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This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants,
classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current
methods for segmentation focus on separating plant pixels from background, organ-specific segmentation makes it feasible to
measure a wider range of plant properties. Manually scored training data for a set of hyperspectral images collected from a
sorghum association population was used to train and evaluate a set of supervised classification models. Many algorithms show
acceptable accuracy for this classification task. Algorithms trained on sorghum data are able to accurately classify maize leaves
and stalks, but fail to accurately classify maize reproductive organs which are not directly equivalent to sorghum panicles. Trait
measurements extracted from semantic segmentation of sorghum organs can be used to identify both genes known to be
controlling variation in a previously measured phenotypes (e.g., panicle size and plant height) as well as identify signals for
genes controlling traits not previously quantified in this population (e.g., stalk/leaf ratio). Organ level semantic segmentation
provides opportunities to identify genes controlling variation in a wide range of morphological phenotypes in sorghum, maize,

and other related grain crops.

1. Introduction

A wide range of plant morphological traits are of interest and
of use to plant breeders and plant biologists. The introgres-
sion of dwarfing genes which reduce stalk length and increase
lodging resistance was a critical factor in the wheat cultivars
that dramatically increased yields during the green revolu-
tion [1] as well as the widespread introduction of sorghum
into mechanized agricultural production systems [2].
Increased yields in maize have largely come from selection
for plants that tolerate and thrive at high planting densities
[3], and modern hybrids have much more erect leaves than
older hybrids, which have been shown to increase yield at
high densities [3, 4]. Harvest index—the ratio of grain mass
to total plant mass at harvest—is another critical plant prop-
erty that has been a target of selection, either directly or
inadvertently, in efforts to breed higher yielding and more

resource use efficient crop varieties, particularly in wheat
and barley [5]. Leaf initiation rate, leaf number at reproduc-
tive maturity, and the size and area of the largest leaf are all
parameters employed in crop growth models to estimate
plant performance in different environments [6]. These
parameters are currently quantified using low-throughput
and labor-intensive methodologies, limiting the feasibility
of constructing models for large numbers of genotypes [7].
Semantic segmentation that distinguishes different plant
organs increases the feasibility of computationally estimating
many of the morphological parameters described here.

A number of straightforward thresholding metrics can be
employed for whole plant segmentation, including excess
green indices and image difference calculations using one
photo with a plant and another otherwise identical photo
without [8]. Nongreen plant organs such as mature seed
heads can be identified against a background of leaves and
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stalks using deep learning methods, producing bounding
boxes around the target organ [9]. Segmentation of leaves
and stalks using 3D point clouds has been demonstrated in
a range of crops including grape and sorghum [10, 11]. How-
ever, separating green stalks from green leaves in RGB images
is a more challenging procedure. Hyperspectral imaging of
plants has been successfully employed to both estimate plant
nutrient status and to detect and classify disease identity,
onset, and severity [12-16]. Plant organs have also been
reported to exhibit distinct spectral signatures [17], including
a difference in reflectance patterns between leaves and stems
of maize plants for 1160 nm wavelength light [8]. These
results suggest it may be possible to separate and classify
plant organs based on distinct hyperspectral signatures.

Here, we explore the viability of using hyperspectral data
to classify images of sorghum plants into separate organs
with pixel level resolution. Using individual pixel labels
generated using the crowdsourcing platform Zooniverse,
leaves, stalks, and panicles is demonstrated to have distinct
spectral signatures. A range of supervised classification
algorithms are evaluated and a number of them provide high
classification accuracy. We demonstrate that some of these
organ level spectral signatures are conserved, as classifiers
trained on sorghum data can also accurately classify maize
stalks and leaves. Finally, organ level semantic segmentation
data for a sorghum association population is employed to
conduct several genome-wide association studies (GWAS).
The identification of known genes controlling phenotypic
variation for previously measured traits is recapitulated,
and trait-associated SNPs are also identified for novel traits
which can be quantified using the procedure described here.
Opverall, the data, methods, and pipeline introduced in the
present study can aid further efforts to identify genes
controlling variation in important morphological traits in
both sorghum and other grain crop species.

2. Materials and Methods

An overview of the experimental design and data flow for the
analyses described in this manuscript is provided in Figure 1.
The details of each stage of the process are described in a
corresponding section of Materials and Methods below.

