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As the basis of oceanic food webs and a key component of the biological carbon pump,
planktonic organisms play major roles in the oceans. Their study benefited from the
development of in situ imaging instruments, which provide higher spatio-temporal
resolution than previous tools. But these instruments collect huge quantities of images, the
vast majority of which are of marine snow particles or imaging artifacts. Among them, the In
Situ Ichthyoplankton Imaging System (ISIIS) samples the largest water volumes (> 100 Ls™)
and thus produces particularly large datasets. To extract manageable amounts of ecological
information from in situ images, we propose to focus on planktonic organisms early in the data
processing pipeline: at the segmentation stage. We compared three segmentation methods,
particularty for smaller targets, in which plankton represents less than 1% of the objects: (i) a
fraditional thresholding over the background, (i) an object detector based on maximally stable
extremal regions (MSER), and (jii) a content-aware object detector, based on a Convolutional
Neural Network (CNN). These methods were assessed on a subset of ISIIS data collected in
the Mediterranean Sea, from which a ground truth dataset of > 3,000 manually delineated
organisms is extracted. The naive thresholding method captured 97.3% of those but
produced ~340,000 segments, 99.1% of which were therefore not plankton (i.e. recall =
97.3%, precision = 0.9%). Combining thresholding with a CNN missed a few more planktonic
organisms (recall = 91.8%) but the number of segments decreased 18-fold (precision
increased to 16.3%). The MSER detector produced four times fewer segments than
thresholding (precision = 3.5%), missed more organisms (recall = 85.4%), but was
considerably faster. Because naive thresholding produces ~525,000 objects from 1 minute
of ISIIS deployment, the more advanced segmentation methods significantly improve ISIIS
data handling and ease the subsequent taxonomic classification of segmented objects.
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The cost in terms of recall is limited, particularly for the CNN object detector. These
approaches are now standard in computer vision and could be applicable to other
plankton imaging devices, the majority of which pose a data management problem.

Keywords: plankton images, ISIIS, image processing, image segmentation, object detection, convolutional neural

network, computer vision

1 INTRODUCTION

1.1. Plankton Imaging Enables

Fine Scale Studies

Planktonic organisms play crucial roles in the ocean:
photosynthetic phytoplankton is responsible for about half of
the primary production of the biosphere (Field et al., 1998) and is
the basis of oceanic food webs (Falkowski, 2012); zooplankton
acts as a trophic link between phytoplankton and higher trophic
levels (Ware and Thomson, 2005; Frederiksen et al., 2006) and is
a key component of the biological carbon pump, sequestering
organic carbon at depth (Longhurst and Glen Harrison, 1989).
Plankton comprises organisms from very diverse taxonomic
groups (de Vargas et al, 2015) that span from micrometer
scale picoplankton to meter-long Cnidarians (Lombard et al.,
2019). Given this very wide size range, plankton sampling
instruments cannot tackle all organisms at once and typically
target a reduced size range instead (Lombard et al.,, 2019).

The power law underlying plankton or marine snow particle
size spectra means that concentration drastically increases when
size decreases: the relationship is linear in log-log form (Sheldon
and Parsons, 1967; Sheldon et al,, 1972; Stemmann and Boss,
2012; Lombard et al,, 2019). The larger organisms, which each
contribute significantly to biomass, are rare but easy to detect.
Yet, it is critical to also focus on the smaller objects, to avoid
artificially cutting the effective size range of any instrument, thus
potentially discarding the most numerous objects in the sample
(Lombard et al, 2019). Moreover, as marine snow particles
cannot grow past a few centimeters because of disaggregation
(Alldredge and Silver, 1988; Alldredge et al., 1990), the ratio of
particles to plankton also decreases with increasing size.
Therefore, while targeting small planktonic organisms is
desirable, it comes with the difficulty of separating them from
the largely dominant particles within the same size range.

While large scale plankton distribution patterns are resolved
to a certain extent (Rutherford et al., 1999; Rombouts et al., 2009;
Tittensor et al., 2010; Ibarbalz et al., 2019; Brandao et al., 2021),
much remains to be discovered regarding fine scale distribution,
in particular for zooplankton. For phytoplankton, submesoscale
dynamics are known to influence their distribution and
concentration: vertical currents may affect nutrient and cell
distribution relative to the euphotic zone, thus affecting growth
rate, horizontal currents can stir patches into filaments. These
changes are expected to propagate to higher trophic levels
(zooplankton, fish, etc.) (Levy et al., 2018). Indeed, the trophic
and reproductive interactions of zooplankton occur at the scale
of organisms (um to cm). Therefore, a local concentration of

phytoplankton, in a thin layer for example, has more immediate
consequences on the survival and development of zooplanktonic
grazers than the average chlorophyll a concentration in the
region. Thus, studying zooplankton distribution at fine scales,
in relation with submesoscale dynamics, becomes relevant to
understand the processes driving its distribution at
regional scale.

Our lack of knowledge regarding the fine scale distribution of
plankton partly stems from the difficulty to adequately sample it
at such a small scale. Traditional plankton collection methods
such as pumps, nets, and bottles typically integrate organisms
over some vertical and/or horizontal distance and make it
difficult to associate organism concentrations with their
immediate environmental context (Remsen et al, 2004;
Benfield et al., 2007; Lombard et al, 2019). Moreover, most
damage fragile organisms and fail to sample some of them
properly (Remsen et al., 2004).

