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We propose a change-point detection method for large scale multiple testing problems with data having clustered
signals. Unlike the classic change-point setup, the signals can vary in size within a cluster. The clustering structure
on the signals enables us to effectively delineate the boundaries between signal and non-signal segments. New test
statistics are proposed for observations from one and/or multiple realizations. Their asymptotic distributions are
derived. We also study the associated variance estimation problem. We allow the variances to be heteroscedastic
in the multiple realization case, which substantially expands the applicability of the proposed method. Simulation
studies demonstrate that the proposed approach has a favorable performance. Our procedure is applied to an array
based Comparative Genomic Hybridization (aCGH) dataset.
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1. Introduction

Signal detection and multiple testing in a data rich environment have been important research top-
ics in natural and social sciences. Typical examples include detecting anomalous traffic in computer
networks [32], identifying voxels that correlate with certain activities [16] in functional Magnetic Res-
onance Imaging (fMRI), and associating single nucleotide polymorphisms (SNPs) with clinical out-
comes [27]. The predominant framework in these research is via individual analysis–testing each hy-
pothesis separately and declaring statistical significance if the p-value is less than certain threshold [2]
or the two-sample t -statistic falls into the rejection region [6,13]. Various approaches were proposed
to improve the power by incorporating structured or prior information. For example, [4] studied group
hypothesis testing; [14,17] investigated p-value weighting; [7] considered p-value aggregating; [11,
19] utilized prior experimental information on each hypothesis in the inference stage with data from a
new experiment; and [21,22] harnessed the sparsity of mean vectors with student’s t -statistics.

For data with signals having clustered structure, multiple testing approaches currently in use fall into
two general classes. The first approach defines possible regions of interest in advance, either by field
knowledge or an independent experiment. [31] proposed a spatial testing procedure with pre-specified
regions of interest in a compound theoretical framework; [16] developed an algorithm specifically
tailored for brain imaging data where a preliminary scan is used to select clusters by grouping highly
correlated voxels; [24] used the supreme statistic in a random field to construct confidence envelopes
for the proportion of false discoveries and [1] used a two-stage hierarchical testing procedure to test
predefined clusters first followed by a trimming stage to clean locations in which the signal is absent.
The second approach is to adaptively identify a collection of differentially behaved regions with proven
false discovery rate control. For example, [28] mapped the data in the wavelet domain first and removed
redundant hypotheses to reduce the number of hypotheses tested and improve power; [39] studied
multiple testing via false discovery rate control for large scale imaging data; [29] treated each cluster
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as a testing unit and defined the false discovery as the clusters that are falsely declared among all
declared clusters under the assumption that the number of false discoveries is approximately Poisson.
The Poisson approximation requires the sparsity assumption on the signals. [10] gave a summary of
literature in this area and developed new tools for spatial multiple testing. In this line of research,
a cluster is defined to be a true discovery if it has non-zero overlap with the support of the signal.
Methods that try to incorporate cluster size to improve power were also explored in [10].

In this paper, we study multiple testing problems for data with clustered signals. We propose a
new test statistic that adaptively recognizes such clusters. Our test statistic aggregates information
along a sliding window to boost signal noise ratio. At the boundary between signal and non-signal
segments, the test statistic can be much larger than it is within the non-signal cluster. We investigate the
asymptotic distribution of the proposed test statistic and set up rejection criterion controlling certain
type I errors. A new algorithm is proposed to locate signal clusters for followup studies. We do not
require signals to be sparse, which may be especially valuable given the current conjecture of polygenic
effects on complex disease [40]. Furthermore, we allow signals to vary within a cluster, which differs
from the popular assumption that the means are identical within the same cluster [37,38]. Numerical
studies show that when signals have varied sizes, the proposed method has increased detection accuracy
compared to method that assumes same signal size within a cluster [35–37]. Computationally, the speed
of our algorithm is linear with number of tests while the algorithm used in [37] is quadratic. Unlike
[7], we present a new approach for variance estimation under the setup of multiple testing. This is
accomplished through the order statistics of the average squares of the original data across a sliding
window, which is consistent under certain regularity conditions for the one realization case. In addition,
we consider the multiple realization scenario and allow the variance to be heteroscedastic. New test
statistics are proposed with unknown parameters consistently estimated with available data to conduct
statistical inference. Moreover, the newly proposed algorithms are more accurate in detecting break-
points than algorithms proposed in [7] as an additional turning parameter δ is used in the maximization
to locate break-points. Numerical studies show improved detection precision compared to methods that
did not utilize the clustering structure [13].

