

Stratospheric ozone depletion and tropospheric ozone increases drive Southern Ocean interior warming

Wei Liu¹, Michaela I. Hegglin², Ramiro Checa-Garcia³, Shouwei Li¹,

Nathan P. Gillett⁴, Kewei Lyu⁵, Xuebin Zhang⁵ and Neil C. Swart⁴

¹Department of Earth and Planetary Sciences, University of California Riverside, Riverside, CA, USA

²Department of Meteorology, University of Reading, Whiteknights, Reading RG6 6BX, UK

³Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences,
Vienna, Austria

⁴Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, Canada

⁵Centre for Southern Hemisphere Oceans Research, CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

*Corresponding Author: Wei Liu, address: Department of Earth and Planetary Sciences, University of California Riverside, 900 University Ave, Riverside, CA 92521.

Tel: 1-(951) 827-4508

Email address: wei.liu@ucr.edu

23 **Atmospheric ozone has undergone distinct changes in the stratosphere and troposphere**
24 **during the second half of the twentieth century, with depletion in the stratosphere and an**
25 **increase in the troposphere. Until now, the effect of these changes on ocean heat uptake has**
26 **been unclear. Here we show that both stratospheric and tropospheric ozone changes have**
27 **contributed to Southern Ocean interior warming, with the latter being more important.**
28 **The ozone changes between 1955 and 2000 induced about 30% of the net simulated ocean**
29 **heat content increase in the upper 2000 m of the Southern Ocean, with around 60%**
30 **attributed to tropospheric increases and 40% to stratospheric depletion. Moreover, these**
31 **two warming contributions show distinct physical mechanisms: Tropospheric ozone**
32 **increases cause a subsurface warming in the Southern Ocean primarily via the deepening**
33 **of isopycnals, while stratospheric ozone depletion via spiciness changes along isopycnals.**
34 **Our results highlight that tropospheric ozone is more than an air pollutant and, as a**
35 **greenhouse gas, has been pivotal to the Southern Ocean warming.**

36

37 Atmospheric ozone has experienced distinct changes in the stratosphere and troposphere during
38 the second half of the twentieth century. Notable ozone depletion has occurred in the
39 stratosphere, most strikingly as the ozone hole over Antarctica, which has been attributed
40 primarily to anthropogenic emissions of ozone-depleting substances^{1,2,3,4}. In contrast, ozone
41 increases in the troposphere have been observed (Extended Data Fig. 1) as a result of
42 anthropogenic emissions of ozone precursors such as methane, non-methane volatile organic
43 compounds, carbon monoxide and nitrogen oxides^{5,6,7,8}. These atmospheric ozone changes have
44 profound impacts on Earth's climate system. For example, stratospheric ozone depletion has
45 significantly altered the tropospheric circulation by displacing the Southern Hemisphere westerly

46 winds poleward during austral summer^{9,10,11,12}, though these Southern Hemisphere circulation
47 trends paused around 2000 and are expected to reverse the sign owing to reduced emissions of
48 ozone depleting substances following the signing of the Montreal Protocol and its
49 Amendments^{13,14,15}. By contrast, ozone impacts on oceans, especially those due to tropospheric
50 ozone changes, are relatively less well explored.

51

52 The Fifth Assessment Report of the United Nations Intergovernmental Panel on Climate Change
53 indicates that ozone constitutes the third-most important contribution to greenhouse gas forcing
54 since pre-industrial times after carbon dioxide and methane¹⁶. Stratospheric and tropospheric
55 ozone changes substantially modulate Earth's radiation balance¹⁷, and thus could also affect
56 global ocean heat uptake. The role of the Southern Ocean is critical in the context of climate
57 change as it is one of the most important regions for taking up excess heat in a warming
58 climate^{18,19}, and is markedly affected by Southern Hemisphere westerly winds^{20,21,22,23}. During
59 the past several decades, the Southern Ocean has shown a rapid subsurface warming^{24,25}, only a
60 small part of which, however, has been attributed to stratospheric ozone depletion^{26,27,28}. Given
61 the concurrent (but opposite) ozone changes in both the stratosphere and troposphere, one gap
62 remains in our current knowledge of ozone-driven Southern Ocean warming: The impact of the
63 increase in tropospheric ozone. Here, we employ historical simulations and accompanying ozone
64 single-forcing experiments with a broad set of climate models from the Coupled Model
65 Intercomparison Projects Phase 5/6 (CMIP5/6) to probe the mechanisms and impacts of
66 stratospheric and tropospheric ozone changes on Southern Ocean interior warming during the
67 second half of the twentieth century.

68

69 **Results**

70 We first examine the ozone single-forcing experiments from the CMIP5 models in which the
71 models were only forced with historical integrations of atmospheric ozone concentrations instead
72 of all historical forcings (see Methods). These ozone single-forcing experiments demonstrate the
73 effects of both stratospheric and tropospheric ozone changes together. Between 1955 and 2000,
74 ozone depletion generates a strong stratospheric cooling trend in the Southern Hemisphere high
75 latitudes (Extended Data Fig. 2), which leads to a poleward intensification of Southern
76 Hemisphere westerly winds in the troposphere reminiscent of “annular mode–like” responses²⁹
77 (Fig. 1a). Along with the response in the atmosphere, ozone changes also produce a pronounced
78 subsurface warming in the Southern Ocean. Within 40–50°S, the warming rate is larger than 0.01
79 K/decade in the upper 1000 m (Fig. 1c). When we integrate ocean heat content (OHC) over the
80 upper 2000 m between 30°S and 60°S where ocean warming mainly occurs, we find a significant
81 increase of OHC, with a trend of 5.63 ± 2.36 ZJ/decade (1 ZJ = 10^{21} joule; multi-model mean \pm 1
82 standard deviation among models, see Methods) between 1955 and 2000 (Fig. 2a). Our results
83 from these CMIP5 model simulations thus suggest a substantial Southern Ocean subsurface
84 warming in response to stratospheric and tropospheric ozone changes.

