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Mental fatigue is usually accompanied by drops in task performance and reduced willingness for further
exertion. A value-based theoretical account may help to explain such negative effects. In this view, mental
fatigue influences perceived costs and rewards of exerting effort. However, no formal mathematical
framework has yet been proposed to model and quantitatively estimate the effects of mental fatigue on
subjective evaluations of effort expenditure, under possibly imperfect self-perceptions of internal fatigue
states. We proposed a mathematical framework to model human cognitive effort allocations, assuming
mental fatigue states are partially observable with semi-Markov dynamics. We modeled effort allocation
decisions as a means to the goal of maximizing cumulative subjective values over a given time horizon. We
developed an estimation method to identify subjective values and the hidden dynamics of mental fatigue,
which can in future work be applied to self-reports, psychophysiological indices, and behavioral outcomes
associated with fatigue. The modeling and estimation method was tested using a simulated n-back task
under a free-choice paradigm, with model parameters fine-tuned from past studies. The proposed approach
was able to recapitulate task performance and task engagement patterns observed under mental fatigue. This
work advances a reward/cost trade-off account for explaining the exertion of mental effort and suggests new
avenues for both theoretically and empirically relevant understandings of how cognitive operations are
affected by mental fatigue.
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Mental fatigue is associated with reduced effort on demanding
cognitive operations. Consequently, task performance and work
efficiency tend to decline under mental fatigue (Boksem et al., 2005,
2006; Hopstaken et al., 2015, 2016). The adverse consequences of
mental fatigue have been documented in a variety of settings. In an
office work environment, for example, mental fatigue has been
observed to reduce both typewriting speed and accuracy (de Jong
et al., 2020). In transportation, mental fatigue among drivers has
been considered a major cause of road accidents (Lal & Craig,
2001). It has been estimated that 20%–30% of all road accidents and
5%–15% of fatal road accidents involve fatigue (Razmpa et al.,
2011). In health care, more than 78% of health providers including
physicians and nurses have reported experiencing fatigue-related
burnout, which has been identified as “a public health crisis that
urgently demands action” (Jha et al., 2019).
Although mental fatigue has been studied formally for over 100

years, and its adverse consequences have been observed for even
longer (Thorndike, 1900), its origin and effects are still a matter of

debate (Massar et al., 2018; Pattyn et al., 2018). In this article, we
propose a mathematical framework for modeling and estimating the
effects of mental fatigue on the allocation of mental effort. The
guiding assumption in this approach is that humans are rational in
deciding to exert mental effort in the sense that they aim to maximize
subjective values (Loewenstein et al., 2008; Shenhav et al., 2013;
Westbrook & Braver, 2015). Simply put, when the rewards for
successful task performance exceed the perceived costs, people are
inclined to put effort into the task. Otherwise, the task may be
abandoned in favor of other more valued activities. We assume that
mental fatigue impacts the subjective value of effort expenditure,
and we report a mathematical model rooted in this perspective that
may help to estimate and explain the effects of mental fatigue.

Mental Effort

Many cognitive activities are habitual and can be executed
quickly and easily, but some mental operations—especially those
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involving cognitive control—are slower and more effortful and thus
may be construed as costly. For example, encoding a single-digit
number and recalling it a few moments later is a simple cognitive
operation that even young children, who lack fully developed
cognitive capacities, can accomplish with relative ease. By contrast,
encoding a five-digit number while processing a dense passage of
text and then recalling the number minutes later is a more effortful
mental operation. Juggling multiple streams of information requires
cognitive control to maintain the target information (i.e., the num-
ber) in working memory and to prevent it from being dislodged by
competing information (Engle, 2010; Unsworth & Engle, 2007).
But what currency is used to pay for costly mental effort?
The costs of cognitive operations have at least two origins,

namely, intrinsic costs and opportunity costs. Intrinsic costs stem
from the limited nature of cognitive capacity: only so much infor-
mation can be processed at any given time. Such intrinsic costs may
derive from limited metabolic resources or finite task-relevant
information storage capacity (Shenhav et al., 2017). Indeed, one
stream of thought has suggested that suboptimal behaviors are
deeply rooted in the finite nature of the brain’s computational
capacity (Gershman et al., 2015; Griffiths et al., 2015). Opportunity
costs arise insofar as more than one task is available to perform.
Exerting mental effort on one task comes at the price of foregoing
other tasks and the rewards associated with them. Most relevant to
this article is the assumption that the way people allocate mental
effort reflects their subjective preferences and optimality principles
(Lieder et al., 2012; Vul et al., 2014).
The limits of cognitive capacity—whether due to intrinsic costs or

opportunity costs—call for deliberate allocation of mental effort.
Numerous experiments have observed that individuals adjust the
level of effort they allocate to cognitive tasks according to the
perceived trade-offs between task-associated costs and rewards. For
example, when allowed to choose among different tasks to perform,
participants avoided more cognitively demanding tasks in favor of
less demanding tasks (Kool et al., 2010). Another study used an
economic discounting paradigm to study subjective costs associated
with different tasks (Westbrook et al., 2013). Participants were
instructed to choose among a set of tasks associated with different
difficulty levels and different rewards. The rewards required for
choosing to perform highly demanding tasks were substantially
higher than those for simpler tasks. These results revealed a reluc-
tance to exert effort when available rewards for successful task
performance fall below a subjective break-even point.

The Subjective Value of Effort Expenditure

The difference between the perceived costs and rewards for
performing a task can be construed as stemming from subjective
value (Westbrook & Braver, 2015). Building upon the concept of
subjective value, a normative model can be formulated to translate a
person’s behaviors into subjective preferences (and vice versa).
Moreover, the model parameters can, in some cases, be estimated
from behavioral data (Chong et al., 2017; Hartmann et al., 2013;
Klein-Flügge et al., 2015; Prévost et al., 2010). For example, one
investigation attempted to fit linear, hyperbolic, parabolic, and
exponential subjective value functions to participants’ choices to
allocate mental and physical effort by using a maximum likelihood
estimation procedure (Chong et al., 2017). This work yielded
different models for mental (hyperbolic) versus physical effort

(parabolic), a conclusion further corroborated by evidence for
both domain-general and domain-specific neural substrates for
coding the two types of effort.

An important strand in the literature on modeling mental exertion
by subjective values relates to the expected value of control (EVC)
model (Shenhav et al., 2013, 2017), which construes the subjective
value of effortful cognitive control as the sum of the value of the
present state of the world and the expected future value that results
from the current effort expenditures. According to the EVC model,
the allocation of mental effort reflects a rational decision process
whereby effort is adjusted over time to maximize subjective value.
The EVC model extended a value-based decision-making account
by considering the consequences of current cognitive effort exertion
on distal subjective values (Chong et al., 2017; Hartmann et al.,
2013; Klein-Flügge et al., 2015; Prévost et al., 2010).

The EVC model has been tested and validated in a handful of
prior studies. For example, one study built an EVC model using a
simulated flanker task (Musslick et al., 2015). This study validated
classic findings in a sample of simulated subjects, including reduced
error rates and slower reactions after erroneous responses (Laming,
1968), as well increased intensity of mental effort with increased
incentives for task performance (Padmala & Pessoa, 2010). The
EVC model also has provided a useful framework for studying the
plasticity of control (Lieder et al., 2018) and the influence of affect
on cognitive control (Grahek et al., 2020).

However, some basic components of the EVC model are not
directly observable and thus are hard to identify. For example, the
value of the outcomes and the costs of cognitive control cannot be
directly observed and thus the EVC model might be mis-specified,
which limits the capability of the EVC model to explain empirical
data. Hence, to validate the EVC framework, those model compo-
nents have to be correctly identified. Although some past work has
been done to obtain those basic components from experimental data
(Musslick et al., 2018), there is still far from enough discussion on
how best to identify otherwise unknown model primitives. Never-
theless, the EVCmodel, as we shall propose below, can be extended
to incorporate and identify the effects of mental fatigue.

Effects of Mental Fatigue on Cognitive Control

There is no gold standard definition of mental fatigue (Massar
et al., 2018; Pattyn et al., 2018). As mentioned previously, both
common experience and empirical studies have revealed that mental
fatigue is accompanied by aversion to effort expenditure, poorer task
performance, and subjective feelings of tiredness (Boksem et al.,
2005; Dittner et al., 2004; Hopstaken et al., 2015, 2016; Pattyn
et al., 2018). A prevailing metaphor for mental fatigue, similar to
physical fatigue, is that it is induced by the depletion of energetic
resources. The energetic resource has been hypothesized to be
glucose in the bloodstream, which is essential for virtually all bodily
(including brain) functions (Fairclough & Houston, 2004; Gailliot
et al., 2007). The idea is that the resource (e.g., glucose) gets used up
by performing effortful mental tasks, leaving the person relatively
less able to continue to exert effort until the resource has been
restored. However, the resource metaphor has been challenged both
conceptually and empirically.Whereas some studies found evidence
that blood glucose decreases after cognitively demanding tasks
(Fairclough & Houston, 2004; Gailliot & Baumeister, 2007), others
found no global metabolic changes after mental effort expenditure
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(Finley et al., 2019; Westbrook & Braver, 2015). Blood glucose
levels do not vary much if at all during cognitive demanding tasks
(Gibson, 2007; Kurzban, 2010). Even “resting” mental activity
could be construed as metabolically costly, insofar as specific
task performance hardly consumes more brain energy than does
resting activity (Raichle & Mintun, 2006).
As an alternative to the resource-based view, some theorists have

endorsed a more motivationally oriented perspective of mental
fatigue (Hockey, 2011). In this view, mental fatigue alters the
willingness (rather than the ability) to expend effort. This perspec-
tive has received support from studies testing the effects of external
rewards on mental effort. Both monetary incentives (Boksem et al.,
2006; Muraven & Slessareva, 2003) and nonmonetary incentives
(Hopstaken et al., 2015, 2016) have been found to reverse the
characteristic signs of task disengagement associated with mental
fatigue. Hence, even after fatigue has set in, performance and
associated physiological indicators of attention control can be
restored to (or near to) prefatigue levels by offering incentives
for performance. These results supported the idea that individuals
tend to invest precious cognitive capacities in tasks that yield higher
rewards (compared to the costs), and increasing the value of a task
(i.e., increasing motivation) makes expending effort on it more
likely. In terms of subjective value, we propose that mental fatigue
affects the perceived costs and rewards of mental operations and,
consequently, the motivation for exerting mental effort. Changing
the reward/cost balance by introducing incentives for performance
can thus modulate the allocation of effort under mental fatigue.
A sound model of mental fatigue should be able to explain some

crucial established empirical findings, including evidence that (a)
mentally fatigued people become inclined to disengage from effort-
ful tasks and reduce further effort exertion (Giacomantonio et al.,
2014, 2019; Hopstaken et al., 2016) and (b) extra incentives help to
offset or reverse these negative effects of mental fatigue (Boksem
et al., 2005; Hopstaken et al., 2015). Below we develop a mathe-
matical model intended to account for these established patterns. We
intend the proposed approach to be used in future work to further
understand the causes and consequences of mental fatigue.

Contribution

To our knowledge, the existing literature lacks modeling and
estimation methods for testing the extent to which fatigue changes
during cognitive exertion, and the extent to which perceived rewards
and costs of mental effort change under mental fatigue. In this
article, we developed a quantitative model and estimation methods
to examine how mental fatigue affects the allocation of effort during
cognitively demanding tasks.
In the proposed model, at each decision epoch, a human subject

(agent) decides the amount of effort to exert, expecting
performance-related rewards in return for the costs of mobilizing
mental effort. We assume that the agent chooses the amount of
mental effort expenditure that maximizes total subjective value over
the extended task duration, and further we assume that the fatigue
state is imperfectly self-perceived by the agent. The transition
between fatigue states follows a hidden semi-Markov process,
that is, the likelihood of transition to a more fatigued state is a
function of the current state and the elapsed time in the current state.
We take a “Bayesian brain” perspective, which postulates that the
agent infers hidden causes of sensations based on generative models

(Friston, 2012; Knill & Pouget, 2004),1 and assume that humans
represent sensory information of hidden fatigue states through
Bayesian belief and update the belief upon encountering new input
data (a Bayesian belief is the posterior distribution over possible
fatigue states, given sensory related and behavioral data).2

We develop a method to estimate the parameters of the model,
including the hidden fatigue dynamics and the subjective values of
effort expenditure, using sensory and behavioral data as well as effort
allocation decisions. We tested the estimation method via a simulated
n-back task under a free-choice paradigm with model parameters fine-
tuned from the published literature. The aimswere to identify themodel
primitives and to correctly predict common empirical findings such as
the decline in performance and task engagement due to increased
fatigue (Giacomantonio et al., 2019; Hopstaken et al., 2016) and task
reengagement due to extra incentives (Giacomantonio et al., 2014;
Giacomantonio et al., 2019; Hopstaken et al., 2015). This work ad-
vances methods for explaining effort allocation decisions and provides
new avenues for empirically relevant understanding of how effort
expenditure is affected by mental fatigue.

Review of Relevant Mathematical Background

Partially Observable Markov Decision Processes

Markov decision processes (MDPs) are used to model optimal
intertemporal decision-making (Bellman, 1966; Puterman, 2014;
Ross, 2014). At each decision epoch t > 0, the agent observes the
state of the environment st and selects an action (makes a decision)
at. The action at yields a reward r(st, at) (depending on both state and
action) and leads to a change in the state of the environment. The
transition of the state is characterized in a probabilistic manner by a
conditional probability Pðst+1jst , atÞ. The agent observes st+1 before
making the next choice and so on and so forth.

Partially observable Markov decision processes (POMDPs) gen-
eralize MDPs by taking into account the fact that the states of the
environment may not be perfectly observed (Cassandra, 1994;
Monahan, 1982; Smallwood & Sondik, 1973).3 Due to the hidden
nature of environment states, the agent has to infer the state and
makes decisions based upon all possible observed histories (includ-
ing all past decisions and state-correlated noisy measurements); see
Figure 1. The consequence is that the relevant history grows
exponentially as more decision epochs are considered. Fortunately,
for a Bayesian agent, a belief—a probability distribution over the
state space—is sufficient to derive an optimal policy. The decision-
making process is similar to MDPs: At decision epoch t, the agent
observes a hidden state-correlated observation zt and updates belief
xt based on previous belief xt−1, previous action at−1 and zt. A
decision at is made based on xt. Upon execution of the decision
at, the agent receives a reward and its expectation is denoted by
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1 In the context of a Bayesian brain, a generative model refers to the
modeling approach that describes hidden causes X and their dependent
observables Y via a joint distribution P(X, Y) (Jebara, 2012; Ng &
Jordan, 2002).

2 Sensory related data may include electroencephalography, electrocardi-
ography, pupil diameter, etc. Behavioral data may include task performance
indices such as reaction times, error rates, etc.

3 In general, the environment includes both external states such as
temperature and humidity, and internal states. In this work, by environment
states we mean human psychological states, or more specifically, mental
fatigue states.
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r(x, a). A transition of the hidden state resulting from decision at
is described by Pðst+1, zt+1jst , atÞ. The goal for the agent is to
maximize the expected cumulative reward: E½P∞

t=0 βtrðst , atÞjx0�.
A six tuple (S, A, Z, P, r, β) formally defines a POMDP, where S
is the set of possible hidden states, A is the set of available
actions, Z is the set of possible observations, the dynamics of the
hidden state is P: S× A→ S× Z, and r: S× A→ ℝ is the reward
function (ℝ is the space of real numbers). MDPs and POMDPs
have been used in modeling human behaviors—such as goal-
directed decision-making under uncertainty—and their biologi-
cal foundations (Dayan & Daw, 2008; Seymour et al., 2004).

Inverse Reinforcement Learning and Dynamic Discrete
Choice Models

Inverse reinforcement learning (IRL) is an approach to esti-
mate the preferences (modeled by reward functions) of an agent
in goal-directed behavior, in order to explain why some beha-
viors are more preferred than others (Abbeel & Ng, 2004; Arora
& Doshi, 2018; Dvijotham & Todorov, 2010; Ng & Russell,
2000). Note that although both IRL and MDP approaches
attempt to model optimal behavior in the sense of utility
maximization, the two approaches are different: The goal of
MDPs is to derive an optimal policy for a given (known) set of
model parameters, whereas IRL assumes the optimal behaviors
are exhibited in the data but the corresponding model parameters
are unknown. The goal of IRL is to “learn” the parameters from
the given data (hence “inverse”).
Specifically, for a classic model-based IRL approach, the goal is

to learn the reward function (i.e., the agent’s relative preferences for
the available options). Whereas IRL may be capable of learning
human driving behaviors (Kuderer et al., 2015), training robots
(Finn et al., 2016), and understanding others’ intentions (Theory of
Mind; Jara-Ettinger, 2019), the method has shortcomings. One
crucial issue overlooked by the IRL approach stems from its
assumption that the agent perfectly observes the environment.
This assumption is almost certainly inaccurate. Even if the environ-
ment were fully observable, human perceptions and measures are
noisy and ambiguous (Schmitt et al., 2017). One study attempted to
tackle this issue by developing a model to estimate the reward
function in a partially observable environment (Choi & Kim, 2011).
However, in that work, how the state of the environment changes

(i.e., environment state dynamics) was assumed to be known. This
assumption was likely overly restrictive and simplistic: Changes in
many subjective states (such as mental fatigue) are context depen-
dent and influenced by individual differences and hence may not be
known in advance.

Econometricians have also developed estimation methods for
inferring the parameters of the agent’s utility model from deci-
sion data, which are generally denoted by structural estimation.
Rust (1987) authored a seminal work that extended the scope of
structural estimation to MDPs by developing a nested fixed point
method to estimate (completely observed) environment state
dynamics and reward function, based on an agent’s decision-
making history. Following Rust (1987), a class of dynamic
discrete choice (DDC) models was developed to describe (and
estimate and predict) the decision-making behaviors of a
forward-looking agent (Aguirregabiria & Mira, 2010; Keane
et al., 2011). DDC models have been used in the study of human
economic behaviors such as labor supply (Heckman, 1974),
education policy (Todd & Wolpin, 2006), career decisions
among politicians (Diermeier et al., 2005), and many others.
However, most DDCmodels assume that the environment is fully
observable. The limitations associated with assuming fully
observable states have recently garnered attention. Chang
et al. (2020) generalized the Rust (1987) model to incorporate
hidden states with Markov dynamics, and a maximum likelihood
estimation procedure was developed to recover both the reward
function and the hidden state dynamics. In the present work, we
will generalize Chang et al.’s method to include semi-Markov
states and apply it to learning the hidden dynamics of mental
fatigue and the subjective values of a human agent in the context
of mental effort allocation.