2.1. Plant Growth and Data Acquisition. A subset of 295 lines
from the 377 line sorghum association panel (SAP) [18] were
grown in the greenhouse of the University of Nebraska-
Lincoln’s Greenhouse Innovation Center (latitude: 40.83,
longitude: -96.69) between June 14 and August 28, 2018.
Forty days after planting (DAP), all plants were placed on
previously described conveyor belt imaging and automatic
watering system [8]. Each plant was imaged using a hyper-
spectral camera (Headwall Photonics, Fitchburg, MA,
USA). Plants were arranged so that the axis of leaf phyllotaxy
was as close to perpendicular with the line between the
hyperspectral camera and the center of the stalk as possible.
Hyperspectral images were captured at a resolution of 320
x 560 pixels. The camera employed has a spectral range of
546-1700 nm, with 243 distinct intensity values captured for
each pixel (approximately 5 nm per band). At the zoom level
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used in this paper, for objects at the distance between the
camera and plant, each pixel represents an area of approxi-
mately 3.1 mm x 3.1 mm (9.61 mm?). Maize plants used for
the evaluation of model transferability were grown similarly
in the same facility and imaged 66 DAP in September of
2018. Maize genotypes used for evaluation were drawn from
the Buckler-Goodman 282 association panel [19].

2.2. Manual Pixel Annotation. A project—titled “Sorghum
and Maize Segmentation using Hyperspectral Imagery”—-
was created on the Zooniverse crowdsourcing science platform
(https://www.zooniverse.org/projects/alejandropages/sorghum-
and-maize-segmentation-using-hyperspectral-imagery). Two
different image datasets were uploaded to the project page
for the pixel data annotation. The first dataset consisted of
grayscale images of 189 sorghum plants at the grain fill stage
of development. The second dataset consisted of 92 gray scale
images of sorghum plants during the vegetative stage of their
life cycle. For the first image dataset, users were directed to
select ten pixels per class per image for four classes (back-
ground, leaf, stalk, and panicle) (Figure S1) and a total of
7560 classified pixels (189 images x 4 classes x 10 pixels per
class per image) were scored. Vegetative sorghum does not
yet have a visible panicle. For vegetative stage sorghum
plants, a total of 2760 pixels (920 per class) were scored.
Based on timing classification speed, we estimate the
marginal time required to classify each additional 1000
pixels to be approximately one hour. However, there are
substantial fixed time costs to setting up and documenting
each new experiment. These costs would be substantially
greater if tools for farming out images and collecting
annotations from workers are built from scratch rather than
utilizing existing tools. The location of each pixel selected in
Zooniverse was used to extract a vector of all 243
wavelength intensity values for that pixel from the original
hyperspectral image cubes. The code used for converting
raw Zooniverse classification output data to vectors of
intensity values from the original hyperspectral images is
provided as part of the GitHub repository associated with
this paper.

2.3. Model Training and Model Evaluation. Seven supervised
classification methods including multinomial logistic regres-
sion (MLR), support vector machine (SVM), linear discrim-
inant analysis (LDA), partial least squares discriminant
analysis (PLS-DA), random forest (RF), least absolute
shrinkage and selection operator (LASSO), and quadratic
discriminant analysis (QDA) were evaluated in R/3.51 using
the data collected from grain fill stage sorghum as described
above. The MLR classifier was trained using the “multinom”
function provided by the “nnet” library with default parame-
ter settings [20]. The SVM classifier was trained using the
“svm” function provided by the “e1701” library with the
parameter “probability” set to TRUE [21]. LDA and QDA
classifiers were trained using “MASS::lda” and “MASS::qda”
functions with the default parameters from “MASS” library
[20]. The PLS-DA classifier was trained using the “plsda”
function with the parameter ncomp =10 from the “caret”
library [22]. LASSO employed the “glmnet” function with
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FIGURE 1: Steps involved in data acquisition, annotation, model training and evaluation, and genetic association analyses described in

this study.

parameter family = “multinomial” from the “glmnet” library
[23]. The RF classifier was trained using “randomForest”
function with the default parameters from the “randomFor-
est” library [24]. The importance index for each feature was
also estimated using “randomForest” function but with the
parameter importance = TRUE.

A total of 600 artificial neural networks (ANNs) which
varied in either architecture and/or hyperparameter settings
were also evaluated. Each ANN was implemented in
python/3.7 using Keras/2.2.4 library built on Tensor-
Flow/1.11. A total of 15 different neural network architec-
tures were tested, representing all possible combinations of
three different numbers of hidden layers (2, 3, 4) and five
different unit sizes for each hidden layer (200, 250, 300,
350, 400). For each architecture, 40 different learning rates
sampled from a range between le—3 and le—6 using a
uniform random distribution were tested. For all ANNs
evaluated, the Relu activation function was employed on
the hidden layers, Softmax on the output layer, and stochastic
gradient descent (SGD) was employed as the optimizer
during the training. Results from the single highest perform-
ing ANN—4 hidden layers, 300 units in each hidden layer,
and a learning rate of 5.0e — 4—are presented. The corre-
sponding R and Python code for all analyses is provided on
GitHub  (https://github.com/freemao/Sorghum_Semantic_
Segmentation). Accuracy for all eight methods was evaluated
using 5-fold cross validation to generate classifications for