85

86 We have also examined the recent ozone single-forcing experiments with the new generation of
87 CMIP6 models. Unlike those with CMIP5 models, in these experiments CMIP6 models are
88 forced with historical changes solely in stratospheric ozone concentration (see Methods). Hence
89 the CMIP6 ozone experiments show solely the effect of stratospheric ozone change. Compared
90 with the results from the CMIP5 experiments, the CMIP6 ozone experiments show similar
91 stratospheric cooling in southern high latitudes and poleward intensified Southern Hemisphere

92 westerly winds, which indicates a major role of stratospheric ozone depletion in the atmospheric
93 response during 1955-2000 (Fig. 1b). However, in the Southern Ocean, we find a much weaker
94 subsurface warming in the CMIP6 stratospheric ozone only experiments with a pattern consistent
95 with previous studies^{27,30}. Between 40°S and 50°S, the warming rate is much smaller than 0.01
96 K/decade in the upper 2000 m (Fig. 1d). The upper 2000-m OHC between 30°S and 60°S
97 exhibits a marginal increase between 1955 and 2000, with a trend of 0.45 ± 1.22 ZJ/decade
98 (multi-model mean \pm 1 standard deviation among models; Fig. 2a). We further find no
99 statistically significant difference in transient climate sensitivity between the CMIP5 and CMIP6
100 models (see Methods) but the Southern Ocean OHC trend in the CMIP5 simulations is one order
101 of magnitude larger than that in the CMIP6 simulations, indicating that the difference in model
102 climate sensitivity cannot serve as the major cause of such distinct warming trends in the
103 Southern Ocean. On the other hand, the comparison between CMIP5 and CMIP6 model
104 simulations implies that the tropospheric ozone increase is a key driver of Southern Ocean
105 interior warming. Nevertheless, it is worth noting that this comparison cannot allow for a
106 conclusive quantification of the impact nor shed light on the mechanism of tropospheric ozone
107 increases on Southern Ocean warming, since the differences in prescribed historical ozone
108 datasets between CMIP5 and CMIP6 models (Extended Data Fig. 1) and model responses to
109 ozone forcing would need to be considered.

110

111 **Quantifying the ozone impacts on Southern Ocean warming**

112 To quantify the impact of tropospheric ozone change on Southern Ocean interior warming and
113 investigate the mechanism, we employ two ensembles of ozone single-forcing simulations
114 performed with the same climate model, CanESM5. This model simulates a Southern Ocean

115 warming generally in alignment with the ensemble mean result of CMIP6 stratospheric ozone
116 only experiments (Fig. 2a). The first CanESM5 ensemble is forced with historical changes in
117 both stratospheric and tropospheric ozone, equivalent to the CMIP5 simulations described above
118 but adopting the CMIP6 simulation protocol^{31,32}. The second ensemble simulation is equivalent
119 to the CMIP6 ozone experiments described above in which the model is forced with historical
120 integrations of solely stratospheric ozone changes (see Methods). The difference between the
121 two ensemble simulations therefore isolates the effect of tropospheric ozone change. Relative to
122 preindustrial times, we find that both ensemble experiments from CanESM5 simulate a
123 stratospheric cooling in the southern high latitudes and a significant poleward intensification of
124 Southern Hemisphere westerlies in the troposphere between 1955 and 2000 (Fig. 3a,b). On the
125 other hand, tropospheric ozone increases lead to a warming in the troposphere and a cooling in
126 the stratosphere³³ (Extended Data Fig. 3), together with a significant upward intensification of
127 Southern Hemisphere westerly winds in the upper levels and a poleward intensification of
128 westerly winds towards surface (Fig. 3c). These tropospheric-ozone-produced atmosphere
129 temperature and circulation changes are comparable to those induced by stratospheric ozone
130 depletion towards the surface layers, suggesting that tropospheric ozone changes could
131 potentially have considerable impacts on the oceans underneath.

132

133 We further probe the temperature response in the Southern Ocean in the two CanESM5 ensemble
134 simulations. We find a region of pronounced warming extending downward and equatorward to
135 the north of 60°S as a response to the combined stratospheric and tropospheric ozone changes.
136 Between 40°S and 50°S, this tongue of warming waters reaches 1200 m with a warming rate
137 exceeding 0.01 K/decade (Fig. 3d). Part of this subsurface warming is induced by stratospheric

138 ozone depletion, which is, however, mostly limited to the upper 600 m (Fig. 3e). On the other
139 hand, the vertical extension of the tongue of warming waters depends essentially on tropospheric
140 ozone forcing. The increase of tropospheric ozone creates such a deep warming in the Southern
141 Ocean that warming larger than 0.01 K/decade is found to penetrate as deep as 1000 m within
142 40-50°S (Fig. 3f). To the north of the tongue of warming waters, there is a tongue of cooling
143 waters in the upper levels of the Southern Ocean, which results principally from stratospheric
144 ozone depletion and secondarily from tropospheric ozone increases (Fig. 3e,f). A similar cooling
145 feature is found at high latitudes south of 55°S (Fig. 3d,f). It is worth noting that the warming
146 pattern due to tropospheric ozone increases is different from that due to the rising well-mixed
147 greenhouse gases such as carbon dioxide. The rise of well-mixed greenhouse gases induces
148 ubiquitous while vertically decaying warming in the upper 2000-m ocean in the Southern
149 Ocean^{20,21,27,34}.

150

151 Here we estimate the OHC variations in the upper 2000 m between 30°S and 60°S in the two sets
152 of CanESM5 simulations. We find that atmospheric ozone changes induce a robust upward OHC
153 trend of 4.58 ± 3.35 ZJ/decade (ensemble mean \pm 1 standard deviation among ensembles) between
154 1955 and 2000, of which about two-fifths (1.84 ± 2.50 ZJ/decade, ensemble mean \pm 1 standard
155 deviation among ensembles) can be attributed to stratospheric ozone depletion while the other
156 three-fifths (2.74 ZJ/decade, the difference of the ensemble means between the two suites of
157 ozone simulations) is driven by tropospheric ozone increases. Our results confirm the importance
158 of tropospheric ozone to Southern Ocean heat uptake and storage. Importantly, the increases in
159 tropospheric ozone have been more effective in driving the interior warming over the Southern
160 Ocean during the second half of the twentieth century compared to stratospheric ozone depletion.

161
162 Moreover, to set in context the effect of ozone forcing on the historical OHC increase in the
163 Southern Ocean over the 1955-2000 period, we compare OHC changes in the upper 2000 m
164 within 30-60°S between the CanESM5 historical simulations that also include the other
165 greenhouse gas forcings from carbon dioxide, methane and nitrous oxide and the combined
166 stratosphere-troposphere ozone single-forcing experiment (Fig. 2b). We find that CanESM5
167 simulates a general long-term increase of OHC in the Southern Ocean, at a rate of 13.77 ± 4.29
168 ZJ/decade (ensemble mean ± 1 standard deviation among ensembles) between 1955 and 2000,
169 which is consistent with the OHC trends inferred from observations (16.25 ZJ/decade) and
170 CMIP5 models (14.60 ± 5.27 ZJ/decade, multi-model mean ± 1 standard deviation among models)
171 (Fig. 2b). Using the CanESM5 ozone experiment, we further find that about 33.2% of the net
172 historical OHC increase between 1955 and 2000 is caused by atmospheric (both stratospheric
173 and tropospheric) ozone changes. This ratio is in line with that suggested by the historical
174 CMIP5 model ozone experiment ($38.4 \pm 10.4\%$, multi-model mean ± 1 standard deviation among
175 models).