Hidden Markov Models and Hidden
Semi-Markov Models

The class of hidden Markov models (HMMs) is a statistical
framework for the Markov processes in which the environment
states are unobserved. Similar to POMDPs, an observable process
(observation) is available in an HMM and is dependent on the
underlying hidden Markov process. The difference between
HMMs and POMDPs is that HMMs do not involve actions (i.e.,
no decision-making process). At time t > 0, the environment
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Figure 1
Structure of POMDPs

Note. POMDPs = Partially observable Markov decision processes. At each decision epoch t, a
hidden environment state st emits a correlated observation zt. The agent makes a decision by
consulting zt in addition to all past actions and observations. The hidden state st is influenced by
the selected action at and transitions to st+1.
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occupies a (hidden) state st and the environment releases an
observable signal zt dependent on st. Moreover, the underlying
st transitions to st+1 stochastically, following the hidden state
dynamics Pðst+1jstÞ; see Figure 2. The three major goals of
HMMs are: (a) to compute the likelihood of an observed data
sequence {zt}, (b) to find the most likely hidden state sequence {st}
for a given history of observations, and (c) to learn hidden state
dynamics that define an HMM (Baum & Petrie, 1966; Baum et al.,
1970; Eddy, 2004; Mor et al., 2021).
Sojourn time describes the amount of time one spends in an

environment state before exiting that state. In the study of mental
fatigue, sojourn time may be used to characterize the amount of time
an individual remains in a particular fatigue state (e.g., fatigued or
not fatigued). Classic HMMs are restricted to the case wherein the
sojourn time distribution of a hidden state is memoryless. The class
of hidden semi-Markov models (HSMMs), a variation of HMMs,
allows for more flexible state-duration (sojourn time) modeling (Yu,
2010). See Figure 3 for an illustration of the structure of HSMMs. In
an HSMM, when the environment transitions to a different state, it
remains in that state for d time periods and emits d (possibly
different) observations. The distribution of duration d can follow
a variety of probability distributions (Mor et al., 2021). In other
words, HSMMs explicitly consider and model the time the environ-
ment has spent in the current state s, or the time left in the current
state s (before transitioning to another state s′ ≠ s). HMMs and
HSMMs have enabled wide applications in the study of mental
fatigue (Fu et al., 2016; Liu et al., 2010; Luo&Qi, 2019; Zhang et al.,
2008), and other psychological states such as affect (D’Mello &
Graesser, 2010; Le & Provost, 2013), and brain electrical activity
(Doroshenkov et al., 2007; Obermaier et al., 2001; Power et al.,
2010; Wang et al., 2013).

A Mathematical Framework of Effort Allocation
Under Mental Fatigue

In this section, we propose a model to formalize the effects of
mental fatigue on effort allocation. We take a reward/cost trade-off
perspective, attributing mental effort allocation to subjective va-
lues.4 In this section, we focus on modeling mental effort allocation
as the maximization of the expected cumulative subjective values
over the duration of a cognitively demanding task. A concrete
example of mental effort allocation including a parameterization
of costs and rewards under the effects of mental fatigue will be
described below (under N-back Task).
At each decision epoch t > 0, the agent’s fatigue state st ∈ S is

not directly observable (either to the agent or to observers), although
a noisy observation zt ∈ Z (e.g., a physiological or behavioral
measure) of the fatigue state is available. Let at ∈ A be the effort
allocation choice and τt ∈D be the duration of the relevant inner
state (hidden to both the agent and to observers), indicating the
time left in the current fatigue state at time t. In this work, the
fatigue state space S, the observation space Z, the action space A
, and the temporal duration space D are assumed to be finite. The
intertemporal transition of both fatigue state and its duration is
denoted by transition probabilities fPðs′, τ′, zjs, τ, aÞ∶s, s′∈
S, z ∈ Z, τ′, τ ∈ D, a ∈ Ag.5
One-step subjective value r(s, a) is the trade-off between

rewards and costs for a specific decision epoch, which is a
function of both fatigue state s and selected effort level a.

Subjective value functions could be nonparametric or parametric
(such as linear, parabolic, hyperbolic, or exponential functions of
both fatigue level s and effort level a). It is possible that ztmay not
fully capture the information that the agent has available for
decision-making (e.g., the agent may possess private information
that influences subjective values and decisions). We thus assume
that one-step subjective value is perturbed by a random factor ε =
{ε(a): a ∈A}, wherein the ath element of vector ε stands for the
privately observed perturbation when the agent chooses to exe-
cute decision a.6 See Figure 4 for a schematic representation.

Let ζt = {x0, a0, z1, a1, z2, : : : , at−1, zt} be the history until time t,
containing all observable information including past effort allocation
choices {a0, a1, : : : , at−1} and past observations {z0, z1, : : : , zt},
wherein ζ0 = {x0} and x0 = {P(s0, τ0): s0 ∈ S, τ0 ∈D} is the agent’s
initial belief (self-perception) of his or her fatigue state and its
duration. Assume the agent is rational with the goal of maximizing
expected cumulative subjective values over task periods T:

max
a0, : : : , aT

E

"XT
t=0

βtðrðst , atÞ + εðatÞÞjζ0
#
, (1)

where E is the expectation operator conditional on ζ0 and β ∈ [0, 1)
is the discount factor.7

Following the convention of DDC models, we impose two
standard assumptions on random perturbations ε.

Assumption 1 (Conditional Independence).

Pðzt+1, εt+1jζt , at , εtÞ = Pðεt+1ÞPðzt+1jζt , atÞ:

Assumption 1 restricts the random perturbation εt to be indepen-
dently and identically distributed (i.i.d) over both its own history
{εt−1, εt−2, : : : } and other factors (such as fatigue state s and noisy
measurements z). Similarly, we assume that the reduced-form
observation probability Pðzt+1jζt , atÞ is independent of εt+1 (i.e.,
we posit that small perturbations in the preference for a task do not
dramatically alter task performance or physiological states).8
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4 Subjective values are construed as the difference between potential
rewards for successful task performance and the costs incurred to achieve
those rewards. Subjective values can be constructed in many ways by using
various formulations of rewards and costs (Atkinson, 1957; Chong et al.,
2017; Hartmann et al., 2013; Klein-Flügge et al., 2015).

5 In reality, a person may experience faster or slower fatigue deterioration
depending on his or her current state and the task at hand. As a result, sojourn
times for different fatigue states may vary.

6 The information discrepancy between agents and observers may con-
tribute to the bounded rationality observed in many human behaviors, which
may help to account for why people sometimes appear to behave nonopti-
mally (Gershman et al., 2015; Griffiths et al., 2015; Puranam et al., 2015;
Shenhav et al., 2017).

7 Some readers may find that the proposed model (1) can be seen as a
partially observable semi-Markov decision process (POSMDP) with reward
perturbation ε. Whereas the POSMDP literature has focused on computing
an optimal control strategy for a known set of model parameters, our goal is
to model mental fatigue and estimate the (unknown) parameters of a model
based upon observable data.

8 Assumption 1 allows for effective computation of expected cumulative
subjective values. However, small perturbations in task preferences may alter
task performance or physiological states. Examining how ε may affect
physiological states or performance requires a more complicated dependent
structure of state dynamics Pðzt+1, εt+1jζt , at , εtÞ, which represents a poten-
tially valuable avenue for future research.
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Assumption 2 (Additively Separable One-Step Subjective Values).X
st , τt

Pðst , τt jζt , εtÞrðst , atÞ =
X
st , τt

Pðst , τtjζtÞrðst , atÞ + εtðatÞ:

Assumption 2 states that random perturbation ε contributes to (one-
step) subjective values as a random factor, characterizing unex-
pected or unpredictable influences or bounded rationality when
choices are made.
Under Assumptions 1–2, the expected cumulative subjective

value from time t can be written via the Bellman Equation
(Bellman, 1966):

gtðζt , εtÞ = max
at

�X
st

X
τt

Pðst , τt jζtÞrðst , atÞ + εtðatÞ

+ β
X
zt+1

Pðzt+1jζt , atÞ
ð
gt+1ðζt+1, εt+1Þdμðεt+1Þ

�
,

(2)

where μ is the cumulative distribution function of multivariate
random variable ε (of dimension jAj).
We call gt(ζt, εt) the expected cumulative subjective value

function, which can be decomposed into two parts: a present value
and an expected future value. From the perspective of the decision-
making agent (ε is known before acting):

1. The first part
P

st

P
τt Pðst , τtjζtÞrðst , atÞ + εtðatÞ is the

perturbed one-step expected subjective value for
choice at, given the self-perception of both fatigue
state and its duration inferred from observable history
Pðst , τtjζtÞ.

2. The second part β
P

zt+1
Pðzt+1jζt , atÞ∫ gt+1ðζt+1, εt+1Þ

dμðεt+1Þ is the forward-looking expected cumulative
subjective value function, which weighs every possible
future scenario (zt+1, εt+1) by their probabilities
ðPðzt+1jζt, atÞ, dμðεt+1ÞÞ. Specifically, at time t + 1, differ-
ent observations (zt+1) may be emitted by the underlying
hidden state st+1, which, together with choice taken at time
t(at), updates the history ζt to ζt+1 (i.e., ζt+1 = {ζt, at,

zt+1}). Moreover, random perturbation (εt+1) may also take
a different value. So there are two layers of expectation�P

zt+1Pðzt+1jζt , atÞ, ∫ : : : dμðεt+1Þ
�
, corresponding to

the expectation over observations and the expectation
over random perturbations.

Finding solution to Equation 2 is difficult as ζ grows expo-
nentially as time increases. To resolve this issue, let X be the
(finite dimensional) probability simplex in RjS×Dj and xt ≜
fPðst , τtjζtÞ∶ ðst , τtÞ ∈ S × Dg ∈ X be the Bayesian belief (or
belief, used interchangeably from here on), which is the poste-
rior distribution over possible fatigue states and its duration
(st, τt) given history ζt up to time t. Compared to ζt, the size of
belief xt remains constant and does not grow to infinity as t
increases (i.e., xt ∈ X, ∀t), which enables an efficient solution to
Equation 2. According to Bayes rule, upon observing at, zt + 1,
the belief can be updated as:

xt+1ðs, τÞ = Pðst+1 = s, τt+1 = τjzt+1, at , ζtÞ

=

P
st , τt Pðst+1 = s, τt+1 = τ, zt+1jst , τt , atÞxtðst , τtÞ

σðxt , at , zt+1Þ
,

(3)

wherein the denominator is the reduced observation probability:

σðxt , at , zt+1Þ ≜ Pðzt+1jxt , atÞ
=

X
st+1, τt+1

X
st , τt

Pðst+1, τt+1, zt+1jst , τt , atÞxtðst , τtÞ: (4)

We denote the belief updating process by xt+1 = λ(xt, at, zt+1).9

With the definition of belief x, the following theorem formally states
that the Bayesian belief x is sufficient to determine the cumulative
subjective value function g.

Theorem 1. Let ζt= ζ be the history of observations and actions up
to time t, the belief state, action and random reward perturbation at
time t are xt = x, at = a, εt = ε. Define
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Figure 2
Structure of HMMs

Note. HMMs = hidden Markov models. At each time t, the environment state st is hidden but a state-dependent observation zt will be
emitted. The hidden environment state transitions stochastically, according to a Markov chain (no actions are involved).

9 More details pertaining to the belief updating process can be found in the
Appendices A–C.
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Vtðx, εÞ ≜ max
a

�
rðx, aÞ + εðaÞ

+ β
X
z′

σðx, a, z′Þ
ð
Vt+1ðx′, ε′Þdμðε′Þ

�
, (5)

where z′, ε′ are the observation and random perturbation vector at
time t + 1, the updated belief at t + 1 is x′ = λ(x, a, z′) and
rðx, aÞ = P

s, τ rðs, aÞxðs, τÞ. Then
Vtðx, εÞ = gtðζ, εÞ:

Hence, the belief x is a sufficient statistic for the expected cumulative
subjective value function g.
Theorem 1 shows that the proposed model in Equation 2 is indeed

reformulated to a POMDP-based DDC model in (Chang et al.,
2020). Hence, it has the following implications.10 For infinite T
there is a unique (fixed point) value function V such that:11

Vðx, εÞ = max
a

�
rðx, aÞ + εðaÞ + β

X
z′

σðx, a, z′Þ
ð
Vðx′, ε′Þdμðε′Þ

�
,

where x′ = λ(x, a, z′). The existence of the value function V, in the
context of mental effort allocation, enables us to analyze mental
effort expenditure behaviors as follows. Let

Qðx, aÞ = rðx, aÞ + β
X
z′

σðx, a, z′Þ
ð
Vðx′, ε′Þdμðε′Þ, (6)

where x′ = λ(x, a, z′). Then the optimal choice a* for the agent is

a� ∈ argmax
a

�
Qðx, aÞ + εðaÞ

�
:

For an observer, the value of ε required to derive an optimal
decision a* is not available, so the observer can only consider and
sum up each possible value of (random variable) ε weighted by its
corresponding probabilities. This integrated optimal policy (for
observers) is thus probabilistic and is called a conditional choice
probability (CCP), denoted by:

πðajxÞ ≜ Pða ∈ argmax
a′

fQðx, a′Þ + εða′ÞgÞ:

In addition to Assumptions 1 and 2, we also assume ε follows an
i.i.d multivariate Gumbel distribution, that is,

Assumption 3 (i.i.d Gumbel random perturbations). ε is i.i.d and
follows multivariate Gumbel distribution, or:

μðdεÞ =
Y
a∈A

expf−εðaÞ + γgexpfexpf−εðaÞ + γgg,

where γ ≈ 0.5772 is the Euler’s constant.
Then, the expected cumulative subjective value function over

random perturbation ε has the closed-form expression:

VðxÞ ≜
ð
Vðx, εÞdμðεÞ = γ + log

X
a

expQðx, aÞ:

Moreover, the CCP has the closed-form expression:12

πðajxÞ = expQðx, aÞP
a′expQðx, a′Þ

:

Maximum Likelihood Estimation

Our estimation goal is to identify the dynamics of mental fatigue
fPθDðs′, τ′, zjs, τ, aÞ∶ s, s′∈ S, τ, τ′∈ D, z ∈ Z, a ∈ Ag and one-step
subjective values frθRðs, aÞ∶ s ∈ S, a ∈ Ag from data (i.e., ζT),
whereby we parameterize fatigue dynamics by vector θD and
subjective value by vector θR. Ideally, researchers should use
data from experiments with human subjects. In this article, we
will use simulated data to illustrate the estimation procedure devel-
oped in this section. It is well known that DDCmodels are in general
not identifiable (i.e, it is impossible to uniquely recover model
parameters from data). Our proposed model, in Equations 2 and 5,
entails DDC models and hence is no exception. However, Chang
et al. (2020) provided the following conditions to uniquely deter-
mine the model primitives.
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Figure 3
Structure of HSMMs

Note. HSMMs = hidden semi-Markov models. The environment remains in a state s for duration
d, during which the observation is stochastically dependent on the current occupied state s. The
transition of a hidden environment state to a different state is probabilistic once the time left in the
current state is 0.

10 The proofs of these existing theoretical results can be found in Chang
et al. (2020).

11 In practice, one stops at a finite T once some termination criterion is met.
12 The relationship between the expected cumulative subjective value

function and CCP have been discussed widely in past work (Chang et al.,
2020; McFadden, 1980; Rust, 1994).
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1. The dynamics of mental fatiguefPθDðs′, τ′, zjs, τ, aÞ∶
s, s′∈ S, τ, τ′∈ D, z ∈ Z, a ∈ Ag can be estimated from
data if

a. Each data sequence contains two (or more) periods
of data;

b. Both initial belief x0 and the cardinality of fatigue state
space S and longest duration in a fatigue state D (i.e.,
jSj, jDj) are known.13

2. One-step subjective values frθRðs, aÞ∶ s ∈ S, a ∈ Agcan be
identified from data if the following quantities are known:

a. The cardinality of state space S and D;

b. Cumulative distribution function of random perturba-
tion μ;

c. Discount factor β;14

d. one-step subjective values for a reference action a0,
frðs, a0Þ, ∀s ∈ Sg. That is, one-step subjective values
are only identified up to a constant (i.e., only the
differences in r(s, a) − r(s, a0) can be estimated, not
the absolute values).

Under these conditions, maximum likelihood estimation can be
used to find the value of θD, θR that jointly maximizes the likelihood
function of given observable histories ζTs. Assume we have N
independently generated histories in the form of data =
fðxn0, ant , znt+1Þ, 0 ≤ t ≤ TgNn=1 , with each history containing T + 1
decision epochs. The log-likelihood function can be factorized by
reduced-form observation probabilities and CCPs:

loglðθD, θRjdataÞ ≜
YN
n=1

YT
t=0

log

�
PθDðznt+1jxnt , ant ÞPθD, θRðant jxnt Þ

�

=
XN
n=1

XT
t=0

�
log σθDðxnt , ant , znt+1Þ + log πθD , θRðant jxnt Þ

�
:

The estimation can be split into two phases. In the first phase, we
estimate θD by maximizing a partial log-likelihood function regard-
ing reduced-form observations because it only contains θD. The
maximum likelihood estimator is denoted by θ̂D:

θ̂D ∈ argmax
θD

XN
n=1

XT
t=0

log σθDðxnt , ant , znt+1Þ:

In the second phase, we use θ̂D obtained from phase 1 as a given
and maximize a partial likelihood function containing CCPs:

θ̂R ∈ argmax
θR

XN
n=1

XT
t=0

log πθ̂D, θRðant jxnt Þ,

wherein the maximum likelihood estimator of θR is denoted by θ̂R.15

Figure 5 depicts our proposed modeling and estimation framework.
Note that we further assume

PθDðs′, τ′, z′js, a, τÞ = Pθ1ðs′, τ′js, a, τÞPθ2ðz′js′Þ,

where θD = (θ1, θ2). Physiological and behavioral measures
correlate with underlying fatigue states [although this correlation
is far from perfect (Bijleveld, 2018)]. Thus, we model the
observation as a conditional probability given current fatigue
state PðzjsÞ, which is commonly called an observation probability.
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Figure 4
Structure of Proposed Model

Note. Arrow lines show directional statistical dependence. The hidden fatigue state s persists for a (random) sojourn time
di, i= 0, 1, : : : . At each time, an observation zt is obtained. The agent’s subjective value of performing tasks with effort level
a is perturbed by a random variable εt(a). The change in fatigue state s is affected by effort allocation choice a (at τ = 0).

13 Usually x0 can be obtained from self-reports. Numerical examples
also show that the influence of x0 on estimation results is increasingly
negligible as the number of decision epochs T increases (e.g., see Chang
et al., 2020).

14 The values of jSj, jDj, β and distribution μ can be treated as design
parameters and a practitioner can test different options on these parameters
for a best fit.