each observed pixel. Data was split into folds at the level of
whole images, so that all pixels classified in an individual
image were assigned to either the training or testing dataset.
Accuracy was defined as the number of pixels assigned the
same label by manual classifiers and the algorithm being
evaluated divided by the total number of pixels classified by
both manual classifiers and the algorithm. As this was a bal-
anced dataset with four total classes, the null expectation for
accuracy from an algorithm which assigned labels randomly
is 0.25.

2.4. Whole Image Classification. Raw hyperspectral images
were output by the imaging system as 243 grayscale images
representing intensity values for each of the 243 separate
wavebands. Each image was stacked together in a 3D
numpy array (height, width, band) with each value repre-
senting the light reflectance intensity of a single pixel at a
wavelength band with x- and y-axis position. The dimen-
sions of the 3D numpy array were cropped to 319 x 449
(x dimension x y dimension) for sorghum and 239 x 410
for maize to exclude the pot and extraneous objects outside
the background. The cropped 3D array was converted to a
feature array of pixel vectors by flattening the x and y dimen-
sions, yielding a 2D feature array of dimensions (x Xy,
number of bands). The resulting 2D array was then fed to
the trained models for making predictions. The model output
was a vector with length x x y representing the predictions for
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each pixel in the feature array encoded as either 0, 1, 2, or 3
representing background, leaf, stalk, and panicle, respectively.
The vector was reshaped to the original dimensions, a 2D
matrix with the dimensions (x, y). Finally, visualizations of
the segmentation map were produced by converting each
value in the 2D matrix to an RGB value where the value 0
for the background was converted to white (255, 255, 255), 1
for the leaves to green (127, 201, 127), 2 for the stalk to orange
(253,192, 134), and 3 for the panicle to purple (190, 173, 212).

2.5. Trait Measurement and GWAS. Based on the initial clas-
sification of images into four pixel categories, seven traits
were quantified. Estimates of leaf, panicle, and stalk size
were simply generated by counting the number of pixels
assigned to each of these categories in each image. Leaf/pani-
cle, leaf/stalk, and panicle/stalk ratios were calculated by
simple division of the number of pixels observed for each
class in each image. Height to top of panicle was calculated
by taking the Euclidean distance between the stalk pixel with
the smallest y-axis value and the panicle pixel with the great-
est y-axis value (Figure S8). Genotypic data was taken from a
previously published study which includes GBS-identified
SNPs for the SAP population [25]. Of the 295 plants
imaged in this study, 242 had published genotypic data.
For GWAS (genome-wide association study), an additional 15
lines were excluded as manual examination of hyperspectral
images indicated that they had not completed reproductive
development by 76-77 DAP. The published SNP dataset was
filtered to exclude SNPs with minor allele frequency (MAF)
<0.01, and a frequency of heterozygous calls >0.05 among
the remaining set of 227 lines. A total of 170,321 SNP
markers survived this filtering process and were employed for
GWAS. Narrow-sense heritability for each trait was estimated
as the proportion of phenotypic variation explained (PVE) as
reported by Gemma/0.95 [26]. Each trait GWAS analysis was
conducted using the FarmCPU/1.02 software with the
parameters method.bin = “optimum”, bin.size = c(5e5,5e6,5¢7),
bin.selection =seq(10,100,10), and threshold.output=1 [27].
Both population structure and kinship were controlled for in
this analysis. The first five principal components of population
structure were derived from the genotype data using Tassel/5.0
[28] and included as covariates in all GWAS analyses. The
kinship relationship matrix for all lines phenotyped was
estimated and controlled for as covariates within the
FarmCPU software package [27]. The cutoft for statistical
significance was set to achieve a Bonferroni corrected P value
threshold of 0.05.

3. Results

3.1. Hyperspectral Signatures of Sorghum Organs. Data
extracted from a total of 7560 pixels from 189 images manu-
ally classified into one of four classes (background, leaf, stalk,
and panicle) (Figure 2(a)) was used to plot average reflec-
tance pattern for pixels assigned to each of the four classes
(Figure 2(b)). Stalk and leaf exhibited very similar patterns
in the visible portion of the spectrum, but clearly distinct
patterns of reflectance in infrared. Stalk and panicle exhibited
similar trends in infrared range from 750 nm to 1700 nm.
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Approximately 90% of total variance among manually classi-
fied pixels could be explained by the first two principle com-
ponents of variation. Leaf and background pixels were
clearly separated by these first two PCs; however, stalk and
panicle pixels had overlapping distributions (Figure S2A).
A similar pattern, with even less differentiation of stalk and
panicle pixels, was observed for linear discriminant
analysis (Figure S2B).

