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Despite the importance of non-equilibrium statistical mechanics in modern physics and related

fields, the topic is often omitted from undergraduate and core-graduate curricula. Key aspects of

non-equilibrium physics, however, can be understood with a minimum of formalism based on a

rigorous trajectory picture. The fundamental object is the ensemble of trajectories, a set of

independent time-evolving systems, which easily can be visualized or simulated (e.g., for protein

folding) and which can be analyzed rigorously in analogy to an ensemble of static system

configurations. The trajectory picture provides a straightforward basis for understanding first-

passage times, “mechanisms” in complex systems, and fundamental constraints on the apparent

reversibility of complex processes. Trajectories make concrete the physics underlying the diffusion

and Fokker–Planck partial differential equations. Last but not least, trajectory ensembles underpin

some of the most important algorithms that have provided significant advances in biomolecular

studies of protein conformational and binding processes. # 2021 Published under an exclusive license by

American Association of Physics Teachers.

https://doi.org/10.1119/10.0005603

I. INTRODUCTION

Most of the phenomena we encounter in daily life, from
weather to cooking to biology, are fundamentally out of
equilibrium and require physics typically not touched on in
the undergraduate or even graduate physics curricula. Many
physics students are alarmed at the complexity and abstrac-
tion of thermodynamics and “sadistical mechanics,” and
understandably would not seek out instruction in non-
equilibrium statistical physics. Yet there is a surprising range
of fundamental non-equilibrium material that can be made
accessible in a straightforward way using trajectories, which
are essentially movies of systems executing their natural
dynamics. The trajectory picture first and foremost is funda-
mental;1–3 for example, dynamics generate equilibrium, but
not the other way around.4 It can also lead, with a minimum
of mathematics, to understanding key non-equilibrium phe-
nomena (relaxation and steady states) and similarly to
extremely powerful cutting-edge simulation methods (path
sampling). Students deserve a taste of this material.

Why are trajectories fundamental? A trajectory is simply
the sequence of phase-space points through which a system
passes, recorded perhaps as a “movie” listing all atomic posi-
tions and velocities at evenly spaced time points—the
“frames” of the movie. Such movies are fundamental
because, as we learned from Newton, nature creates forces
that lead to dynamics,5 i.e., to trajectories. We may attempt
to describe the dynamics in various average ways—e.g.,
using equilibrium ideas—but the trajectories are the basis of

everything. Theories, such as equilibrium statistical mechan-
ics, generally build in assumptions, if not approximations. In
fact, the most fundamental definition of equilibrium itself
derives from dynamics, via detailed balance,1,4,6 whereby
there must be an equal-and-opposite balance of flows
between any two microstates.
Dynamical descriptions generally have more information

in them than average or equilibrium theories.4,7,8 As a simple
example, perhaps you know that someone sleeps eight hours
a day. However, that average hides the time at which sleep
occurs as well as whether it includes an afternoon nap. In the
case of diffusion, we know that particles observed in a local-
ized region will tend to spread out over time. However, if we
only observe the spatial density, we do not know which par-
ticles went where. Trajectories, which track particles over
time, inherently capture this information.
A trajectory ensemble description, as described below,

provides the key observables for transition processes: rate
and mechanism. In a biomolecular context, these are essen-
tially everything we want to know. Consider protein folding.
We want to know how fast proteins fold and how folding
rates change under specific mutations.9,10 We also want to
know the mechanism of folding: the conformations that are
visited during the process which in turn can illuminate
chemical-structure causes of rate changes due to muta-
tion.10,11 Other conformational processes in biomolecules
arguably are of even greater interest, such as binding12 and
allostery,10,13 due to their implications for drug design; here
again, rate and mechanism are of utmost importance.14,15
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This article will explain the theory of trajectory ensem-
bles, starting with simple diffusion and moving to systems
with complex energy landscapes. We will explore essential
aspects of non-equilibrium statistical mechanics, focusing on
timescale quantification via the mean first-passage time. The
understanding of non-equilibrium trajectory ensembles leads
directly to the “super parallel” weighted ensemble simulation
methodology, widely used in computational biology,16

which is explored in a one-dimensional pedagogical exam-
ple. A number of exercises are given along with clearly
demarcated more advanced material.

The statistical mechanics of trajectories has been addressed
pedagogically, in different ways, in prior work. Clear, basic-
level descriptions can be found in some textbooks3,4 and path-
sampling papers in the molecular-oriented literature.17–19

Astumian and co-workers highlighted the importance of trajec-
tories and their probabilistic description in multiple contexts20,21

and provided important semi-microscopic, discrete-state descrip-
tions of molecular motors,22,23 building on the seminal work of
Hill.24,25 Ghosh and co-workers employed trajectory concepts in
presenting Jaynes’s maximum-caliber approach to inferring
kinetics;26 note the related work by Press�e co-workers27 and
Ghosh co-workers.28 Swendsen’s discussion of irreversibility is
also of interest,29 as is the classic treatment by Chandrasekhar.30

The present discussion attempts to provide a more elementary
discussion of trajectory physics, with a focus on computational
applications not found in most prior work. Perhaps unexpect-
edly, the path sampling algorithms derivable from the present
description are very much at the leading edge of molecular
computation.31

II. BASICS: DYNAMICS AND TRAJECTORIES

In this section, we introduce the building blocks of our
analysis, starting from one-dimensional Newtonian motion.
We add fundamental stochastic elements and then develop
the trajectory picture with an associated numerical recipe.

A. Stochastic dynamics

The starting point for our quantitative trajectory descrip-
tion is the simplest form of stochastic dynamics, often called
Brownian dynamics, which we will justify starting from
Newton’s second law. Brownian dynamics are also known
by more intimidating terminology, as overdamped Langevin
dynamics, but their essence is simple to understand. As a
familiar reference, we first write the one-dimensional (1D)
law of classical motion,

m
dx2

dt2
¼ f ; (1)

where m is mass, x is position, and f ¼ �dU=dx is the force,
with U(x) the potential energy. Advancing one step in com-
plexity, the 1D Langevin equation models motion in a vis-
cous (frictional) medium by adding a damping force that
always opposes the direction of motion (velocity), as well as
a random force frand from collisions,4,6 yielding

m
d2x

dt2
¼ f � cm

dx

dt
þ frand; (2)

where c > 0 is the friction constant, effectively a collision
frequency, as can be seen by dimensional analysis. Details of

the random force will be given later. Both forces are needed;
otherwise, damping would eliminate all motion.
In the overdamped limit, inertia is ignored. This is akin to

motion in a beaker filled with thick oil: there is minimal ten-
dency for an object to continue in any given direction in the
absence of force; with a force such as gravity, terminal (con-
stant) velocity is reached quickly; i.e., no further acceleration
occurs despite the force. At microscopic scales, however,
there continues to be random thermal motion due to molecu-
lar collisions. Setting the inertial term md2x=dt2 to zero in
Eq. (2) and re-arranging terms, the overdamped Langevin
equation is4,6

dx

dt
¼ 1

mc
f þ frandð Þ: (3)

This simplified equation of motion may look unusual to
those unfamiliar with it, but studying its application in a
numerical context will make its physical basis and relation to
diffusion more clear.