15 Theoretically, we should jointly maximize θD, θR for the optimal
likelihood function. However, the joint estimation is computationally
expensive. In practice, a partial estimation (first estimating θD and then
estimating θR based on the estimator of θD)—such as our proposed
procedure—is widely used and usually yields good performance (i.e.,
consistent, asymptotically normally distributed estimators; Cox, 1975;
Rust, 1994).

8 WANG, CHANG, SCHMEICHEL, AND GARCIA



More accurate measurements will be more likely to reflect the true
fatigue state.

N-Back Task

In this section, we apply the proposed model and estimation
procedure to a simulated n-back task. We begin by explaining
important model components and expressing them in mathe-
matical terms. Then we give concrete values to the model
parameters for a simulated n-back task. A fully specified model
allows us to simulate rational mental effort allocations and
changes in fatigue, and to illustrate the proposed estimation
procedure. We also discuss the estimation results and validate
the estimated model by comparing its predictions to empirical
results from the relevant literature on mental fatigue and effort
expenditure. Last, we perform robustness analysis for cases
wherein required prior knowledge for the model to function is
unknown.

Fatigue and Mental Effort Allocation During an
N-Back Task

Task setup

We consider a free-choice task environment composed of several
blocks of the n-back task, which is a task commonly used to
manipulate mental fatigue. We assumed that higher levels of task
difficulty (i.e., larger n) lead to higher payoffs (e.g., monetary
rewards) for successful performance but also carry higher psycho-
logical costs. For each block, the agent’s choice of task difficulty
level (at = n, n = 1, 2, 3, wherein n = 1 is the easiest version of the
task) and fatigue-related measures (zt) will be recorded, hence,
ζt+1 = {ζt, at, zt+1}.16
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Figure 5
Modeling of Mental Fatigue and Its Effects on Effort Allocation

Note. TheBlue circle contains an abstraction of changes or transitions in mental fatigue states. The intertemporal dynamics of both the hidden fatigue
state and its duration are parameterized by θ1. Noisy measurements (such as behavioral or physiological data) of fatigue states are denoted by
observations and are stochastically dependent on the underlying hidden fatigue state. This dependent structure is captured by Pθ2 ðzjsÞ . Decisions refer
to the agent’s choice of difficulty level (i.e., effort allocation) for the upcoming block of the cognitive task, which manifests a subject’s preference for
the level of effort to be exerted and results in changes to both fatigue state and its duration. The Yellow circle depicts our proposedmodel for describing
mental effort allocation. Themodel assumes that the agent exerts mental effort to maximize the expected cumulative subjective value (immediate value
plus future expected value) of successful task performance, which is determined by fatigue dynamics, observation probabilities, and one-step
subjective values (parameterized by θR). This subjective value is a function of the fatigue state at each decision epoch. Because fatigue states and their
duration are hidden, the model assumes that the agent self-perceives his or her fatigue state and its duration, described by the belief x. The Green box
displays the estimation procedures for the model parameters, including fatigue dynamics (θ1), observation probabilities (θ2), and one-step subjective
values (θR). Specifically, we first do partial estimation regarding fatigue dynamics (Pθ1 ðs′, τ′js, τ, aÞÞ and observation probabilities (Pθ2 ðzjsÞÞ. Then, we
use the estimators of fatigue dynamics and observation probabilities to estimate one-step subjective values (rθR ðs, aÞÞ. See the online article for the
color version of this figure.

16 In an actual experiment, fatigue measures could include electroenceph-
alography, electrocardiography, performance metrics, etc. Here, in a simu-
lated environment, the fatigue measures were composed of random variables
stochastically dependent on hidden fatigue states.
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Model of Mental Fatigue Dynamics

A common way to induce mental fatigue is to have subjects
perform cognitively demanding tasks for a prolonged period of
time (Boksem et al., 2005, 2006; Hopstaken et al., 2015, 2016;
Wylie et al., 2020). Studies have observed that performing more
demanding tasks leads to greater mental fatigue compared to
performing less demanding tasks (Blain et al., 2016; Wylie
et al., 2017). To that end, task difficulty and time on task
are factors worth investigating in the proposed model. We
modeled changes in mental fatigue as a hidden semi-Markov
process:

1. st ∈ S = {1, 2, : : : , S}: all possible values for fatigue
state at time t. A larger value of s implies a more
fatigued state.

2. τt ∈ D= {1, 2, : : : , D}: time left in current state st at time
t, the maximum of which is D. Ideally, D should be less
than the duration of the experiment so that subjects
become fatigued before the experiment ends.

Then we have

Pðst+1, τt+1, zt+1jst , τt , atÞ, (7)

to describe transitions between fatigue states at consecutive
decision epochs.

The One-Step Subjective Values r(s, a)

The subjective value r(s, a) considers the trade-off between
rewards b(s, a) and costs c(s, a) for a single decision period:

rðs, aÞ = bðs, aÞ − cðs, aÞ:

Note that by Assumption 2, random perturbations in subjective
values ε are usually not explicitly stated, yet softmax optimal
policy used in extant studies of effort allocation (Chong et al.,
2017; Hartmann et al., 2013; Klein-Flügge et al., 2015; Prévost
et al., 2010) were derived using certain assumptions for the
distribution of ε (i.e., under the assumption that ε(a) is i.i.d
across different actions and follows a Gumbel distribution, opti-
mal action a ∈ arg maxa′{r(s, a′) + ε(a′)} is probabilistic with
softmax form).
Cost Function c(s, a). To model the psychological costs for

performing an n-back task, we could use the cost functions defined
by existing work on cognitive control (Chong et al., 2017;
Hartmann et al., 2013; Klein-Flügge et al., 2015; Prévost et al.,
2010), including:

Linear : cðs, aÞ = ksa;
Hyperbolic : cðs, aÞ = 1

1−ksa ;
Parabolic : cðs, aÞ = kðsaÞ2;
Exponential : cðs, aÞ = eksa;

where k > 0 is the parameter characterizing individual or group
differences and a is the task difficulty (see Figure 6). In general, the

parameter a in the cost function c(s, a) refers to effort rather than task
difficulty. However, a positive correlation exists between task
difficulty and the amount of effort to be exerted, particularly
when task success is deemed likely (Brehm & Self, 1989;
Fairclough & Ewing, 2017).17

Reward Function b(s, a). According to motivation theories
and extant studies of cognitive control, the expected rewards for
mental effort expenditure play an important role in guiding human
behavior. In addition, subjective beliefs may influence the perceived
value of external rewards. Subjective beliefs that may influence
perceived value include self-efficacy and success probability (or
expectancy) (Atkinson, 1957; Bandura, 1977; Feather, 1959a,
1959b; Maier & Seligman, 1976; Rotter, 1966; Wabba & House,
1974). Despite differences in terminology, in general, all these terms
relate to the likelihood of succeeding at a prospective task. For
example, the motivation to pursue a task or goal may be quantified
by weighing possible task incentives with their associated success
likelihoods, that is, Classic expectancy × Value considerations
(Reinharth & Wahba, 1975). Efficacy is crucial in the evaluation
of subjective value, and thus influences effort allocation (Froemer
et al., 2020).

For example, Chow et al. (2015) found that participants report
reduced self-efficacy for task-related exertions after performing a
mentally demanding task. Here, we define self-efficacy beliefs as the
subjective evaluation of the probability of succeeding at a given
task:

eðs, aÞ = Pðsuccessjs, aÞ,

where e(s, a) links both task difficulty a (effort level) and fatigue
state s to success probability. In terms of the n-back task, self-
efficacy describes how confident a subject is in being able to succeed
(i.e., meet performance criteria). According to existing research and
theory, we expected e(s, a) to decrease as the task becomes more
difficult or as the subject becomes more fatigued. Consequently, the
reward function reflects external incentive values combined with
self-efficacy beliefs:

bðs, aÞ = eðs, aÞincentiveða; cpÞ,

where in incentive(a; cp) is the monetary payoff subjects would
receive upon meeting the (predetermined) performance criteria cp
for the task a. Performance criteria cp are specified by the
experiment design and will be omitted in the function b(s, a)
for brevity.

Expected Cumulative Subjective Value Function

The one-step subjective value r(s, a) is the subjective value for a
specific decision epoch. The optimal allocation of effort for a
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17 In human subjects, task difficulty can be linked to effort with careful
experimental design. For example, subjects can be informed that incentives
will be earned only if certain performance standards are met. Hence,
choosing a task that is beyond one’s capability to achieve (i.e., the perfor-
mance standard cannot be met) is irrational because the rewards are
unobtainable. Such an experiment design helps guide subjects to choose
task difficulty levels that match the effort they are willing to exert.
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forward-looking agent is to maximize the expected cumulative
subjective values over horizon T:

fa0, a1, : : : , aTg ∈ arg max
a0, : : : , aT

E

�XT
t=0

βtðrðst , atÞ + εðatÞÞjζ0
�
,

where β ∈ [0, 1) is the discount factor. The operator E denotes the
expectation over all stochastic components: (a) all future actions yet
to be selected; (b) all future random perturbations ε; and (c) all future
fatigue states and their duration times (s, τ) that transition
stochastically.

Simulated N-Back Tasks With Changing Fatigue

We assume that the current fatigue state is either 1 (s = 1 for not
fatigued) or 2 (s = 2 for fatigued). The temporal duration of staying
in one of these fatigue states τ takes possible values from 0 to 4
(blocks of trials).18 We assume the following conditional indepen-
dence of the dynamics of fatigue state and its duration:

Pðst+1, τt+1, zt+1jst , at , τtÞ
= Pðst+1jst , at , τtÞPðτt+1jst+1, at , τtÞPðzt+1jst+1Þ,

and that:

1. Fatigue is more likely to occur when the agent chooses to
perform (and then performs) harder tasks. Here we assume
that choosing to perform more difficult tasks of n ≥ 2 when
τ = 0 (about to get tired) will fatigue the agent with
probability 1, that is, Pðst+1 = 2jst , τt = 0, at ≠ 1Þ = 1, ∀st.
Choosing the easiest task at = 1 will help the agent to
recover, so Pðst+1 = 1jst , τt = 0, at = 1Þ = 1,∀st . Note
that when τ > 0, st+1 = st regardless of choice at.

19

2. Performing harder tasks will increase the probability of
transitioning to the fatigued state, and the agent will also
need more time to recover from that fatigued state. For
example, Pðτt+1 = 4jst+1 = 2, τt = 0, at = 3Þ ≥ Pðτt+1 =
4jst+1 = 2, τt = 0, at = 2Þ implies that for the next state,
the probability of staying in a fatigued state for five blocks
(the longest possible duration) is greater when the current
choice was to perform the 3-back task, compared to the
2-back task. Note that when τ > 0, τt+1 = τt − 1 regardless
of choice at.

For (one-step) subjective values, we use a linear cost function
(with respect to effort level) and a weighted reward function
(weighted by self-efficacy beliefs), which is parameterized by
θ3 = {θ3, 1, θ3, 2}20:

rðs, aÞ ≜ bðs, aÞ − cðs, aÞ = θ3, 1
sa

incentiveðaÞ − θ3, 2sa,

where we assume self-efficacy has the form eðs, aÞ = θ3, 1
sa , and where

θ3, 1, θ3, 2 are positive real numbers to be estimated as part of the
model parameters.

To simulate an n-back task environment, we had to predetermine
the value of the model parameters. There are no prior studies
incorporating both a free-choice paradigm and mental fatigue due
to performing the n-back task. Nevertheless, Hopstaken et al. (2015)
provided a referable benchmark. They studied the effects of mental
fatigue on task performance during a prolonged series of n-back
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Figure 6
Commonly Used One-Step Subjective Costs, Increasing as Perceived Effort Increases

Note. Typical forms of subjective costs include linear, hyperbolic, parabolic, and exponential. See
the online article for the color version of this figure.

18 Note that in Hopstaken et al. (2015), the subjects were fatigued within
5–6 blocks of trials. Here, we similarly assumed that fatigue can be induced
within five blocks of trials, indicating that the maximal number of time one
can stay in a not fatigued state is 5 (from Block 0 to Block 4).

19 We will revisit those assumptions in the Limitations section to consider
cases wherein the assumptions may not hold.

20 The same procedure can be applied for nonlinear cost functions.
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tasks. The authors observed changes in task performance (measured
in d-prime), physiological states (P3 amplitude, pupil diameter), and
self-reports of fatigue. We thus adapted data from their experiment
to define our simulation environment. Note that free choice over n-
back task difficulty was not included in Hopstaken et al., which
could have been used by our model to identify subjective values
from participants’ behaviors.

1. We parameterize the transition between fatigue states
Pðs′js, a, τ = 0Þ in a deterministic fashion because only
two states are possible; leaving one state necessarily leads to
entering the other. This parameter is treated as known and
thus did not need to be estimated.21 Specifically, we have:

a. Pðs′= 2js, τ = 0, aÞ = 0, a = 1,∀s;

b. Pðs′= 2js, τ = 0, aÞ = 1, a = 2, 3;∀s;

c. Pðs′= 1js, τ = 0, aÞ = 1, a = 1,∀s;

d. Pðs′= 1js, τ = 0, aÞ = 0, a = 2, 3;∀s.

2. The sojourn time distribution is described by θ1, or
Pθ1ðτ′js′, a, τ = 0Þ , where θ1 = {θ1, 1, θ1, 2, θ1, 3} (see
definitions below). We assume that sojourn times follow
a binomial distribution. Note that the binomial distribution
takes two parameters, the second of which is defined as the
maximum number of blocks a state can persist, which is
fixed to 4.22 This follows from the experiment byHopstaken
et al. (2015), in which subjects exhibited signs of fatigue
within five consecutive blocks of n-back task performance.

a. Pðτ′js′= 1, a = 1, τ = 0Þ∼Bðθ1, 1 = 0.1; 4Þ;
b. Pðτ′js′= 2, a = 2, τ = 0Þ∼Bðθ1, 2 = 0.4, 4Þ;
c. Pðτ′js′= 2, a = 3, τ = 0Þ∼Bðθ1, 3 = 0.7, 4Þ.

We designed average sojourn time in the fatigued state as longer
for a = 3 than for a = 2.23

3. The observation probability—which characterizes the
relationship between a hidden fatigue state s and its
observable noisy measurement z—is captured by θ2, or
Pθ2ðzjsÞ . We used the performance data reported in
d-prime Hopstaken et al. (2015) as the observation z.
Hopstaken et al. observed that average performance across
subjects consistently declined.24 Performance
(d-prime) levels on the relevant n-back tasks observed
by Hopstaken et al. fluctuated between 2.4 and 3.2. To
make our model outputs and predictions comparable to
their results, we borrowed their mean values for the highest
performance level (d-prime ≈ 3.12 among not fatigued
participants) and lowest performance level (d-prime ≈ 2.54
among fatigued participants. Furthermore, we added
variance to the performance variable to account for the fact
that individual performance rarely matches the group-level
mean. We constrained performance (d-prime) within a
range [2.5, 3.5) because most of the findings reported by
Hopstaken et al. fell within that range. We remapped the
observation z from the discretized d-prime in Table 1 and
defined the observation probability PðzjsÞ in Table 2.

4. We describe the one-step subjective value function by θR=
θ3 = {θ3, 1, θ3, 2} = {2.5, 0.5}.

5. We specified the external incentives (rewards) earned for
each block of n-back as: One unit of reward for the 1-back
task, 3 units of reward for the 2-back task, and 6 units of
reward for the 3-back task.

The model parameter (to be estimated) of θ = {θ1, θ2, θ3} is
summarized in Table 3. The discount factor β= 0.9, subjective value
perturbation ε is assumed to be i.i.d and Gumbel distributed (to
ensure the model can be estimated). Now the proposed fatigue
model is fully specified.

Model Estimation, Validation, and Results Analysis

We simulated 1,000 sample paths with each path containing 40
consecutive blocks of trials (or 40 decision epochs) for the given
value of θ. Recorded history includes choices (or actions) of the task
difficulty levels and simulated task performance.

Estimation results are displayed in Table 3. Our estimation
method was able to identify both fatigue dynamics and the one-
step subjective value function with high precision. The maximum
element-wise difference between the ground truth of the parameters
and their estimates was 0.01 for θ1, θ2 and θ3, which differed by no
more than 4% relative to the ground truth.

In addition, the estimated model was able to validate classic
findings from existing empirical studies. Figure 7 compares the
changes in fatigue due to prolonged n-back task performance
reported by Hopstaken et al. (2015) to the predictions from our
estimated model.25 As time on task increased, Hopstaken et al.
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Table 1
We Mapped Performance d-Prime Into Integer Space

Observation
d-prime ∈
[2.5, 2.75)

d-prime ∈
[2.75, 3)

d-prime ∈
[3, 3.25)

d-prime ∈
[3.25, 3.5)

z 1 2 3 4

Note. For example, when d-prime is in the range [2.5, 2.75), corresponding
z takes value 1.

21 For the number of states greater than two, transition probabilities cannot
be treated as known; they will be estimated as model primitives. See an
example in Robustness Analysis section.

22 Note that in Hopstaken et al. (2015), blocks were coded from 1 (e.g., the
first block of trials was labeled as Block 1). In this article, we code from
Block 0 (i.e., the first block of each sample path is Block 0). This decision
aligns with the fact that binomial random variables can take 0 as a value. As a
result, the second parameter of binomial distributions in the article is 4 (rather
than 5), which indicates a maximum sojourn time of five blocks (from Block
0 to Block 4).

23 In the parameterization of sojourn time distributions, we considered
only cases (s′ = 1, a = 1), (s′ = 2, a = 2), (s′ = 2, a = 3), because the
aforementioned fatigue state transitions rule out other combinations. For
example if a = 1, then s′ ≠ 2. Similarly, s′ ≠ 1 if a = 2, 3.

24 In their experiment, 3-back performance was consistently poor and
showed a slight increase as time on task proceeded. We ignored their 3-back
task findings in defining the range of performance values because, according
to Hopstaken et al., 2015 the increase was likely induced by learning effects,
which are not a focus of the current work.