3.2. Performance of Classification Algorithms. A set of 8
supervised classification algorithms were evaluated for their
ability to correctly classify hyperspectral pixels (Table 1).
The average classification accuracy of five algorithms—esti-
mated from fivefold cross validation—exceeded 96%. LDA
achieved the highest overall prediction accuracy of >97%.
As expected, given the distinct reflectance patterns observed
in (Figure 2(b)), all the methods have very high accuracy
on the classification of background pixels, and all methods
also exhibited quite high (>96%) accuracy for leaf pixels.
SVM, LDA, and PLS-DA had the highest accuracy for leaf
(97.8%), stalk (94.6%), and panicle (97.6%), respectively,
although the overall differences were quite small.

Mean decrease in Gini was calculated for the random
forest model to identify those regions of the spectral curve
which played a larger role in distinguishing between different
classes. Spectral regions with a mean decrease in Gini > 10
were detected (Figure 2(c)). The first region (R1) is within
the visible spectrum from 599 nm to 789 nm. This region
may be capturing visible color differences between panicle
and leaf/stalk, as well as visible light differences between
background pixels and all three plant organs. R2 (1123-
1218 nm) is in the near infrared and encompasses 1160 nm,
a wavelength previously identified as useful for distinguish-
ing leaves and stalks in hyperspectral images of corn [8]. R3
(1304-1466 nm) captures a local peak of water absorption.
All three plant organs have significant water content and
the background does not; this is a region that shows substan-
tial differences between plant and nonplant reflectance spec-
tra. The final region containing multiple spectral bands with
mean decrease in Gini > 10 is (R4) is located between 1576
and 1652 nm.

Each hyperspectral image collected as part of this study
includes 179,200 pixels. Estimates of accuracy described
above are based on manual annotation of individual pixels.
However, as annotators were able to decide which 40 pixels
to classify in a given image, manually annotated training data
may exhibit a bias towards easy to visually classify pixels.
Semantic segmentation was performed for a whole image
using LDA (Figure 3(a)), the best-performing algorithm
identified in Table 1. Qualitatively, classification accuracy
appeared high. The most common error was small patches
of pixels in the center of leaves which were misclassified as
stalk. The thick, lignified midribs of sorghum leaves may
produce reflectance patterns with greater similarity to stalk
tissue than to the remainder of the leaf blade. The pixel level
semantic segmentation of sorghum hyperspectral images
enables the automated estimation of a range of plant traits.
A notable example is that the simple trait “plant height”
can correspond to at least four differently defined
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F1GuURk 2: Distinct reflectance patterns of manually classified hyperspectral pixels. (a) A representation of a hyperspectral data cube with 254
image bands from 546 nm to 1700 nm. Example background, leaf, stalk, and panicle points highlighted in gray, green, orange, and purple,
respectively. (b) Generalized reflectance patterns of leaf, stalk, panicle, and background pixels across wavelengths. Average reflectance
intensity at each wavelength is indicated with a solid line, while the standard deviation among pixels belonging to that class is indicated by
semitransparent bands. The blue portion of the visible spectrum 380-545nm was not captured by this particular hyperspectral camera.
The remaining portion of visible spectrum 546-780 nm or approximately green to red is indicated immediately above the x-axis. Infrared
780-1700 is indicated in the same color bar as pale brown. (c) Estimated feature importance for individual hyperspectral bands in random
forest models indicated using the same x-axis scale of wavelengths used in (b).

TasLE 1: Cross validation accuracy for each supervised classification

algorithm evaluated. (iii) Height to apex. Here, plant height is defined as the

distance between the ground and the highest point
on the stem or inflorescence

Methods  Background — Leaf  Stalk  Panicle  Average

LDA 1.000 0969 0946  0.974 0.972 (iv) Height to tallest point. Here, plant height is defined
PLS-DA 1.000 0973 0911 0976 0.965 as the distance between the ground and the abso-
ANN 0.997 0974 0923 0958 0.963 lute highest point on the plant, frequently a leaf
MLR 0.983 0970 0934  0.959 0.962 ‘Fip, but on other plants the highest point on the
SVM 0.999 0978 0920 0948 0961 inflorescence