As an alternative, in situ pelagic imaging instruments such as
the Imaging FlowCytoBot (IFCB) (Olson and Sosik, 2007), the In
Situ Ichthyoplankton Imaging System (ISIIS) (Cowen and
Guigand, 2008), the Underwater Vision Profiler (UVP)
(Picheral et al,, 2010), and the Scripps Plankton Camera (SPC)
(Orenstein et al., 2020) (see Lombard et al. (2019) for a detailed
list) allow studying plankton distribution at all scales: from the
fine ones they resolve in each sample to long time scales and
global spatial coverage through the accumulation of individual
samples (Stemmann et al., 2008; Forest et al., 2012; Robinson
et al,, 2021; Irisson et al, 2022). As a non-destructive sampling
approach, these instruments allow investigating fragile
planktonic objects, such as Rhizaria (Dennett et al., 2002; Biard
et al,, 2016; Biard and Ohman, 2020), Cnidaria and Ctenophora
(Luo et al., 2014), or marine snow aggregates (Guidi et al., 2008;
Guidi et al, 2015). Still, in situ imaging systems typically sample
smaller volumes than plankton nets (Lombard et al., 2019),
limiting their quantitative application to abundant taxa. To
quantify rarer planktonic groups, sampling effort has to be
increased to improve the chances of detection. For example,
the ISIIS was initially developed with a very high sampling
volume to study the very sparsely distributed fish larvae.
Because of this, all in situ imaging instruments collect vast
amounts of data, although the acquisition rate varies from one
instrument to the next. ISIIS, for instance, collects up to 11
million objects per hour of sampling, while IFCB collects images
at a rate of ~10,000 per hour (Sosik and Olson, 2007). Thus all
these systems need efficient and automated data processing
approaches, albeit with different stringency.

In addition, high resolution sampling is required to tackle
questions that used to be out of reach, such as fine-scale plankton
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distribution in relation with environmental conditions
(McClatchie et al., 2012; Greer et al, 2015; Brisefio-Avena
et al, 2020), plankton patch structure (Robinson et al,, 2021),
interactions between zooplankton and phytoplankton fine layers
(Greer et al., 2013; Greer et al., 2020a; Schmid and Fortiers, 2019)
or co-occurrences revealing biological interactions such as
predation (Greer et al,, 2014; Schmid et al,, 2020; Swieca et al.,
2020; Greer et al., 2021).

1.2. Objects Need to be Extracted
Automatically From Pelagic Images

The first data processing step is separating relevant organisms
and particles from the background in raw images, ie. image
segmentation. Various segmentation methods have been applied
for images collected by commonly used in situ imaging devices:
the UVP relies on a fixed gray level threshold (Picheral et al.,
2010), the IFCB uses an algorithm based on edge detection
(Olson and Sosik, 2007), the SPC (Orenstein et al., 2020) runs
a canny edge detector to initialize the segmentation of its dark-
field microscopy images. To segment images generated by the
Zooglider, a glider equipped with a shadowgraph, Ohman et al.
(2019) also applied a canny edge detector. Finally, to segment
shadowgrams from the ISIIS, Tsechpenakis et al. (2007) and Iyer,
(2012) used statistical modeling of the background of the image
and identified anomalies over this background as objects
of interest.

The ISIIS is deployed in an undulating manner, between the
surface and a given depth (Cowen and Guigand, 2008). It targets
organisms in the range 250 pm - 10 cm. Together with grayscale
images, it continually records environmental variables
(temperature, salinity, fluorescence, dissolved oxygen and
irradiance). The use of shadowgraphy combined with a specific
lens and lighting system provide a large depth of field and allow a
high sampling rate (28 kHz line scan camera). Therefore, the
ISIIS is capable of sampling volumes of waters larger than all
other in situ imaging instruments [> 100 L s'; Lombard et al.
(2019)]. This optical design also ensures that the organism’s size
is not affected by its position within the depth of field.
Shadowgraphs are also able to detect heterogeneities in the
medium that is traversed by the light, which makes them
excellent to image transparent organisms such as plankton,
gelatinous organisms in particular. But it also makes them
sensitive to other sources of heterogeneity, such as suspended
particles or water density changes. ISIIS may thus generate noisy
images when deployed in turbid waters (Luo et al., 2018; Greer
et al, 2018) or across strong density gradients (Figures 1D-F)
(Faillettaz et al., 2016). Furthermore, the use of a line scan
camera means that marks or dust on the lens cause continuous
streaks in the generated images (the line continuously scans the
same speckle; Figures 1A, D). Those can be partially removed by
applying a flat-fielding procedure, whereby the average gray
value computed per row over a few thousand scanned lines is
subtracted from the incoming new values (Figures 1B, E)
(Faillettaz et al., 2016; Luo et al., 2018; Greer et al., 2018).

The very characteristics that give the ISIIS its qualities as a
plankton imager (large sampling volume, high speed, ability to

detect transparent objects) also mean that it creates a huge
amount of images, the background of which is often non-
uniform. This makes segmentation of planktonic objects from
raw images far from trivial. To perform this segmentation, the
processing pipeline was initially based on anomalies from a
gaussian mixture model of the background gray levels without
flat-fielding (Tsechpenakis et al., 2007) and later on k-harmonic
means clustering on flat-fielded images (Iyer, 2012). This latter
method was used in several studies (Luo et al., 2018; Greer et al.,
2018; Schmid et al., 2020) and the full pipeline was open sourced
in order to make plankton imaging more accessible and lower
entry barriers (Schmid et al., 2021). Other studies relied on flat-
fielding followed by segmentation above a fixed gray level
(Faillettaz et al., 2016; Greer et al,, 2020a; Greer et al,, 2020b).
However, most of these studies focused on the larger end of size
range targeted by the ISIIS, by considering only objects above a
given size threshold (Table 1), often because those were desirable
targets, not noise. Similarly, for their canny edge detector applied
to ZooGlider images, Ohman et al. (2019) considered objects
larger than 100 pixels (Equivalent Spherical Diameter, or ESD of
0.45 mm). However, the algorithm failed when too many
particles were present and had to fall back to a less sensitive
(i.e. higher) gray threshold. As shown above, both planktonic
organisms and particles are much more abundant towards the
smaller end of the spectrum, meaning that such methods had to
ignore a non-negligible part of planktonic organisms and marine
snow in order to discard the background noise.