25 Whereas our approach considers a free choice paradigm, Hopstaken
et al. (2015) did not. Nonetheless, our model was able to generate predictions
comparable to the data observed in Hopstaken et al.
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observed that participants’ subjective feelings of fatigue increased in
a concave manner (faster increases at the beginning and slower
increases toward the end of the task). Our model revealed a similar
increase in fatigue levels and captured the concave shape as well (see
the declining slope of the blue solid line at Blocks 5 and 6). Note that
our model expresses subjective fatigue in terms of probabilities, that
is, Pðs = 2jζÞ, whereas Hopstaken et al. gathered subjective reports
of fatigue.
In Figure 8 we compared 2-back task performance observed by

Hopstaken et al. (2015) to our estimated model outputs. Performance
(d-prime) declined as time on task increased in Hopstaken et al.; see
orange dashed line. Our model used performance as a noisy indicator
of underlying hidden fatigue states. As time on task increased, the
model predicted declines in task performance. The predicted perfor-
mance decline was faster for the first several blocks, after which time
the declines slowed down (flattened); see blue solid line.26

Furthermore, Hopstaken et al. (2015) found declines in task
engagement with increased time on task, but apparently reengag-
ment when external incentives were promised for good performance
(Figure 9, orange dashed line). This pattern suggested that incen-
tives alter the subjective value of mental effort expenditure and thus
make expending effort more attractive. Such incentive-induced
change can also be predicted by our model. To mimic the way,
Hopstaken et al. incentivized subjects for good performance, we
increased base incentives for the 2- and 3-back tasks by 80%. The
model predicted that agents become more prone to expend effort for
potential rewards even though fatigued; see Figure 9 (blue solid
line). In our model, task engagement was defined by the probability
of selecting more demanding tasks (2-back and 3-back), that is,
πða = 2jxÞ + πða = 3jxÞ . Moreover, as subjective values kept
increasing, our model predicted that the marginal gains in task
engagement diminish (see Figure 10). This finding is aligned with
evidence that the marginal utility of rewards decreases once the
rewards exceed a certain level (Grahek et al., 2020; Kahneman &
Tversky, 1979; Morgenstern & Von Neumann, 1953; Pine et al.,
2009).

Robustness Analysis

Our model assumes that some of the model primitives are given,
namely, the discount factor β and the number of fatigue states S.
However, those assumptions may be overly restrictive relative to
real life. For example, what is the number of hidden fatigue states
that can best describe a subject’s effort allocation? Or what is the
intertemporal discount factor a subject uses whenmaking decisions?
In this section, we will analyze our model’s estimation performance
in two concrete cases wherein the cardinality of state space (S) or the
intertemporal discount factor is (β) unknown.

Unknown Value of β

The discount factor is involved in the computation of forward-
looking subjective value functions. Variations in the discount factor
may lead to (potentially large) differences in the value functions and
thus affect the estimation of subjective value parameters and indi-
vidual differences in decision-making. The identification of the
discount factor (from data) in dynamic discrete choice models is a
theoretical challenge and an active area of research (e.g., Abbring &
Daljord, 2020). It has been shown that the discount factor is not
identifiable from decision choice data alone without further restric-
tions (Magnac & Thesmar, 2002; Rust, 1994). Usually, the identifi-
cation of a discount factor requires additional context-dependent
information (e.g., Bajari et al., 2016; Norets & Tang, 2014).

To examine the effects due to unknown discount factor, we
considered a case wherein the model settings (fatigue dynamics,
subjective value parameters, etc.) remain the same as the simulated
n-back task in the previous section, except that the discount factor β
is unknown. To this end, we generated data using the discount factor
β = 0.7. Then, we performed the proposed parameter estimation
procedure assuming different true values of β ∈ [0, 1). To compare
the model estimates and their true values, we denoted the estimates
for certain β by θ̂3ðβÞ = fθ̂3, 0ðβÞ, θ̂3, 1ðβÞg and the ground truth by
θ3 = {θ3, 0, θ3, 1}. (Note that phase 1 estimation of dynamics
parameters does not involve β.) Then, the maximum element-
wise percentage difference is defined as:

Dðθ3, θ̂3ðβÞ; βÞ = 100 × max
i∈f1, 2g

�jθ3, i − θ̂3, iðβÞj
θ3, i

�

Figure 11 shows how the estimated log-likelihood and the
difference (%) between estimated subjective value function param-
eters θ̂3 and their true values θ3 change with respect to β. The
maximum log-likelihood and the minimum of Dðθ3, θ̂3; βÞ were
achieved simultaneously at the true β value (β = 0.7), as would be
expected. From the figure, see also that when the assumed β is close
to the true β (= 0.7), the estimation result is acceptable in terms of
both performance (log-likelihood, blue solid line) and the precision
of the estimates (orange dashed line). For example, as the assumed
value of the discount factor ranged between 0.6 and 0.8, there was
no significant drop in model performance and the estimated per-
centage difference (compared to the true values) was under 20%,
attesting the robustness of our approach. The simulation results
shown in Figure 11 imply that β values can be fine-tuned by
numerical methods (such as uniformly searching values between
0 and 1), which represents a viable way to apply our model when the
true discount factor is unknown.

In addition to a numerical searching method to find a proper value
of the discount factor, another route for alleviating the reduced
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Table 2
Parameterization of Observation Probability by θ2

s z = 1 z = 2 z = 3

s = 1 θ2, 1, 1 = 0.01 θ2, 1, 2 = 0.10 θ2, 1, 3 = 0.79
s = 2 θ2, 2, 1 = 0.69 θ2, 2, 2 = 0.28 θ2, 2, 3 = 0.02

Note. Note that Pðz = 4jsÞ = 1 − Pðz = 1, 2, 3jsÞ, which does not require
estimation.

26 The task setup from Hopstaken et al. (2015) was not exactly the same as
the task we attempted to model; thus, we did not observe exactly the same
“dip” in task performance of Block 4 found by Hopstaken et al., 2015 Figure
3, 2-back task. Specifically, Figure 3 in Hopstaken et al. (2015) was plotted
by averaging data across all subjects, whereas our model is specified for an
individual. In addition, their experiment paradigm did not involve free task
selection. Thus, their data cannot be directly incorporated into our model.
Rather, we used their data as a reference point and modified accordingly to
fulfill our needs for establishing simulations. For example, we used their task
performance (d-prime) range to determine the range of observations in our
model.
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identifiability caused by an imprecise discount factor would be to
gather additional (separate) evidence for a participant’s (or a sam-
ple’s average) discount factor. For example, performance on a
classic delay discounting task could suggest a beta value on which
to anchor the relevant model estimation parameter for understanding
the impact of mental fatigue on effort allocation decisions. Please
also refer to the Limitations section, wherein we address issues
pertaining to the temporal discounting of subjective value.

Unknown Cardinality of Fatigue State Space

Mental fatigue is a multifaceted construct that may not be easily
categorized or quantified. However, one can still find a reasonable set of
fatigue categories or states that can be used to explain an agent’s effort
expenditure in terms of modeling. In principle, the choice of the number
of fatigue states should be kept parsimonious, because more states may
lead to more parameters required to specify the model, and the increase
in model parameters demands larger amounts of data to ensure the
precision of model estimates. Akaike information criterion (AIC) and

Bayesian information criterion (BIC) have been used to evaluate the
quality of a model, which take into account the trade-off between model
complexity and model fit. Usually, the model with lower AIC/BIC
values is preferred. For illustration purpose, we considered the following
case, wherein simulated data was generated by a 3-state model. Assum-
ing a modeler does not know the cardinality of fatigue state space, the
fact that fatigue state space cardinality is discrete allows the modeler to
search over a subset of possible numbers of states to find an appropriate
(well-fitting) number. We followed this approach by parameterizing our
model using 2-state, 3-state, and 4-state settings, respectively. Themodel
settings can be found in Appendices A–C.

The estimation results (log-likelihood) are on display in Figure 12
and in Table 4. As can be seen in Figure 12, increasing the number of
fatigue states from 2 to 3 resulted in a marked improvement in the
likelihood, whereas increasing from 3 to 4 states led to no more gain.
Table 4 shows the AIC and BIC values for the different models,
wherein the 3-state model yielded both the smallest AIC and BIC.
To summarize, for a data set generated by a 3-state model, the best
estimates were achieved by a 3-state setting, which clearly
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Table 3
Model Primitive Parameters and Their Estimates

Parameter

θ1 θ2 θ3
θ1, 1 θ1, 2 θ1, 3 θ2, 1, 1 θ2, 1, 2 θ2, 1, 3 θ2, 2, 1 θ2, 2, 2 θ2, 2, 3 θ3, 1 θ3, 2

True value 0.1 0.4 0.7 0.01 0.10 0.79 0.69 0.28 0.02 2.5 0.5
Estimated value 0.10 0.39 0.70 0.01 0.10 0.79 0.68 0.29 0.02 2.51 0.50
Average difference 0.003 0.003 0.005

Figure 7
Fatigue Increased With Time on Task, as Reported in a Past Study and as Predicted by
Our Proposed Model

Note. Whereas our approach considers a free-choice paradigm, Hopstaken et al. (2015) did not.
Nonetheless, our model was able to generate predictions comparable to the data observed in
Hopstaken et al.. The orange dashed line represents the findings reported by Hopstaken et al.
(2015) whereas the blue solid line shows the simulated results from our proposed model. See the
online article for the color version of this figure.
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outperformed a 2-state setting. Although a practitioner may not know
the “true” number of underlying hidden states, he/she can experiment
with different settings and select the setting with the smallest AIC/
BIC value to achieve closest-to-true-model performance.

Discussions

We modeled the allocation of effort under mental fatigue as a
DDC model with hidden and semi-Markov states. This model was
based on reward/cost trade-offs, treated effort expenditure as
capacity-limited (rather than resource-limited), and assumed that
people behave rationally by seeking to maximize cumulative sub-
jective values across the whole decision cycle. We posited that
subjective value is influenced by mental fatigue and provided a way
to calculate cumulative subjective values using some common
assumptions. Moreover, we developed a maximum likelihood
estimation procedure to identify model parameters—one-step sub-
jective values and mental fatigue dynamics—from an agent’s
decisions and behavioral or physiological data. We tested the
proposed estimation method with a simulated free choice n-back
task composed of several blocks of trials. Simulated agents had to
choose a task difficulty level for the upcoming block while taking
into account the effects of mental fatigue. We fed simulation data to
the estimation procedure and found high estimation precision in
identifying model parameters. Further, we successfully reproduced
some canonical findings from mental fatigue and decision-making
literature using predictions from the estimated model, including
decreased task performance with increased time on task as well as
increased feeling of fatigue, task reengagement with additional

performance incentives, and reduced marginal effects of further
effort exertion with added incentives.

Below, we consider related work and summarize our approach’s
unique theoretical implications. We then envision some prospective
applications that may benefit from our approach and also address
some limitations of the proposed model.

Related Work

Some prior studies have addressed cognitive control and mental
fatigue based on a reward/cost trade-off account. Those studies
provided both empirical and theoretical insights into mechanisms
that may account for mental effort exertion. Here we compare the
current work with prior studies to reveal the unique contribution of
our approach.

EVC theory was proposed to explicate the principles of cognitive
control allocation (Shenhav et al., 2013, 2017).We sought to build on
the EVC model by incorporating the influence of mental fatigue on
effort allocation decisions. In the EVCmodel, the decision to bemade
regarding cognitive control is twofold: the identity of control (i.e.,
what kind of cognitive control to engage) and the intensity of control.
A rational agent needs to optimally adjust these control signals to
maximize the expected value. A computational study illustrated the
EVC model in the context of a simulated flanker task based on a one-
step control allocation problem (Musslick et al., 2015). The environ-
ment state was composed of sensory stimuli, which indicated the
direction of the arrows in the flanker task. The control allocation
decision of the agent was assumed to be based on the inferred state
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Figure 8
Task Performance (Measured in d-Prime) Decreased as Time on Task Increased as
Observed in Prior Work [adapted From (Hopstaken et al., 2015, Figure 3, 2-Back Task]
and Our Model Predictions

Note. Whereas our approach considers a free-choice paradigm, Hopstaken et al. (2015) did not.
Nonetheless, our model was able to generate predictions comparable to the data observed in Hopstaken
et al. The orange dashed line represents the findings fromHopstaken et al. (2015) whereas the blue solid
line shows our model predictions. See the online article for the color version of this figure.

MODELING AND ESTIMATION OF MENTAL FATIGUE 15



(the subjective representation of task stimuli),27 and then the envi-
ronment would emit an outcome (e.g., correct or incorrect response)
determined by both the true state (the actual direction of the target
arrow) and the subject’s control decision (i.e., response). The update
of automatic bias (e.g., the tendency to be influenced by flanking
arrows rather than target arrows) was based on the difference between
emitted outcomes (from the true state of the environment) and
anticipated outcomes (from the inferred state of task stimuli),
weighted by a learning rate. The model used by Musslick et al.
involved a relatively short (trial to trial) time scale. In the current
work, we focused on longer term subjective states (mental fatigue)
that may influence effort allocation decisions. Further, differences in
mathematical formulations used in the prior work and the current
work can be found. First, we considered the calculation of subjective
values for an infinite horizon, which avoided the (possibly) overly
simplified (one step) formulation of subjective value. Second, we
took a Bayesian brain perspective, modeling self-perception of
mental fatigue as based upon the entire history of relevant observa-
tions and choices, rather than updating an inferred state (e.g.,
automatic bias) based on current perceptions and the difference
between anticipated and actual outcomes as in Musslick et al.

EVC theory has also been applied to the study of the influences of
subjective states on cognitive control allocation, such as affect.
More specifically, Grahek et al. (2020) studied the influence of
affect on cognitive control by applying the EVC framework to
simulated Stroop tasks. They parameterized the costs and rewards to
build subjective values and based the analysis on the simulation
results. In addition to the different research targets (i.e., affect vs.
fatigue), distinctions can be found between that work and the current
model. We modeled mental fatigue as a hidden state that plays an
important role in building subjective values and hidden state
dynamics. Grahek et al. indirectly studied the influence of affect.
For example, to study the influence of integral affect (i.e., a type of
affect that arises from task performance and related incentives),
Grahek et al. increased rewards for successful performance and
compared the simulation results (e.g., task performance, willingness
to exert cognitive control) to a model setting with smaller task
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Figure 9
Task Engagement From Hopstaken et al. (2015) and From Our Model

Note. Whereas our approach considers a free-choice paradigm, Hopstaken et al. (2015) did not.
Nonetheless, our model was able to generate predictions comparable to the data observed in Hopstaken
et al. Orange dashed line depicts the changes in self-reported subjective feeling of task engagement
adapted from Figure 2 in Hopstaken et al. (2015). From Blocks 1–6, engagement decreased while
mental fatigue accumulated. And the willingness for further exertion reverted in Block 7 due to an
external incentive guaranteed by the good performance. Blue solid line exhibits the model simulated
changes in the willingness to allocate effort as a function of time on task. We had simulated agents
perform 2-back task for consecutive seven blocks of trials. From Blocks 1–6, the model predicted a
decrease in willingness to exert effort, which was then reversed in Block 7 by introducing an external
incentive for good performance [similar to the settings used in Hopstaken et al. (2015)]. Specifically,
when the extra monetary rewards equaled 80% of current monetary rewards for both 2-back and 3-back
tasks, the predicted willingness to expend effort (i.e., the probability of choosing either the 2-back or 3-
back task for the next block) reverted to (near) prefatigue levels, resulting in a probability increase from
0.2 (in Block 6) to 0.58 (in Block 7). See the online article for the color version of this figure.

27 In a flanker task, subjects indicate which direction a target arrow points,
with the target arrow surrounded by other nontarget arrows (which may aim
in a different direction than the target). The nontarget (flanking) arrows may
distract attention—making subjective representation of task stimuli noisy
and inaccurate—and may elicit an incorrect response to the target.
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rewards. Although that approach permitted the researchers to per-
form simulations and compare the differences between two model
settings, it also raises questions such as how to determine the appro-
priate magnitude of task rewards? and how to address individual
differences? (because different people may react differently to the
different task reward values). By contrast, we provided away to address
those questions by estimating model parameters (subjective values and
mental fatigue dynamics) from experimental data.
Estimation of the cost function using the EVC model was

discussed in Musslick et al. (2018). They considered a one-step
forward-looking formulation of EVC. In other words, cognitive
control (e.g., identity and intensity) specified at time t results in
some outcome that carries value at time t + 1. The optimal control
policy should satisfy the first-order condition by taking partial
derivatives of EVC with respect to control. The derivatives
contained two parts: one part was the derivative of the cost
function (related to current step values), and the other part
involved the derivatives of task accuracy (related to future
values). Hence, by first-order optimality condition, the cost
function could be estimated via the derivatives of task accuracy,
and those derivatives can be obtained from specific experimental
designs (such as by manipulating task rewards and observing the
corresponding changes in task accuracy to estimate the desired
derivatives). In that work, a one-step forward-looking formula-
tion of EVC and the implicit assumption that the values of
outcomes did not depend on the current decision reduced the
complexity of finding first-order conditions. In the current work,

the choice at time t affects future value by altering the agent’s
fatigue state; future value is the expected cumulative value for all
decisions (at time t + 1, t + 2, : : : ) yet to come (rather than
looking only one-period ahead). Our proposed estimation proce-
dure proved able to deal with this relatively more complicated,
nested form of subjective value function (hence, a recursive
optimal effort allocation policy).

Agrawal et al. (2020) proposed a model based on utility maxi-
mization to explain why people become (mentally) fatigued and
bored. They proposed that fatigue and boredom bias human behav-
ior toward more rewarding activities. In the case of fatigue, people
may quit online cognitive operations in favor of offline computa-
tions (such as mental simulation) to improve the likelihood of
gaining future rewards. In the case of boredom, people may quit
the task at hand to search for more rewarding tasks. By specifying
the agent’s subjective preference (subjective utility) under different
circumstances [different state-action pairs (s, a)], the model pro-
posed by Agrawal et al. can be used to explain why and when
fatigue and boredom occur. However, specifying an agent’s subjec-
tive utilities is not a trivial undertaking. Our work aims directly at
this issue: We estimate the agent’s subjective values by their
choices.28 In other words, we do not assume the reasons behind
task disengagement; we only assume that mental fatigue biases
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Figure 10
TheMarginal Effects of the Willingness to Expend Effort (i.e., the Probability of Choosing
the 2-Back or 3-Back Task) as a Function of Increased Task Rewards

Note. The starting point of the curve is the probability of effort expenditure in simulated agents
(built by the estimated model) who have performed the 2-back task for six blocks of trials. We
manipulated the external incentives for successful performance for both 2-back and 3-back tasks in
terms of proportionality of the increase (compared to current received rewards). We found that task
engagement was increased by external rewards and grew rapidly as the rewards increased by between
0% and 150%. However, the marginal effects of task engagement diminished when external
incentives exceeded a certain level (e.g., more than 200%) as depicted by the reduced slope of
the curve. See the online article for the color version of this figure.

28 The relationship between subjective preference and choices has been
considered in the theory of revealed preferences, which states that humans’
choices are the best indicator of their preferences, see Samuelson (1938).
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behavior by altering subjective values, and we can fit our model to
data to quantify such fatigue-induced biases. In addition, our model
treats mental fatigue states as partially observable, allowing for
noise associated with fatigue measures. Our proposed estimation
procedure can still identify underlying hidden fatigue dynamics with
high precision based only on noisy (imprecise) measures.