RF 0.999 0964 0830 0931 0.931 As illustrated in Figure 3(b), each of these definitions can
LASSO 1.000 0962 0.754  0.956 0.918 produce a different measurement of plant height and all three
QDA 0.987 0986 0.657  0.865 0.874 can be estimated from images of sorghum plants classified

LDA: linear discriminant analysis; MLR: multinomial logistic regression;
ANN: artificial neural network; SVM: support vector machine; PLS-DA:
partial least squares discriminant analysis; RF: random forest; QDA:
quadratic discriminant analysis; LASSO: least absolute shrinkage and
selection operator.

measurements collected by different plant breeders and plant
biologists:

(i) Height to the flag leaf collar. Here, plant height is
defined as the distance between the ground and the
point at which the upper most—and last initiated—-
plant leaf joins the stalk

(ii) Stalk height. Here, plant height is defined as the
distance between the ground and the highest point
on the stem

into three organ types, while only the fourth definition of
plant height is straightforwardly estimated from whole plant
segmentation data.

3.3. Sorghum Model Transferability to Maize. Subsampling to
create training and testing datasets can lead to over estimates
of prediction accuracy in real-world use cases where more
differences are likely to exist between training and applica-
tion datasets. To evaluate the transferability of the trained
models described above, a second dataset consisting of
hyperspectral images of maize plants was employed. Maize
and sorghum are related species within the tribe Andropogo-
neae. Both species have similar vegetative—leaf and stalk—-
architectures. However, the inflorescences of the two
species are quite different. Both maize and sorghum datasets
were collected using the same greenhouse imaging system,
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FIGURE 3: Whole image semantic segmentation of sorghum plants. (a) An example of a single sorghum plant with each pixel classified as
either background (white), leaf (green), stalk (orange), or panicle (purple) using the LDA classifier described in Table 1. (b) Examples of a
number of morphological traits which may be estimated using a semantically segmented sorghum image. Examples of four different
definitions of plant height used by different researchers are indicated as follows: #1: height to flag leaf collar, #2: stalk height, #3: height to

apex, and #4: height to the tallest point.

but data was collected at different times with different zoom
levels. A set of 4000 pixels were manually annotated for back-
ground, leaf, stalk, and tassel classes.

This 4000 pixel dataset was used to evaluate the overall
and class-specific performance of each model trained on
sorghum data in classifying pixels from the maize dataset
(Table 2). As expected, cross-species prediction accuracy
was lower than accuracy observed from cross validation
within the sorghum dataset. Declines in accuracy were lower
for background and leaf classes. Six out of eight models have
a better performance in stalk than tassel. Low tassel/panicle
accuracy in particular was expected as there are many differ-
ences between these two organs. The tassel is one of two
specialized inflorescence types in maize. Unlike the sorghum
panicle, the tassel is a specialized male reproductive struc-
ture and does not produce seeds. While LDA, ANN, and
MILR all performed quite well on sorghum cross validation,
LDA and MLR both dropped off significantly when
sorghum-trained models were used to classify pixels from
the maize dataset. Poor-performing classification models
failed in a number of ways including misclassification of
many tassel pixels as leaf (QDA) and misclassification of
many stalk pixels as panicle (SVM) (Figures 4 and S4).
ANN provided the best classification accuracy in maize of
any of the sorghum-trained models (Figure S3). The gap in
classification performance between ANN and the next
best-performing model was greater when the partially
nonequivalent tassel/panicle class was excluded.

3.4. Quantitative Genetics of Semantic Segmentation Traits. A
key reason to produce pixel level organ classifications is that
these make it easier to automatically quantify a range of plant
phenotypes (Figure 3(b)). In many use cases in plant genetics
and plant breeding, phenotypes where variance is primarily
controlled by genetic factors will be of greatest interest. In
others, phenotypes which are predominantly responsive to
environmental factors will be of greatest interest. Phenotypes

which vary a great deal from one plant to the next in patterns
controlled by neither genetic nor environmental factors will
be harder to study, and in some cases can be a sign of high
error rate in measurement. Seven phenotypes were quanti-
fied from the whole image segmentation results from 227
sorghum plants each representing a distinct genotype from
the sorghum association panel [18] (Figure S8). Three of
these phenotypes were simple counts of pixels assigned to
each of the three organ classes, stalk, leaf, and panicle.
Three additional phenotypes were determined based on the
ratios between these three classes. Finally, plant height to
apex, one of at least four potential definitions of plant
height, and a value difficult to calculate from purely
plant/nonplant segmentation, was calculated for each plant.
Narrow sense heritability—the proportion of total variance
attributable to additive genetic effects—was estimated for
each of the seven traits, using previously published SNP
data for these 227 sorghum varieties (Table S1). Panicle size
and plant height both exhibited significant phenotypic
variation in the population of sorghum plants imaged
(Figure 5(a)-(c)), as well as high estimated narrow sense
heritabilities in this population (0.85 and 0.63, respectively).
Estimated narrow sense heritability for leaf size was
intermediate (0.32) and for stalk size was quite low (0.18).
As stalk/leaf and panicle/stalk ratios both incorporated a
very low heritability trait, the heritabilities for these traits
were also low, while the estimated heritability of
panicle/leaf ratio was higher (0.62).