176
177 **Physical mechanisms of ozone-driven Southern Ocean warming**
178 To further understand the mechanisms by which stratospheric and tropospheric ozone changes
179 drive Southern Ocean interior warming, we decompose the temperature and salinity changes
180 between 1955 and 2000 at depth levels into the spiciness changes along isopycnals and
181 heave-related changes owing to the vertical heave of isopycnals³⁵ (see Methods). The spiciness
182 reveals alterations in water mass properties as a result of the subduction of surface temperature
183 and salinity anomalies and changes by interior mixing processes. The heave of isopycnals could

184 be linked to changes in wind-driven ocean circulation and the redistribution of heat and salt in
185 the interior ocean³⁶.

186

187 We first depict the temperature and salinity responses to total atmospheric ozone variations.
188 During 1955-2000, the zonally averaged spiciness changes on density surfaces exhibit strong
189 warming and salification trends in the upper ocean toward isopycnal outcrops, especially in the
190 latitudes between 40°S and 60°S (Fig. 4a,b). These warming and salification trends primarily
191 result from stratospheric ozone depletion and not from tropospheric ozone increases (Fig. 4c,d).
192 Between 40°S and 60°S, the Southern Ocean takes heat from the atmosphere but loses freshwater
193 in response to stratospheric ozone depletion (Fig. 5a,b), both contributing to warming and
194 salification spiciness trends³⁶. The peak of Southern Ocean surface heat uptake is around 55°S
195 (Extended Data Fig. 4), essentially due to the increase of downward turbulent latent heat flux³⁷
196 over the Indian Ocean sector (Extended Data Fig. 5). Increases in surface shortwave radiation
197 fluxes also contribute to Southern Ocean heat uptake in these latitudes (Extended Data Fig. 3).
198 On the other hand, the reduction in surface freshwater flux can be mostly attributed to changes in
199 precipitation minus evaporation (P-E) to the north of 54°S but is likely related to sea-ice
200 variations to the south (Extended Data Fig. 6). Between 40°S and 54°S, the P-E reduction results
201 from both precipitation decreases and evaporation increases and is especially robust over the
202 Pacific sector (Extended Data Fig. 7).

203

204 Besides the warming and salification trends in the isopycnal outcropping region between 40°S
205 and 60°S, we also find cooling and freshening spiciness changes to the north of 40°S on density
206 surfaces between 26.3 and 27.0 kg/m³ (Fig. 4a,b), within the density ranges of the Subantarctic

207 Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) simulated by climate models³⁸.
208 Particularly, the spiciness changes in the AAIW density range (26.7-27.0 kg/m³) can be
209 attributed mostly to stratospheric ozone depletion (Fig. 4c,d) while those in the SAMW density
210 range (26.3-26.6 kg/m³) mainly to tropospheric ozone increases (Fig. 4e,f). These ozone-induced
211 cooling signals contribute to the cooling trend found at corresponding locations from
212 observations and historical simulations during 1955-2000 (Extended Data Fig. 8).

213
214 After remapping the spiciness changes onto depth levels using the mean depth of each density
215 surface, we find the major spiciness warming (>0.01 K/decade) trends in response to total
216 atmospheric ozone variations extending equatorward and downward from the surface layer at
217 60°S to about 600 m at 40°S (Fig. 6a). The stratospheric ozone depletion is responsible for most
218 of the ozone-induced warming trends in the upper 500 m (Fig. 6c) while tropospheric ozone
219 increases primarily account for the spiciness warming below (Fig. 6e).

220
221 We further analyze the heave component of Southern Ocean temperature change. We find a
222 subsurface warming region (>0.01 K/decade) extending equatorward between 36°S and 51°S and
223 downward in 300-1100 m (Fig. 6b) in response to atmospheric ozone changes, accompanied by a
224 cooling tongue to the north and in upper levels. This pair of warming and cooling anomalies has
225 been linked to poleward intensified surface westerly winds and indicates heat redistribution
226 within the Southern Ocean^{21,39}. Specifically, stratospheric ozone depletion drives an
227 intensification of surface westerly winds at and to the south of the Antarctic Circumpolar Current
228 but a relaxation to the north (Fig. 5c, Extended Data Fig. 9), in a pattern consistent with other
229 CMIP6 models (Extended Data Fig. 10). The zonally averaged zonal wind change exhibits a

230 dipole-like pattern, with positive and negative anomalies to the south and north of around 50°S.
231 The resultant anomalous Ekman transport convergence and wind-driven downwelling produces a
232 deepening of isopycnals in the latitudes around 50°S and hence heave-induced changes of
233 warming. While to the north of about 43°S, the weakening of surface westerlies progressively
234 decays, which prompts an anomalous Ekman transport divergence and wind-driven upwelling
235 (Extended Data Fig. 9d) and thus leads to shallower isopycnals and cooling heave changes in
236 these latitudes (Fig. 6d).

237

238 Tropospheric ozone increases, on the other hand, engender different changes in surface winds
239 from those due to stratospheric ozone depletion (Fig. 5c, Extended Data Fig. 9). The zonally
240 averaged surface zonal wind change also reflects a dipole-like pattern but located more
241 northward, with positive and negative anomalies occurring to the south and north of around 42°S.
242 This pattern indicates less poleward displaced surface westerlies than their counterparts driven
243 by stratospheric ozone depletion. Tropospheric ozone increases also drive poleward-intensified
244 Southern Hemisphere precipitation and significantly increase evaporation at lower latitudes
245 where the tropospheric ozone increases are stronger (Extended Data Fig. 6f). In the ocean, the
246 wind-driven Ekman pumping (Extended Data Fig. 9d) produces isopycnals deepening in much
247 lower latitudes, around 42°S, and warming heave changes there (Fig. 6f). These heave-related
248 warming changes are much stronger than those induced by stratospheric ozone depletion, which
249 is likely due to the fact that the oceanic thermocline is more strongly stratified at lower
250 latitudes³⁶, allowing the wind-driven downwelling more effectively to create warming heave
251 changes there.

252

253 **Discussion**

254 In summary, we have examined the climate impacts of atmospheric ozone changes during the
255 second half of the twentieth century, with a focus on disentangling effects of stratospheric ozone
256 depletion and tropospheric ozone increases. We show that while stratospheric ozone depletion
257 plays a dominant role in atmospheric temperature and wind changes in southern high latitudes in
258 the stratosphere and upper levels of the troposphere, tropospheric ozone increases have made a
259 larger contribution to Southern Ocean interior warming. Between 1955 and 2000, about one-third
260 of the historical OHC increase in the upper 2000 m of the Southern Ocean between 30°S and
261 60°S was induced by atmospheric ozone changes, of which around three-fifths can be attributed
262 to tropospheric ozone increases and the other two-fifths to stratospheric ozone depletion.
263 Tropospheric ozone increases cause Southern Ocean subsurface warming primarily via the
264 deepening of isopycnals. They give rise to an intensification of surface westerly winds over the
265 Southern Ocean such that the wind-driven Ekman pumping brings about isopycnal deepening
266 around 42°S and prompts heave-induced warming there. On the other hand, stratospheric ozone
267 depletion promotes warming in the Southern Ocean mainly through spiciness changes along
268 isopycnals in the upper 500 m. In response to stratospheric ozone depletion, the net surface
269 downward heat flux increases but the freshwater flux decreases over the Southern Ocean
270 between 40°S and 60°S, contributing to the warming and salification spiciness changes in the
271 isopycnal outcropping regions of the Southern Ocean.