Recent multiple testing procedures that incorporate covariates require estimation of the prior proba-
bility that the ith test corresponds to a null, i = 1, . . . ,m. These weights are then estimated adaptively
from available data. In particular, [33] uses an empirical Bayesian two group mixture model and pro-
poses to minimize a penalized likelihood function where fused lasso type of penalty is used to have
spatial smoothing [34]. OrderShapeEM proposed by [5] imposes a monotone increasing constraint on
the prior probability of being null and a monotone decreasing constraint on the density function of
p-value under alternative distribution. The implementation is achieved through combination of EM
algorithm and pool-adjacent-violator-algorithm (PAVA). AdaPT [18] requires an order of the p-value
to incorporate external information to boost power. SABHA [20] modifies the BH procedure by incor-
porating the probability that the ith test corresponds to a null, i = 1, . . . ,m. SABHA further suggests
different ways to estimate such probabilities, including ordering, grouping, and low total variation.
AdaPT and SABHA achieves finite sample control of FDR.

In our work, we impose block signal structure to improve power. Different from covariate adjusted
multiple testing, we do not use covariate for individual test, instead, we treat clustered signals through
aggregation of individual p-values. We do not require external covariate, such as ordering. Our results
are asymptotic in terms of number of test m.

An important method for spatial cluster detection is based on scan statistics [23,32]. Scan statistic
is defined as the maximum number of points in a fixed window as the window is shifted across the
domain. The p-value is computed under the uniform distribution on the domain and the threshold is
designed to control the familywise type I error. This statistic is used for an omnibus test of the null
hypothesis that there is no clustering. If the test rejects the null hypothesis, then it leaves open the
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question of where and how much clustering exists. Our test statistic is devised to compare the observed
information with its expected value under the null hypothesis that there is no signal and then take the
maximum across the domain. If the omnibus test detects signals, our proposed algorithm can locate
such signals which is of special interest for followup studies.

The rest of the paper is organized as follows. In Section 2, we introduce a structured hypothesis
testing problem with one realization. Section 3 studies the case that there are multiple realizations.
In Section 4, we examine the performance of the proposed procedure via simulation; we see that our
procedure is better able to detect clustered signals and the variance estimate has a good performance.
Section 5 presents an application of the methodology to an array based Comparative Genomic Hy-
bridization (aCGH) dataset.

2. Test and estimation with one realization

In this section we shall first present a structured hypothesis testing problem with locally clustered
signals. Suppose we are given noisy data of the form

Xj = μj + Zj , 1 ≤ j ≤ p, (1)

where Zj are i.i.d. with mean 0 and variance σ 2, and μj are means or signals. We say that a signal
is present at location j if μj �= 0. In the study of aCGH data, we let Xj be the log2 ratio between the
test and the reference sample intensities at locus j . Then Xj > 0 (resp. Xj < 0) means copy number
duplication (resp. deletion). In this section we assume that one realization (Xj )

p

j=1 is available. In
Section 3 we shall deal with the situation that multiple realizations are available with possibly non-
i.i.d. Zj . Based on the observation (Xj )

p

j=1, we test the null hypothesis of no signal

H0 : μ1 = · · · = μp = 0 (2)

versus the alternative hypothesis that signals are clustered: there exist break-points 1 = τ0 ≤ τ1 < · · · <
τl ≤ τl+1 = p such that