1.3. Marine Snow and Imaging Artifacts
Dominate In Situ Images and Complicate
Plankton Detection
Marine snow particles are much more abundant than plankton in
the ocean (Lombard et al., 2019), which means that the vast
majority (often > 85%) of images captured by in situ plankton
imaging instruments are actually of various marine snow items
(fecal pellets, large aggregates, small organism pieces, etc;
(Stemmann et al., 2000; Picheral et al., 2010; Stemmann and
Boss, 2012)). Therefore, for plankton ecology studies, the
bottleneck has often become the processing and filtering of
collected images (Irisson et al., 2022). To reduce the proportion
of detrital particles and focus on photosynthetic plankton, the
IFCB and the FlowCam can use fluorescence image triggering,
hence imaging only items that contain chlorophyll (Sieracki et al.,
1998; Sosik and Olson, 2007). This is not possible over the large
volumes and for the non-photosynthetic organisms that ISIIS or
other zooplankton imagers target. Furthermore, density anomalies
lead to the characteristically noisy shadowgrams presented above
(Figures 1D-F), from which numerous artifactual “particles” are
detected by the usual image processing pipelines. Those artifacts or
noise, together with marine snow, can constitute 99% of the
objects detected. Such an extreme class imbalance makes the
automatic classification of these objects through machine
learning a very arduous task (Lee et al, 2016).

Even for a trained human operator, the differentiation of
some planktonic classes from the proteiform marine snow
aggregates and noise, as well as distinction between marine
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FIGURE 1 | ISIIS frames in clean waters (A-C) and across a density change (D—F). The signature of this density change is similar to what a shadowgraph would image in air, above a buming candle. The panels
are: (A, D) raw output; (B, E) after flat-fielding; (C, F) after confrasting. The camera scans vertically and the image is acquired from the right edge, as ISIIS moves through the water. In panel (A), the scale bar
represents 1 cm and is applicable to other panels.
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TABLE 1 | Threshold in object area (number of pixels considered as part of the
object) in studies exploiting ISIS data.

Reference Area threshold (px) ESD (mm)
Schmid et al. (2020) 7 0.2
Luo et al. (2018) 50 0.53
Faillettaz et al. (2016) 250 092
Greet er al. (2020b) 400 0.95
Greer et al. (2020a) 900 1.4
Greer et al. (2021) 2000 3.0
Greer et al. (2018) 5000 5.4

®The conversion factor from area (px) to Equivalent Spherical Diameter (ESD, mm)
depends on the ISIS configuration.

snow and noise themselves, can be very challenging. Towards the
smaller end of the size spectrum it becomes virtually impossible.
Indeed, once these small objects are segmented out, the low pixel
count combined with the lack of information regarding their
context in the image makes their identification very difficult, for
humans and computers alike (Parikh et al., 2012). Hence, one
solution could be to focus solely on planktonic organisms from
the segmentation step already and try to avoid segmenting non-
planktonic objects, thanks to their broader context in the image,
still accessible at this step. This should result in a much more
manageable amount of data to classify and a lesser class
imbalance. This approach requires the development of specific
and “intelligent” segmentation methods that target specific
objects only. The purpose of this work was (i) to develop such
“intelligent” segmentation approaches and (ii) to compare them
with classic methods to test whether they significantly improve
the data processing pipeline. With this in mind, we benchmarked
three segmentation methods against a ground-truth human
segmentation using a dataset collected by the ISIIS in the
North-Western Mediterranean Sea.

2 MATERIALS AND METHODS

2.1. Image Segmentation Methods

2.1.1. Threshold-Based Segmentation

The simplest segmentation method is to threshold pixels below a
given gray level: adjoining pixels darker than the threshold are
considered as segments. This threshold can be a value fixed a priori
or dynamically computed from the properties of each image. For
example, the classic method of Otsu (1979) is to examine the
histogram of intensity levels and define the threshold so that it
separates pixels into two relatively homogeneous intensity classes.
Here either a fixed threshold was set or the threshold was defined
based on a quantile of the histogram of gray levels. This quantile-
based approach resulted in a darker segmentation threshold on
noisy images, such as those captured around the strong density
gradient induced by the thermocline (Figures 1D-F), which were
richer in dark pixels. It was well adapted to limit the number of
artifact segments generated from these images. Moreover, the first
quartile is barely affected by the presence of relatively large dark
objects such as jellyfish tentacles, making the segmentation
threshold robust to these natural occurrences. After thresholding,
segments defined by connected components were dilated by 3 pixels

and eroded by 2 pixels to fill potential holes in transparent
organisms and reconnect thin appendages to the organisms
bodies. Finally, only segments larger than 50 pixels (400 ym in
ESD) were retained, because it was the minimum size at which
taxonomists could recognise organisms.

2.1.2. Threshold-MSER (T-MSER) Segmentation

This approach uses a signal-to-noise ratio (SNR) cutoff,
calculated on images after flat-fielding, to determine whether
the frame should be segmented using a Maximally Stable
Extremal Region approach (MSER, Matas et al. (2004)), or if
areas of high noise should first be filtered out using a naive
thresholding approach before applying MSER. MSER was
successfully applied to the segmentation of ZOOVIS imagery
(Bietal, 2015; Cheng et al., 2019). SNR can be used to determine
the relative noise level in an image and was computed as

SNR = 20 x log (%)

where S is the signal, defined as the mean of the input data, and N is
the noise, computed as the standard deviation around that mean.
Here, flat-fielded frames with low SNR (i.e. high noise) were
binarized using a fixed thresholding in order to extract
continuous regions of interest with darker pixel values. The
regions identified in this way were then extracted using a mask
and subsequently re-segmented using the MSER approach. MSER
detects stable connected regions in images, which are areas that stay
nearly unchanged over a wide range of grayscale thresholds. MSER
can be tuned to allow for varying degrees of stable region area and
the range of pixel gray values tested in the dynamic thresholding.
High SNR frames are directly segmented using the MSER approach
(Figure 2 skip from step B to step D). Going from a pure MSER
approach to the threshold+MSER (T-MSER) on low SNR (< 50)
frames increased the recall on the test data from 65% to 85%, while
also substantially increasing precision. This SNR and MSER method
is written in C++17. The OpenCV and OpenMP Python packages
were used for general computer vision and parallel processing for
high processing efficiency, respectively.