272

273 In our study, the finding that stratospheric and tropospheric ozone changes contributed to around
274 one-third of the historical OHC increase during the second half of the twentieth century is
275 consistent with the result from previous studies examining simulations with fixed ozone

276 depleting substances (ODSs)⁴⁰. However, the response to ODSs, inferred by differencing
277 historical simulations with all anthropogenic forcings and simulations with fixed ODSs, omits
278 changes in tropospheric ozone induced by precursor omissions, but includes radiative effects of
279 ODSs themselves, and hence these results are not directly comparable with our study of the
280 direct effects of tropospheric and stratospheric ozone changes. Furthermore, our results suggest
281 that, when the effect of tropospheric ozone increases is considered, the ozone impacts on
282 Southern Ocean interior warming are much larger than previous estimates that only considered
283 stratospheric ozone depletion²⁷. Between 1955 and 2000, tropospheric ozone increases
284 significantly affect the P-E over the Southern Ocean. As such, our results highlight that
285 tropospheric ozone, besides being an air pollutant, is an important contributor to ocean heat
286 uptake and hydrological cycle change in the Southern Hemisphere.

287

288 **Main References**

289 1. Farman, J.C. Gardiner, B.G. & Shanklin J.D. Large losses of total ozone in Antarctica
290 reveal seasonal ClOx/NOx interaction. *Nature*, **315**, 207-210 (1985).

291 2. Rowland, F.S. Chlorofluorocarbons and the depletion of stratospheric ozone. *Am. Sci.*, **77**,
292 36-45 (1989).

293 3. Solomon. S. Progress towards a quantitative understanding of Antarctic ozone
294 depletion. *Nature*, **347**, 347-354 (1990).

295 4. WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion:
296 2018, Global Ozone Research and Monitoring Project – Report No. 58, 588 pp., Geneva,
297 Switzerland (2018).

298 5. Young, P.J., Naik, V., Fiore, A.M., Gaudel, A., Guo, J., Lin, M.Y., Neu, J.L., Parrish, D.D.,
299 Rieder, H.E., Schnell, J.L., Tilmes, S., Wild, O., Zhang, L., Ziemke, J., Brandt, J., Delcloo,
300 A., Doherty, R.M., Geels, C., Hegglin, M.I., Hu, L., Im, U., Kumar, R., Luhar, A., Murray,
301 L., Plummer, D., Rodriguez, J., Saiz-Lopez, A., Schultz, M.G., Woodhouse, M.T. & Zeng,
302 G. Tropospheric Ozone Assessment Report: Assessment of global-scale model performance
303 for global and regional ozone distributions, variability, and trends. *Elementa: Sci. Anthrop.*,
304 **6**, 10 (2018).

305 6. Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J.-F., Shindell, D. T., Voulgarakis, A.,
306 Skeie, R. B., Dalsoren, S. B., Myhre, G., Berntsen, T. K., Folberth, G. A., Rumbold, S. T.,
307 Collins, W. J., MacKenzie, I. A., Doherty, R. M., Zeng, G., van Noije, T. P. C., Strunk, A.,
308 Bergmann, D., Cameron-Smith, P., Plummer, D. A., Strode, S. A., Horowitz, L., Lee, Y. H.,
309 Szopa, S., Sudo, K., Nagashima, T., Josse, B., Cionni, I., Righi, M., Eyring, V., Conley, A.,
310 Bowman, K. W., Wild, O. & Archibald, A. Tropospheric ozone changes, radiative forcing
311 and attribution to emissions in the Atmospheric Chemistry and Climate Model
312 Inter-comparison Project (ACCMIP). *Atmos. Chem. Phys.*, **13**, 3063-3085 (2013).

313 7. Cooper, O.R., Parrish, D.D., Ziemke, J., Balashov, N.V., Cupeiro, M., Galbally, I.E., Gilge,
314 S., Horowitz, L., Jensen, N.R., Lamarque, J.F. & Naik, V. Global distribution and trends of

315 tropospheric ozone: An observation-based review. *Elementa: Sci. Anthrop.*, **2**, 000029
316 (2014).

317 8. Yeung, L.Y., Murray, L.T., Martinerie, P., Witrant, E., Hu, H., Banerjee, A., Orsi, A. &
318 Chappellaz, J. Isotopic constraint on the twentieth-century increase in tropospheric
319 ozone. *Nature*, **570**, 224-227 (2019).

320 9. Thompson, D.W. & Solomon, S. Interpretation of recent Southern Hemisphere climate
321 change. *Science*, **296**, 895-899 (2002).

322 10. Son, S.W., Polvani, L.M., Waugh, D.W., Akiyoshi, H., Garcia, R., Kinnison, D., Pawson, S.,
323 Rozanov, E., Shepherd, T.G. & Shibata, K. The impact of stratospheric ozone recovery on
324 the Southern Hemisphere westerly jet. *Science*, **320**, 1486–1489 (2008).

325 11. Polvani, L.M., Waugh, D.W., Correa, G.J. & Son, S.W. Stratospheric ozone depletion: The
326 main driver of twentieth-century atmospheric circulation changes in the Southern
327 Hemisphere. *J. Clim.*, **24**, 795–812 (2011).

328 12. Eyring, V., Arblaster, J.M., Cionni, I., Sedláček, J., Perlitz, J., Young, P.J., Bekki, S.,
329 Bergmann, D., Cameron-Smith, P., Collins, W.J., Faluvegi, G., Gottschaldt, K.-D.,
330 Horowitz, L.W., Kinnison, D.E., Lamarque, J.-F., Marsh D.R., Saint-Martin, D., Shindell,
331 D.T., Sudo, K., Szopa, S. & Watanabe, S. Long-term ozone changes and associated climate
332 impacts in CMIP5 simulations. *J. Geophys. Res.: Atmos.*, **118**, 5029–5060 (2013).

333 13. Arblaster, J., Meehl, G. & Karoly, D. Future climate change in the Southern Hemisphere:
334 Competing effects of ozone and greenhouse gases. *Geophys. Res. Lett.*, **38**, L02701 (2011).

335 14. McLandress, C., Shepherd, T.G., Scinocca, J.F., Plummer, D.A., Sigmond, M., Jonsson, A.I.
336 & Reader, M.C. Separating the dynamical effects of climate change and ozone depletion.
337 Part II: Southern Hemisphere troposphere. *J. Clim.*, **24**, 1850–1868 (2011).