H1 : μ1 = · · · = μτ1−1 = 0, μτ1 , . . . ,μτ2−1 �= 0,

μτ2 = · · · = μτ3−1 = 0, μτ3 , . . . ,μτ4−1 �= 0, . . . .
(3)

Let Sf = {τf , . . . , τf +1 − 1}, f = 1,2, . . . . We call sets S1,S3, . . . , signal clusters on which μj s are
non-zero and let S = S1 ∪ S3 ∪ . . . be the signal set. Let N = S0 ∪ S2 ∪ . . . be the non-signal set.
Note that our definition of break-points is different from change-points that are used in change-point
analysis, where the alternative hypothesis is typically formulated as

Hc : μ1 = · · · = μτ1−1 �= μτ1 = · · · = μτ2−1 �= μτ2 = · · · = μτ3−1 �= · · · .

For example, if there exists a j in the signal cluster S1 = {τ1, . . . , τ2 − 1} of (3) such that μτ1 = · · · =
μj �= μj+1 = · · · = μτ2−1, then this j is a change-point while it is not a break-point in our sense.
While providing a very general framework, our setting of allowing unequal μj s in the signal clusters
substantially complicates the related statistical inference. The primary goal of the paper is to test H0

vs H1 and to locate those break-points.
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2.1. One-sided Test

If in the signal sets S1,S3, . . . , all nonzero μi are positive, namely

H ′
1 : μ1 = · · · = μτ1−1 = 0, μτ1, . . . ,μτ2−1 > 0,

μτ2 = · · · = μτ3−1 = 0, μτ3, . . . ,μτ4−1 > 0, . . . ,
(4)

then we can use the following test statistic

R◦
i = 1

k

i+k∑
j=i+1

Xj , (5)

where k is the window size parameter. Note that the mean is ER◦
i = k−1 ∑i+k

j=i+1 μj . Intuitively, i can
be classified in the signal cluster if R◦

i is big. The cutoff values can be computed based on Theorem 2.1,
which provides a uniform Gaussian approximation of the distribution of R◦

i . Theorem 2.1 follows
from Theorem 3.1 with n = 1. For completeness, we state it here. It asserts that under H0, R◦

i can be
uniformly approximated by the Gaussian process

σG◦
i = 1

k

i+k∑
j=i+1

σηj , where ηj
i.i.d.∼ N(0,1). (6)

We shall quantify the closeness by the coupling distance

�◦ = √
k max

0≤j≤p−k

∣∣R◦
j /σ − G◦

j

∣∣ (7)

and the distributional distance

ρ◦ = sup
u

∣∣∣P(√
k max

0≤j≤p−k
R◦

j /σ ≥ u
)

− P
(√

k max
0≤j≤p−k

G◦
j ≥ u

)∣∣∣. (8)

We first introduce a moment condition.

Condition 2.1. Z1,Z2, . . . , are i.i.d. with mean 0 and variance σ 2, and the θ th norm ‖Zi‖θ :=
(E|Zi |θ )1/θ < ∞, where θ > 2. Write Kθ := ‖Zi‖θ .

Theorem 2.1. Assume Condition 2.1 and μi = 0, 1 ≤ i ≤ p. (i) Let θ > 2. Then there exists a possibly
larger probability space on which one can define (Zj )j and (ηj )j such that, for all u > 0 and any
positive integer k,

P
[
k1/2�◦ ≥ c0u

] ≤ pKθ
θ

uθσ θ
, (9)

where c0 is a constant only depending on θ . (ii) Let θ > 3. The distributional distance

ρ◦ � k−1/6(logp)7/6 + (
pk−θ/2)1/(θ+1)

(logp)(3θ−2)/(2+2θ) (10)

where a � b means a = O(b) and the multiplicative constant in � only depends on θ , σ 2 and Kθ .
Namely there exists a constant C > 0 depending on θ , σ 2 and Kθ such that ρ◦ ≤ C(k−1/6(logp)7/6 +
(pk−θ/2)1/(θ+1)(logp)(3θ−2)/(2+2θ)).
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Theorem 2.1 implies that, if the window size k satisfies p2/θ = o(k), then �◦ = oP (1) by letting
u = (pk)1/(θ+2). Under the slightly stronger condition

p2/θ (logp)3−2/θ = o(k), (11)

we have ρ◦ = o(1), suggesting that R◦
j and σG◦

j are uniformly close.