Theoretical Implications

The power of learning from data endows the capability and potential
of the proposed approach. We begin discussion of the model’s
implications by stressing (a) our model is an instance of a more
general estimation methodology (structural estimation of POMDPs),
which needs empirical data to function and (b) the model is not limited
to a specific form of subjective value function or fatigue dynamics; it
invites researchers to test and compare their theories related to the
constructions of subjective values as well as the dynamics of mental
fatigue. In what follows, we provide some examples of how our model
can contribute to the study of mental fatigue.

Distinguish Rewards From Costs

In the current model, the cost of mental effort c(s, a) and the
perceived reward of successful task performance b(s, a) are modeled
jointly in the one-step subjective value function as r(s, a) = c(s, a) −
b(s, a). The current method will identify r(s, a); however, one could
parameterize the cost function c(s, a) and the perceived reward
function b(s, a) using evidence from empirical studies. The model
could then estimate the effect of mental fatigue on the cost and
perceived reward functions separately, which could help to under-
stand the extent to which effort allocation decisions under mental
fatigue stem mainly from changes in the perceived costs of

expending effort, or the perceived rewards of expending effort,
or some combination of both factors. Such an undertaking could
shed light on the extent to which the perceived value of rewards
changes under mental fatigue (Kelley et al., 2019).

Are Subjective Reports of Mental Fatigue
Objectively Accurate?

The measurement of mental fatigue usually includes both objective
(e.g., task performance, physiological records) and subjective (e.g.,
self-reports) indicators. Unfortunately, the two indicators do not
always align. Debates over the relative merits of the two indicators
are common (Holtzer et al., 2017; Sandry et al., 2014; Völker et al.,
2016). The modeling and estimation approach described here pro-
vides a possible way to address this issue: by fitting the model with
objective measures (e.g., performance or physiological changes), one
could compare the estimated dynamics of mental fatigue with sub-
jective self-reports, which may help to specify the relationship
between subjective and objective measurements of mental fatigue.
It then will be interesting to examine for whom and under what
circumstances subjective and objective indicators of mental fatigue
cohere, and when they fail to cohere. We propose that research and
theory on mental fatigue would benefit by identifying break points in
coherence (i.e., circumstances wherein the two indicators diverge)
and by identifying demographic, personality trait, or brain morpho-
logical factors that relate to coherence (or lack thereof) between
subjective and objective indicators of mental fatigue.

Future Applications

Our modeling and estimation procedure to identify hidden fatigue
dynamics and subjective values may prove useful for both theoreti-
cal and empirical studies of mental fatigue and effort allocation.
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Figure 11
Estimation Performance Under Different Values of β

Note. Blue solid line shows the model performance (in terms of log-likelihood) with respect to different β.Orange
dashed line shows the maximum element-wise percentage difference between estimates under different β and
ground truth. See the online article for the color version of this figure.
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A Perspective to Deal With Circularity

A crucial question raised by Botvinick and Braver (2015) regarded
the mechanisms behind reward/cost trade-offs in explaining human
behavior: Behavioral preferences are explained by subjective values,
but subjective values, in turn, are usually inferred from behavioral
preferences. The situation grows more complicated when mental
effort carries costs: More effort leads to both more rewards and more
costs. Hence, a clear pathway for obtaining subjective values is
needed to break the circular reasoning identified above and thus
ensure that “the assertion that choices maximize values becomes
potentially falsifiable and thus truly scientific” (Padoa-Schioppa,
2011). Botvinick and Braver further claimed that one way to
overcome the circularity is to leverage findings from neuroscience
to consolidate the construction of subjective values. Relevant candi-
dates include physiological indicators such as electroencephalogra-
phy, pupil diameter, and neural activations related to effort
allocation, subjective evaluation, and mental fatigue dynamics
(Bartra et al., 2013; Boksem et al., 2005; Hopstaken et al., 2016;

Padmala & Pessoa, 2010; Schmidt et al., 2012). One study used
functional magnetic resonance imaging (fMRI) to test the hypothesis
that incentives can enhance task performance by improving task
information coding and maintenance (Etzel et al., 2016). Efficiency
in decoding task informationwas significantly higher under incentive
compared to no-incentive trials. Although neural activity correlated
qualitatively with incentive evaluation, one question worth probing
is: How much improvement can be achieved by introducing incen-
tives? Or similarly, how much difference does an incentive make in
terms of subjective values? In the study of mental fatigue, the need
for such quantitative analysis exists as well. For instance, as dis-
cussed previously, Hopstaken et al. (2015)found that the promise of
rewards reversed the negative effects of mental fatigue and psycho-
physiological indicators associated with task disengagement. But
how much reversal of such negative effects can be accomplished by
offering additional rewards remained unexplained.

Our modeling and estimation procedure paves a new way for the
rigorous and objective quantification of subjective values based on
the behavioral, neural, physiological, and decision-making outputs
of the decision-maker. This quantification can be achieved by
incorporating neuroscientific findings into the proposed framework.
For example, in a task-switching paradigm (Etzel et al., 2016),
subjective value functions could be constructed via extracted fMRI
patterns (in this example, fMRI activity corresponds to cue and early
delay periods). If, for the simplest case, we could parameterize
subjective values by a linear function of fMRI signals, then by
estimating the corresponding parameters in the linear function, we
may be able to build a quantitative relationship between choice
preferences and their neural correlates via subjective values. Such
parameterization enables one to build subjective value functions
without undertaking the risk of circularity, and to simplify the
estimation of subjective value functions by focusing on a few design
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Table 4
AIC, BIC of Different Models for Simulated Data

Model selection
criteria

S = 2 S = 3 S = 4

No. parameters
= 11

No. parameters
= 20

No. parameters
= 32

AIC 2,740,992 620,613 621,281
BIC 2,741,101 620,812 621,601

Note. AIC = Akaike information criterion; BIC = Bayesian information
criterion. We calculated AIC and BIC values for estimated models with
different numbers of hidden states. Note that for the different models, the
number of parameters required to describe the model is different.

Figure 12
Model Estimation Performance Under Different Numbers of Fatigue States

Note. Log-likelihood of simulated data set was computed from estimated models including 2-, 3-, or
4-state parameterizations. See the online article for the color version of this figure.
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parameters. In addition to the parameterization of subjective value
functions, our framework features a customizable module for
researchers to plug in the fatigue measurements they prefer (for
the modeling of observation probability), which is a (conceptually)
simple computation to implement. Yet it can be supercharged by
neuroscientific advancements: More reliable fatigue measures lead
to less noisy observations, which in turn enhance precision in the
estimation of fatigue dynamics and subjective values. For example,
recent years have witnessed the emergence of nonintrusive physio-
logical measurements (such as smart wearables) of people’s health
status, which provide abundant observable data that could facilitate
fatigue estimation. Researchers have already begun to realize the
potential of smartphone or smart wearable data in assessment and
monitoring of psychological states (Kodithuwakku Arachchige et al.,
2021). Specifically, vital signs such as heart rate and heart rate
variability, which may be tracked via smartwatches or bands, are
useful in predicting mental fatigue (Luo et al., 2020). Further, eye
blink data can be collected using smart glasses and may also
contribute to detecting mental fatigue (Horiuchi et al., 2018).
Our model may take the advantage of aforementioned technology

breakthroughs and help researchers answer quantitative questions such as
“how much performance gain can be achieved for a given incentive?”
Lastly, our model is capable of describing within or across individuals
variations in the mapping from neural correlates to subjective values,
which will be discussed in the next section. Simply put, with a sufficient
amount of data, our model can be fitted separately for different in-
dividuals as well as groups of people, which may facilitate the study of
individual-level and group-level perceptions of subjective value.

Individual Differences

Individual differences in personality traits (Braem et al., 2013;
Jimura et al., 2010), age (Ennis et al., 2013), and clinical disorders
(Marx et al., 2013) are likely to impact subjective values (Westbrook&
Braver, 2015). Differences in subjective values may predict differential
willingness to allocate mental effort in daily life (Westbrook et al.,
2013). One study of cognitive control using a two-step decision-
making model found significant individual differences in the tendency
to incorporate goal-related contextual information in decision-making
(Otto et al., 2015). Such individual differences likely play a role in
effort allocation decisions as well. Age is another likely moderator of
mental effort allocation; it is possible that aging alters the perceived
costs of expending mental effort (Westbrook et al., 2013). In the study
of mental fatigue, individual perceptions play an important role as well.
Evidence has suggested that older people may be influenced by mental
fatigue in a different manner compared to young people, and older
people may fatigue more quickly and suffer greater performance
decrements compared to young people (Arnau et al., 2017).
Our model provides a way to study the influence of such individual

differences: The estimation procedure can identify the one-step
subjective values (and thus, reward function and cost function
parameters) and fatigue dynamics for each individual or group. By
comparing estimation results across individuals or groups, one could
attempt to quantify the influence of the individual difference of
interest. Furthermore, a counterfactual analysis (i.e., comparing
what actually happened against what would have happened under
different conditions) could be used to predict individual differences in
reward/cost sensitivity (Braem et al., 2013; Engelmann et al., 2009).
Ourmodel is able to easily simulate changes in incentives and observe

the consequences of such changes, which could then be tested
(verified) in experiments with human subjects.

Perceptions of effort and mental fatigue may be important also for
understanding some clinical disorders. The perceived costs of
expending effort may relate to specific clinical conditions. People
with depression or schizophrenia may experience more effort-
related costs compared to others (Westbrook et al., 2013). Fatigue
descriptions in clinical practice are various and have different
emphases in different contexts: some focus on both physical fatigue
and mental fatigue (e.g., chronic fatigue syndrome, see Pattyn et al.
(2008) and Shen et al. (2006)) whereas others may stress mental
fatigue in particular (e.g., insomnia, see Pattyn et al. (2008)); some
can be alleviated by sleeping (Mairesse & Neu, 2016) whereas
others are more acute and may not be improved by rest (Hossain
et al., 2003). Furthermore, the intensity of perceived fatigue may
differ across individuals with underlying clinical conditions. As
mental fatigue is a multifaceted construct, it is unlikely that one
particular measure can precisely and comprehensively capture a
person’s level of mental fatigue (Pattyn et al., 2008).

Our model introduces a novel way for clinical studies to
approach effort expenditure and mental fatigue. In addition to
having the capacity to incorporate relevant physiological and
self-report measures of mental fatigue, our model infers subjec-
tive values from behavioral choices. In clinical conditions that
implicate effort deficits, analysis of subjective values has proved
successful in predicting symptoms such as substance abuse,
obesity, and problem gambling (Westbrook & Braver, 2015).
In the evaluation of mental fatigue in clinical populations, a
“transactional model” of fatigue has been proposed to measure
levels of mental fatigue based on the patient’s experience (Pattyn
et al., 2008). The proposed model suggests a practical imple-
mentation of this idea by fitting our mental fatigue model to each
individual patient, resulting in a unique clinical profile capturing
personal effort exertion willingness and changes in willingness
due to mental fatigue. The potential exists for this approach to
help tailor treatments to individuals for mitigating effort- and
fatigue-related decrements.

Controllability and Task Performance

It has been proposed that work performance depends on both how
demanding a task is and the degree of controllability the person has
over his or her activities (Hockey, 2011; Hockey & Earle, 2006).
Empirical results have suggested that people may sustain relatively
high levels of work performance without reporting fatigue if they are
allowed to arrange the work at their discretion (Frese, 1989; Karasek,
1979; Wall et al., 1996). In a more recent study, Hockey and Earle
built a simulated office work environment wherein the workload was
characterized by both time pressure and controllability (of task
schedule). Under high workload, only the low controllability group
exhibited negative effects on work performance and fatigue.

Our model provides a way to study individual preferences for
Demand × Control interactions. An adapted free-choice paradigm
permits an agent to allocate effort by distributing workloads to
specific periods of time. Assuming that a decision-maker behaves
rationally and thus, given a defined workload and a specific time
span, optimally allocates effort based on subjective values, research-
ers would be able to quantify how subjective values change as the
agent grows more fatigued and how the agent maintains a balance
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between work progress and the negative effects of mental fatigue.
This balance is important because it marks the optimal effort
allocation strategy (for the agent) and can be explained by a
compensatory control model (Hockey & Earle, 2006) such that
the discrepancy between work goals and effort exertion are recon-
ciled. The interpretation from our model would be that the agent
adjusts his or her fatigue state by altering the allocation of effort,
thereby keeping fatigue levels in an acceptable range with econom-
ically optimal trade-offs between costs and rewards.

Dissociation of Choice Dimensions

Dissociability is an important concept in decision-making and
neuroeconomics. Both the delay of rewards and the uncertainty of
receiving rewards conspire to reduce subjective values. Generally
speaking, more delayed rewards and less certain rewards are valued
less than their sooner or more certain counterparts. How can one be
certain whether delay or uncertainty is responsible for an observed
discounting of rewards? Further, how might we distinguish discounts
induced by effort from discounts induced by delay or uncertainty? If
these discount factors cannot be dissociated, then effort-based
decision-making may be just another form of delay- or
uncertainty-based decision-making (Westbrook & Braver, 2015).
Researchers have designed different experimental paradigms to dis-
sociate the costs of effort from the costs from delay or uncertainty. In
the current work, we have introduced fatigue as another potential
factor that may serve to discount subjective values. Moreover,
although not addressed in the current model, factors other than fatigue
could influence the subjective evaluation of task values, including
such as negative moods or boredom (Chiew & Braver, 2011; Pattyn
et al., 2008; Pessoa, 2008; van Steenbergen et al., 2012).
As the number of the variables that influence subjective values

increases, it becomes harder to dissociate their effects by pure
experimental design techniques. Our model opens the door to
dissociate effects of different variables via mathematical optimiza-
tion of the likelihood of data: The variables of interest can be
included in the reward/cost functions and estimated. For example,
agents may manifest both “overload” (limited cognitive capacity)
and “underload” problems (often described as boredom; Hancock &
Desmond, 2001). It has been argued that although both types of
problems represent a form of fatigue (sometimes described as active
fatigue and passive fatigue, respectively), they have different
mechanisms. It may be informative to examine the discounting
mechanisms associated with overloads and underloads—by param-
eterizing subjective value as a function of both passive and active
fatigue—to understand how they influence subjective values that
may explain the agent’s effort allocation behaviors. We intend our
model to be used in the future research to untangle the processes
underlying the outcomes of mental fatigue.

Limitations

Simplifying Assumptions Revisited

In the SimulatedN-back Taskswith Changing Fatigue, we illustrated
our method via a simulated n-back task under the assumption that
choosing to perform the harder task hastens fatigue (which is supported
by prior studies, e.g., Blain et al., 2016). This assumption was linked to
the idea that the agent earns the reward associated with the task only if

their performance surpasses a threshold presumed to entail some degree
of mental effort (particularly when the more difficult task was chosen).
If the agent expends little or no effort on the difficult task, then it is
likely that no reward is earned; the simpler task would have been the
more rational choice. Nevertheless, human agents do not always make
rational decisions. Another assumption we made was that choosing to
perform easier tasks restores mental fatigue, though this assumption
also may not hold in all circumstances. For example, tasks that do not
entail much mental effort, instead of restoration, may be prone to elicit
boredom. We cannot rule out the possibility that agents will grow
bored, rather than or in addition to mentally fatigued, when performing
n-back tasks. In fact, a previous study of reward sensitivity and
boredom found it hard to fully decouple fatigue and boredom
(Milyavskaya et al., 2019).

To be sure, our model does not present an exhaustive analysis
for each possible scenario. The aforementioned assumptions were
adopted only for illustrative purposes and are based on prior
evidence consistent with the assumptions. Such assumptions
influence the ways we parameterized fatigue dynamics and
subjective value functions, but the same estimation procedure
would still apply to obtain those estimates. Furthermore, one
could also fit the data under different assumptions to see which
assumptions best explain observed behaviors, thereby providing
a way to test the validity of the assumptions. This consideration
represents another example of how researchers can use our model
and estimation methods in future work to advance research and
theory on mental fatigue.

Concerns Arising From the Rationality Assumption

Our proposed model may serve many future studies of mental effort
and mental fatigue, though the model carries the inherent liabilities of
the reward/cost trade-off framework. One concern is the assumption
that people behave rationally (Rust, 1994). In many scenarios, people
may act based on local contexts by comparing available options rather
than evaluating all possible options. As a result, the relative values of
different options may change with the immediate task environment
(Delgado et al., 2011; Tversky, 1969). In our proposed model, the
agent is assumed to evaluate the subjective values for each option and
select the option with the highest subjective value (i.e., act independent
of bias induced by local contexts). Another potential issue is that people
may have difficulty evaluating the subjective values of states that are
not currently occupied (Dayan, 2012; Loewenstein & O’Donoghue,
2004). For example, a person may underestimate the difficulty of being
on a diet when he or she is currently not hungry. If relative incapability
to predict nonoccupied states is a general principle in mental effort
allocation, then our proposed model may not be able to provide
satisfying explanations or predictions for people’s behaviors, because
we assumed that human agents are rational and can objectively evaluate
the values of future outcomes rooted from current state and choice
selection.

Affect and Effort Allocation

Our current work focused on the “cognitive” side of mental
fatigue and its effects, leaving the “affective” side relatively
untouched. Emotions (or affects, used interchangeably from here
on) are ubiquitous and play an important role in human decision-
making, whether or not people are aware of their influence.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

MODELING AND ESTIMATION OF MENTAL FATIGUE 21



However, how emotions influence decision-making is still under
debate. Different theories have been proposed. For example, some
researchers have posited a valence-based approach [to what extent
an emotion is experienced as positive/negative matters (Han et al.,
2007; Loewenstein & Lerner, 2003)] whereas others have proposed
an arousal-based approach [the intensity of emotions matters
(Kaufman, 1999; Sohn et al., 2015)]. Some theorists believe a
two-dimensional description of emotion is far from enough
(Mellers et al., 1998) and have proposed an appraisal-tendency
framework, which posits that emotion is a multidimensional con-
struct and carries motivational factors that bias decision-making
depending on both qualitative properties (which type of emotion)
and quantitative properties (the intensity of such emotion). We
notice that while being attributed to different reasons/mechanisms,
different theories of emotion share a common feature: emotions
carry value that can influence decision-making. Lazarus and Lazarus
(1991) further argued that different emotions are related to different
“themes” in assessing the value of events.
Following the assumption that emotions carry value, our model

may prove useful for studying the influence of emotions on decision-
making. The relevant state space in the model can incorporate both
fatigue and affective states. As a result, subjective values would be a
function of both fatigue and affective states; the temporal dynamics
would describe the joint transition of those two states across time.
Implementing such a model is not a trivial undertaking and was not
the main focus of our present work, but the role of affect in shaping
subjective value represents a novel route for future research to build
on the model we have proposed. Another promising avenue for
future work may be to consider compensatory mechanisms that help
to sustain good performance under mental fatigue. A similar com-
pensatory mechanism has been proposed to understand high perfor-
mance in the context of cognitive and emotional stressors (e.g.,
Pavlidis et al., 2016), and it seems reasonable to assume that similar
mechanisms exist to combat mental fatigue. These ideas represent
possible applications of our model in the study of joint effects of
mental fatigue and affect on decision-making. Because our approach
is an instance of the structural estimation of POMDPs, one would
need to deliberately design model parameters and experiment
settings to unveil the power of the model (because it is meaningless
to train a highly mis-specified model).
If, as discussed above, affect carries value, then some beha-

viors considered “irrational” by outsiders (not the decision-
maker) may actually be rational to the decision-maker him/
herself, in the sense that they contribute to subjective value.
Our model is capable of dealing with hidden states, and thus may
help rationalize decision-making behaviors by quantifying the
values of such hidden values.