B. Time-discretized overdamped dynamics

and computation

We will make most use of a discrete-time picture (fixed
time steps) which not only greatly simplifies the mathematics
but also translates directly into simple computer implementa-
tion. If we discretize the dynamics of Eq. (3) by writing the
velocity as Dx=Dt and multiplying through by Dt, we arrive
at a very useful equation,

Dx ¼ Dt
mc

f þ frandð Þ ¼ Dxdet þ Dxrand; (4)

where Dxdet ¼ fDt=mc is the deterministic component of the
spatial step due to an external force (e.g., molecular, gravita-
tional, or electrostatic) and Dxrand is the random part due to
thermal molecular collisions. At finite temperature, micro-
scopic motion must not cease; hence, in the Langevin pic-
ture, thermal fluctuations must balance “dissipation” due to
damping of the c term.6,32 To accomplish this, Dxrand is typi-
cally assumed to follow a zero-mean Gaussian distribution
which must have its variance given by4

r2 ¼ 2kBTDt=mc: (5)

The Gaussian assumption is justified on the basis of the central
limit theorem4 because a molecule in aqueous solution can
experience upwards of 1013 collisions per second,6,30 and
hence, a large number of collisions occur in any Dt > 1 ns.
The high collision frequency also justifies the implicit assump-
tion here that sequential Dxrand values are independent, i.e., not
time-correlated.
With the distribution of Dxrand specified, the discrete over-

damped dynamics Eq. (4) is simultaneously a prescription
for computer simulation of trajectories and directly implies a
probabilistic description of trajectories. Let us start with
computer simulation, which is simpler by far. Defining
xj ¼ xðt ¼ jDtÞ, Eq. (4) is essentially a recipe for calculating
the next position xjþ1 � xj þ Dx in a time-sequence, given xj.
For a sufficiently small time step Dt, the force f will be
approximately constant over the whole time interval, so we
take
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Dxdet ¼ f ðxjÞDt=mc; (6)

and Dxrand is chosen from a Gaussian (normal) distribution
of variance r2 from Eq. (5). Looping over this process yields
a discrete-time trajectory,

traj ¼ x0; x1; x2;…f g; (7)

which is just a list of positions at intervals of Dt. We can eas-
ily recast trajectory elements in terms of spatial increments,

x0 ¼ x0 arbitraryð Þ;
x1 ¼ x0 þ Dx1;

x2 ¼ x0 þ Dx1 þ Dx2 ¼ x1 þ Dx2;

…; (8)

which is useful for understanding simulation algorithms such
as Eq. (4).

Trajectories of simple diffusion can be generated from Eq.
(4) by setting f¼ 0 (hence Dxdet ¼ 0). The recipe given
above simplifies to choosing a Gaussian random step at each
time point, i.e.,

Dx ¼ Dxrand ðsimple diffusionÞ; (9)

as we would expect. Schematic examples of these simplest
stochastic trajectories are shown in Fig. 1. There is no direc-
tionality in simple diffusion, but only a statistical tendency
to diffuse away from the starting point, as will be quantified
below.

III. SIMPLE DIFFUSION IN THE TRAJECTORY

PICTURE

The basics of diffusion, such as Fick’s law and the diffu-
sion equation, are well known, so diffusion theory is a per-
fect context for introducing the trajectory formulation.
Students may find that following the behavior of individual
particles is a more concrete exercise than visualizing proba-
bility distributions. In this section, we show that the trajec-
tory approach yields the familiar average description of

simple diffusion in a force-free (constant-energy) landscape.
In the bigger picture, we get an explicit sense of physical
details of trajectories which are averaged (integrated) out to
yield the distribution picture.

A. Probabilistic picture for trajectories

We start by analyzing diffusive trajectories based on ran-
dom steps where the force f has been set to zero. The proce-
dure (Eq. (9)) of repeatedly choosing a Gaussian step with
variance from Eq. (5) implicitly but precisely defines a prob-
ability distribution for an entire trajectory (Eq. (7)), which
will prove of fundamental importance. First, by construction,
the probability of a single step Dx is given by

p1ðDxÞ ¼
1

r
ffiffiffiffiffiffi
2p

p e�Dx2=2r2 : (10)

This is the meaning of choosing a Gaussian step. Note that
Eq. (10) depends only on the magnitude and not on the start-
ing point of the specific step, which is a characteristic of sim-
ple diffusion because no forces are present.
For the full trajectory, we use the simple rule that the

probability of a sequence of independent steps is simply the
product of the individual step probabilities: think of a
sequence of fair coin flips characterized by 1/2 to the appro-
priate power. Hence, for an N-step trajectory defined by Eq.
(8) starting from x0, we have

p trajð Þ ¼ p1 Dx1ð Þ � p1 Dx2ð Þ; � � � ; p1 DxNð Þ (11)

¼ 1

r
ffiffiffiffiffiffi
2p

p
� �N YN

j¼1

e�Dx2j =2r
2

: (12)

A multi-dimensional distribution such as Eq. (12) may not
be trivial to understand for those not used to thinking in high
dimensions. First, why is it a multi-dimensional distribution?
Well, it describes the distribution of a set of points, the tra-
jectory x0; x1; x2;…; xNf g. Note that we immediately obtain
the Dx values needed for Eq. (12) from the x values using
Eq. (8): Dx1 ¼ x1 � x0 and so on. So if you are given a set of
(trajectory) x values, you can convert them into Dx values
and plug them into Eq. (12) to get the probability of that tra-
jectory. You can do this for any set of x values, even ridicu-
lously unphysical values with gigantic jumps, but of course
the probability will be tiny for unphysical trajectories. For
completeness, strictly speaking, Eq. (12) is a probability den-
sity4 and absolute probabilities are only obtained by integrat-
ing over a finite region.
The distribution of trajectories encodes all the information

we could possibly want about diffusive behavior, although
some math is needed to get it. Alternatively, as a proxy for
the distribution, multiple trajectories could be simulated to
quantify their average behavior. In the case of simple diffu-
sion, however, the math of the trajectory distribution is both
tractable and illuminating.
As a fascinating technical aside, note that the product of

exponentials in Eq. (12) can be re-written as the exponential of
a sum (�

P
jDx

2
j =2r

2), which makes the probability look some-
what like a Boltzmann factor. Indeed, consulting the definition
of r2 in Eq. (5), we find it is proportional to kBT. Of course, the
argument of our exponential is not a true energy, but can be
considered an effective path energy, known as the “action.”4,33

Fig. 1. Simple diffusion, two ways. At left are schematic time-discretized

trajectories illustrating one-dimensional diffusion started from the initial

point x0 ¼ 0. Averaging over the positions of many trajectories at specific

time points t1 and t2 yields the distributions shown at right, with

pðx; tiÞ ¼ pðxijx0Þ. Averaging can aid interpretation but it also removes

information, namely, the connectivity among the trajectories’ sequences of

points.
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(In the non-diffusive case, Dxdet 6¼ 0 leads to an additional term
in the exponent and the action; see below.) The action formula-
tion, and the consideration of all possible paths, is the heart of
the path-integral formulation of quantum mechanics.34 The
path-probability formulation is truly fundamental to physics.