338 15. Banerjee, A., Fyfe, J.C., Polvani, L.M., Waugh, D. & Chang, K.L. A pause in Southern
339 Hemisphere circulation trends due to the Montreal Protocol. *Nature*, **579**, 544-548 (2020).

340 16. Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D.,
341 Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura,
342 T. & Zhang H. Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013:
343 The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
344 Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.
345 Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley
346 (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY,
347 USA (2013).

348 17. Checa-Garcia, R., Hegglin, M.I., Kinnison, D., Plummer, D.A. & Shine, K.P. Historical
349 tropospheric and stratospheric ozone radiative forcing using the CMIP6 database. *Geophys.
350 Res. Lett.*, **45**, 3264–3273 (2018).

351 18. Gregory, J.M. Vertical heat transports in the ocean and their effect on time-dependent
352 climate change. *Clim. Dyn.*, **16**, 501-515 (2000).

353 19. Frölicher, T.L., Sarmiento, J.L., Paynter, D.J., Dunne, J.P., Krasting, J.P. & Winton, M.
354 Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5
355 models. *J Clim.*, **28**, 862-886 (2015).

356 20. Fyfe, J.C., Saenko, O.A., Zickfeld, K., Eby, M. & Weaver, A.J. The role of
357 poleward-intensifying winds on Southern Ocean warming. *J. Clim.*, **20**, 5391–5400 (2007).

358 21. Liu, W., Lu, J., Xie, S.-P. & Fedorov, A. Southern Ocean heat uptake, redistribution, and
359 storage in a warming climate: The role of meridional overturning circulation. *J. Clim.*, **31**,
360 4727–4743 (2018).

361 22. Waugh, D.W., McC. Hogg, A., Spence, P., England, M.H. & Haine, T.W. Response of
362 Southern Ocean ventilation to changes in midlatitude westerly winds. *J. Clim.*, **32**,
363 5345-5361 (2019).

364 23. Li, Q., England, M.H. & McC. Hogg, A. Transient Response of the Southern Ocean to
365 Idealized Wind and Thermal Forcing across Different Model Resolutions. *J. Clim.*, **34**,
366 5477-5496 (2021).

367 24. Gille, S.T. Warming of the Southern Ocean since the 1950s. *Science*, **295**, 1275–1277
368 (2002).

369 25. Durack, P.J., Gleckler, P.J., Landerer, F.W. & Taylor, K.E. Quantifying underestimates of
370 long-term upper-ocean warming. *Nat. Clim. Change*, **4**, 999–1005 (2014).

371 26. Sigmond, M., Reader, M.C., Fyfe, J.C. & Gillett, N.P. Drivers of past and future Southern
372 Ocean change: Stratospheric ozone versus greenhouse gas impacts. *Geophys. Res. Lett.*, **38**,
373 L12 601 (2011).

374 27. Swart, N.C., Gille, S.T., Fyfe, J.C. & Gillett, N.P. Recent Southern Ocean warming and
375 freshening driven by greenhouse gas emissions and ozone depletion. *Nat. Geosci.*, **11**, 836–
376 841 (2018).

377 28. Li, S., Liu, W., Lyu, K. & Zhang, X. The effects of historical ozone changes on Southern
378 Ocean heat uptake and storage. *Clim. Dyn.*, **57**, 2269–2285 (2021)

379 29. Ring, M. J. & Plumb, R. A. The Response of a Simplified GCM to Axisymmetric Forcings:
380 Applicability of the Fluctuation–Dissipation Theorem. *J. Atmos. Sci.*, **65**, 3880-3898 (2008).

381 30. Bitz, C.M. & Polvani, L.M. Antarctic climate response to stratospheric ozone depletion in a
382 fine resolution ocean climate model. *Geophys. Res. Lett.*, **39**, L20705 (2012).

383 31. Waliser, D., Gleckler, P. J., Ferraro, R., Taylor, K. E., Ames, S., Biard, J., Bosilovich, M.
384 G., Brown, O., Chepfer, H., Cinquini, L., Durack, P. J., Eyring, V., Mathieu, P.-P., Lee, T.,
385 Pinnock, S., Potter, G. L., Rixen, M., Saunders, R., Schulz, J., Thépaut, J.-N., & Tuma, M.:
386 Observations for Model Intercomparison Project (Obs4MIPs): status for CMIP6. *Geosci.
387 Model Dev.*, **13**, 2945–2958 (2020).

388 32. Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J. & Taylor, K.E.
389 Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental
390 design and organization. *Geosci. Model Dev.*, **9**, 1937-1958 (2016).

391 33. Seidel, D.J., Gillett, N.P., Lanzante, J.R., Shine, K.P. & Thorne, P.W. Stratospheric
392 temperature trends: our evolving understanding. *WIREs Clim. Change*, **2**, 592-616 (2011).

393 34. Shi, J.R., Talley, L.D., Xie, S.P., Liu, W. & Gille, S.T. Effects of Buoyancy and Wind
394 Forcing on Southern Ocean Climate Change. *J. Clim.*, **33**, 10003-10020 (2020).

395 35. Bindoff, N.L. & McDougall T.J. Diagnosing climate change and ocean ventilation using
396 hydrographic data. *J. Phys. Oceanogr.*, **24**, 1137–1152 (1994).

397 36. Lyu, K., Zhang, X., Church, J.A & Wu, Q. Processes responsible for the Southern
398 Hemisphere ocean heat uptake and redistribution under anthropogenic warming. *J. Clim.*, **33**,
399 3787–3807 (2020).

400 37. Zhang, L. & Cooke, W. Simulated changes of the Southern Ocean air-sea heat flux
401 feedback in a warmer climate. *Clim. Dyn.*, **56**, 1–16 (2021).

402 38. Sallée, J.B., Shuckburgh, E., Bruneau, N., Meijers, A.J., Bracegirdle, T.J., Wang, Z. & Roy,
403 T. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5
404 models: Historical bias and forcing response. *J. Geophys. Res.: Oceans*, **118**, 1830–1844
405 (2013).

406 39. Cai, W., Cowan, T., Godfrey, S. & Wijffels, S. Simulations of processes associated with the
407 fast warming rate of the southern midlatitude ocean. *J. Clim.*, **23**, 197-206 (2010).

408 40. Solomon, A., Polvani, L.M., Smith, K.L. & Abernathay, R.P. The impact of ozone depleting
409 substances on the circulation, temperature, and salinity of the Southern Ocean: An
410 attribution study with CESM1(WACCM). *Geophys. Res. Lett.*, **42**, 5547–5555 (2015).

411

412 **Acknowledgments**

413 W.L. is supported by the Alfred P. Sloan Foundation as a Research Fellow and by U.S. National
414 Science Foundation (AGS-2053121, OCE 2123422). K.L. and X.Z. are funded by the Centre for
415 Southern Hemisphere Oceans Research (CSHOR), jointly funded by the Qingdao National
416 Laboratory for Marine Science and Technology (QNLM, China) and the Commonwealth
417 Scientific and Industrial Research Organisation (CSIRO, Australia).