&)

2.1.3. Threshold-CNN (T-CNN) Segmentation

Another solution is to use Convolutional Neural Networks to either
detect (ie. define bounding boxes around) or segment (i.e. define a
pixel mask of) objects of interest. Such approaches open the
possibility to focus the detection on some types of objects (here,
plankton) and ignore others (here, marine snow and artifacts); this
is also called content-aware object detection or segmentation.
However, CNNs tend to underperform at detecting objects across
a large size range, especially for objects starting from a few dozen
pixels (Cai et al, 2016). They work best when the target objects are
of the same size as the receptive field of the model (Eggert et al,
2016). Thus, the development of detectors implementing receptive
fields of various sizes constituted a major improvement, as they
allowed detecting objects across a larger size range (Cai et al,, 2016).
In particular, we chose the Detectron2 library (Wu et al, 2019)
developed by Facebook AI Research, which provides state-of-the-art
object detection and segmentation algorithms, as well as pre-trained
models for such tasks. Detectron2 includes a feature pyramid
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network (Lin et al,, 2017) backbone that extracts feature maps across
multiple scales to enable the detection of objects of various sizes,
which was critical in our application to plankton images. Yet, this
was not enough to cover the very large size range of organisms
imaged by the ISIIS (from 50 to hundreds of thousands of pixels
in area).

As explained above, marine snow particles and density-
induced imaging artifacts are especially dominant compared to
plankton in the smaller size classes. Therefore, our CNN pipeline
was set up to segment the smaller objects, from 50 to 400 pixels in
area, where the ability to specifically segment plankton makes the
most difference. Above 400 pixels, the quantile-based threshold
approach, with dilation and erosion, was used because it was
simple and did not generate too many non-plankton segments.

In Detectron2, we used Mask R-CNN (He et al., 2017), which
allows simultaneous bounding box detection and instance
segmentation. The model was initialized with weights trained
on the COCO reference dataset’ but, for it to detect planktonic

"https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-
InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml/

FIGURE 2 | Example MSER segmentation of a noisy raw frame (with low SNR). (A) Raw output; (B) after flat-fielding; (C) regions of interest created through naive
thresholding; (D) regions of interest and their bounding boxes created by applying MSER to (C). In a low SNR frame such as the one above the processing steps
are (A-D), while in a high SNR frame the processing steps are (A, B, D). In panel (A), the scale bar represents 1 cm and is applicable to other panels.

organisms on ISIIS images, it has to be fine-tuned on a dataset of
ground truth bounding boxes and masks of such organisms. This
dataset was generated by manually delineating all recognizable
planktonic organisms in a set of ISIIS images, using a digital pen
on a tablet computer. This produced 23,197 ground truth masks,
from which bounding boxes were computed. Among those,
10,878 object were in the 50-400 pixels area range and usable.
A 524x524 pixels crop was generated around every ground truth
object (pushing the crop back inside the image when it crossed
the edges). The choice of this particular size is a tradeoff between
the maximum size of planktonic organisms that can be detected
and the memory available on the graphics card. Moreover, it is in
the line with common input sizes for segmentation models and
was convenient to generate a tiling on ISIIS images. Several
objects could be present in a crop. The crops were then split into
70% for training, 15% for validation, and 15% for testing. This
split was stratified by the average gray level of the crop to ensure
that both noisy (darker) and clean (lighter) images were present
in each split, so that the model was presented with all kinds of
images during training. Indeed, a model trained on clean images
only would have performed poorly on noisy ones.
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Detectron2 can perform multiclass object detection or
segmentation, meaning that objects are both detected/segmented
and classified in a single step. However, it requires sufficient
examples in each class for training This condition could not be
satisfied here, given how time-consuming it was to obtain pixel-
level masks for every object and because plankton samples are
usually dominated by a few abundant taxa while most others are
very rare (Ser-Giacomi et al., 2018). Since the focus of this study is
on segmentation, we decided to perform one-class object detection/
segmentation, thus training the model to recognize planktonic
organisms of any taxon. This implies that classification needs to be
done after segmentation. Once an object is detected, this sequential,
rather than concurrent, approach does not affect the result of the
classification, since the same information is available to the
subsequent classifier as to the concurrent one. Furthermore,
focusing on segmentation only is also more comparable with the
two other methods described above.

The model was trained for 30,000 iterations, and evaluation
was run on the validation set every 1,000 iterations to ensure that
the validation loss reached a plateau. The learning rate was set to
0.0005 initially and decreased 10 fold after 10,000 and 20,000
iterations. To increase the generality of the detector, data
augmentation was used in the form of random resizing of the
524 pixels crops (to 640, 672, 704, 736, 768 or 800 pixels) and
random horizontal flipping. The test set was used to assess
theoretical performance after training and guide the choice of
model settings; the actual performance was assessed on a
separate, real-world dataset (presented below).

To apply the trained model to new images, a tiling of 524x524
pixels crops (the size used during model training) was generated
over each input image, resulting in an overlap of 143 pixels
vertically and 135 pixels horizontally. The overlap ensured that
detectable objects spread over two crops were not missed. Crops
were upscaled to 900x900 pixels to improve detection of small
objects (Eggert et al., 2016). For each crop, the model predicted
the bounding boxes of objects and their masks. We only
considered the boxes, resolved overlaps in detections caused by
overlapping crops, and submitted each box to exactly the same
quantile-based thresholding as what was used above 400 pixels.
This was preferred over using Detectron’s mask proposals
because their outline was not as detailed or replicable as the
threshold-based ones. Furthermore, it also ensured that
morphometric measurements performed on the masks (area in
particular) were exactly comparable between the objects that
went through the CNN and those above 400 pixels that were
defined by simple thresholding. For each bounding box proposal,
the model computes a confidence score. We retained all boxes
with a score over 0.1, which is a quite low confidence threshold
designed to increase the chance of detecting all objects of interest
(ie. favor recall) at the cost of some false positive detections (i.e.
lower precision). Those false positives (i.e. segmented objects
that are not plankton) will have the opportunity to be eliminated
later, when segments are classified taxonomically.