B. Deriving the spatial distribution from trajectories

A key observable of interest is the distribution of x values
at a fixed but arbitrary time point (Fig. 1). To build up to
this, we will carefully derive the equation for the conditional
probability distribution pðx2jx0Þ of x2 ¼ xð2DtÞ values, i.e.,
the distribution for a fixed starting point x0. The critical idea
is that we can obtain the probability of any given x2 value by
summing (i.e., integrating) over all possible two-step trajec-
tories that reach the particular value starting from x0.
Because both forward and backward motion are possible for
the intermediate step, we must consider all possible x1 val-
ues. Mathematically, this amounts to

p x2jx0ð Þ¼
ð1
�1

dx1 p1 Dx1ð Þ p1 Dx2ð Þ;

¼
ð1
�1

dDx1 p1 Dx1ð Þ �p1 x2� x0þDx1ð Þð Þ; (13)

where we have used Eq. (11) to start and then Eq. (8) to sub-
stitute for Dx2.

We can evaluate the integral in Eq. (13) exactly. Plugging
in the expression for p1 from Eq. (10) and setting y ¼ Dx1,
we have

p x2jx0ð Þ ¼ 1

2pr2

ð1
�1

dy e�y2=2r2e� x2�x0�yð Þ2=2r2 ;

¼ 1

2pr2
e� x2�x0ð Þ2=4r2

ð1
�1

dy e�½y� x2�x0ð Þ=2�2=r2 ;

¼ 1ffiffiffiffiffiffi
2p

p ffiffiffi
2

p
r

� � e� x2�x0ð Þ2=2�2r2 ; (14)

where the second line is derived by completing the square in
the exponent and the third line is derived by performing the
Gaussian integral shown.

The result Eq. (14) for the distribution of positions after
2Dt is very informative, especially by comparison to the
single-step distribution Eq. (10). The distribution of possi-
ble outcomes is still a Gaussian of mean x0, but the vari-
ance is doubled; equivalently, the standard deviation has
increased by a factor of

ffiffiffi
2

p
. See Fig. 1. It is important that

we derived this distribution by averaging (integrating)
over the ensemble of two-step trajectories. As promised,
the information was indeed encoded in the original trajec-
tory distribution Eq. (12).

From here, it is not hard to generalize to an arbitrary num-
ber of steps by repeating the integration process. The result
is that the distribution of xn ¼ nDt values is also a Gaussian
with mean x0, but with variance nr2,

p xnjx0ð Þ ¼ 1ffiffiffiffiffiffiffiffi
2np

p
r
e� xn�x0Þ2=2nr2:ð (15)

Equation (15) embodies the usual description of diffusion, as
we will see in two ways, but it also contains less information
than our initial trajectory description.

C. Confirming the probabilistic description of diffusion

Have we really recapitulated the usual description of dif-
fusion? As a first check, we immediately recover the
expected linear time dependence of the mean-squared dis-
placement4 based on Eq. (15). This is because the variance is
the mean-squared displacement or deviation (MSD), and the
number of steps n ¼ t=Dt is simply proportional to time. By
the definition of a Gaussian distribution, the variance
implicit in Eq. (15) is nr2, and we therefore have

MSD � xn � x0ð Þ2 ¼
ð1
�1

dxn xn � x0ð Þ2p xnjx0ð Þ;

¼ nr2 ¼ t=Dtð Þr2: (16)

If we define the diffusion constant via MSD ¼ 2D t (in one
dimension), then from Eqs. (5) and (16), we derive
D ¼ kBT=mc, which is a well-known result.4

Second, by renaming the variable xn ! x ¼ xðtÞ in Eq.
(15) and noting that time t ¼ nDt, we can see that Eq. (15)
describes the time-evolving probability distribution of posi-
tions p(x, t), which is the well-known solution to the 1D dif-
fusion equation,

@p

@t
¼ D

@2p

@x2
: (17)

This can be verified by direct differentiation, but see Sec.
VIII for a hint. The agreement with the continuous-time dif-
fusion equation implies that time discretization is irrelevant,
but be warned that this is not always the case, as discussed in
Sec. VIII.

D. What is missing from the standard description
of diffusion?

Because the distribution of positions (Eq. (15)) is known
for any time and provides the exact solution to the diffusion
equation, it may seem there is nothing more to know.
However, the key observables—the timescale (or rate) and
mechanism of any particular process—either are not avail-
able at all from the positional distribution or not easily
available.35,36

These shortcomings stem from the information missing
from the spatial distribution. Even if we know the spatial dis-
tribution at two times, we still do not know how any given
diffusing particle went from one place to another. That is,
although we know the fraction of particles that will be
located between any x and x þ dx, we do not know which
came from left or right and exactly from where. This infor-
mation is encoded in the dynamics and recorded in the distri-
bution of trajectories Eq. (11), which is essentially a
distribution of paths taken through position space. It is fair to
say, therefore, that the trajectory distribution is the mecha-
nism, assuming that all trajectories considered conform to
criteria of interest (e.g., starting at x¼ 0 and perhaps reach-
ing a value x> a after n steps.)

E. Beyond simple diffusion in one dimension

Before we move beyond a single dimension, a useful ref-
erence for developing intuition is the generalization of the
single-step distribution Eq. (10) when a force is present. Re-
framing the procedure Eq. (4) probabilistically, the
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distribution for overdamped dynamics of a 1D particle in the
presence of a spatially varying potential U(x) is a different
Gaussian,

p1ðDxÞ ¼
1ffiffiffiffiffiffi
2p

p
r
e� Dx�Dxdetð Þ2=2r2 : (18)

In contrast to the simple-diffusion case Eq. (10), the distribu-
tion of possibilities is centered on the deterministic (force-
driven or “drift”) step Dxdet defined by Eq. (6). That is, the
particle tends to move in the direction of the force, albeit
stochastically.

Equation (18) should guide your intuition for single-step
motion of a stochastic system: there is a distribution of possi-
bilities centered on the deterministic step. The deterministic
component generally could depend on inertia and/or force
although in the overdamped case there is no inertia. Note
that Dxdet in Eq. (18) implicitly depends on the starting posi-
tion for the step: see Eq. (6). Below, we will make the posi-
tion dependence more explicit.

IV. THE NON-EQUILIBRIUM STEADY STATE

(NESS) AND THE HILL RELATION FOR RATES

Probably the most important observable in a dynamical
process, at least in biomolecular studies, is the rate for a pro-
cess. As we will see, the rate is closely related to a specific
non-equilibrium steady state, which is essential to under-
stand but also quite accessible.

Physicists often quantify a rate via the mean first-passage
time (MFPT).32,35–37 The first-passage time is simply the
time required for a process from start to finish, e.g., the time
required for a protein to fold, starting from when it is initial-
ized in an unfolded state. In Fig. 2, this is the time from initi-
ation in “source” state A to absorption in “sink” state B. (We
are thus employing source-sink boundary conditions.)
Chemists and biochemists quantify kinetics via the “rate con-
stant” for a conformational process like protein folding,
which has units of s�1 and can be defined as the reciprocal
MFPT, although chemists prefer a definition based on
directly measurable “relaxation times.”4,38,39 Our discussion
will focus solely on the MFPT for simplicity.