Modeling of Temporal Delay Discounting

Delay discounting, which is related to but potentially distinct
from effort discounting, has long been of interest to researchers in
the study, value-based decision-making. Delay discounting ac-
counts for the phenomena whereby a distal reward (to be obtained
in the future) is less valuable compared to the same amount of
reward that can be obtained right now. A common finding, which is
referred to as the amount effect, is that larger subjective values will
be discounted less than smaller values (Green et al., 2013; Thaler,
1981). Individual differences have also been observed in delay

discounting rates: People who perceive higher costs tend to more
heavily discount future values.

In the current work, we assumed that subjective values are
discounted by β, which implies the proportionality of delay dis-
counting does not depend on the amount of the subjective value. This
assumption may not be appropriate for modeling future subjective
values (i.e., it does not adequately account for the amount effect).
And it seems to be reasonable to relate such amount effects to delay
discounting mechanisms. Furthermore, recent studies have found
that temporal delays may discount subjective value hyperbolically
(Frederick et al., 2002; Green & Myerson, 2004; Laibson, 1997). In
comparison, our model assumes an exponential discounting mecha-
nism, suggesting that the discounting proportion of subjective values
is determined by a discount factor β to the power of the duration of
temporal delay t(βt). Aworthwhile future research direction would be
to incorporate different delay discounting mechanisms into the
proposed model and compare which mechanism fits the data better.

Conclusion

We modeled the effects of mental fatigue on effort allocations
based upon a reward/cost trade-off account. We posited that mental
fatigue influences effort allocation decisions by altering subjective
values. We provided an estimation method to identify mental fatigue
dynamics and subjective values from experimental data. Our pro-
posed model successfully verified mental fatigue-related phenom-
ena such as performance drops, task disengagement, and
reengagement with additional incentives. Further, our work offers
the potential for advancing understanding of human effort allocation
under mental fatigue, including estimation of individual differences,
differentiating clinical conditions associated with compromised
fatigue manifestations, investigations of neural underpinnings cor-
responding to mental fatigue and its influences on subjective value
representations, and dissociability studies to isolate the effects of
mental fatigue from multiple other determinants of subjective value.
Collectively, our work, rooted in extant decision-making theories
and prior studies of mental fatigue, unleashes a promising future of
quantitative study of mental fatigue by harnessing the advantages of
both empirical research and mathematical methods.

References

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforce-
ment learning. In R. Greiner & D. Schuurmans (Eds.), Proceedings of the
twenty-first international conference on machine learning. Association for
Computing Machinery. https://doi.org/10.1145/1015330.1015430

Abbring, J. H., & Daljord, Ø. (2020). Identifying the discount factor in
dynamic discrete choice models. Quantitative Economics, 11(2), 471–
501. https://doi.org/10.3982/QE1352

Agrawal, M., Mattar, M. G., Cohen, J. D., & Daw, N. D. (2020). The
temporal dynamics of opportunity costs: A normative account of cognitive
fatigue and boredom. BioRxiv.

Aguirregabiria, V., & Mira, P. (2010). Dynamic discrete choice structural
models: A survey. Journal of Econometrics, 156(1), 38–67. https://
doi.org/10.1016/j.jeconom.2009.09.007

Arnau, S.,Möckel, T., Rinkenauer,G.,&Wascher, E. (2017). The interconnection
of mental fatigue and aging: An eeg study. International Journal of Psycho-
physiology, 117, 17–25. https://doi.org/10.1016/j.ijpsycho.2017.04.003

Arora, S., & Doshi, P. (2018). A survey of inverse reinforcement learning:
Challenges, methods and progress. ArXiv:1806.06877.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

22 WANG, CHANG, SCHMEICHEL, AND GARCIA

https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.3982/QE1352
https://doi.org/10.3982/QE1352
https://doi.org/10.1016/j.jeconom.2009.09.007
https://doi.org/10.1016/j.jeconom.2009.09.007
https://doi.org/10.1016/j.jeconom.2009.09.007
https://doi.org/10.1016/j.jeconom.2009.09.007
https://doi.org/10.1016/j.jeconom.2009.09.007
https://doi.org/10.1016/j.jeconom.2009.09.007
https://doi.org/10.1016/j.jeconom.2009.09.007
https://doi.org/10.1016/j.ijpsycho.2017.04.003
https://doi.org/10.1016/j.ijpsycho.2017.04.003
https://doi.org/10.1016/j.ijpsycho.2017.04.003
https://doi.org/10.1016/j.ijpsycho.2017.04.003
https://doi.org/10.1016/j.ijpsycho.2017.04.003
https://doi.org/10.1016/j.ijpsycho.2017.04.003


Atkinson, J. W. (1957). Motivational determinants of risk-taking behavior.
Psychological Review, 64(6), 359–372. https://doi.org/10.1037/h0043445

Bajari, P., Chu, C. S., Nekipelov, D., & Park, M. (2016). Identification and
semiparametric estimation of a finite horizon dynamic discrete choice
model with a terminating action. Quantitative Marketing and Economics,
14(4), 271–323. https://doi.org/10.1007/s11129-016-9176-3

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral
change. Psychological Review, 84(2), 191–215. https://doi.org/10.1037/
0033-295X.84.2.191

Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A
coordinate-based meta-analysis of bold fmri experiments examining
neural correlates of subjective value. Neuroimage, 76, 412–427. https://
doi.org/10.1016/j.neuroimage.2013.02.063

Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic
functions of finite state markov chains. The Annals of Mathematical
Statistics, 37(6), 1554–1563. https://doi.org/10.1214/aoms/1177699147

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization
technique occurring in the statistical analysis of probabilistic functions of
markov chains. The Annals of Mathematical Statistics, 41(1), 164–171.
https://doi.org/10.1214/aoms/1177697196

Bellman, R. (1966). Dynamic programming. Science, 153(3731), 34–37.
https://doi.org/10.1126/science.153.3731.34

Bijleveld, E. (2018). The feeling of effort during mental activity. Consciousness
and Cognition, 63, 218–227. https://doi.org/10.1016/j.concog.2018.05.013

Blain, B., Hollard, G., & Pessiglione, M. (2016). Neural mechanisms
underlying the impact of daylong cognitive work on economic decisions.
Proceedings of the National Academy of Sciences, 113(25), 6967–6972.
https://doi.org/10.1073/pnas.1520527113

Boksem, M. A., Meijman, T. F., & Lorist, M. M. (2005). Effects of mental
fatigue on attention: An erp study. Cognitive Brain Research, 25(1), 107–
116. https://doi.org/10.1016/j.cogbrainres.2005.04.011

Boksem, M. A., Meijman, T. F., & Lorist, M. M. (2006). Mental fatigue,
motivation and action monitoring. Biological Psychology, 72(2), 123–
132. https://doi.org/10.1016/j.biopsycho.2005.08.007

Botvinick, M., & Braver, T. (2015). Motivation and cognitive control: From
behavior to neural mechanism. Annual Review of Psychology, 66, 83–113.
https://doi.org/10.1146/annurev-psych-010814-015044

Braem, S., Duthoo, W., & Notebaert, W. (2013). Punishment sensitivity
predicts the impact of punishment on cognitive control. PLOS ONE, 8(9),
Article e74106. https://doi.org/10.1371/journal.pone.0074106

Brehm, J. W., & Self, E. A. (1989). The intensity of motivation. Annual
Review of Psychology, 40(1), 109–131. https://doi.org/10.1146/annurev
.ps.40.020189.000545

Cassandra, A. R. (1994). Optimal policies for partially observable markov
decision processes (Technical Report). Brown University.

Chang, Y., Garcia, A., & Wang, Z. (2020). Dynamic discrete choice
estimation with partially observable states and hidden dynamics.
https://arxiv.org/abs/2008.00500

Chiew, K. S., & Braver, T. S. (2011). Positive affect versus reward:
Emotional and motivational influences on cognitive control. Frontiers
in Psychology, 2, Article 279. https://doi.org/10.3389/fpsyg.2011.00279

Choi, J., & Kim, K.-E. (2011). Inverse reinforcement learning in partially
observable environments. Journal of Machine Learning Research, 12,
691–730. https://dl.acm.org/doi/10.5555/1953048.2021028

Chong, T. T.-J., Apps, M., Giehl, K., Sillence, A., Grima, L. L., & Husain,
M. (2017). Neurocomputational mechanisms underlying subjective valu-
ation of effort costs. PLoS Biology, 15(2), Article e1002598. https://
doi.org/10.1371/journal.pbio.1002598

Chow, J. T., Hui, C. M., & Lau, S. (2015). A depleted mind feels ineffica-
cious: Ego-depletion reduces self-efficacy to exert further self-control.
European Journal of Social Psychology, 45(6), 754–768. https://doi.org/
10.1002/ejsp.2120

Cox, D. R. (1975). Partial likelihood. Biometrika, 62(2), 269–276. https://
doi.org/10.1093/biomet/62.2.269

Dayan, P. (2012). How to set the switches on this thing. Current Opinion in
Neurobiology, 22(6), 1068–1074. https://doi.org/10.1016/j.conb.2012.05.011

Dayan, P., & Daw, N. D. (2008). Decision theory, reinforcement learning,
and the brain.Cognitive, Affective, & Behavioral Neuroscience, 8(4), 429–
453. https://doi.org/10.3758/CABN.8.4.429

de Jong, M., Bonvanie, A. M., Jolij, J., & Lorist, M. M. (2020). Dynamics in
typewriting performance reflect mental fatigue during real-life office work.
PLOS ONE, 15(10), Article e0239984. https://doi.org/10.1371/journal
.pone.0239984

Delgado,M. R., Phelps, E. A., & Robbins, T.W. (2011).Decision making, affect,
and learning: Attention and performance XXIII. Oxford University Press.

Diermeier, D., Keane,M., &Merlo, A. (2005). A political economymodel of
congressional careers. American Economic Review, 95(1), 347–373.
https://doi.org/10.1257/0002828053828464

Dittner, A. J.,Wessely, S. C., &Brown, R. G. (2004). The assessment of fatigue:
A practical guide for clinicians and researchers. Journal of Psychosomatic
Research, 56(2), 157–170. https://doi.org/10.1016/S0022-3999(03)00371-4

D’Mello, S., & Graesser, A. (2010). Modeling cognitive-affective dynamics
with hidden markov models. Proceedings of the Annual Meeting of the
Cognitive Science Society. CU Experts. https://experts.colorado.edu/
display/pubid_228757#overview

Doroshenkov, L., Konyshev, V., & Selishchev, S. (2007). Classification of
human sleep stages based on eeg processing using hidden markov models.
BioMedical Engineering, 41(1), 25–28. https://doi.org/10.1007/s10527-
007-0006-5

Dvijotham, K., & Todorov, E. (2010). Inverse optimal control with linearly-
solvable mdps. In J. Fürnkranz & T. Joachims (Eds.), Proceedings of the
27th international conference on international conference on machine
learning (pp. 335–342). Omnipress.

Eddy, S. R. (2004). What is a hidden markov model? Nature Biotechnology,
22(10), 1315–1316. https://doi.org/10.1038/nbt1004-1315

Engelmann, J. B., Damaraju, E., Padmala, S., & Pessoa, L. (2009). Com-
bined effects of attention and motivation on visual task performance:
Transient and sustained motivational effects. Frontiers in Human Neuro-
science, 3, Article 4. https://doi.org/10.3389/neuro.09.004.2009

Engle, R. W. (2010). Role of working-memory capacity in cognitive control.
Current Anthropology, 51(Suppl. 1), S17–S26. https://doi.org/10.1086/
650572

Ennis, G. E., Hess, T. M., & Smith, B. T. (2013). The impact of age and
motivation on cognitive effort: Implications for cognitive engagement in
older adulthood. Psychology and Aging, 28(2), 495–504. https://doi.org/10
.1037/a0031255

Etzel, J. A., Cole, M. W., Zacks, J. M., Kay, K. N., & Braver, T. S. (2016).
Reward motivation enhances task coding in frontoparietal cortex. Cere-
bral Cortex, 26(4), 1647–1659. https://doi.org/10.1093/cercor/bhu327

Fairclough, S. H., & Ewing, K. (2017). The effect of task demand and
incentive on neurophysiological and cardiovascular markers of effort.
International Journal of Psychophysiology, 119, 58–66. https://doi.org/10
.1016/j.ijpsycho.2017.01.007

Fairclough, S. H., & Houston, K. (2004). A metabolic measure of mental
effort. Biological Psychology, 66(2), 177–190. https://doi.org/10.1016/j
.biopsycho.2003.10.001

Feather, N. T. (1959a). Subjective probability and decision under uncertainty.
Psychological Review, 66(3), 150–164. https://doi.org/10.1037/h0045692

Feather, N. T. (1959b). Success probability and choice behavior. Journal of
Experimental Psychology, 58(4), 257–266. https://doi.org/10.1037/h0046066

Finley, A. J., Tang, D., & Schmeichel, B. J. (2019). Sweet nothings: No
effects of self-control exertion on blood glucose levels. Social Psychology,
50(5–6), 322–331. https://doi.org/10.1027/1864-9335/a000376

Finn, C., Levine, S., &Abbeel, P. (2016). Guided cost learning: Deep inverse
optimal control via policy optimization. In M. F. Balcan & K. Q.
Weinberger (Eds.), Proceedings of the 33rd international conference
on international conference on machine learning (pp. 49–58). Journal
of Machine Learning Research.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

MODELING AND ESTIMATION OF MENTAL FATIGUE 23

https://doi.org/10.1037/h0043445
https://doi.org/10.1037/h0043445
https://doi.org/10.1007/s11129-016-9176-3
https://doi.org/10.1007/s11129-016-9176-3
https://doi.org/10.1037/0033-295X.84.2.191
https://doi.org/10.1037/0033-295X.84.2.191
https://doi.org/10.1037/0033-295X.84.2.191
https://doi.org/10.1037/0033-295X.84.2.191
https://doi.org/10.1037/0033-295X.84.2.191
https://doi.org/10.1037/0033-295X.84.2.191
https://doi.org/10.1016/j.neuroimage.2013.02.063
https://doi.org/10.1016/j.neuroimage.2013.02.063
https://doi.org/10.1016/j.neuroimage.2013.02.063
https://doi.org/10.1016/j.neuroimage.2013.02.063
https://doi.org/10.1016/j.neuroimage.2013.02.063
https://doi.org/10.1016/j.neuroimage.2013.02.063
https://doi.org/10.1016/j.neuroimage.2013.02.063
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177697196
https://doi.org/10.1214/aoms/1177697196
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1016/j.concog.2018.05.013
https://doi.org/10.1016/j.concog.2018.05.013
https://doi.org/10.1016/j.concog.2018.05.013
https://doi.org/10.1016/j.concog.2018.05.013
https://doi.org/10.1016/j.concog.2018.05.013
https://doi.org/10.1016/j.concog.2018.05.013
https://doi.org/10.1073/pnas.1520527113
https://doi.org/10.1073/pnas.1520527113
https://doi.org/10.1073/pnas.1520527113
https://doi.org/10.1016/j.cogbrainres.2005.04.011
https://doi.org/10.1016/j.cogbrainres.2005.04.011
https://doi.org/10.1016/j.cogbrainres.2005.04.011
https://doi.org/10.1016/j.cogbrainres.2005.04.011
https://doi.org/10.1016/j.cogbrainres.2005.04.011
https://doi.org/10.1016/j.cogbrainres.2005.04.011
https://doi.org/10.1016/j.biopsycho.2005.08.007
https://doi.org/10.1016/j.biopsycho.2005.08.007
https://doi.org/10.1016/j.biopsycho.2005.08.007
https://doi.org/10.1016/j.biopsycho.2005.08.007
https://doi.org/10.1016/j.biopsycho.2005.08.007
https://doi.org/10.1016/j.biopsycho.2005.08.007
https://doi.org/10.1146/annurev-psych-010814-015044
https://doi.org/10.1146/annurev-psych-010814-015044
https://doi.org/10.1371/journal.pone.0074106
https://doi.org/10.1371/journal.pone.0074106
https://doi.org/10.1371/journal.pone.0074106
https://doi.org/10.1371/journal.pone.0074106
https://doi.org/10.1146/annurev.ps.40.020189.000545
https://doi.org/10.1146/annurev.ps.40.020189.000545
https://doi.org/10.1146/annurev.ps.40.020189.000545
https://doi.org/10.1146/annurev.ps.40.020189.000545
https://doi.org/10.1146/annurev.ps.40.020189.000545
https://doi.org/10.1146/annurev.ps.40.020189.000545
https://arxiv.org/abs/2008.00500
https://arxiv.org/abs/2008.00500
https://arxiv.org/abs/2008.00500
https://doi.org/10.3389/fpsyg.2011.00279
https://doi.org/10.3389/fpsyg.2011.00279
https://doi.org/10.3389/fpsyg.2011.00279
https://doi.org/10.3389/fpsyg.2011.00279
https://dl.acm.org/doi/10.5555/1953048.2021028
https://dl.acm.org/doi/10.5555/1953048.2021028
https://dl.acm.org/doi/10.5555/1953048.2021028
https://dl.acm.org/doi/10.5555/1953048.2021028
https://dl.acm.org/doi/10.5555/1953048.2021028
https://doi.org/10.1371/journal.pbio.1002598
https://doi.org/10.1371/journal.pbio.1002598
https://doi.org/10.1371/journal.pbio.1002598
https://doi.org/10.1371/journal.pbio.1002598
https://doi.org/10.1371/journal.pbio.1002598
https://doi.org/10.1002/ejsp.2120
https://doi.org/10.1002/ejsp.2120
https://doi.org/10.1002/ejsp.2120
https://doi.org/10.1002/ejsp.2120
https://doi.org/10.1093/biomet/62.2.269
https://doi.org/10.1093/biomet/62.2.269
https://doi.org/10.1093/biomet/62.2.269
https://doi.org/10.1093/biomet/62.2.269
https://doi.org/10.1093/biomet/62.2.269
https://doi.org/10.1016/j.conb.2012.05.011
https://doi.org/10.1016/j.conb.2012.05.011
https://doi.org/10.1016/j.conb.2012.05.011
https://doi.org/10.1016/j.conb.2012.05.011
https://doi.org/10.1016/j.conb.2012.05.011
https://doi.org/10.1016/j.conb.2012.05.011
https://doi.org/10.3758/CABN.8.4.429
https://doi.org/10.3758/CABN.8.4.429
https://doi.org/10.3758/CABN.8.4.429
https://doi.org/10.3758/CABN.8.4.429
https://doi.org/10.3758/CABN.8.4.429
https://doi.org/10.1371/journal.pone.0239984
https://doi.org/10.1371/journal.pone.0239984
https://doi.org/10.1371/journal.pone.0239984
https://doi.org/10.1371/journal.pone.0239984
https://doi.org/10.1257/0002828053828464
https://doi.org/10.1257/0002828053828464
https://doi.org/10.1016/S0022-3999(03)00371-4
https://doi.org/10.1016/S0022-3999(03)00371-4
https://experts.colorado.edu/display/pubid_228757#overview
https://experts.colorado.edu/display/pubid_228757#overview
https://experts.colorado.edu/display/pubid_228757#overview
https://experts.colorado.edu/display/pubid_228757#overview
https://doi.org/10.1007/s10527-007-0006-5
https://doi.org/10.1007/s10527-007-0006-5
https://doi.org/10.1007/s10527-007-0006-5
https://doi.org/10.1038/nbt1004-1315
https://doi.org/10.1038/nbt1004-1315
https://doi.org/10.3389/neuro.09.004.2009
https://doi.org/10.3389/neuro.09.004.2009
https://doi.org/10.3389/neuro.09.004.2009
https://doi.org/10.3389/neuro.09.004.2009
https://doi.org/10.3389/neuro.09.004.2009
https://doi.org/10.1086/650572
https://doi.org/10.1086/650572
https://doi.org/10.1086/650572
https://doi.org/10.1037/a0031255
https://doi.org/10.1037/a0031255
https://doi.org/10.1093/cercor/bhu327
https://doi.org/10.1093/cercor/bhu327
https://doi.org/10.1016/j.ijpsycho.2017.01.007
https://doi.org/10.1016/j.ijpsycho.2017.01.007
https://doi.org/10.1016/j.ijpsycho.2017.01.007
https://doi.org/10.1016/j.ijpsycho.2017.01.007
https://doi.org/10.1016/j.ijpsycho.2017.01.007
https://doi.org/10.1016/j.ijpsycho.2017.01.007
https://doi.org/10.1016/j.biopsycho.2003.10.001
https://doi.org/10.1016/j.biopsycho.2003.10.001
https://doi.org/10.1016/j.biopsycho.2003.10.001
https://doi.org/10.1016/j.biopsycho.2003.10.001
https://doi.org/10.1016/j.biopsycho.2003.10.001
https://doi.org/10.1016/j.biopsycho.2003.10.001
https://doi.org/10.1037/h0045692
https://doi.org/10.1037/h0045692
https://doi.org/10.1037/h0046066
https://doi.org/10.1037/h0046066
https://doi.org/10.1027/1864-9335/a000376
https://doi.org/10.1027/1864-9335/a000376