The CNN was coded in Python with PyTorch, the original
implementation library for Detectron2. Training was conducted
on an Nvidia Quadro RTX 8000 GPU and the code is available at

https://github.com/ThelmaPana/Detectron2_plankton_training.
The combined CNN and threshold segmentation pipeline is
implemented in https://github.com/jiho/apeep and this was run
in several Linux-based environments, using various
Nvidia GPUs.

2.2. Application to ISIIS Data from
VISUFRONT Campaign

We evaluated these segmentation methods on ISIIS data from
the VISUFRONT campaign, which sampled the Ligurian current
front (North Western Mediterranean Sea), in the 0-100 m depth
range, during summer 2013. Towed at a speed of 2 m s (4kts)
and set for a 28 kHz scanning rate, the ISIIS sampled 108 L per
second. The 2048 pixels high continuous image strip created by
the line scan camera moving in the water was cut in 2048x2048
pixels frames for storage. The ISIIS captured marked volutes
caused by water density variations (Figures 1D-F), mostly
driven by temperature changes around the thermocline,
previously described by Faillettaz et al. (2016).

The continuous image strip was reassembled from the stored
2048x2048 pixels frames. Each line of pixels was flat-fielded by
subtracting the row-wise average over a 8000 pixels moving
window, hence removing streaks (Figures 1A, B, D, E). The
cleaned image was cut into 10,240 pixels long images (5 frames,
instead of 1) to reduce the probability of cutting objects across
images while keeping the memory footprint of each image
manageable. Finally, the image was contrasted by stretching
the intensity range between percentiles 0 and 40 (Figures 1B,
C, E, F). These values were chosen by iteration, through
discussions with the taxonomist in charge of delineating
planktonic organisms from raw images, as to achieve the
highest distinguishability for those.

A ground truth dataset was generated by manually
delineating all planktonic organisms (using a digital pen and
tablet) in 106 10,240x2048 pixels images, regularly spread across
a full transect, hence representative of different environments.
This resulted in 3,356 objects that were later taxonomically
sorted into 24 taxa (Figure 3), in the Ecotaxa web application
(Picheral et al.,, 2017). This dataset was completely independent
from the one that was used to train, validate and test the
Detectron2 model. Some images were checked by two
independent operators to check their consistency; when this
was done, no differences were found.

Segments from each of the three automated methods were
matched with ground truth segments of the same image. A
bounding box intersection over union (IoU) score higher than
10% was considered as a match between segments. This
threshold was set after manually inspecting a set of potential
matches with various IoU values and was found to be the best
value to discriminate between true and false matches. In case a
ground truth segment matched multiple automatic segments,
only one match was retained, to avoid inflating artificially the
number of matches from the automated pipelines. In case an
automatic segment matched multiple ground truth segments, the
match was not counted either because it corresponded to a large
segment that encompassed several organisms likely belonging to
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different taxa, which would make it unexploitable ecologically.
Both choices made the match metrics conservative.

From these matches, global precision and recall were
computed to summarize performance. Precision was computed
as the proportion of automatic segments that matched ground
truth segments. A 100% precision means that the algorithm only
extracted ground truth segments. Recall was computed as the
proportion of ground truth segments detected by the automated
segmentation algorithm. A 100% recall means the algorithm did
segment every manually delineated organism. Precision and
recall scores were also computed per size class, where size was
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FIGURE 3 | BExamples of plankionic organisms imaged by the ISIIS. (A) Acantharea; [B) Actinopterygi; (C) Annelida; (D) Appendicularia; (E) Appendicularia (house only);

(F) Appendicularia (body only); (G) Aulacanthidae; (H) Bacilariophyceae; (I) Chastognatha; (J) solitary Collodaria; (K) Hydrozoa; (L) Cnidaria (other than Hydrozoa); (M)
Crustacea (other than Harpacticoida, Copepoda and Eumalacostraca); (N) Harpactiooida; (0) Copepoda (other than Harpacticoida); (P) Eumalacostraca; (@) Echinodermata
(pluteus larva); (R) colonial Collodaria (S) Ctenophora; (T) Ddliclida; (U) Mollusca; (V) Pyrocystis; (W) Rhizaria (other than Acantharea; Aulacanthidae and Collodaria); (X)
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defined as the length of the diagonal of the bounding box; size
classes were defined as intervals of 10 pixels, from 10 to 100
pixels, plus a class > 100 pixels. These size classes do not aim at
reflecting any ecological groups but were designed to split
segments into roughly balanced classes. Recall was also
computed for each taxonomic group defined in the ground
truth segments. Precision does not make sense for taxonomic
groups since it would only reflect the performance of the
classification, not of the segmentation. The particle matching
and metric computation code is available at https://github.com/
ThelmaPana/segmentation_benchmark.
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3 RESULTS

3.1. Number and Size Distribution

of Segments

On the 106 images of the segmentation benchmark dataset, 3,356
organisms were manually segmented, whereas the automated
pipelines generated many more segments, especially the
threshold-based one (Table 2).

The normalized abundance size spectra (NASS) (Figure 4)
display the expected linear decrease of abundance with size in
log-log scale. For the ground truth segments, the curve dips
below this linear relationship for objects of 25 pixels in diagonal
and smaller (dotted vertical line on Figure 4). Since this dataset
specifically targeted recognisable planktonic organisms, this dip
highlights that not all organisms below this size could be detected
by a human taxonomist upon detailed examination of the images
(Lombard et al., 2019). The discontinuity is towards smaller
diagonal sizes in the automated pipelines, but likely because
many of the small segments are of non-plankton objects.

All automated pipelines have NASS curves above the ground
truth, which highlights the fact that they segmented non-

plankton objects. This was true over the entire size range but
was particularly pronounced for the smaller size classes. Above
10 mm/200 pixels in diagonal, the T-MSER pipeline produced a
number of segments comparable to the ground truth, which is
satisfying, although it does not guarantee that those are of the
same objects (it might have missed some plankton and
segmented marine snow/artifacts in the same size range; see
precision and recall performances for the largest size class in
Figure 5 below). From the maximal size down to ~70 pixels in
diagonal, the T and T-CNN pipelines produced the same
segments. This coincides with the critical size of 400 pixels in
area at which the segmentation method switched from
threshold-based to content-aware. Indeed, the conversion from
area to bounding box diagonal is not linear because it depends on
the shape of the objects. For an object of 400 pixels in area, the
bounding box diagonal is between 30 and 70 pixels. This shows
that the T-CNN pipeline was effective in reducing the number of
segments compared to naive thresholding, because the NASS
diverges below that size.