The MFPT can be directly obtained from a steady-state
trajectory ensemble, so we will start by defining a source-
sink non-equilibrium steady state (NESS) as sketched in

Fig. 2. Independent trajectories are initiated in the source
macrostate A (e.g., the set of unfolded protein configura-
tions) according to a specified distribution p0 (e.g., a single
configuration or the equilibrium distribution over A). A sec-
ond, non-overlapping sink macrostate B is an absorbing state
in that trajectories reaching B are terminated, although in our
source-sink setup they are immediately restarted in A
selected according to the p0 distribution. If this process is
allowed to run for long enough so that each trajectory has
reached B and been recycled back to A many times, the sys-
tem will reach a non-equilibrium steady state. Without a sink
state or recycling, the system will relax to equilibrium, which
is also a steady state. (See Sec. VIII to explore the difference
between equilibrium and other steady states.)
The MPFT is derivable from a NESS trajectory ensemble

in a direct way, which will seem obvious once we are aware
of it. The derivation is simple, but requires some thought.
Imagine we have a large number M � 1 of independent sys-
tems that together make up the source-sink NESS (Fig. 2).
By construction, the NESS is characterized by a constant
flow of trajectories into B. We can simply count the number
of trajectories arriving during some time interval s and call
this count m. Thus, a fraction m/M of the total probability
arrives in time s.
To continue our derivation, we can estimate this same

fraction of trajectories arriving based solely on the meaning
of the MFPT. By definition, the average amount of time a
trajectory requires to traverse from A to B is the MFPT, so
the (average) probability for any given trajectory to arrive
during an interval s is precisely s=MFPT, which in turn is
the same as the fraction expected to arrive in s. In other
words, m=M ¼ s=MFPT, and we have derived the Hill
relation,4,25

1

MFPT
¼ m=M

s
¼ FluxðA ! B jNESSÞ; (19)

where the flux is the probability arriving to B per unit time in
the NESS. Equation (19) is an exact relation with no hidden
assumptions, although not surprisingly the MFPT is particu-
lar to the initiating distribution p0 of the particular NESS in
which the flux is measured. That is, the MFPT depends on
where in state A trajectories are initiated.
The Hill relation hints at a remarkable possibility: estimation

of a long timescale (the MFPT) based on an arbitrary short
period of observation (s). If this could be done routinely, it
would represent a major accomplishment in computational
physics.31 In Sec. VI, we describe a simple algorithm that can
leverage the Hill relation for practical computations in many
systems. We also explain the challenges involved.

V. MORE ADVANCED DISCUSSION OF

ENSEMBLES AND THERMODYNAMIC STATES

This section describes additional fundamental concepts in
non-equilibrium physics, but the discussion necessarily becomes
more technical. Readers can skip this section without compro-
mising their ability to understand subsequent material.

A. Notation and nomenclature for multi-dimensional
systems

We will frame our discussion a bit more generally in the
context of multi-dimensional systems. Fortunately, this

Fig. 2. Source-sink non-equilibrium steady state. Trajectories (red curves,

color online) are initiated in state A and terminated upon reaching state B,

with states bounded by dashed contours. Importantly, trajectories that reach

B are then re-initiated from A. Such a system will reach a non-equilibrium

steady state after a transient “relaxation” period. Gray solid lines show iso-

energy contours of a schematic landscape.
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extension adds only incremental conceptual and mathemati-
cal complexity. To keep notation as simple as possible, we
will use ~x to represent all microscopic coordinates—the
phase-space vector consisting of all positions and velocities
of all atoms in our classical representation. In some cases,
such as overdamped dynamics (Eq. (3)), velocities may be
excluded from the description, but the ~x notation remains
valid. A macrostate is defined to be a set of ~x points. These
macrostates are not to be confused with thermodynamic
states such as equilibrium at some constant temperature or a
non-equilibrium steady state.

As with our discussion of simple diffusion above, we will
strictly use discrete time: t ¼ 0; Dt; 2Dt; :::. Discrete time
greatly simplifies our description of trajectory probabilities
without sacrificing any physical insights. In a trivial exten-
sion of Eq. (7), we therefore write a trajectory as

traj ¼ ~x0; ~x1; ~x2;…f g; (20)

where~xj is the phase point at time t ¼ jDt.

B. The initialized trajectory ensemble in multiple

dimensions

The probabilistic description of a multi-dimensional tra-
jectory follows logic almost identical to the 1D diffusion for-
mulation of Eq. (11), except for two details. First, we now
include the possibility that the initial system phase point ~x0
itself is chosen from some distribution p0. Second, in con-
trast to simple diffusion, where the distribution Eq. (10) of
outcomes p1 for any single step depends only on the magni-
tude of Dx, more generally the outcome depends on the start-
ing point of the step because the force may vary in space.
We therefore adopt a notation which makes this explicit:
p1ð~xj�1 !~xjÞ ¼ p1ð~xjj~xj�1Þ is the (conditional) probability
distribution for ~xj values, given the prior position ~xj�1. The
probability of a full trajectory is then the product of the ini-
tial distribution and the sequence of stepwise distributions,

pðtrajÞ ¼ p0ð~x0Þ � p1ð~x0 !~x1Þ
� p1ð~x1 !~x2Þ � � � p1ð~xN�1 !~xNÞ: (21)

The mathematical form of p1 must now account for multi-
dimensional aspects of the system, as well as any forces or
inertia if present: see Eq. (18) and the discussion following
it. Although specifying p1 in generality is beyond the scope
of our discussion, we should note that the form of Eq. (21)
indicates we have assumed Markovian behavior: the distribu-
tion of outcomes p1 at any time depends only on the immedi-
ately preceding time point.

We must be careful to specify our system without ambigu-
ity. A given physical system, such as a particular protein
molecule in a specified solvent at known temperature and
pressure, can be considered in a variety of thermodynamic
states, such as equilibrium or a non-equilibrium state. The
system and the thermodynamic conditions both must be
specified. Conveniently, the two aspects are described by dif-
ferent parts of the trajectory distribution equation Eq. (21):
the intrinsic physical properties such as forces and dynamics
are encoded in the single-step p1 factors, while the thermody-
namic state or ensemble is determined by the initial distribu-
tion p0 along with boundary conditions. Some boundary
conditions will be discussed below.

The distribution Eq. (21) describes the initialized trajectory
ensemble, the set of trajectories originating from a specified
phase-point distribution p0 at time t¼ 0. For instance, p0
could represent a single unfolded protein configuration (mak-
ing p0 a Dirac delta function), a set of unfolded configura-
tions, a solid in a metastable state, or the set of initial
positions of multiple dye molecules in a solvent. Figure 1
illustrates the one-dimensional trajectory ensemble initialized
from p0ðxÞ ¼ dðxÞ.
As with simple diffusion, we can revert to the simpler, aver-

aged description of a spatial distribution that evolves in time
due to the dynamics. That is, in principle, we can calculate the
distribution of phase points at time t ¼ NDt starting from p0,
denoted pð~xNj p0Þ. When forces are present, the diffusion (par-
tial differential) equation Eq. (17) must be generalized to
account for the tendency of a particle to move a certain direc-
tion, leading to the Fokker–Planck/Smoluchowski picture.32,35,36

Appendix A describes the corresponding Smoluchowski equa-
tion that governs overdamped motion with forces. However, as
with simple diffusion, the spatial distribution represents an aver-
age over the information-richer trajectories.