418

419 **Author Contributions Statement**

420 W.L. conceived the study, performed the analysis and wrote the original draft of the manuscript.
421 S.L. contributed to the analysis. W.L., M.I.H., R.C.-G., S.L., N.P.G., K.L., X.Z. and N.C.S.
422 contributed to interpreting the results and made substantial improvements to the manuscript.

423

424 **Competing Interests Statement**

425 The authors declare no competing interests.

426

427 **Figure legends**

428 **Figure 1. Changes in Southern Hemisphere westerlies and Southern Ocean temperature in**
429 **response to ozone changes in CMIP5 and CMIP6 simulations.** (top row) Trends of annual
430 and zonal mean zonal winds during 1955-2000 (shading in m/s/decade) of the multi-model
431 means (MMMs) from (a) CMIP5 and (b) CMIP6 models ozone single-forcing experiments. The
432 annual climatologies of zonal mean zonal winds (contour in m/s, with an interval of 5 m/s and
433 the zero contours thickened) of the MMMs from CMIP5 and CMIP6 models preindustrial
434 control runs are superimposed on both panels, respectively. (bottom row) Trends of annual and
435 zonal ocean temperature during 1955-2000 (shading in K/decade) of the MMMs from (c) CMIP5
436 and (d) CMIP6 models ozone single-forcing experiments. Stippling indicates that the change is
437 statistically insignificant at the 95% confidence level of the Mann-Kendall trend significance test
438 (see Methods).

439

440 **Figure 2. Observed and simulated Southern Ocean heat content.** (a) Ocean heat content
441 (OHC) anomalies (relative to the value in 1955) integrated over the upper 2000 m between 30°S
442 and 60°S from ozone single-forcing experiments with four CMIP5 models (MMM, medium blue;
443 inter-model spread, light blue; see Methods) and four CMIP6 models (MMM, magenta;
444 inter-model spread, light magenta), and the ensemble means from CanESM5 stratospheric and
445 tropospheric ozone experiment (blue), stratospheric ozone only experiment (red) as well as the
446 difference between the two (black) indicating the effect of tropospheric ozone change. The
447 inter-model spread is calculated as one standard deviation of the ensemble means of individual
448 models. (b) Same as panel (a) but for OHC anomalies from the IAP observation data (orange)
449 and historical simulations with the four CMIP5 models (MMM, medium purple; inter-model
450 spread, light purple) and CanESM5 (ensemble mean, purple). OHC anomalies from CMIP5

451 ozone single-forcing experiments are also included in the panel. Note that the OHC from the IAP
452 observations is a single realization, which has larger interannual variations than the other OHCs
453 from MMM.

454

455 **Figure 3. Changes in Southern Hemisphere westerlies and Southern Ocean temperature in**
456 **response to ozone changes in CanESM5 simulations.** (top row) Changes in annual and zonal
457 mean zonal winds (shading in m/s) during 1955-2000 (relative to preindustrial control run) for
458 the ensemble means in CanESM5 (a) stratospheric and tropospheric ozone experiment and (b)
459 stratospheric ozone only experiment as well as (c) the difference between the two indicating the
460 effect of tropospheric ozone change. Stippling indicates that the change is statistically
461 insignificant at the 95% confidence level of the Student's t-test (see Methods). (bottom row)
462 Same as the top row but for trends of annual and zonal mean ocean temperature during
463 1955-2000 (shading in K/decade). Stippling indicates that the change is statistically insignificant
464 at the 95% confidence level of the Mann-Kendall trend significance test (see Methods).

465

466 **Figure 4. Temperature and salinity spiciness changes on density surfaces in CanESM5**
467 **ozone experiments.** (left column) Spiciness changes in annual and zonal mean ocean
468 temperature trends during 1955-2000 (shading in K/decade) on density surfaces for the ensemble
469 means in CanESM5 (a) stratospheric and tropospheric ozone experiment and (c) stratospheric
470 ozone only experiment as well as (e) the difference between the two indicating the effect of
471 tropospheric ozone change. (right column) Same as the left column but for spiciness changes in
472 annual and zonal mean ocean salinity trends (shading in 10^{-2} psu/decade).

473

474 **Figure 5. Surface heat flux, freshwater flux and zonal winds changes in CanESM5 ozone**
475 **experiments.** (a) Changes in annual and zonal mean net surface heat fluxes over the Southern
476 Ocean during 1955-2000 (relative to preindustrial control run) for the ensemble means in
477 CanESM5 stratospheric and tropospheric ozone experiment (light blue; significant, blue) and
478 stratospheric ozone only experiment (orange; significant, red) as well as the difference between
479 the two (gray; significant, black) indicating the effect of tropospheric ozone change. Panels (b)
480 and (c) are the same as (a) but for changes in annual and zonal mean net surface freshwater
481 fluxes over the ocean and surface zonal winds. The variable of surface zonal wind is obtained
482 from atmosphere model outputs and land is then masked out for the variable so that winds are on
483 the liquid ocean water surface in most parts of the Southern Ocean but on sea ice surface around
484 or south of 60°S where sea ice exists. Heat and freshwater fluxes are positive downward. In all
485 the panels, changes are tested based on the Student's t-test and denoted statistically significant
486 when exceeding the 95% confidence level (see Methods).

487

488 **Figure 6. Spiciness and heave changes of ocean temperature in CanESM5 ozone**
489 **experiments.** (left column) Spiciness changes in annual and zonal mean ocean temperature
490 trends during 1955-2000 (shading in K/decade) above 2000 m but below the mixed layer (~150
491 m) in the Southern Ocean for the ensemble means in CanESM5 (a) stratospheric and
492 tropospheric ozone experiment and (c) stratospheric ozone only experiment as well as (e) the
493 difference between the two indicating the effect of tropospheric ozone change. (right column)
494 Same as the left column but for heave changes.

495

496 **Methods**

497 **Observations**

498 To evaluate the performance of CanESM5 in simulating the historical warming in the Southern
499 Ocean during the second half of the twentieth century, we use one objectively analyzed ocean
500 dataset, the Institute of Atmospheric Physics (IAP) ocean temperature analysis⁴¹. The IAP ocean
501 temperature analysis has global ocean coverage of 1-degree horizontal resolution on 41 vertical
502 levels from the surface down to 2000 m. It has a monthly resolution from 1940 to the present.
503 This ocean temperature analysis minimizes the errors from ocean sampling by *in situ*
504 observations and allows for accurate estimates of regional and global OHC changes during the
505 past several decades, especially those in the Southern Ocean.