Let σ̂ 2 be an estimate of σ 2 and g1−α be the (1 − α)th quantile of max0≤j≤p−k G◦
j , α ∈ (0,1). The

latter can be computed by Monte Carlo simulations. In Section 2.4.1, we shall propose a consistent
estimate of σ 2 when (μj )j has form (3). Theorem 2.1 suggests rejecting H0 and accepting the al-
ternative hypothesis H ′

1 of (4) at level α if max0≤j≤p−k R◦
j > σ̂g1−α . Alternatively, let T = p/k, by

Corollary A1 in [3] we can also have the Gumbel convergence

P

[max0≤j≤p−k

√
kG◦

j√
2 logT

− 1 − log logT − 1
2 log(4π)

4 logT
≤ v

]
→ e−e−v

, (12)

which gives an approximate solution for g1−α by letting v = − log log(1−α)−1. We do not recommend
the latter since the convergence of (12) is very slow. A bootstrap calibration procedure is proposed in
Section 3.2 which has better finite sample properties.

2.2. Two-sided Test

Under the general alternative H1 of (3), the test statistic (5) is no longer applicable since the μj s in the
signal clusters can potentially cancel each other out. As a simple remedy, assuming at the outset that
σ 2 is known, we define the modified version

R
†
i = 1

k

i+k∑
j=i+1

(
X2

j − σ 2), (13)

which, since εj = Z2
j − σ 2 + 2μjZj has mean 0 under H0, mimics R◦

i in (5) in view of

X2
j − σ 2 = μ2

j + (
Z2

j − σ 2 + 2μjZj

) = μ2
j + εj . (14)

Hence, a location i with a big value of R
†
i will likely be in signal clusters, regardless of signs of μj .

Then we can apply the one-sided test procedure in Section 2.1. Note that the other modified version
R�

i := k−1 ∑i+k
j=i+1(|Xj | − m1), where m1 = E|Zj |, does not have the property that E(|Xj | − m1) =

E(|μj + Zj | − |Zj |) > 0 for non-zero μj . So in general R�
i cannot be used in the two-sided test.

Assume that E(Z4
j ) < ∞. Similar to (7) and (8), we define

�† = √
k max

0≤j≤p−k

∣∣R†
j /κ − G◦

j

∣∣, where κ = ∥∥Z2
j − σ 2

∥∥
2 = [

E
(
Z2

j − σ 2)2]1/2
, (15)

and the distributional distance

ρ† = sup
u

∣∣∣P(√
k max

0≤j≤p−k
R

†
j /κ ≥ u

)
− P

(√
k max

0≤j≤p−k
G

†
j ≥ u

)∣∣∣.
Note that under μj = 0, we have Var(εj ) = E(Z2

j − σ 2 + 2μjZj )
2 = κ .
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Corollary 2.1. Assume Condition 2.1 hold with θ > 4 and μi = 0, 1 ≤ i ≤ p. Then there exists a
larger probability space on which one can define (Zj )j and (ηj )j such that for all u > 0,

P
[
k1/2�† ≥ c0u

] ≤ pKθ
θ

(κu)θ/2
, (16)

where c0 is a constant only depending on θ , and the distributional distance

ρ† � k−1/6(logp)7/6 + (
pk−θ/4)2/(θ+2)

(logp)(3θ−4)/(4+2θ), (17)

where the constant in � only depends on θ , κ and Kθ .