A linear regression performed on the linear portion of the NASS
(diagonal values between 30 and 500 pixels) followed by an analysis

TABLE 2 | Number of segments generated by each pipeline on the 106 benchmark images and estimation of the amount of segments they would produce on one

minute of ISIS data.

Segmentation pipeline

Number of segments on benchmark images

Average number of segments per minute of ISIIS deployment

Ground truth 3,356
Threshold 339,907
Threshold-MSER 82,731
Threshold-CNN 19,048

~5,000
~525,000
~130,000
~30,000

10°

10* 4

100 1

Normalized abundance (mm-1)

Segmentation

pipeline

— Ground truth
T

— T-MSER

— T-CNN
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10 T 100 1000 " 10000
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FIGURE 4 | Normalized abundance size spectra (NASS) of all segments generated by the benchmarked pipelines and ground truth segmentation. To compute the NASS,
segments were grouped info size classes on a log2 scale, each class size being two fimes wider than the previous one. Normalized abundance was computed by dividing the
number of segments in each class by the size class width, resutting in an adimensional quantity (number of segments) divided by a length (mm here). The double x-axs is the
length of the diagonal bounding bax displayed both in pixels and after conversion in mm. The dotted verficd line highlights the slope disconfinuity in the size spectrum of
ground truth segments. Note that both axes use log10 scding. T, threshold-based; T-MSER, threshold-MSER; T-CNN, threshold-CINMN.
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of covariance demonstrated significant difference in slopes between
the segmentation methods: F(3,105) = 133.07; p < 0.001 (Table S1).
Post hoc analysis showed a significant difference between all
segmentation methods (p < 0.001 for all pairs) (Table S2).

3.2. Global Performance Statistics

Overall, the three pipelines demonstrate good recall: when
looking at the total number of segments, they all captured
over 85% of the ground truth organisms. The T-CNN pipeline
largely outperformed both the threshold-based and T-MSER
pipelines in terms of precision (Table 3). In other words,
although it segmented almost all planktonic objects, the
threshold-based pipeline generated mostly non-plankton
segments (~99%), composed of both marine snow and
density volutes artifacts. The T-CNN pipeline also produced
non-planktonic segments but they “only” represented 84% of
segments, while still segmenting a good proportion of
planktonic objects. The T-MSER performed somewhere in
between those two extremes.

3.3. Performances Per Size Class

Because the behavior of the pipelines seems to vary with size
(Figure 4), it seems relevant to break down the matching
statistics per size class. With the threshold-based pipeline,
precision decreased with size: smaller segments included a
lower proportion of planktonic organisms than larger ones
(Figure 5A). The T-CNN pipeline had better precision than
the others for small segments while T-MSER had a better
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FIGURE 5 | Precision (A) and recall (B) scores per size class. In (B), n indicates the number of segments per size class for the ground truth dataset. T, threshold-
based; T-MSER, threshold-MSER; T-CNN, threshold-CNN.

TABLE 3 | Precision and recall values of the automated pipelines evaluated
against the 3,356 ground truth organisms.

Pipeline Precision Recall
Threshold 0.9% 97.3%
Threshold-MSER 3.5% 85.4%
Threshold-CNN 16.3% 91.9%

precision for larger segments. In terms of recall, the threshold-
based pipeline always performed better than the others,
regardless of size class (Figure 5B). The T-MSER pipeline
performed as well as the T-CNN pipeline on middle size
classes, but achieved a lower recall for both very small and
very large segments.

3.4. Performances Per Taxonomic Group

In the ground truth dataset, half of the 24 detected taxa were
represented by fewer than 18 individuals (median is 18.5), hence
inducing little resolution and large variance in the performance
statistics of segmentation pipelines. Among the other half of the
taxa, the recall of the T-CNN pipeline was lower than that of the
threshold pipeline by more than 10% for only two taxa
(Bacillaryophycea and Doliolida) and for only four in the case
of the T-MSER pipeline (Bacillariophyceae, Ctenophora,
Acantharea, and other Rhizaria; Figure 6). The lowest recall
values were reached for Bacillariophyceae and Ctenophora, for
all pipelines. In concordance with the consistent recall
performance across size classes, taxa-wise recall performance of
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FIGURE 6 | Recall scores per taxon. n is the number of individuals from
each taxon in the 106 benchmark images and taxa are sorted in decreasing
order of abundance. T, threshold-based; T-MSER, threshold-MSER; T-CNN,
threshold-CNN.

the T-CNN pipeline do not seem linked to organism size: small
organisms (e.g. Acantharea, Pyrocystis) were accurately detected.

4 DISCUSSION
4.1. Summary of Results

The threshold-based pipeline performed an exhaustive
segmentation: planktonic organisms were almost all properly
detected, yet they were drowned in the overwhelming majority of

non-planktonic objects (Table 2). The T-CNN pipeline reduced
this problem, significantly increasing precision (Table 3 and
Figure 5A) while still achieving a very good detection of
plankton across the entire size range targeted by ISIIS. The T-
MSER pipeline also reduced the segmentation of non-planktonic
objects, especially at the top-end of the size range, but detected
fewer planktonic organisms than the other pipelines (Figure 5B).
Despite the large decrease in number of segmented objects, for
most taxa, the MSER or CNN pipelines reduced recall by less
than 10% (Figure 6). One explanation for these differences is that
naive thresholding captured a lot of noise (i.e. density volutes)
and, additionally, broke it into many small segments. The use of
either MSER or a CNN allowed ignoring these noise segments
and/or not breaking them apart, hence producing much fewer
non-planktonic segments. The decrease in abundance below the
expected slope at the smaller end of the size spectrum of ground
truth segments (Figure 4) suggests that identification of
planktonic organisms becomes non-exhaustive below 25 pixels
in bounding box diagonal. Below this size, which amounts to 600
pm in ESD on average, some organisms can still be detected. This
means that relative concentrations between locations/times can
likely be exploited within a taxon but that further filtering and
corrections are needed to reach absolute concentrations.