Simple GWAS tests were also conducted for each trait
(Figure 5(d) and (e), S5). It must be noted that this was a
small population and does not include replication; however,
at least one statistically significant trait-associated SNP was
identified for each of the four traits with the highest esti-
mated narrow sense heritability: plant height to apex, panicle
size, panicle/leaf ratio, and panicle/stalk ratio (Table S1). In
many cases, the genes and regulatory pathways controlling
these genes have not been closely studied in sorghum
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TaBLE 2: Performance of sorghum models on maize classification.

Methods Background Leaf Stalk Tassel/panicle Average Average (excludes tassel)
ANN 0.999 0.926 0.866 0.477 0.817 0.930
SVM 0.985 0.886 0.686 0.67 0.807 0.852
PLS-DA 0.984 0911 0.693 0.605 0.798 0.833
LDA 1.0 0.916 0.655 0.59 0.790 0.857
RF 1.0 0.856 0.662 0.604 0.780 0.839
MLR 0.994 0.896 0.562 0.658 0.778 0.817
LASSO 0.991 0.751 0.595 0.668 0.751 0.779
QDA 0.981 0.957 0.695 0.09 0.681 0.878
\
| {
ANN QDA SVM

(@)

(©)

FIGURE 4: Example outcomes when classifying maize images using models trained on sorghum. (a) Whole image segmentation of a maize
plant at flowering—genotype A635—using the best-performing sorghum-trained ANN as determined by cross validation accuracy in
sorghum. Pixels predicted by the model to be background, leaf, stalk, and panicle are indicated in white, green, orange, and purple. (b)
Whole image segmentation of the same maize plant by a QDA model trained on sorghum data. (c¢) Whole image segmentation of the

same maize plant by a SVM model trained on sorghum data.

previously. However, several of the associations we identify
are consistent with reports from previous association
studies in sorghum using other phenotyping approaches.
The single SNP most significantly linked to variation in
panicle size was located on chromosome 10, which was
close to a locus identified in a previous study of panicle
area and panicle solidity based on RGB images [29].
Individuals carrying the minor allele for this SNP
frequently had open and diffuse panicle structures, as well
as producing additional inflorescences from axillary
tillers/branches (Figure S6). The significant SNP identified
on chromosome 8 for the panicle size here is also adjacent
to the locus which showed a significant association with
multiple panicle solidity traits in the RGB study [29]. Plant
height to apex has been the subject of intensive breeding
efforts and genetic investigation in sorghum, and one trait-
associated SNP in the GWAS for plant height to apex was
located 33 kilobases away from the characterized dwarf2
(dw2) gene on chromosome 6 [30, 31]. The two significant

SNPs at the end of chromosome 6 are close to a locus for
sorghum height identified in a separate sorghum MAGIC
population (QTL-6) [32]. Each trait-associated SNP and
annotated genes located within a 50kb window up and
downstream from each trait-associated SNP for each
GWAS analysis shown in Figure 5(d) and (e) and S5 are
provided in Additional file S1. The window size of 50kb
was selected as linkage disequilibrium decays below 0.2 at
this distance in the SAP [25].

4. Discussion

4.1. Contribution. In this study, a set of hyperspectral images
for both sorghum and maize association populations were
generated using a high-throughput phenotyping platform.
Each hyperspectral cube contains 254 band channels from
546 nm to 1700 nm covering part visible and infrared spec-
trums. A total of 7650 pixels from sorghum images including
background, panicle, leaf, and stalk classes were manually
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FIGURE 5: Mapping genomic regions controlling variation in sorghum phenotypes. (a-c) Examples of LDA-segmented sorghum plant images
with short (a), medium (b), and tall (c) heights to apex and small (c), medium (b), and large (a) panicle sizes. (d) Results from a genome-wide
association study for plant height to apex measured using results from LDA segmentation of images of 227 sorghum plants. The horizontal
dashed line indicates a Bonferroni multiple testing-corrected threshold for statistical significance equivalent to P = 0.05. The vertical dashed
line indicates the genomic location of dwarf2, a gene known to control variation in plant height in sorghum. (e) Results from a genome-wide
association study for panicle size measured using results from LDA segmentation of images of 227 sorghum plants.