Corollary 2.1 follows from Theorem 2.1 by replacing θ in the latter by θ/2 in view of (14). In
comparison with (11), Corollary 2.1 requires the stronger condition p4/θ (logp)3−4/θ = o(k) to ensure
that ρ† = o(1).

Estimation of σ 2 and κ is discussed in Section 2.4.1. Recall that g1−α is the (1 − α)th quantile of
max0≤j≤p−k G◦

j , α ∈ (0,1). Corollary 2.1 suggests rejecting H0 and accepting the alternative hypoth-

esis H1 of (4) at level α if max0≤j≤p−k R
†
j > κ̂g1−α .

Remark 1. Denote by �◦
k the quantity �◦ in (7). A careful analysis of the proof of Theorem 3.1

(which implies Theorem 2.1 with n = 1) indicates that Theorem 2.1 is still valid with �◦
k (resp.

R•
k := √

k max0≤j≤p−k R◦
j /σ and G•

k := √
k max0≤j≤p−k G◦

j ) therein replaced by the uniform ver-
sion maxk≤m≤p �◦

m (resp. maxk≤m≤p R•
m and maxk≤m≤p G•

m). Similarly, for the two-sided test, Corol-

lary 2.1 also holds with the uniform version maxk≤m≤p m−1/2 max0≤j≤p−m

∑j+m

i=j+1(X
2
i − σ 2). The

latter quantity has an interesting connection with the adaptive Neyman’s high dimensional multivariate
normal mean test which has the form max1≤m≤p(2m)−1/2 ∑m

i=1 (X2
i − σ 2), which was considered

in Section 2.1 in [12] in the setting that large values of μ concentrate on the first m dimensions and

Xi
i.i.d.∼ N(μi,1). Here m is estimated by the maximizer m̂ = argmax1≤m≤p(2m)−1/2 ∑m

i=1(X
2
i − σ 2).

2.3. An Algorithm for Locating Break-points

Once the null hypothesis is rejected, we need to locate break-points. We propose Algorithms 2.1 and 2.2
for locating break-points based on the one- and the two-sided tests, respectively. Theoretical properties
of Algorithm 2.1 (resp. 2.2) are given in Theorem 2.2 (resp. 2.3).

2.3.1. Locating break-points based on one-sided test

We first present an algorithm based on the one-sided test.

Algorithm 2.1. Step 1. Let L◦
j = R◦

j−k , j = k, . . . ,p. Compute Q◦
j = 1(R◦

j > γ ) + 1(L◦
j > γ ) for

a pre-specified cutoff value γ , j = k, . . . ,p − k. We use a majority vote approach to smooth Q◦
j .

Specifically, denote j0 = ∑i+k
j=i−k I {Q◦

j = 0}, j1 = ∑i+k
j=i−k I {Q◦

j = 1}, and j2 = ∑i+k
j=i−k I {Q◦

j = 2}.
Let Q̃◦

j = {k, such thatjk = maxl∈{0,1,2} jl}.
Step 2. Decompose {1, . . . , p} = W0 ∪ W1 ∪ W2, where j ∈ W0 if Q̃◦

j = 0, j ∈ W1 if Q̃◦
j = 1 and

j ∈ W2 if Q̃◦
j = 2. Let M1, . . . ,Ml̂

be connected components of W1.
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Step 3. Given δ < γ , the break-points are defined as τ̂i = argmaxj∈Mi
{R◦

j : L◦
j ≤ δ} if Mi is the

transition region from W0 to W2. If Mi is the transition region from W2 to W0, τ̂i = argmaxj∈Mi
{L◦

j :
R◦

j ≤ δ}.