The statistical difference between NASS slopes (Figure 4)
indicates that they segment different kinds and amounts of non-
planktonic objects, compared to the all-plankton ground truth.
This implies that the output of different segmentation
approaches should not be directly compared in terms of size
distribution. Segmentation methods were already shown to have
an impact on the definition of particle size and shape, which
propagates to subsequent analyses such as particle flux estimates
(Giering et al., 2020). This slope discrepancy as well as the vastly
larger intercept of the NASS of automated pipelines compared to
the ground truth means that the computation of an appropriate
plankton size spectrum requires a classification step that would
exclude non-planktonic objects.

4.2, Targeted Organisms

Some taxa were systematically less often detected than others.
Some of the not detected Bacillariophyceae were large, blurry,
and too translucent (Figure 3H) to be caught by the threshold-
based branch of the T-CNN pipeline or by the T-MSER method.
The other, smaller, ones that were missed by the content-aware
branch of T-CNN were not detected because they were quite
different from the ones used during training (blurrier).
Integrating more representative examples of Bacillariophyceae
for CNN training could have improved performance on this
taxon. Similarly, doliolids (Figure 3T), that were often large,
should have been segmented by the threshold-based branch of T-
CNN as well as by T-MSER. The ones missed, mostly by T-CNN,
were also blurry and too translucent for intensity-based
thresholding with a single threshold. Ctenophores (likely of the
Mertensiidae family, Figure 3S) displayed thin, translucent
tentacles that were often missed by threshold-based methods.
Therefore, only the body was segmented, which resulted in a
bounding box IoU value < 0.1, too low to be considered a match
with the ground truth segment that included the tentacles. Still, a
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later CNN classifier should be able to correctly identify even such
portions of organisms, as CNNs were shown to mostly rely on
local shape and texture features instead of on the global shape
(Baker et al, 2018; Baker et al, 2020). Finally, the T-MSER
pipeline resulted in a lower recall for Acantharea and other
Rhizaria (Figures 3A, W). This seems to stem from a too
aggressive thresholding step in low SNR high noise frames, the
pre-processing step before MSER is applied. Further fine-tuning
would likely allow it to retain more or all Acantharea and other
Rhizaria images.

In the present study, we aimed at performing an exhaustive
detection of every planktonic organism across the size range
targeted by the ISIIS. However, in general, the segmentation
algorithm should be chosen according to the target organisms.
For example, to focus on organisms towards the larger end of the
ISIIS size range (e.g. > 10 mm), where particles — mostly marine
snow aggregates — are much less abundant, a simple gray-level
threshold seems sufficient.

4.3. Processing Time and Cost

The quantile-based thresholding pipeline ran on a single CPU core
at a rate of 30 minutes of processing for 1 minute of ISIIS data
(003x), on an Intel Xeon E5-2643 v3 (3.40 GHz). Its memory
requirements were limited so it was easy to run simultaneous
processing of multiple batches of data on a multi-core/multi-
processor machine, but the treatment of ISIIS data as a
continuous stream for flat-fielding prevented automatic
multithreading. The T-CNN pipeline required a GPU with
sufficient memory (48 GB, on aNvidia Quadro RTX 8000 in our
case) to efficiently train the CNN portion and to fit ISIIS images in
at evaluation time. It processed data at the same rate as the
threshold-based pipeline (30 min processing for 1 min of data, or
0.03x). The T-MSER pipeline was optimized for speed and utilized
the 8 cores of an AMD Ryzen 3700, processing one minute of ISIIS
data in 50 seconds (1.2x), or 6 min 40 s of processing for 1 min of
ISIIS data (0.15x) when considering running on one core.

The MSER implementation followed Matas et al. (2004)
closely. The optimization of the T-MSER approach stems from
adding the SNR switch, which leads to the pre-processing of
high-noise images with naive thresholding, while going straight
to the MSER-based detection in low noise images. Adding these
changes increased segmentation recall from 65% to 85%. Further
optimization included making the code multi-thread ready for
deployment on High Performance Computing infrastructures.
Using the specialized CPUs of these infrastructures, such as the
AMD EPYC 7742 (64 cores, 128 threads) performance could
improve well above 1.2x. At current data collection rates of 75-
100 h of ISIIS data per scientific cruise, a real time or faster than real
time segmentation approach constitutes a substantial benefit.

At first glance, the T-CNN pipeline seems expensive in terms
of set up and architecture: it requires a GPU with sufficient
memory to operate, implies the use of relatively new deep
learning coding frameworks and the preparation of a training
set with manual delineation of thousands of planktonic
organisms. But these costs are offset by the time gained not
processing a multitude of particles in each image, resulting in a

processing rate comparable to that of the pure threshold-based
pipeline, as stated above. Furthermore, the fact that T-CNN
produced 20 times fewer segments will also considerably reduce
the classification time (often CNN based too). Finally, since recall
barely decreased, the objects ignored were mostly the dominant
non-plankton objects, as per design; this will diminish the
imbalance among classes that classifiers are sensitive too,
further improving the classification step. Moreover, both the
Detectron2 library and the baseline model on which the T-CNN
pipeline relies are easily downloadable and well documented?.
With GPU resources becoming increasingly available for
scientific research and the associated frameworks becoming
easier to use, such tools are poised to become more powerful
and accessible.