C. Connection to relaxation, state populations,

and thermodynamics

It is important to note that, in general, an initialized system
will “relax” away from its initial distribution p0. For systems
of interest here, the system’s phase-point distribution
pð~xNj p0Þ will tend to relax toward a steady state dependent
only on the boundary conditions. In a constant-temperature
system with no particle exchange, for example, the distribu-
tion will approach equilibrium as embodied in the Boltzmann
factor: limN!1 pð~xNj p0Þ / exp ð�Hð~xÞ=kBTÞ, where Hð~xÞ
is the total energy of point~x, kB is Boltzmann’s constant, and
T is the absolute temperature. In general, whether equilibrium
or not, the steady state that is reached typically will be inde-
pendent of p0 after sufficient time for a “well-behaved” sys-
tem. In Sec. IV, we explored non-equilibrium steady states
critical to understanding conformational transitions.
Whether the system is in the relaxation or steady regime,

the phase-point distribution pð~xÞ, obtainable from the trajec-
tory picture, directly connects to observable and thermody-
namic properties. Most simply, the time-dependent
macrostate population can be obtained as the integral of pð~xÞ
over a region of phase space: this is the fraction of probabil-
ity in the state which evolves in time with p. At a system-
wide level, both the entropy and average energy can be
obtained from well-known integrals over p.4,7 These also
evolve with time, directly leading to the entropy production
picture. Further detail on these topics is beyond the scope of
the present discussion, and interested readers should consult
suitable Refs. 7 and 27.

D. The ensemble of trajectories and the meaning

of equilibrium

When we speak of an “ensemble” of trajectories, the word
has the same meaning as in ordinary statistical mechanics,4,6

namely, a set of fully independent trajectories generated
under the conditions of interest (see below). That is, each
member of the ensemble is a replica of the same physical
system but is initiated from a phase point that typically will
differ from others in the ensemble.
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An ensemble in principle can be generated according
to any process and under any conditions we care to spec-
ify. The dynamics of these trajectories could be governed
by simple constant-temperature diffusion or there could
be a temperature gradient, forces, or both. Trajectories
could additionally be subject to certain boundary condi-
tions: for example, they might be assumed to reflect off
some boundary in phase space or be absorbed on reaching
a certain “target” region as we considered in Sec. IV. The
full set of rules governing a set of trajectories defines the
ensemble by determining the weights of each trajectory
as in Eq. (21), and we are often interested in ensemble or
average behavior because this is what is usually observed
experimentally although single-molecule studies are by
now a well-established and important field of
study.21,40,41

It is critical to appreciate that an individual trajectory
generally cannot be considered to be of equilibrium or
non-equilibrium character in an intrinsic sense. (A possi-
ble exception is an extremely long trajectory which itself
fully embodies all defining criteria of the ensemble.4)
Generally, it is the distribution of trajectories that deter-
mines whether a system is in equilibrium and, if not, what
ensemble it represents. Two finite-length trajectories that
have the same weight in the equilibrium ensemble might
have different weights in a non-equilibrium ensemble. The
trajectory distribution will be determined by the initial
phase-point distribution p0 in conjunction with the
imposed boundary and thermodynamic conditions such as
temperature.

Let us consider equilibrium in the trajectory ensemble pic-
ture. For simplicity, we will assume that our initial phase
point distribution is already Boltzmann-distributed:
p0ð~x0Þ / exp ð�Hð~x0Þ=kBTÞ. As trajectories evolve in time
from their initial points, the system will remain in equilib-
rium if the thermodynamic and boundary conditions remain
the same. Thus, dynamics underlie equilibrium. We can say
dynamics define equilibrium through detailed balance: if we
count transitions occurring between small volumes around
phase points ~xi and ~xj over any interval of time, the counts
i ! j and j ! i will be identical within noise; the same is
true for any size volumes in equilibrium.1,4 This detailed bal-
ance property not only keeps the distribution stationary in
time, but it means there are no net flows anywhere in phase
space. Detailed balance further implies there is no net flow
along any trajectory-like path—i.e., the forward and exactly
time-reversed trajectories will occur an equal number of
times.23,42

Note that our discussion here applies to thermal (constant-
temperature) equilibrium for systems whose full configura-
tions or phase points may include real-space coordinates
and/or chemical degrees of freedom. That is, the trajectory
picture of equilibrium applies for conformational processes
in molecules, such as isomerization or folding; for simple
diffusion or diffusion with possibly space-varying “drift”
forces; for molecular binding, which may include both trans-
lational and conformational processes; for chemical pro-
cesses involving electronic degrees of freedom such as bond
formation and breakage; and for any combination of these
whether modeled in full detail or approximately, so long as
there is no implicit addition or removal of energy or par-
ticles. The trajectory picture does not apply for mechanical
equilibrium, the balance of forces.

VI. POWERFUL SIMULATION METHODOLOGY

BASED ON TRAJECTORY ENSEMBLES

A. Goals and challenges of computation

To consider computational strategies, we should first
understand the goals of computation. As we do so, keep in
mind a concrete process like protein folding or another spon-
taneous transition from a metastable state to a more stable
one, such as a conformational change in a protein, a change
in crystal lattice form, or a re-arrangement of a molecular
cluster. For any of these transitions, we might be interested
in the following:

(i) The “kinetics”—the MFPT or some other measure of
rate for the transition.

(ii) The “mechanism” or pathways of the process—the
sequence(s) of states exhibited during the transition.

(iii) The “relaxation” process—the timescales and mecha-
nisms of describing the transient way the system
“settles in” to a steady state.

We will first consider a simple, though typically impracti-
cal, way to calculate any or all of the above. As sketched in
Fig. 3, the naive “brute force” implementation would simply
be to initiate a large number of trajectories using an initial
distribution of interest p0 and wait until all trajectories have
made the transition of interest. From this set of trajectories,
we could (i) average their durations to obtain the MFPT or
(ii) analyze the states occurring during transitions to quantify
the mechanism.43 For (iii) relaxation, we could wait still lon-
ger until the spatial/configurational distribution becomes sta-
tionary (using “recycling” if studying a constant-temperature
NESS) and quantify the relaxation time as well as the mech-
anism, perhaps via probability shifts that occur. However,
the strategy of waiting for multiple spontaneous transitions
will only work for the simplest systems, such as low-
dimensional toy models. (See Sec. VIII.)
In general, the brute force approach will not be practical

for complex systems, and if a system is complicated and
directly pertinent to real-world problems, it is likely to be
too expensive to permit thorough brute-force simulation. We
can quantify the challenges with a back-of-the-envelope cal-
culation. For the system of interest, say you can afford a total
of M simulations of duration tmax. This means, roughly, that

Fig. 3. The challenge of rare-event sampling in computation. Trajectories

are initiated in state A, but in challenging systems most will remain in state

A (solid trajectory). Transitions (dotted line) may be extremely unlikely or

effectively unobservable in realistic, high-complexity systems such as pro-

tein conformational changes. Hence, typical “brute force” simulations can

be both wasteful and expensive.
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you can determine the distribution of phase points at any
time t < tmax, denoted pð~x; tÞ, to a precision of 1=M; typi-
cally, you will not have knowledge of behavior beyond tmax.
As a point of reference in biomolecules, current hardware
limits tmax to 1–10 ls in most systems (and to ms for small
systems with extraordinary resources9), whereas most bio-
logical phenomena occur on a timescale of at least 100 ls
and more typically on ms–s scales.