annotated using the Zooniverse crowdsourcing platform,
which substantially reduced the amount of tool development
necessary to able to record both the locations of the clicked
pixels and the corresponding label information in order to
generate ground truth data. Eight machine learning algo-
rithms were evaluated through the fivefold cross validation
and the majority of them showed good performance on the
sorghum semantic segmentation task. To test whether calcu-
lated accuracies were unrealistically optimistic as a result of
classifiers selecting “easy pixels,” whole image predictions
were also assessed qualitatively and accuracy appeared good.
However, it should be noted that, as pixel level whole image
manual classification was not conducted, so assessments of
whole images represent a qualitative rather than quantitative
metric. The feasibility of using trained sorghum models on
the maize hyperspectral cubes were also tested. Although the
plant pixels can still be clearly separated from the background,

misclassifications of plant pixels as belonging to unexpected
organs were more common. This was especially true for the
tassel, likely as a result of the substantial biological differences
between the sorghum panicle and maize tassel. Finally, traits
extracted from sorghum data were shown to be under genetic
control through estimates of narrow sense heritability, and it
proved possible to identify genetic markers associated with
variation in traits with high estimated narrow sense heritabil-
ity, including one marker tagging a gene known to play a large
role in controlling variation for the analyzed trait (dw2). These
results demonstrate the potential of pixel level classifications
of individual plant organs to automate the measurement of a
range of morphological traits, assisting future plant genetics
and plant breeding efforts.

4.2. Limitations and Future Work. The work presented above
represents a proof of concept that hyperspectral imaging data
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can enable accurate organ level semantic segmentation of
crop plants. However, there are several remaining challenges
which should be addressed in order for this approach to have
significant impact in the fields of plant biology and plant
breeding. The first challenge is ensuring the accuracy of
organ level pixel classifications across more diverse datasets.
Classification accuracy was quite high when both training
and testing on sorghum data collected at the same time,
and lower with training on sorghum data collected at one
time and testing on maize data at another. We also tested
model generalizability within the sorghum, assessing the
accuracy of models trained on grain fill stage sorghum on a
separate set of images collected at the vegetative stage.
Prediction accuracy declines somewhat from cross validation
accuracy, indicating some degree of overfitting, but remains
quite high (>95%) and higher than generalizability to maize,
even for equivalent organs (e.g., leaf and stalk) (Table S2,
Figure S7). While overfitting is a common phenomena
when training and making predictions on distinct datasets,
the average accuracy of SVM and LDA models is still over
95%, suggesting semantic segmentation approaches can be
applied across different sorghum datasets. Generalizability
could be tested further in the future using data from
sorghum plants grown in different environments and
subjected to different stresses.

Future work could seek to improve the robustness of pre-
diction models through the collection of manual data from a
wider range of experiments. Another potential avenue for
improvement would be to incorporate either local or global
spatial information into predictions. The algorithms tested
in this study perform classification based on the hyperspectral
signatures of individual pixels without considering data from
neighboring pixels or position within the image. Postproces-
sing can reduce noise using methods such as median blur, ero-
sion, or dilation approaches [33, 34]. Alternatively, directly
incorporating intensity values from neighboring pixels when
training pixel level classificaiton has been shown to improve
whole plant segmentation accuracy for RGB images [35].
More complicated models considering the spatial architec-
tures in the image, such as CNN, could also be applied on
the segmented images either to improve segmentation accu-
racy or to extract higher level traits such as the number of
leaves or to locating the position of each leaf [9, 36].

The phenotypes extracted in this study are arithmetic
combinations of pixels which can cover a lot of traditional
traits such as plant height and organ sizes. However, there
are many more biologically relevant traits it may be possible
to explore using these semantically segmented images. For
example, the number of leaves and the flowering status can
be obtained using CNN regression and classification models
of RGB images [36, 37] but accuracy may be improved using
images which are already semantically segmented. Plant
architecture-related traits such as leaf curvature and stem
angle can be estimated using more complicated mathemati-
cal algorithms [38]. In contrast, some traits can be only
extracted or are much easier to be extracted from semantic
images than the normal RGB images such as the phenotypes
we present in this study. One simple to measure trait from
semantically segmented images which was not assessed in

this study was stalk width. Hyperspectral cameras sacrifice
spatial resolution for spectral resolution and sorghum stalks
in the images collected as part of this study were approxi-
mately 5-6 pixels wide. Higher zoom levels would enable
more accurate quantification of stalk width with the same
camera, but in this case, many other portions of the sorghum
plant would not be included in the image. A key risk of using
metrics estimated from 2D images is that, although we tried
to adjust each plant so that the axis of leaf phyllotaxy was
perpendicular to the camera, sorghum plants are not
perfectly bilaterally symmetric and bias and error from view-
ing angle certainly still exists. These random errors will
reduce estimated heritability values compare to other traits
which are less influenced by the viewing angle such as the
panicle size and plant height (Table S1).