506

507 **CMIP5 and CMIP6 preindustrial control, historical and ozone single-forcing simulations**

508 We use the preindustrial control runs of four CMIP5 (CCSM4, CESM1-CAM5, FGOALS-g2
509 and GISS-E2-H) and four CMIP6 (CanESM5, GISS-E2-1-G, IPSL-CM6A-LR and MIROC6)
510 models. For either CMIP5 or CMIP6, the four-model ensemble has an average transient climate
511 response (TCR)^{42,43,44} that is very close to the mean TCR reported by previous studies^{43,44},
512 suggesting that the models we used can well represent the transient climate sensitivity of the
513 models of either generation. For all the models except CESM1-CAM5 and GISS-E2-1-G, we
514 estimate each model's climate drift in ocean temperatures as a 500-year temperature trend
515 (during the last 500 years) in each model's preindustrial control run. As CESM1-CAM5 and
516 GISS-E2-1-G only have 320 and 345 years of simulation available in the CMIP5 and CMIP6
517 archives, for either model, we estimate its climate drift in ocean temperature as the temperature
518 trend during the last 200 years of the preindustrial control run. For CanESM5 and GISS-E2-1-G,
519 the preindustrial simulations of “p1” and “f2” are adopted to be consistent with their ozone

520 experiments, respectively. We remove climate drifts from the trends of ocean temperatures in the
521 historical and ozone single-forcing simulations with these CMIP5 and CMIP6 models. We also
522 remove the climate drift in ocean salinity for CanESM5 (the salinity trend of its preindustrial
523 control run) when conducting the spiciness and heave decomposition.

524

525 The CMIP5 historical simulations are performed including all the natural and anthropogenic
526 forcings during the historical period. The CMIP5 ozone single-forcing experiments on the other
527 hand are forced by stratospheric and tropospheric ozone only during the historical period while
528 the other forcings are fixed at their preindustrial levels⁴⁵. In the four CMIP5 models, the ozone
529 chemistries are either semi-offline calculated or prescribed¹². In this study, we adopt 11
530 ensemble members of ozone single-forcing (stratospheric and tropospheric ozone) experiments
531 (2 from CCSM4, 3 from CESM1-CAM5, 1 from FGOALS-g2 and 5 from GISS-E2-H) and 21
532 ensemble members of historical simulations with the four CMIP5 models (6 from CCSM4, 4
533 from CESM1-CAM5, 5 from FGOALS-g2 and 6 from GISS-E2-H). Note here, for CCSM4
534 ozone experiment, there are three ensemble members while temperature outputs in 2000-2005
535 are not available for one member in the CMIP5 archives; so only the other two ensemble
536 members are used. For CCSM4 and GISS-E2-H preindustrial and historical simulations,
537 ensembles of “p1” perturbation are adopted to be consistent with the perturbation in the ozone
538 experiments. We calculate the ensemble mean for each model and then calculate the multi-model
539 mean (MMM) based on the ensemble means of the four models to minimize the effects of
540 internal climate variability and model differences. The inter-model difference is estimated as one
541 standard deviation of the ensemble means of the models.

542

543 The ozone single-forcing experiments with CMIP6 models are akin to their historical simulations
544 but forced by stratospheric ozone variations only. For models without coupled chemistry, they
545 prescribe the same stratospheric ozone concentrations as used in their historical simulations⁴⁶.
546 For models with coupled chemistry, their chemistry schemes are turned off. Note here, that while
547 these model configurations neglect to represent potential feedbacks of changing dynamics on the
548 ozone fields in a self-consistent way, we consider such effects to be of second-order relevance.
549 Such an assumption is justified given that the climate response, for example, the response of the
550 polar vortex breakdown to equivalent effective stratospheric chlorine, does not show a
551 systematic difference between models with prescribed and interactive ozone⁴⁷.
552

553 The CMIP6 models prescribe the ensemble mean monthly mean three-dimensional stratospheric
554 ozone concentrations as simulated in their historical runs but have fixed three-dimensional
555 long-term monthly mean tropospheric ozone concentrations from their preindustrial control runs.
556 In particular, grid cells are categorized tropospheric when they have an ozone concentration
557 below 100 ppbv (parts per billion by volume) in the climatology of the preindustrial control run.
558 This definition of the troposphere is consistent throughout the historical period and facilitates
559 inter-model comparisons⁴⁸. Albeit the tropopause height may alter with climate change, several
560 studies^{6,17} suggest that the tropopause choice only has a marginal effect on radiative forcing. To
561 examine the ozone impacts on Southern Ocean interior warming during the second half of the
562 twentieth century, we adopt 28 ensemble members of ozone single-forcing (stratospheric ozone
563 only) experiments with the four CMIP6 models (10 from CanESM5, 5 from GISS-E2-1-G, 10
564 from IPSL-CM6A-LR and 3 from MIROC6) and calculate the MMM and inter-model difference
565 of the CMIP6 models.

566

567 Besides, we compare the transient climate responses (TCRs) between CMIP5 and CMIP6
568 models. For CMIP5 models^{42,43}, the TCRs of CCSM4, CESM1-CAM5, FGOALS-g2 and
569 GISS-E2-H are 1.7 K, 2.33 K, 1.4 K and 1.7 K, so their average TCR is 1.78 K. For CMIP6
570 models⁴⁴, the TCRs of CanESM5, GISS-E2-1-G, IPSL-CM6A-LR and MIROC6 are 2.66 K,
571 1.68 K, 2.32 K and 1.52 K, so their average TCR is 2.05 K. Both averages are very close to the
572 mean TCRs reported by previous studies^{43,44} based on 29 CMIP5 models and 34 CMIP6 models,
573 respectively. This result suggests that, for either CMIP5 or CMIP6, the four-model ensemble
574 well represents the transient climate sensitivity of the models of either generation. The Student's
575 t-test result further shows that the difference of TCR between CMIP5 and CMIP6 model means
576 is insignificant at the 95% confidence level, which suggests that there is no statistically
577 significant difference in transient climate sensitivity between the CMIP5 and CMIP6 models
578 used in the current study.

579

580 **CanESM5 and associated simulations**

581 CanESM5 is a fully coupled climate model participating in CMIP6⁴⁹. The atmosphere
582 component is the Canadian Atmosphere Model (CanAM5), which employs a spectral dynamical
583 core with a T63 truncation (an approximate 2.8-degree horizontal resolution) and a hybrid
584 sigma-pressure coordinate with 49 vertical layers up to about 1 hPa. The land component
585 incorporates the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial
586 Ecosystem Model (CTEM). The ocean component is a modified version of the Nucleus for
587 European Modelling of the Ocean model (NEMO), which includes ocean biogeochemistry
588 represented by the Canadian Model of Ocean Carbon (CMOC) and employs a ~1-degree

589 horizontal resolution and 45 vertical levels. The Louvain-la-Neuve sea-Ice Model version 2
590 (LIM2) also operates within the NEMO framework.