B. Efficient simulation via the weighted ensemble

approach

Fortunately, there are now methods31,44–47 that can side-
step the 1=M limitation just described, and we will focus on
the most straightforward of these, known as the weighted
ensemble (WE) strategy.16,48,49 WE is a multi-trajectory
“splitting method” based on a proposal credited to von
Neumann50 that can provide information on relaxation and
steady-state behavior. WE can provide this information using
less overall computing than naive simulation, i.e., the prod-
uct Mtmax is smaller. It achieves this by re-allocating com-
puting effort (trajectories) away from easy-to-sample regions
of phase space toward rarer regions. WE is also an unbiased
method: on average, it exactly recapitulates trajectory
ensemble behavior and hence the time-evolution of the spa-
tial distribution pð~x; tÞ;49 the latter property reflects consis-
tency with the Fokker–Planck equation,35,36 which is briefly
described in Appendix A.

WE simulation follows a fairly simple procedure, schema-
tized in Fig. 4, which promotes the presence of trajectories in
relatively rare regions of an energy landscape. In a basic
implementation,48 phase space is divided into non-
overlapping bins of the user’s construction, and a target num-
ber of trajectories per bin is set—say, 2, for concreteness.

The bins should finely subdivide difficult-to-sample regions
such as energy barriers to enable “statistical ratcheting” up
hills if trajectories are examined frequently enough. That is,
because short trajectories always have some probability to
move uphill in energy, brief unbiased fluctuations can be
“captured” for ratcheting and effectively concatenated to
study otherwise rare events, sidestepping the 1=M limitation.
Trajectories are started at the user’s discretion; let us assume
two trajectories are started in a bin of state A, with the goal
of sampling transitions to B.
Trajectories in WE are run in parallel for brief intervals of

time s (with MFPT � s � Dt, where Dt is the simulation
time step), then stopped and restarted according to simple
probabilistic rules. In our example, each of the two trajecto-
ries is initially given a weight 1/2 at t¼ 0 and the essential
idea is to ensure probability moves in an unbiased way, thus
preserving the trajectory ensemble behavior and pð~x; tÞ. If a
trajectory is found to occupy an otherwise empty bin after
one of the s intervals, two “child” trajectories are initiated
from the final phase point of the “parent” trajectory, and
each child inherits 1/2 of the parent’s weight—a process
called splitting. The two child trajectories in the previously
unvisited bin create the ratcheting effect: there is twice the
likelihood to explore that region, and to continue to still rarer
regions, than if we did not replicate trajectories. Stochastic
dynamics must be used; otherwise, child trajectories will
evolve identically.
If more than two WE trajectories are found in a bin, prun-

ing (or merging) is performed in a pairwise fashion: a ran-
dom number is generated to select one of an arbitrary pair
for continuation with probabilities proportional to their
weights, and the selected trajectory absorbs the weight of the
other trajectory, which is discontinued. In this fashion,
energy minima do not collect large numbers of trajectories

Fig. 4. Efficient simulation via the weighted ensemble (WE) method (Ref. 51). Phase space is divided into bins, and trajectories are started according to an ini-

tial distribution of interest (far left). Dynamics are run briefly, allowing trajectories to visit other bins, after which the WE steps of “splitting” (replication) and

“merging” (pruning) are performed. Weights of parent trajectories are shared among children from splitting events, permitting the estimation of very low-

probability events. In this example, a target of two trajectories per bin has been set. Reproduced with permission from Donovan et al, PLoS Comput. Biol.

12(2), e1004611 (2016). Copyright 2016 Authors, licensed under a Creative Commons Attribution (CC BY) license.
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which would add cost to the simulation but provide minimal
statistical value. The processes described, in fact, constitute
unbiased statistical resampling.49 (See Sec. VIII.) In WE, the
total trajectory cost is limited to the number of bins multi-
plied by the number of trajectories per bin and the trajectory
length. This amounts toM tmax in our case, given M=2 bins.

Although the total simulation cost is bounded by M tmax

(plus overhead for splitting/merging), events much rarer than
1=M can be seen because of the splitting procedure. Indeed,
exponentially rare processes are elicited as WE produces an
unbiased estimate of the trajectory ensemble and pð~x; tÞ. A
dramatic example is shown in Fig. 5 for diffusion and binding
in a 3D box, where the distribution of possible binding out-
comes extends tens of orders of magnitude below what stan-
dard simulation provides. For monitoring the transient time
evolution of a system, WE is almost like a “magic bullet.”

Obtaining the MFPT from WE simulation is more chal-
lenging than characterizing pð~x; tÞ in many cases. To use the
Hill relation Eq. (19), the system must relax to steady state
and this relaxation is not accelerated by WE for the very rea-
son it is so successful in characterizing pð~x; tÞ; i.e., because
it is unbiased. To see this more concretely, let tSS be the
average time required for a given system to relax to steady
state. Then, because WE runs M copies of the system, the
total cost for observing a WE simulation relax to steady state
is �M tSS, which will be prohibitive in some though not all
systems.52 Even when M tSS is a prohibitive cost, the MFPT
can be obtained from transient data (t < tSS) available in WE

simulation: although the details are beyond the scope of this
discussion, the idea is to use much finer-grained and faster-
relaxing bins (than were used to run the WE simulation) in a
quasi-Markov approximation.53 Below, we apply WE
directly for MFPT calculation in a simple system.
Like any advanced computational method, WE has its subtle-

ties and limitations. Most important are correlations. Although
WE trajectories are independent (non-interacting), exactly as
assumed in the trajectory-ensemble definitions, correlations arise
in the overall WE protocol due to the splitting and merging
steps. After all, when a trajectory is “split,” by construction the
child trajectories are identical until the split point. Therefore,
assessing statistical uncertainty in WE estimates requires great
care, even though the method is unbiased.54

C. Applying the weighted ensemble to a simple model

To illustrate the power and validity of the weighted
ensemble method, we employ it to estimate the transition
rate over a high energy barrier in a simple system. We use
the WESTPA implementation55 of WE and apply it to a sim-
ple 1D double-well potential under overdamped Langevin
dynamics (Eq. (3)) with parameters chosen to approximate
the behavior of a small molecule in water. We assume a
mass of 100 u, temperature T¼ 300K, a barrier height of
10kBT, and a friction coefficient c ¼ 24:94 ps�1 which is rea-
sonable for water and corresponds to a diffusion constant of
10�6 cm2=s. The simulation is run with a timestep of 3 ps,
and all simulation code is available on Github.56

The WE simulation is set up with walkers beginning in the
rightmost basin, and with the two basin macrostates defined
as x>20 nm and x < �20 nm, as shown in Fig. 6. Twenty
uniform bins of width 2 nm uniformly span from x ¼ �20.0
to 20.0 nm, with two additional bins on either end reaching
to 61. The WE simulation is run with a resampling time of
s ¼ 60 ps and a target count of ten trajectories per bin, so
roughly 200 trajectories will run during each s. Walkers that
reach the left basin are “recycled” and restarted from
x¼ 20 nm to generate a non-equilibrium steady state and
exploit the Hill relation Eq. (19).
To quantify the effectiveness of WE simulation for this

case, we can compare the cost for computing the rate con-
stant (i.e., flux or reciprocal MFPT) from WE simulation to
brute-force simulation of overdamped Langevin dynamics.
Note from Fig. 6 that WE simulations reach steady values
after �3000 iterations, which corresponds to �12 � 106

steps of total simulation (for a single WE run, accounting for
all �200 trajectories) or a total of 36 ls of simulated time.
Also from Fig. 6 and Eq. (19), the MFPT is �1000 ls. Thus,
we see that WE simulation has generated the average first-
passage time using an overall amount of computing that is
only a small fraction (�0:04) of the time needed to yield a
single transition event via direct simulation, let alone to gen-
erate a reliable MFPT estimate from multiple events.