Active learning could also be employed to prioritize which
pixels to select for manual annotation, rather than depending
solely on user choice [9, 39, 40]. It remains an open question
whether it will ultimately prove to be more effective to train
separate classification models for individual crop species or
whether common algorithms can be developed with applica-
tion to groups of related crops. One potential approach that
could be explored is transfer learning, where a model initially
trained to conduct organ level classification in one species is
retained when using data from a second species. In many
cases, transfer learning can significantly reduce the amount
of new data needed to achieve adequate performance for a
new classification task [41]. However, current prediction
accuracy is sufficient to enable quantitative genetic study of
a range of traits (Figure 5, S5, Table S1). Therefore, the most
pressing need is simply to collect image data from a larger
number of genotypes, ideally with multiple replicates under
a range of treatments, which would enable the identification
of genes controlling variation in a range of sorghum
phenotypes in diverse environments.

Data Availability

All the R and python code implemented in this study,
phenotypes extracted from segmented sorghum images,
and the manually annotated sorghum and maize pixels have
been deposited on GitHub at https://github.com/freemao/
Sorghum_Semantic_Segmentation. The position of each
significant SNP and the nearby genes identified in the asso-
ciation study of panicle size, the ratio of panicle and leaf size,
and the ratio of stem and leaf size were summarized in Addi-
tional file S1.xIsx.
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Supplementary Materials

Supplementary 1. Figure S1: an example of the pixel annota-
tion interface from a Zooniverse project page. Users were
asked to annotate ten pixels from each class by clicking on
different positions within the image. Pixels annotated by
the user as background indicated with blue crosses, leaf pixels
with red crosses, stalk pixels with purple crosses, and panicle
pixels with yellow crosses.

Supplementary 2. Figure S2: distribution of pixels annotated
as background, leaf, stalk, or panicle in two dimensionality
reduction approaches. (A) First two principal component
values—as determined by principal component analysis of
all annotated pixels. The proportion of total variance
explained for the first and second principal components indi-
cated in parenthesis on the x- and y-axis labels. (B) LDA1
and LDA2 values derived from linear discriminant analysis
(LDA) for each annotated pixel. Both plots use the same
color key for class annotations indicated in the top right
corner of panel B.

Supplementary 3. Figure S3: sorghum-trained ANN confu-
sion matrix for predictions of maize data. Based on manual
annotation of a balance set of 4000 maize pixels (1000 per
class). Calculated proportions are per ground truth class
and sum to one in each row.

Supplementary 4. Figure S4: whole image semantic segmenta-
tion of an example maize plant using models trained on
sorghum data prediction results from the five remaining sor-
ghum models—PLS-DA, LDA, RF, MLR, and LASSO—on
the same maize plant shown in Figure 4. Pixels classified as
leaf, stalk, and panicle by each model are indicated in green,
orange, and purple.

Supplementary 5. Figure S5: GWAS results leaf size, stalk size,
panicle/leaf ratio, stalk/leaf ratio, and panicle/stalk ratio.
Bonferroni corrected P value of 0.05 was used as the signifi-
cant cutoff indicated by a horizontal dash line in each plot.

Supplementary 6. Figure S6: phenotypic differences between
plants carrying the reference (A) and alternative (B) alleles
for the single most significant trait-associated SNP for pani-
cle size (SNP S10_5631741).

Supplementary 7. Figure S7: comparing the performance of
the flowering models on flowering and vegetative datasets.
Blue: model performance on pixels collected from plants at
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the vegetative development stage. Red: model performance
on pixels collected from plants at the grain filling stage.

Supplementary 8. Figure S8: the distribution of pixel-based
phenotypes.

Supplementary 9. Table S1: heritability and GWAS results for
seven sorghum traits.

Supplementary 10. Table S2: model performance on pixels
collected from sorghum plants at vegetative stage of
development.

Supplementary 11. Additional file S1: the details of the signif-
icant SNPs identified by GWAS on sorghum plant height,
panicle size, panicle leaf ratio, and stalk leaf ratio. The candi-
date genes around the significant SNPs identified by GWAS
on sorghum panicle size. The candidate genes around the
significant SNPs identified by GWAS on sorghum panicle
leaf ratio. The candidate genes around the significant SNPs
identified by GWAS on sorghum stem leaf ratio.
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