Frederick, S., Loewenstein, G., & O’donoghue, T. (2002). Time discounting
and time preference: A critical review. Journal of Economic Literature,
40(2), 351–401. https://doi.org/10.1257/jel.40.2.351

Frese, M. (1989). Theoretical models of control and health. In S. L. Sauter,
J. J. Hurrell, & C. L. Cooper (Eds.), Job control and worker health
(pp. 107–128). John Wiley & Sons.

Friston, K. (2012). The history of the future of the bayesian brain.Neuro Image,
62(2), 1230–1233. https://doi.org/10.1016/j.neuroimage.2011.10.004

Froemer, R., Lin, H., Wolf, C. K. D., Inzlicht, M., & Shenhav, A. (2020).
When effort matters: Expectations of reward and efficacy guide cognitive
control allocation. BioRxiv.

Fu, R., Wang, H., & Zhao, W. (2016). Dynamic driver fatigue detection
using hidden markov model in real driving condition. Expert Systems with
Applications, 63, 397–411. https://doi.org/10.1016/j.eswa.2016.06.042

Gailliot, M. T., & Baumeister, R. F. (2007). The physiology of willpower:
Linking blood glucose to self-control. Personality and Social Psychology
Review, 11(4), 303–327. https://doi.org/10.1177/1088868307303030

Gailliot, M. T., Baumeister, R. F., DeWall, C. N., Maner, J. K., Plant, E. A.,
Tice, D. M., Brewer, L. E., & Schmeichel, B. J. (2007). Self-control relies
on glucose as a limited energy source: Willpower is more than a metaphor.
Journal of Personality and Social Psychology, 92(2), 325–336. https://
doi.org/10.1037/0022-3514.92.2.325

Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computational
rationality: A converging paradigm for intelligence in brains, minds, and
machines. Science, 349(6245), 273–278. https://doi.org/10.1126/science
.aac6076

Giacomantonio, M., Jordan, J., & Fennis, B. (2019). Intense self-regulatory
effort increases need for conservation and reduces attractiveness of
energy-requiring rewards. Social Psychology, 50(5–6), 355–369.
https://doi.org/10.1027/1864-9335/a000395

Giacomantonio, M., Jordan, J., Fennis, B. M., & Panno, A. (2014). When the
motivational consequences of ego depletion collide: Conservation dom-
inates over reward-seeking. Journal of Experimental Social Psychology,
55, 217–220. https://doi.org/10.1016/j.jesp.2014.07.009

Gibson, E. L. (2007). Carbohydrates and mental function: Feeding or
impeding the brain? Nutrition Bulletin, 32(Suppl. 1), 71–83. https://
doi.org/10.1111/j.1467-3010.2007.00606.x

Grahek, I., Musslick, S., & Shenhav, A. (2020). A computational perspective
on the roles of affect in cognitive control. International Journal of Psycho-
physiology, 151, 25–34. https://doi.org/10.1016/j.ijpsycho.2020.02.001

Green, L., & Myerson, J. (2004). A discounting framework for choice with
delayed and probabilistic rewards. Psychological Bulletin, 130(5), 769–
792. https://doi.org/10.1037/0033-2909.130.5.769

Green, L.,Myerson, J., Oliveira, L., &Chang, S. E. (2013). Delay discounting of
monetary rewards over a wide range of amounts. Journal of the Experimental
Analysis of Behavior, 100(3), 269–281. https://doi.org/10.1002/jeab.45

Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of
cognitive resources: Levels of analysis between the computational and the
algorithmic. Topics in Cognitive Science, 7(2), 217–229. https://doi.org/10
.1111/tops.12142

Han, S., Lerner, J. S., & Keltner, D. (2007). Feelings and consumer decision
making: The appraisal-tendency framework. Journal of Consumer Psychol-
ogy, 17(3), 158–168. https://doi.org/10.1016/S1057-7408(07)70023-2

Hancock, P. A., & Desmond, P. A. (2001). Stress, workload, and fatigue.
Lawrence Erlbaum.

Hartmann, M. N., Hager, O. M., Tobler, P. N., & Kaiser, S. (2013). Parabolic
discounting of monetary rewards by physical effort. Behavioural Pro-
cesses, 100, 192–196. https://doi.org/10.1016/j.beproc.2013.09.014

Heckman, J. (1974). Shadow prices, market wages, and labor supply.
Econometrica, 42(4), 679–694. https://doi.org/10.2307/1913937

Hockey, G. R. J. (2011). A motivational control theory of cognitive fatigue.
In P. L. Ackerman (Ed.),Cognitive fatigue: Multidisciplinary perspectives
on current research and future applications (pp. 167–187). American
Psychological Association. https://doi.org/10.1037/12343-008

Hockey, G. R. J., & Earle, F. (2006). Control over the scheduling of simulated
office work reduces the impact of workload on mental fatigue and task
performance. Journal of Experimental Psychology: Applied, 12(1), 50–65.
https://doi.org/10.1037/1076-898X.12.1.50

Holtzer, R., Yuan, J., Verghese, J., Mahoney, J. R., Izzetoglu, M., & Wang, C.
(2017). Interactions of subjective and objective measures of fatigue defined in
the context of brain control of locomotion. The Journals of Gerontology:
Series A, 72(3), 417–423. https://doi.org/10.1093/gerona/glw167

Hopstaken, J. F., Van Der Linden, D., Bakker, A. B., & Kompier, M. A.
(2015). A multifaceted investigation of the link between mental fatigue
and task disengagement. Psychophysiology, 52(3), 305–315. https://
doi.org/10.1111/psyp.12339

Hopstaken, J. F., van der Linden, D., Bakker, A. B., Kompier, M. A., &
Leung, Y. K. (2016). Shifts in attention during mental fatigue: Evidence
from subjective, behavioral, physiological, and eye-tracking data. Journal
of Experimental Psychology: Human Perception and Performance, 42(6),
878–889. https://doi.org/10.1037/xhp0000189

Horiuchi, R., Ogasawara, T., & Miki, N. (2018). Fatigue assessment by blink
detected with attachable optical sensors of dye-sensitized photovoltaic cells.
Micromachines, 9(6), Article 310. https://doi.org/10.3390/mi9060310

Hossain, J., Reinish, L., Kayumov, L., Bhuiya, P., & Shapiro, C. (2003).
Underlying sleep pathology may cause chronic high fatigue in shift-
workers. Journal of Sleep Research, 12(3), 223–230. https://doi.org/10
.1046/j.1365-2869.2003.00354.x

Jara-Ettinger, J. (2019). Theory of mind as inverse reinforcement learning.
Current Opinion in Behavioral Sciences, 29, 105–110. https://doi.org/10
.1016/j.cobeha.2019.04.010

Jebara, T. (2012). Machine learning: Discriminative and generative (Vol.
755). Springer.

Jha, A. K., Iliff, A. R., Chaoui, A. A., Defossez, S., Bombaugh, M. C., &
Miller, Y. R. (2019). A crisis in health care: A call to action on physician
burnout (Technical Report). Massachusetts Medical Society;
Massachusetts Health and Hospital Association; Harvard T.H. Chan
School of Public Health; Harvard Global Health Institute.

Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation
of cognitive enhancement in rewarding motivational contexts. Proceed-
ings of the National Academy of Sciences, 107(19), 8871–8876. https://
doi.org/10.1073/pnas.1002007107

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision
under risk. Econometrica, 47(2), 263–291. https://doi.org/10.2307/1914185

Karasek, R. A., Jr. (1979). Job demands, job decision latitude, and mental
strain: Implications for job redesign. Administrative Science Quarterly,
24(2), 285–308. https://doi.org/10.2307/2392498

Kaufman, B. E. (1999). Emotional arousal as a source of bounded rationality.
Journal of Economic Behavior & Organization, 38(2), 135–144. https://
doi.org/10.1016/S0167-2681(99)00002-5.

Keane, M. P., Todd, P. E., & Wolpin, K. I. (2011). The structural estimation
of behavioral models: Discrete choice dynamic programming methods and
applications. In Handbook of labor economics (pp. 331–461). Elsevier.
https://doi.org/10.1016/S0169-7218(11)00410-2

Kelley, N. J., Finley, A. J., & Schmeichel, B. J. (2019). After-effects of self-
control: The reward responsivity hypothesis. Cognitive, Affective, &
Behavioral Neuroscience, 19(3), 600–618. https://doi.org/10.3758/
s13415-019-00694-3

Klein-Flügge, M. C., Kennerley, S. W., Saraiva, A. C., Penny, W. D., &
Bestmann, S. (2015). Behavioral modeling of human choices reveals
dissociable effects of physical effort and temporal delay on reward
devaluation. PLoS Computational Biology, 11(3), Article e1004116.
https://doi.org/10.1371/journal.pcbi.1004116

Knill, D. C., & Pouget, A. (2004). The bayesian brain: The role of uncertainty
in neural coding and computation. Trends in Neurosciences, 27(12), 712–
719. https://doi.org/10.1016/j.tins.2004.10.007

Kodithuwakku Arachchige, S. N., Burch V, R. F., Chander, H., Turner, A. J., &
Knight, A. C. (2021). The use of wearable devices in cognitive fatigue: Current

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

24 WANG, CHANG, SCHMEICHEL, AND GARCIA

https://doi.org/10.1257/jel.40.2.351
https://doi.org/10.1257/jel.40.2.351
https://doi.org/10.1257/jel.40.2.351
https://doi.org/10.1257/jel.40.2.351
https://doi.org/10.1257/jel.40.2.351
https://doi.org/10.1016/j.neuroimage.2011.10.004
https://doi.org/10.1016/j.neuroimage.2011.10.004
https://doi.org/10.1016/j.neuroimage.2011.10.004
https://doi.org/10.1016/j.neuroimage.2011.10.004
https://doi.org/10.1016/j.neuroimage.2011.10.004
https://doi.org/10.1016/j.neuroimage.2011.10.004
https://doi.org/10.1016/j.eswa.2016.06.042
https://doi.org/10.1016/j.eswa.2016.06.042
https://doi.org/10.1016/j.eswa.2016.06.042
https://doi.org/10.1016/j.eswa.2016.06.042
https://doi.org/10.1016/j.eswa.2016.06.042
https://doi.org/10.1016/j.eswa.2016.06.042
https://doi.org/10.1177/1088868307303030
https://doi.org/10.1177/1088868307303030
https://doi.org/10.1037/0022-3514.92.2.325
https://doi.org/10.1037/0022-3514.92.2.325
https://doi.org/10.1037/0022-3514.92.2.325
https://doi.org/10.1037/0022-3514.92.2.325
https://doi.org/10.1037/0022-3514.92.2.325
https://doi.org/10.1037/0022-3514.92.2.325
https://doi.org/10.1126/science.aac6076
https://doi.org/10.1126/science.aac6076
https://doi.org/10.1126/science.aac6076
https://doi.org/10.1027/1864-9335/a000395
https://doi.org/10.1027/1864-9335/a000395
https://doi.org/10.1016/j.jesp.2014.07.009
https://doi.org/10.1016/j.jesp.2014.07.009
https://doi.org/10.1016/j.jesp.2014.07.009
https://doi.org/10.1016/j.jesp.2014.07.009
https://doi.org/10.1016/j.jesp.2014.07.009
https://doi.org/10.1016/j.jesp.2014.07.009
https://doi.org/10.1111/j.1467-3010.2007.00606.x
https://doi.org/10.1111/j.1467-3010.2007.00606.x
https://doi.org/10.1111/j.1467-3010.2007.00606.x
https://doi.org/10.1111/j.1467-3010.2007.00606.x
https://doi.org/10.1111/j.1467-3010.2007.00606.x
https://doi.org/10.1111/j.1467-3010.2007.00606.x
https://doi.org/10.1111/j.1467-3010.2007.00606.x
https://doi.org/10.1016/j.ijpsycho.2020.02.001
https://doi.org/10.1016/j.ijpsycho.2020.02.001
https://doi.org/10.1016/j.ijpsycho.2020.02.001
https://doi.org/10.1016/j.ijpsycho.2020.02.001
https://doi.org/10.1016/j.ijpsycho.2020.02.001
https://doi.org/10.1016/j.ijpsycho.2020.02.001
https://doi.org/10.1037/0033-2909.130.5.769
https://doi.org/10.1037/0033-2909.130.5.769
https://doi.org/10.1037/0033-2909.130.5.769
https://doi.org/10.1037/0033-2909.130.5.769
https://doi.org/10.1037/0033-2909.130.5.769
https://doi.org/10.1002/jeab.45
https://doi.org/10.1002/jeab.45
https://doi.org/10.1002/jeab.45
https://doi.org/10.1111/tops.12142
https://doi.org/10.1111/tops.12142
https://doi.org/10.1111/tops.12142
https://doi.org/10.1016/S1057-7408(07)70023-2
https://doi.org/10.1016/S1057-7408(07)70023-2
https://doi.org/10.1016/j.beproc.2013.09.014
https://doi.org/10.1016/j.beproc.2013.09.014
https://doi.org/10.1016/j.beproc.2013.09.014
https://doi.org/10.1016/j.beproc.2013.09.014
https://doi.org/10.1016/j.beproc.2013.09.014
https://doi.org/10.1016/j.beproc.2013.09.014
https://doi.org/10.2307/1913937
https://doi.org/10.2307/1913937
https://doi.org/10.1037/12343-008
https://doi.org/10.1037/12343-008
https://doi.org/10.1037/1076-898X.12.1.50
https://doi.org/10.1037/1076-898X.12.1.50
https://doi.org/10.1037/1076-898X.12.1.50
https://doi.org/10.1037/1076-898X.12.1.50
https://doi.org/10.1037/1076-898X.12.1.50
https://doi.org/10.1093/gerona/glw167
https://doi.org/10.1093/gerona/glw167
https://doi.org/10.1111/psyp.12339
https://doi.org/10.1111/psyp.12339
https://doi.org/10.1111/psyp.12339
https://doi.org/10.1111/psyp.12339
https://doi.org/10.1037/xhp0000189
https://doi.org/10.1037/xhp0000189
https://doi.org/10.3390/mi9060310
https://doi.org/10.3390/mi9060310
https://doi.org/10.1046/j.1365-2869.2003.00354.x
https://doi.org/10.1046/j.1365-2869.2003.00354.x
https://doi.org/10.1046/j.1365-2869.2003.00354.x
https://doi.org/10.1046/j.1365-2869.2003.00354.x
https://doi.org/10.1046/j.1365-2869.2003.00354.x
https://doi.org/10.1046/j.1365-2869.2003.00354.x
https://doi.org/10.1016/j.cobeha.2019.04.010
https://doi.org/10.1016/j.cobeha.2019.04.010
https://doi.org/10.1016/j.cobeha.2019.04.010
https://doi.org/10.1016/j.cobeha.2019.04.010
https://doi.org/10.1016/j.cobeha.2019.04.010
https://doi.org/10.1016/j.cobeha.2019.04.010
https://doi.org/10.1073/pnas.1002007107
https://doi.org/10.1073/pnas.1002007107
https://doi.org/10.1073/pnas.1002007107
https://doi.org/10.1073/pnas.1002007107
https://doi.org/10.2307/1914185
https://doi.org/10.2307/1914185
https://doi.org/10.2307/2392498
https://doi.org/10.2307/2392498
https://doi.org/10.1016/S0167-2681(99)00002-5
https://doi.org/10.1016/S0167-2681(99)00002-5
https://doi.org/10.1016/S0167-2681(99)00002-5
https://doi.org/10.1016/S0167-2681(99)00002-5
https://doi.org/10.1016/S0169-7218(11)00410-2
https://doi.org/10.1016/S0169-7218(11)00410-2
https://doi.org/10.3758/s13415-019-00694-3
https://doi.org/10.3758/s13415-019-00694-3
https://doi.org/10.3758/s13415-019-00694-3
https://doi.org/10.1371/journal.pcbi.1004116
https://doi.org/10.1371/journal.pcbi.1004116
https://doi.org/10.1371/journal.pcbi.1004116
https://doi.org/10.1371/journal.pcbi.1004116
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/j.tins.2004.10.007


trends and future intentions. Theoretical Issues in Ergonomics Science.
Advance online publication. https://doi.org/10.1080/1463922X.2021.1965670

Kool,W., McGuire, J. T., Rosen, Z. B., & Botvinick,M.M. (2010). Decision
making and the avoidance of cognitive demand. Journal of Experimental
Psychology: General, 139(4), 665–682. https://doi.org/10.1037/a0020198

Kuderer, M., Gulati, S., & Burgard, W. (2015). Learning driving styles for
autonomous vehicles from demonstration. In 2015 IEEE International
Conference on Robotics and Automation (ICRA) (pp. 2641–2646).
Institute of Electrical and Electronics Engineers.