VII. CONCLUDING DISCUSSION

The trajectory arguably is the most fundamental object in
classical statistical mechanics, particularly for non-
equilibrium phenomena, and this article has attempted to
connect trajectory physics with more familiar topics in the
traditional physics curriculum. By focusing in depth on the
simplest possible example—diffusion—we have been able to
formalize and visualize the probabilistic/ensemble picture

Fig. 5. Weighted ensemble simulation of extremely rare diffusion and bind-

ing events (Ref. 51). Particles are initiated at the top of a three-dimensional

box (upper right inset) and allowed to diffuse without bias. Any particles

that reach the bottom surface of the box can bind to receptors located there.

The graph shows the probability distribution of bound receptors after a short

time interval—i.e., the likelihood of different outcomes that would result

from a single brute-force diffusion simulation. WE enables sampling deep

into the tails of the distribution because more trajectories are allotted to rarer

outcomes, whereas an equivalent amount of “brute force” sampling cannot

detect events rarer than the reciprocal of the number of trajectories, as

shown by solid horizontal lines. WE simulations used simulation time equiv-

alent to 611 brute force trajectories, as indicated in the left inset. The grey

dots represent independent WE runs (of which green (online) is a representa-

tive) and solid vertical bars give the confidence interval based on the grey

data—which appears to be skewed upward because of the logarithmic scale.

Reproduced with permission from Donovan et al., PLoS Comput. Biol.

12(2), e1004611 (2016). Copyright 2016 Authors, licensed under a Creative

Commons Attribution (CC BY) license.

1056 Am. J. Phys., Vol. 89, No. 11, November 2021 D. M. Zuckerman and J. D. Russo 1056



and connect it with simpler spatial distributions. We have
further been able to connect these ensembles with observable
populations, kinetics, and thermodynamic states, as well as
understand a modern, practical path-sampling approach.

A key lesson is that theoretical physics can view a given
process at different levels of “magnification,” from most
microscopic to most averaged (Fig. 7). Trajectories are the
most detailed and encompass all system coordinates at all
times—which is usually too much to grasp. Trajectories can
be averaged spatially at fixed times to yield more familiar
probability distributions. Trajectory flows across surfaces of
interest can also be averaged to yield probability fluxes: in
equilibrium, all such fluxes are zero, whereas in transient
regimes or non-equilibrium steady states (NESS’s), such
flows provide key information. Notably, the Hill relation
(Eq. (19)) yields the mean first-passage time (MFPT) from
the flux in an appropriate NESS, and furthermore, conditions
on reversibility can be derived from flux arguments
(Appendix B). Finally, averaging—i.e., integrating—over
spatial distributions can yield observable thermodynamic
information on state populations;6,16 see also entropy pro-
duction and fluctuation relations.7,42,57,58

This report has only given a taste of the value of the trajec-
tory picture, which goes much further. Trajectory ideas, for

example, are used to develop the Jarzynski relation.58–60

They provide a direct connection with the path-integral for-
mulation of quantum mechanics.34 Trajectories offer a
unique window into the often misunderstood issue of
“reversibility.”61 (See Appendix B.) Not surprisingly, trajec-
tories and their applications are still an area of active
research.7,52,62–65

VIII. EXERCISES

(1) Confirm by differentiation that Eq. (15) is the exact
solution to the diffusion equation Eq. (17), after setting
xn¼ x and n ¼ t=Dt. Note that t occurs both in the pre-
factor and the exponent, so differentiation requires the
product rule.

(2) Time-discretization generally introduces an error into
dynamics computed via Eqs. (4) and (6). Explain why
there is an error and how it might be mitigated in com-
puter simulation. For what special case is there no error
even if f 6¼ 0?

(3) Implement overdamped dynamics simulation Eq. (4) of
the double-well system specified in Sec. VI C.
Calculate the MFPT of the system for a range of barrier

Fig. 6. Weighted ensemble estimation of the rate of a rare event: high-barrier crossing. (a) potential energy function used for double-well simulation with 10

kBT barrier and state boundaries indicated by the vertical black lines. (b) average flux into the left basin state for simulations started from the right basin, as

computed from three independent weighted ensemble simulations (colored lines). The average flux estimates the inverse MFPT by Eq. (19), yielding �1 ms.

For reference, an independent estimate of the flux is computed using a very long “brute force” simulation (horizontal line). The brute force confidence interval

(C.I.) is shown as a blue shaded region, which is6 twice the standard error of the mean based on 11 transitions.

Fig. 7. From the fundamental ensemble of trajectories to more averaged observables. Because trajectories embody the dynamics that fully specifies a system,

they are the most fundamental. Averaging or analysis can be performed at fixed time points, including the t ! 1 stationary point. Quantities that can be calcu-

lated include the phase-space distribution p(x, t), the mean first-passage time (MFPT), diffusion constant (D), average coordinates or properties (e.g., hxi; hUi),
or system-wide thermodynamic properties, in or out of equilibrium. Although simple diffusive trajectories are pictured, the same principles apply in the case

of non-zero forces.
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heights, starting with a low barrier, by simple averaging
of �10 observed first-passage times. Compare these
values to the expected Arrhenius behavior.4

(4) Using the ODLD module of the WESTPA implementa-
tion of weighted ensemble, implement a triple well sys-
tem. Consider the left-most basin to be the initial state
(A) and the right-most basin the target (B). Examine
the relaxation of the probability into the target state as a
function of time. For cleanest data, average over multi-
ple WE runs. Vary the depth of the middle well and
explain the observed behavior.

(5) Write down the trajectory probability, the analog of Eq.
(12), for a system with constant force, sometimes called
simple drift. Explain in words the meaning of the distri-
bution. If you can, integrate out intermediate time
points to show that the behavior remains Gaussian with
constant drift.

(6) For a simple diffusive system described by Eq. (12),
obtain the distribution for x3 by a suitable integration of
Eq. (14).

(7) Write down the equations that define (i) a steady state
and (ii) equilibrium for a discrete-state system in terms
of steady probabilities pi and state-to-state transition
probabilities Ti!j for some fixed time interval. Note
that equilibrium is defined by detailed balance. Show
that detailed balance implies steady state but not the
reverse. A counter-example suffices to disprove a
hypothesis.