591

592 A 25-member historical simulation labeled as perturbed physics member 1 (“p1”) has been
593 performed with CanESM5 during 1850-2014. Individual ensemble members are initialized at
594 different years from preindustrial control run and perturbed by the conservative remapping
595 wind-stress fields. We use these 25 ensembles of CanESM5 historical simulation as they share
596 the same perturbation scheme (“p1”) with CanESM5 ozone simulations. We compare the trend
597 of zonal mean temperature in the ensemble mean of the CanESM5 historical simulation with that
598 in the IAP data during 1955-2000 and find that the CanESM5 historical simulation is able to well
599 capture the observed warming tongue (>0.03 K/decade) in the upper 1000 m between 40°S and
600 50°S (Extended Data Fig. 8). This result demonstrates the model fidelity in simulating the
601 Southern Ocean temperature response to external climate forcings.

602

603 Besides the 10-ensemble stratospheric ozone only experiment as in line with several other
604 CMIP6 models, CanESM5 provides a 10-ensemble member historical total ozone-only
605 experiment in which the model prescribes the monthly mean three-dimensional ozone
606 concentrations from the historical simulation through the depth of the atmosphere. This total
607 ozone-only experiment is consistent with the CMIP5 ozone single-forcing (stratospheric and
608 tropospheric ozone) experiments. We adopt the simulations of this pair of ozone experiments to
609 isolate and quantify the effects of stratospheric and tropospheric ozone on Southern Ocean
610 interior warming.

611

612 **The spiciness and heave decomposition**

613 The spiciness and heave decomposition follows previous studies^{35,36}. For changes in potential
614 temperature (θ) and salinity (S) at depth z , i.e., $\theta'|_z$ and $S'|_z$, they can be decomposed as:

615
$$\theta'|_z \cong \theta'|_n + N'\theta_z \quad (1)$$

616
$$S'|_z \cong S'|_n + N'S_z \quad (2)$$

617 where $\theta'|_n$ and $S'|_n$ denote the spiciness changes of temperature and salinity that are
618 density-compensating along neutral density surfaces; $N'\theta_z$ and $N'S_z$ denote the heave changes
619 of temperature and salinity that are related to the neutral density surface height change N'
620 (positive downward).

622 **The OHC calculation**

623 At each location, the OHC within a layer between the depths z_1 and z_2 is calculated as

624
$$OHC = \rho_0 C_p \int_{z_1}^{z_2} \theta dz \quad (3)$$

625 where ρ_0 denotes sea water density and C_p denotes the specific heat capacity of sea water.

627 **The statistical significance test**

628 We examine the statistical significance of climate response to ozone forcing in CanESM5 based
629 on the Student's t-test. We divide 500 years of CanESM5 preindustrial simulation into 10
630 truncations and treat each truncation as one ensemble member. Hence we construct 10
631 preindustrial ensembles with non-overlapping 50-year periods. We apply the Student's t-test to
632 the three pairs of ensemble simulations—total-ozone versus preindustrial, stratospheric-ozone
633 versus preindustrial and total-ozone versus stratospheric-ozone—to estimate the statistical
634 significance of total, stratospheric and tropospheric ozone effects. Besides, we examine the

635 statistical significances of trends of CMIP5 and CMIP6 MMMs and CanESM5 ensemble means
636 based on the Mann-Kendall trend significance test.

637

638 **Data availability**

639 All the raw CMIP5 model simulation data are publically available at

640 <https://esgf-node.llnl.gov/search/cmip5/>

641 All the raw CMIP6 model simulation data are publically available at

642 <https://esgf-node.llnl.gov/projects/cmip6/>

643 The IAP observation data are publically available at

644 <http://www.ocean.iap.ac.cn/>

645

646 **Code availability**

647 Figures are generated via the NCAR Command Language (NCL, Version 6.5.0) [Software].

648 (2018). Boulder, Colorado: UCAR/NCAR/CISL/TDD. <http://dx.doi.org/10.5065/D6WD3XH5>

649 The codes and processed variables to generate Figures 1-6 are available at Zenodo⁵⁰.

650

651 **Methods References**

652 41. Cheng, L., Trenberth, K.E., Fasullo, J., Boyer, T., Abraham, J. & Zhu, J. Improved
653 estimates of ocean heat content from 1960 to 2015. *Sci. Adv.*, **3**, e1601545 (2017).

654 42. Meehl, G.A., Washington, W.M., Arblaster, J.M., Hu, A., Teng, H., Kay, J.E., Gettelman,
655 A., Lawrence, D.M., Sanderson, B.M. & Strand, W.G. Climate change projections in
656 CESM1 (CAM5) compared to CCSM4. *J. Clim.*, **26**, 6287-6308 (2013).

657 43. Meehl, G.A., Senior, C.A., Eyring, V., Flato, G., Lamarque, J.F., Stouffer, R.J., Taylor, K.E.
658 & Schlund, M. Context for interpreting equilibrium climate sensitivity and transient climate
659 response from the CMIP6 Earth system models. *Sci. Adv.*, **6**, eaba1981 (2020).

660 44. Nijssse, F.J., Cox, P.M. & Williamson, M.S. Emergent constraints on transient climate
661 response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in
662 CMIP5 and CMIP6 models. *Earth Syst. Dyn.*, **11**, 737-750 (2020).

663 45. Xia, Y., Huang, Y. & Hu, Y. On the climate impacts of upper tropospheric and lower
664 stratospheric ozone. *J. Geophys. Res.: Atmos.*, **123**, 730–739 (2018).

665 46. Gillett, N.P., Shiogama, H., Funke, B., Hegerl, G., Knutti, R., Matthes, K., Santer, B.D.,
666 Stone, D. & Tebaldi, C. The Detection and Attribution Model Intercomparison Project
667 (DAMIP v1.0) contribution to CMIP6. *Geosci. Model Dev.*, **9**, 3685–3697 (2016).

668 47. Mindlin, J., Shepherd, T. G., Vera, C. & Osman, M. Combined effects of global warming
669 and ozone depletion recovery on Southern Hemisphere atmospheric circulation and regional
670 precipitation. *Geophys. Res. Lett.*, **48**, e2021GL092568 (2021).

671 48. Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S.,
672 Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins,
673 W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B.,
674 Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T.,
675 Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S. & Zeng, G. Pre-industrial to
676 end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and
677 Climate Model Intercomparison Project (ACCMIP). *Atmos. Chem. Phys.*, **13**, 2063–2090
678 (2013).

679 49. Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey,
680 J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A.,
681 Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D. &
682 Winter, B. The Canadian Earth System Model version 5 (CanESM5.0.3). *Geosci. Model
683 Dev.*, **12**, 4823–4873 (2019).

684 50. Liu, W., Hegglin, M., Checa-Garcia, R., Li, S., Gillett, N., Lyu, K., Zhang, X., & Swart, N.
685 Stratospheric ozone depletion and tropospheric ozone increases drive Southern Ocean
686 interior warming [Data set]. Zenodo. <https://doi.org/10.5281/zenodo.6003088> (2022).