Kurzban, R. (2010). Does the brain consume additional glucose during self-
control tasks? Evolutionary Psychology: An International Journal of
Evolutionary Approaches to Psychology and Behavior, 8(2), 244–259.
https://doi.org/10.1177/147470491000800208

Laibson, D. (1997). Golden eggs and hyperbolic discounting. The Quar-
terly Journal of Economics, 112(2), 443–478. https://doi.org/10.1162/
003355397555253

Lal, S. K., & Craig, A. (2001). A critical review of the psychophysiology of
driver fatigue. Biological Psychology, 55(3), 173–194. https://doi.org/10
.1016/S0301-0511(00)00085-5

Laming, D. R. J. (1968). Information theory of choice-reaction times.
Academic Press.

Lazarus, R. S., & Lazarus, R. S. (1991). Emotion and adaptation. Oxford
University Press.

Le, D., & Provost, E. M. (2013). Emotion recognition from spontaneous
speech using hidden markov models with deep belief networks. In 2013
IEEE workshop on automatic speech recognition and understanding (pp.
216–221). Institute of Electrical and Electronics Engineers.

Lieder, F., Griffiths, T. L., & Goodman, N. D. (2012). Burn-In, bias, and the
rationality of anchoring. In F. Pereira, C. J. C. Burges, L. Bottou & K. Q.
Weinberger (Eds.), NIPS (pp. 2699–2707). Curran Associates.

Lieder, F., Shenhav, A., Musslick, S., & Griffiths, T. L. (2018). Rational
metareasoning and the plasticity of cognitive control. PLoS Computational
Biology, 14(4), Article e1006043. https://doi.org/10.1371/journal.pcbi.1006043

Liu, J., Zhang, C., & Zheng, C. (2010). Eeg-based estimation of mental fatigue
by using kpca–hmm and complexity parameters. Biomedical Signal Proces-
sing and Control, 5(2), 124–130. https://doi.org/10.1016/j.bspc.2010.01.001

Loewenstein, G., & Lerner, J. S. (2003). The role of affect in decision
making. In R. J. Davidson, K. R. Scherer, & H. H. Goldsmith (Eds.),
Handbook of affective sciences (pp. 619–642). Oxford University Press.

Loewenstein, G., & O’Donoghue, T. (2004). Animal spirits: Affective and
deliberative processes in economic behavior. https://ssrn.com/abstract=539843

Loewenstein, G., Rick, S., & Cohen, J. D. (2008). Neuroeconomics. Annual
Review of Psychology, 59, 647–672. https://doi.org/10.1146/annurev
.psych.59.103006.093710

Luo, H., Lee, P.-A., Clay, I., Jaggi, M., & De Luca, V. (2020). Assessment of
fatigue using wearable sensors: A pilot study. Digital Biomarkers, 4(1),
59–72. https://doi.org/10.1159/000512166

Luo, Y., & Qi, W. (2019). Pilots’ brain cognitive state inference based on
remaining life hsmm. In 2019 Chinese Control and Decision Conference
(CCDC) (pp. 5289–5294). Institute of Electrical and Electronics Engineers.

Magnac,T.,&Thesmar,D. (2002). Identifyingdynamic discrete decisionprocesses.
Econometrica, 70(2), 801–816. https://doi.org/10.1111/1468-0262.00306

Maier, S. F., & Seligman, M. E. (1976). Learned helplessness: Theory and
evidence. Journal of Experimental Psychology: General, 105(1), 3–46.
https://doi.org/10.1037/0096-3445.105.1.3

Mairesse, O., & Neu, D. (2016). Tired of blunt tools? sharpening the clinical
assessment of fatigue and sleepiness. Psychiatry Research, 238, 100–108.
https://doi.org/10.1016/j.psychres.2016.02.005

Marx, I., Höpcke, C., Berger, C., Wandschneider, R., & Herpertz, S. C.
(2013). The impact of financial reward contingencies on cognitive func-
tion profiles in adult adhd. PLOS ONE, 8(6), Article e67002. https://
doi.org/10.1371/journal.pone.0067002
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Appendix A

Detailed Belief Updating Process

Here we provide more details of the Bayesian belief update. LetX
be the (finite dimensional) probability simplex in RjS×Dj and xt ≜
fPðst , τtjζtÞ, ∀ðst , τtÞ ∈ S × Dg ∈ X be the Bayesian belief, which
is the posterior distribution over possible fatigue states and its
duration times (st, τt) given history ζt. Then, ∀t, xt ∈ X, the size
of belief xt remains constant and does not grow to infinity. To see
this, for a given belief xt at time t—which is a matrix of size S ×D (S
rows andD columns)—the updated (posterior) belief xt+1 at time t +
1 also has the same size as xt, where the belief update is given by:

xt+1ðs, τÞ = Pðst+1 = s, τt+1 = τjzt+1, at , ζtÞ

=

P
st , τt Pðst+1 = s, τt+1= τ, zt+1jst , τt , atÞxtðst , τtÞ

σðxt , at , zt+1Þ

=
Pðst+1 = s, τt+1 = τ, zt+1jxt , atÞ

σðxt , at , zt+1Þ
,

(A1)

where the denominator is σðxt , at , zt+1Þ ≜
X

st+1, τt+1

X
st , τt

Pðst+1, τt+1, zt+1jst , τt , atÞxtðst , τtÞ = Pðzt+1jxt , atÞ is called the
reduced-form observation probability (Chang et al., 2020). We
denote this updating procedure by xt+1 = λ(xt, at, zt+1). The

numerator of Equation A1 can be further factorized by considering
τt = 0 and τt > 0:

Pðst+1 = s, τt+1 = τ, zt+1jxt , atÞ
=

X
st ≠ s

Pðst+1 = s, τt+1 = τ, zt+1jst , τt , atÞxðst , τtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
τt = 0

+ Pðst+1 = s, τt+1 = τ, zt+1jst = s, τt , atÞxðst = s, τtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
τt = τ + 1

:

The updated belief relies on the current state st and time left τt in
st. If τt = 0, then the current fatigue state st = s transitions to a
different state st+1 = s′(s′ ≠ s), generating a new sojourn time τt+1
and an observation zt + 1 according to the environment state
dynamics. If τt > 0, then the current fatigue state persists (st+1 =
st). To find the probability associated τt+1= τ, we use the probability
associated with τt = τ + 1 because τt+1 = τt – 1 when τt > 0. The σ
function in the Equation A1 serves as a regulator for the sum of all
the elements of xt+1 equals 1.

(Appendices continue)

Appendix B

Robustness Analysis Experiment of the Number of Fatigue States

We designed a numerical experiment and generated data assum-
ing three true fatigue states: State 1 (not fatigued state), State 2
(medium fatigue state), and State 3 (fatigued state). Assuming the
number of fatigue states is not known in advance, we started
estimation from two fatigue states, then three fatigue states, and
so on.

Specifically, we began with the “ground truth” model to generate
synthetic data and then used this data set to recover the model
parameters wherein the number of fatigue states was an unknown
parameter.

1. The state transition probabilities are shown in Table B1.
Note that we still assume that easier tasks lead to faster
recovery as in section Simulated N-back Tasks with
Changing Fatigue. When choosing and performing a = 1
(1-back) task, the fatigue state will improve. When
choosing and performing a = 2, 3 (2, 3-back) task, fatigue
state will deteriorate, and harder tasks lead to a higher
probability of deterioration. For example, in Table B1(a),
when the current state is either 1 or 2, and the choice is to
select 1 (1-back, easiest), the state transition can only lead
to a better state (not fatigued). And when the current state
is 3, choosing and performing the 1-back task leads to
less fatigued state (state 1, 2). Similar rules apply in
Table B1(b–c).

2. The observation probabilities PðzjsÞ are shown in
Table B2.

3. Sojourn time distribution parameters are given by
Table B3, wherein the sojourn time distribution takes
the form Pðτt+1jst+1, at , τt = 0Þ. For illustration purpose,
we assumed that sojourn times follow Binomial distribu-
tions with two parameters: a probability parameter and the
total number of trials, the latter of which is fixed to 4
(according to experiment design, not to be estimated).
Table B3 summarizes the parameter values used to define

Table B1
State Transition Probabilities for Different Choices

State s′ = 1 s′ = 2 s′ = 3

a. State transition probabilities when the choice is 1-back task, Pðs′js, a =
1, τ = 0Þ.
s = 1 1 0 0
s = 2 1 0 0
s = 3 0.4 (0.40) 0.6 (0.60) 0

b. State transition probabilities when the choice is 2-back task, Pðs′js, a =
2, τ = 0Þ.
s = 1 0 0.9 (0.86) 0.1 (0.14)
s = 2 0 0 1
s = 3 0 0 1

c. State transition probabilities when the choice is 3-back, Pðs′js, a = 3, τ = 0Þ.
s = 1 0 0.7 (0.70) 0.3 (0.30)
s = 2 0 0 1
s = 3 0 0 1

Note. Values in the parentheses are the estimates from the 3-state model.
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those Binomial distributions for each choice at and each
future state st+1.

4. External (performance dependent) monetary rewards are
the same as used in the article.

incentiveða; cpÞ =
8<
:

1 a = 1,
3 a = 2,
6 a = 3,

where cp denotes the (predefined) performance criteria required to
receive incentives.

5. One-step subjective value parameters

θ3 = fθ3, 1, θ3, 2g = f2.5, 0.5g:

We used the aforementioned model parameters to generate a
sample data set containing 2,000 sample paths with 80 decision
epochs for each sample path. Then we fit the models assuming 2-, 3-,
and 4-state settings, respectively.

Appendix C

Proofs

Proof of Theorem 1

The proof is by induction as in Chang et al. (2020) and
Smallwood and Sondik (1973). Let ζt+1 = ζ′, εt+1 = ε′. Assume
gt+1(ζ′, ε′) = Vt+1(x′, ε′), then at time t, we have:

gtðζ, εÞ = max
a

�X
s, τ

Pðs, τjζÞrðs, aÞ + εðaÞ

+ β
X
z′

Pðz′jζ, aÞ
ð
Vt+1ðx′, ε′Þdμðε′Þ

�

= max
a

�
rðx, aÞ+ εðaÞ+ β

X
z′

σðx, a, z′Þ
ð
Vt+1ðλðx, a, z′Þ, ε′Þdμðε′Þ

�
,

= Vtðx, εÞ:

where the second equation is by Pðz′jζ, aÞ = σðx, a, z′Þand x′ = λ(x,
a, z′). ◻

Identification of Fatigue Dynamics

We explain the identification of the dynamics of fatigue states and
their duration times as follows. Such dynamics are defined by
fPθDðs′, τ′, zjs, τ, aÞ∶ s, s′∈ S, τ, τ′∈ D, a ∈ Ag (parameterized by
θD). Both reduced-form observation probability and updated Bayes-
ian belief depend on PθD and are denoted as σθD , xt, θD, respectively.
Given that:

σθDðzt+1, xt, θD , atÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
a function of θD

= P̂ðzt+1jζt , atÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
from data

,

where P̂ðzt+1jζt , atÞ is a function of data, one would expect that θD
could be identified by matching σθD with empirical probabilities

P̂ðzt+1jζt , atÞ. To test this idea, consider the first-period data {x0,
a0, z1}:

σθDðz1, x0, a0Þ =
X
s1, τ1

X
s0, τ0

x0ðs0, τ0ÞPθDðs1, τ1, z1js0, τ0, a0Þ

=
X
s0, τ0

x0ðs0, τ0ÞPθDðz1js0, τ0, a0Þ

= P̂ðz1jx0, a0Þ

(C1)

The issue is that Equation C1 is not enough to uniquely determine
Pðst+1, τt+1, zt+1jst , τt , atÞ: It is possible that there exist θD ≠ θ′D and
(st + 1, τt + 1) such that:

PθDðst+1, τt+1, zt+1jst , τt , atÞ ≠ Pθ′D
ðst+1, τt+1, zt+1jst , τt , atÞ

but

PθDðzt+1jst , τt , atÞ = Pθ′Dðzt+1jst , τt , atÞ:

In this case, consider two periods of data {x0, a0, z1, a1, z2}. We
show that for two dynamics of fatigue θD, θ′D:

θ′D = θD ⇔ x1, θD = x1, θ′D , (C2)

where “⇔” stands for “if and only if.”
“⇒”: is trivial to see.
“⇐”: Since

x1, θDðs, τÞ =
P

s0, τ0PθDðs1 = s, τ1 = τ, z1js0, τ0, a0Þ x0ðs0, τ0Þ
σθDðx0, a0, z1Þ

,

where x0 is given and σθDðx0, a0, z1Þ = σθ′Dðx0, a0, z1Þ =
P̂ðz1jζ0, a0Þ, ∀x0, a0, z1. Thus, if x1, θD = x1, θ′D , then θD = θ′D.

Table B2
Observation Probabilities PðzjsÞ
State z = 1 z = 2 z = 3 z = 4

s = 1 0.1 (0.10) 0.2 (0.20) 0.3 (0.30) 0.4 (0.40)
s = 2 0.2 (0.19) 0.3 (0.29) 0.4 (0.41) 0.1 (0.11)
s = 3 0.4 (0.41) 0.3 (0.30) 0.2 (0.20) 0.1 (0.09)

Note. Values in the parentheses are the estimates from the 3-state model.

Table B3
Sojourn Time Parameters

Choice/Action st+1 = 1 st+1 = 2 st+1 = 3

at = 1 0.3 (0.29) 0.8 (0.83) —

at = 2 — 0.7 (0.69) 0.2 (0.20)
at = 3 — 0.4 (0.38) 0.4 (0.41)

Note. Values in the parentheses are the estimates of the 3-state model.
Table cells with no value indicates those scenarios will not occur.

(Appendices continue)
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Furthermore, we claim that:

x1, θD = x1, θ′D ⇔ σθDðx1, θD , a1, z2Þ = σθ′Dðx1, θ′D , a1, z2Þ: (C3)

“⇒”: holds because x1, θD = x1, θ′D ⇒ θD = θ′D (Equation C2).
“⇐”: holds because

σðx1, a1, z2Þ =
X
s2, τ2

X
s1, τ1

Pðs2, τ2, z2js1, τ1, a1Þx1ðs1, τ1Þ

=
X
s1, τ1

Pðz2js1, τ1, a1Þx1ðs1, τ1Þ:

Note that PθDðz2js1, τ1, a1Þ = Pθ′Dðz2js1, τ1, a1Þ is guaranteed by
first period of data. If the second period of data is also matched,
that is,

σθDðz2, x1, θD , a1Þ = σθ′Dðz2, x1, θ′D , a1Þ = P̂ðz2jζ1, a1Þ,

then x1, θD = x1, θ′D .
Hence, by matching two periods of data, Equations C2 and C3

hold and PθDðs′, τ′js, τ, aÞ can be uniquely determined, or
identified.

Identification of One-Step Subjective Values

We illustrate the identification of one-step subjective values in the
case of ε being multivariate i.i.d Gumbel. Hence the CCP has the
closed form:

πðajxÞ = expQðx, aÞP
a′expQðx, a′Þ

:

Consequently, we have themapping from the difference inQ(x, a)
(compared to a reference action a0) to the difference in CCP
(compared to a reference action a0):

πðajxÞ
πða0jxÞ = expðQðx, aÞ − Qðx, a0ÞÞ: (C4)

Note that:

Qðx, a0Þ = rðx, a0Þ + β
X
z′

σðx, a0, z′Þlog
X
a′

expQðλðx, a, z′Þ, a′Þ

= rðx, a0Þ + β
X
z ′

σðx, a0, z′ÞQðλðx, a, z′Þ, a0Þ

+ β
X
z′

σðx, a0, z′Þlog
X
a′

expðQðλðx, a, z′Þ, a′Þ − Qðλðx, a, z′Þ, a0ÞÞ,

by the fact that log
P

N
i=1 expðxnÞ = c + log

P
N
i=1 expðxn − cÞ:

Since the dynamics of fatigue state and its duration are identifi-
able, {xt}t > 0 can be calculated for each sample path and πðajxÞ is
obtainable from the data. Consequently,X

z′

σðx, a0, z′Þlog
X
a′

expðQðλðx, a, z′Þ, a′Þ − Qðλðx, a, z′Þ, a0ÞÞ

=
X
z′

σðx, a0, z′Þ
X
a′

πða′jλðx, a, z′ÞÞ
πða0jλðx, a, z′ÞÞ

can be estimated from data (note x′ = λ(x, a, z′)). Since the
subjective values for a reference choice {r(s, a0), s ∈ S} are known,
the expected cumulative subjective value functionQ(x, a0), x ∈X can
be uniquely determined by contraction mapping theorem [and so do
Q(x, a), a≠ a0, by using Equation C4]. To find subjection values r, we
simply use:

rðx, aÞ = Qðx, aÞ − β
X
z′

σðx, a, z′Þlog
X
a′

expQðλðx, a, z′Þ, a′Þ,

where r(x, a) =
P

s x(s)r(s, a). Hence, r(s, a)can be identified by
solving a set of equations containing different beliefs. ◻

Received June 22, 2021
Revision received December 3, 2021

Accepted February 15, 2022 ▪

MODELING AND ESTIMATION OF MENTAL FATIGUE 29