(8) By studying the theory underlying weighted ensem-
ble,49 explain in statistical terms why the “resampling”
procedure for “merging” trajectories does not bias the
time-evolving probability distribution pð~x; tÞ.

(9) Write pseudocode for a weighted ensemble simulation
of an arbitrary system with pre-defined bins. If you are
ambitious, implement your pseudocode for 1D over-
damped dynamics in the double-well system in
Exercise 3.

(10) Understand the continuity equation Eq. (A1) by inte-
grating it over an interval in x from a to b. Integrating
the probability density over this region gives the total
probability in it. How does this probability change in
time, based on the current, and why does the result
make sense? Remember the one-dimensional current is
defined to be positive in the right-ward direction.

(11) Show that stationary distribution of the Smoluchowski
equation Eq. (A3), i.e., when @p=@t ¼ 0, is the
expected equilibrium distribution based on the
Boltzmann factor.
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APPENDIX A: THE FOKKER–PLANCK PICTURE

AND SMOLUCHOWSKI EQUATION IN ONE

DIMENSION

The Fokker–Planck and related equations35,36 are essential
for understanding non-equilibrium statistical mechanics.

These equations generalize the diffusion equation (17), but
they perform essentially the same role: they quantify the way
a spatial and/or configurational distribution changes over
time based on a given energy landscape. The key point is
that this is a very general concept that applies not only to
center-of-mass diffusive motion but also to configurational
motions internal to a molecule or system. For example, if a
protein is started in a certain configuration, where is it likely
to be later? The distribution pð~x; tÞ quantifies the distribution
of configurations~x at any time t.
Here, we focus on the Smoluchowski equation, which is

the Fokker–Planck equation specific for the overdamped,
non-inertial dynamics Eq. (3) studied above. The
Smoluchowski equation is easiest to grasp starting from the
continuity equation, given by

@p

@t
¼ � @J

@x
; (A1)

in one dimension, where p ¼ pðx; tÞ is the probability density
at time t and J ¼ Jðx; tÞ is the probability current, i.e., the
(average) probability per unit time moving in the þx direc-
tion. Note that this is the average over trajectories moving in
both directions, so it is the net current. The continuity equa-
tion simply ensures that the change of probability in any
region is the difference between incoming and outgoing
probability. For students who are new to the continuity equa-
tion, Exercise 10 will clarify its meaning.
To complete the Smoluchowski equation, we need the cur-

rent corresponding to overdamped dynamics (Eq. (3)). As
noted above, overdamped dynamics includes both (simple)
diffusion and “drift” (motion due to force). From Eq. (17),
we can already infer that the diffusive current is �D @p=@x,
which is Fick’s law indicating that particles/probability will
diffuse down their gradients in a linear fashion on average.
When a force is present, Eq. (3) indicates that there is also
motion linearly proportional to the force, leading to a total
current

Jðx; tÞ ¼ �D
@p

@x
þ D

kBT
f ðxÞ pðx; tÞ; (A2)

where we have assumed D ¼ kBT=mc is constant in space.
We obtain the full Smoluchowski equation in one-

dimension for fixed D by substituting the current Eq. (A2)
into the continuity equation Eq. (A1), yielding

@p

@t
¼ D

@2p

@x2
� D

kBT

@

@x
f p: (A3)

The diffusion equation has been augmented by a term depen-
dent on the force. Equation (A3) can be solved to find the
steady-state behavior of p both out of or in equilibrium (see
Sec. VIII) or to follow the time-dependent behavior as the
distribution p relaxes toward its limiting steady profile.

APPENDIX B: ADVANCED TOPIC: MACROSCOPIC

REVERSIBILITY BY DECOMPOSING THE

EQUILIBRIUM TRAJECTORY ENSEMBLE

Many of us are aware of the intrinsic time reversibility of
Newtonian mechanics, whereby any constant-energy trajec-
tory ~xðtÞ can be “played backwards” to yield another
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physically valid trajectory. There is an analogous condition
on a stochastic trajectory, which can be derived from
detailed balance.60 However, the conditions for reversibility
under more realistic circumstances involving a distribution
of initial and final configurations require the trajectory
ensemble picture.61

We start by considering an equilibrium ensemble of trajecto-
ries: see Fig. 8(a). The equilibrium trajectory ensemble is
defined by a set of completely independent systems/trajectories
for times t > t0, given that at t0, the set of phase-space points
~xðt0Þ is equilibrium-distributed, i.e., according to the
Boltzmann factor. (We don’t need to worry about how equilib-
rium was produced.) If the phase points are equilibrium-
distributed at time t0, they will remain equilibrium-distributed
thereafter. This is because the Markovian stochastic dynamics
that generates equilibrium also maintains it, which is why we
call it equilibrium in the first place.4

As sketched in Fig. 8, the equilibrium ensemble at any
time t can be exactly decomposed into two parts based on a
history-labeling process.46,61 Specifically, based on two arbi-
trary non-overlapping macrostates A and B, each trajectory
can be assigned to the A-to-B set—a.k.a “last-in-A” set—if
it currently occupies state A or was more recently in A than
B, with the remaining trajectories in the B-to-A direction.
This construction requires “omniscience,” in the sense of
knowing the full history of each trajectory, so it is something
of a thought experiment. Note that each of these directional
trajectory subsets is automatically maintained as a non-equi-
librium steady state: when an A-to-B trajectory enters B, its
label switches to B-to-A, but the overall equilibrium condi-
tion ensures that equal numbers of trajectories will switch
labels per unit time.61

We are now in a position to understand reversibility,
building on the defining process of equilibrium: detailed bal-
ance.4 As a reminder, detailed balance implies there is zero
net flow between any pair of “microstates,” i.e., small phase-
space volumes. In the context of the two uni-directional
steady states (A-to-B and B-to-A), detailed balance gives us
a tool to consider two non-overlapping mechanistic
“pathways”—arbitrary tubes of phase points connecting A
and B—e.g., upper and lower pathways in Fig. 8. If we place
a (hyper-)surface transecting each tube, then there is a cer-
tain probability flowing per second through each surface in,
say, the A-to-B steady state; call these r1 and r2. By detailed

balance, there is no net flow through either surface in equi-
librium, and so the flows in the B-to-A state must be equal
and opposite. Mechanistically, the ratio r1=r2 is the same in
both directions: the fraction of events taking each pathway
must be the same in both directions. This is mechanistic
reversibility. Fuller details and illustrations can be found in
earlier work.61

A key point is that the preceding discussion is strictly
based on the detailed-balance property of equilibrium. Thus,
systems out of equilibrium should not be expected to exhibit
mechanistic reversibility. This is true experimentally and
theoretically. Examples of systems not obeying reversibility
would be if A and B states were prepared under different
conditions (e.g., temperature, pH,…) or, even under the
same conditions, if the initial distribution in A or B did not
mimic the process for constructing the directional steady
states derived from equilibrium. Specifically, in the A-to-B
direction, trajectories should be initiated on the surface of A
according to the distribution with which they would arrive
from B in equilibrium, which is known as the “EqSurf” con-
struction.61 To put this informally, state A needs to be
“tricked” into behaving as it would in equilibrium, so trajec-
tories are started at the boundary of A as if they had arrived
from B (i.e., were last in B) in equilibrium.
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