4.4, Detection of Small Objects by
CNN Models

The detection of objects measuring just a few pixels is still a
research problem in its own right in computer sciences (Eggert
et al., 2017), coined very low resolution recognition problems
(Wang et al., 2016). They are characterized by targets smaller
than 16x16 pixels, which can be challenging even for the
perceptual abilities of human experts. They target applications
for company logo detection (Eggert et al., 2016; Eggert et al,
2017), face recognition from video surveillance, or text
recognition (Wang et al., 2016). The receptive fields of
common object detection architectures match the target object
size and range from 50x50 to 450x450 pixels which is much
larger than the small objects targeted in low resolution studies
(Eggert et al,, 2017). Here, the smallest organisms targeted had an
area of 50 pixels, which corresponded to a bounding box
diagonal of 12 pixels, or an 8x8 pixels square. Thus the
exhaustive detection of plankton organisms in ISIIS images,
including the smaller ones, clearly falls in the domain of very
low resolution recognition. A common solution is image
upscaling, as highlighted by Eggert et al. (2016), which we
implemented in the present work. The 524x524 pixels crops
were upscaled to 900x900 pixels before evaluation in the
Detectron2 model. The 900 pixels size is a compromise
between detection accuracy, usage of the GPU memory, and
processing time. Other approaches for multi-scale object
detection are described by (Cai et al., 2016) and include
magnification of regions susceptible to contain small objects
(Eggert et al., 2016) or the integration of contextual information
outside of regions of interest (Bell et al., 2016).

No automated segmentation method is perfect; depending
on their settings, they either avoid objects other than their
targets but miss some objects of interest (high precision, low
recall) or detect most objects of interest but also many others
(high recall, low precision). If the segmentation or object
detection task is followed by a classification step, which is
always the case for plankton imaging, we advocate in favor of
recall over precision during segmentation, provided that the
amount of data remains manageable. Hence, a maximum
number of planktonic objects have the opportunity to be
classified. The precision can be improved after classification,
by filtering out low confidence, usually error prone, predictions
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based on the score given by the classifier (Faillettaz et al., 2016;
Luo et al.,, 2018).

To extract planktonic organisms of various taxa from ISIIS
images, full instance segmentation would have been the most
elegant approach, outputting classified mask instances in a
single step (Dai et al., 2016). Several obstacles still lay ahead
for this approach to be applicable. First, training an instance
segmentation model to recognize each taxonomic group would
require hundreds to thousands of ground truth (i.e. human-
produced) masks of all taxa. Given the long tailed distribution
of taxa concentrations in the planktonic world, with many rare
taxa, in particular the largest ones, this would require a
considerable amount of searching and labeling effort. Indeed,
assembling enough examples to train classifications models is
already challenging (Irisson et al., 2022) and manual
delineation of each organism is much more time consuming
than manual classification. A second obstacle is the size range
of organisms imaged by ISIIS. Although Detectron2 does
produce multi-scale feature maps through a Feature Pyramid
Network in order to apply receptive fields of multiple size, the
ratio between the largest and the smallest feature maps is only
16. Here, the ratio between the smallest and largest bounding
box diagonals of manually segmented organisms is 65 and can
reach > 180 in more exhaustive ISIIS datasets. To tackle this
span, one could theoretically set up an ensemble of detectors,
tfed with crops of different sizes, each one targeting a restricted
size range. Yet, this would be a particularly computationally
demanding and complex set up, for a gain yet to be determined
since, for larger sizes, the proportion of non-plankton objects,
and therefore the advantage of a CNN-based segmentation,
diminishes. Finally, masks generated by instance segmentation
models currently lack both precision (their outline is smoothed,
not matching the fine appendages of plankton) and
reproducibility (because of the randomness included during
training to avoid overfitting, two models trained on the same
data will output different masks). These drawbacks are
particularly critical for plankton application, where the size of
the organisms, computed from their masks, is often of interest.

5 CONCLUSION AND PERSPECTIVES

We developed combined segmentation pipelines able to detect
planktonic organisms spanning a broad size range. The fact that
all methods comprised a deterministic, threshold-based
segmentation ensured that particle shapes and measurement
were consistent over the whole size range. Still, the
segmentation method affected the shape of the size spectrum
and additional processing steps (including classification) are
needed to extract the correct size structure of living organisms.
The MSER method limited over-segmentation of background
noise objects and extracted more consistent segments, at a very
high processing rate. This speed opens the possibility for near-
real time processing, which is particularly relevant for adaptive
sampling during a cruise or an early warning system in a time
series context. Although at the lower limit of the detection
capabilities of CNNs, our content-aware approach was able to

detect planktonic organisms among an overwhelming number of
marine snow and noise images, exhibiting the best recall of the
three methods. Therefore, the ideal segmentation approach
depends on the study objectives and operational constraints.

These approaches seem relevant for imaging studies focused
on living planktonic organisms, since they reduce the number of
objects from non-plankton classes that are extracted. In turn, this
dampens the imbalance towards these classes, laying the
foundations for easier, faster, and more accurate subsequent
object classification by (i) reducing the amount of work needed
to generate a training set with similar class distribution, which is
essential to avoid the caveat of dataset shift (Moreno-Torres
et al, 2012); (ii) decreasing the computation time because there
are fewer objects; and (iii) limiting the contamination of the rare
planktonic classes by the dominant, non-plankton, ones.

Although CNN-based object detection may seem
overwhelming at first, both in terms of set up and processing
time, it actually is fast enough and within the reach of marine
ecologists, particularly now that artificial intelligence frameworks
and GPU computing are being made more accessible. This work
constitutes a step towards the “intelligent” segmentation of
ecological images, even at low resolution, which could find even
wider applications such as the automated separation of objects
overlapping onto each other on an image for more accurate species
counts, the detection and classification in a single step for more
automated surveys, or the extraction of individual-level traits to
track e.g., reproductive organs development, for a richer
exploitation of ecological images (Orenstein et al, 2021). Such
tasks are in no way limited to plankton images and are common in
data collected by trawl cameras, benthic observations or surveying
cameras, vessel monitoring cameras, etc.

In this era of data-driven oceanography, the volume of data
collected is increasing sharply, thanks to technological advances
such as high frequency imagery, autonomous instruments (e.g.
floats, gliders), satellite-based methods as well as environmental
-omics approaches permitted by high throughput sequencing. In
this context of abundant data, the development of automated
and efficient data processing techniques becomes a key element
in drawing a holistic understanding of oceanic ecosystems; it is
needed to provide an extensive description of biodiversity,
including species distributions as well as estimates of biomass
and abundance.
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