = (ξt,x − zx)e
ω0(Ts−t) + zx, 0 ≤ t < Ts (17)

Defining the DCM offset of current and next step as bt,x =

ξt,x − xf
0 and bT,x = ξT,x − xf

1 , we have

bT,x + xf
1 =

(

bt,x + xf
0 − zx

)

eω0(Ts−t) + zx (18)

Considering the ZMP on the foot edge for computing maxi-

mum DCM offset zx = xf
0 +

Lf

2 , we have

bT,x −
Lf

2
+ xf

1 =

(

bt,x −
Lf

2

)

eω0(Ts−t) + xf
0 (19)

APPENDIX B

We describe here the computation of the viability kernel in

lateral directions based on the coordinate system in Fig. 2.

A. Lateral outward direction

Without loss of generality, we assume that the right foot

is in stance in the current step. Considering the swing foot

velocity constraint in lateral outward direction

yf1 = yfs + vy(ttd − t) (20)

Combining this with the maximum step width constraint

in the current step, we compute the allowable foot landing

location for the outward direction in the current step as

yf,rea,in1 = (yf1 − yf0 )max

= min [yf1 − yf0 , (Lp +W )] (21)

We can write down the DCM time evolution in the current

step as

bT,y,l −
Wf

2
+ yf1 =

(

bt,y,r −
Wf

2

)

eω0(Ts−t) + yf0 (22)

According to Fig. 2 (right), for the next two steps we can

write the DCM equation as

−(Lp +W ) =

(

bT,y,l −
Wf

2

)

eω0T −

(

bT,y,r −
Wf

2

)

(23a)

(Lp +W ) =

(

bT,y,r −
Wf

2

)

eω0T −

(

bT,y,l −
Wf

2

)

(23b)

Using (23), we compute bT,y,l

bT,y,l =
Wf

2
−

Lp

1 + eω0Ts
−

W −Weω0Ts

1− e2ω0Ts
(24)

Substituting this equation and (21) into (22) we compute

the viability kernel boundary in lateral outward direction as

bt,y,r,in =
Wf

2
+

[

yf,rea,in1 −
Lp

1 + eω0Ts

−
W −Weω0Ts

1− e2ω0Ts

]

e−ω0(Ts−t) (25)

For the case in which the left foot is in stance we have

yf1 = yfs − vy(ttd − t) (26)



and

yf,rea,in1 = (yf1 − yf0 )max

= max [yf1 − yf0 ,−(Lp +W )] (27)

With the same procedure we obtain

bt,y,l,in = −
Wf

2
+

[

yf,rea,in1 +
Lp

1 + eω0Ts

+
W −Weω0Ts

1− e2ω0Ts

]

e−ω0(Ts−t) (28)

B. Lateral inward direction

Again we assume that the right foot is in stance in the

current step. Considering the swing foot velocity constraint in

lateral inward direction

yf
1
= yfs − vy(ttd − t) (29)

Combining this with the minimum step width constraint

in the current step, we compute the allowable foot landing

location for the inward direction in the current step as

yf,rea,out1 = (yf1 − yf0 )min

= max [yf
1
− yf0 , (Lp +W )] (30)

We can write down the DCM time evolution in the current

step as

bT,y,l +
Wf

2
+ yf1 =

(

bt,y,r +
Wf

2

)

eω0(Ts−t) + yf0 (31)

According to Fig. 2 (left), for the next two steps we can

write the DCM equation as

−(Lp +W ) =

(

bT,y,l +
Wf

2

)

eω0T −

(

bT,y,r +
Wf

2

)

(32a)

(Lp +W ) =

(

bT,y,r +
Wf

2

)

eω0T −

(

bT,y,l +
Wf

2

)

(32b)

Using (32), we compute bT,y,l

bT,y,l = −
Wf

2
−

Lp

1 + eω0Ts
−

W −Weω0Ts

1− e2ω0Ts
(33)

Substituting this equation and (30) into (31) we compute

the viability kernel boundary in lateral inward direction as

bt,y,r,out = −
Wf

2
+

[

yf,rea,out1 −
Lp

1 + eω0Ts

−
W −Weω0Ts

1− e2ω0Ts

]

e−ω0(Ts−t) (34)

For the case in which the left foot is in stance we have

yf
1
= yfs + vy(ttd − t) (35)

and

yf,rea,out1 = (yf1 − yf0 )min

= min [yf
1
− yf0 ,−(Lp +W )] (36)

With the same procedure we obtain

bt,y,l,out =
Wf

2
+

[

yf,rea,in1 +
Lp

1 + eω0Ts

+
W −Weω0Ts

1− e2ω0Ts

]

e−ω0(Ts−t) (37)
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