The estimated signal sets are Ŝ1 = {τ̂1, . . . , τ̂2 − 1}, Ŝ3 = {τ̂3, . . . , τ̂4 − 1}, . . . . The rationale behind
Algorithm 2.1 is that if μj = 0, then R◦

j is close to 0; on the other hand, in the signal clusters, R◦
j tends

to be large. By locally averaging the data, we can reduce the variability, which has the effect of boosting
the signal noise ratio. If there are many weak signals, we are able to detect them by the aggregation.
On the other hand, if sporadic large values of Xj arise, they can be smoothed out through R◦

j to avoid
false discoveries. Therefore, we can effectively de-noise the data to achieve better inference. In the
signal cluster, Q◦

j is most likely to be 2 and in the non-signal cluster, Q◦
j is most likely to be 0. In

the boundary between signal and non-signal cluster, Q◦
j is most likely to be 1. After Step 1, we get

smoothed Q̃◦
j that are in clusters of 0, 1 and 2. Step 2 focuses on the signal and non-signal cluster

boundary regions, where Q̃◦
j = 1. Step 3 locates break-points. The basic idea is that without noise

at the true break-points, R◦
j reaches the maximum as there is no noise to dilute the summation if we

are transiting from non-signal cluster to signal cluster. The constraint L◦
j ≤ δ prevents the detected

break-points to be too far from the true break-points when μj increases in the signal cluster. Similarly,
without noise, L◦

j obtains the maximum if we are transiting from signal to non-signal cluster at the
true break-points. The constraint R◦

j ≤ δ prevents the detected break-points to be too far from the true
break-points when μj decreases in the signal cluster. With two thresholds δ < γ , Algorithm 2.1 has
more flexibility and produces more accurate estimates of the break-points than the procedure in [7]
which only uses one threshold γ .

Our method depends on the choice of window size k and thresholds γ and δ. Theoretically speaking,
the allowable range of k is specified in (11). Our simulation studies show that the proposed method is
relatively robust to different choices of k. In practice, following the idea of the adaptive Neyman’s high
dimensional multivariate normal mean test mentioned in Remark 1, as a simple rule of thumb choice
we can let m̂ = argmaxm≥√

pR•
m and k = �m̂/2�. For a data-driven selection of γ and δ, we can choose

γ = σ̂ g1−α and δ = σ̂ g1,1−α , where g1−α and g1,1−α are the (1 − α)th quantiles of max0≤j≤p−kG
◦
j

and maxj∈W1G
◦
j , respectively, with α close to 0. They can be obtained by simulations. Section 2.4.1

gives an estimate σ̂ of σ .

Condition 2.2. Recall Sf = {τf , . . . , τf +1 − 1} and S = S1 ∪ S3 ∪ . . . is the signal set. Assume d :=
mini∈S μi > 0 and 2k < minf (τ1+f − τf ).

Condition 2.3. We say that a random variable Z is σ 2-sub-Gaussian if E(exp(uZ/σ)) ≤ exp(u2/2)

for all u ∈ R. Note that N(0, σ 2) is σ 2-sub-Gaussian.

To state Theorem 2.2, we need to introduce truncated moment functions. For a random variable X

with E(X2) < ∞, define the truncated moment

Mυ(X) = E min
(|X|υ,X2) < ∞, υ > 2. (18)

If X has finite θ th moment with 2 < θ < υ , then Mυ(X) ≤ E(|X|θ ). Theorem 2.2(i) (resp. (ii)) con-
cerns sub-Gaussian (resp. polynomial-tailed) noises.
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Theorem 2.2. Assume Condition 2.2 and d/2 > γ > δ. (i) Assume Condition 2.3 holds for Zj . Denote
by l̂ the estimated number of break points. Then

1 − P

[
l̂ = l,max

j≤l
|τ̂j − τj | ≤ 2kδ

d

]
≤ c3

(
p

k
e−c1kγ 2/σ 2 + le−c2kδ2/σ 2

)
, (19)

where c1, c2, c3 are absolute constants. (ii) Assume Conditions 2.1 and let υ ≥ θ . Then

1 − P

[
l̂ = l,max

j≤l
|τ̂j − τj | ≤ 2kδ

d

]
� pMυ

(
Z1/(kγ )

) + p

k
e−c1kγ 2/σ 2

+ lkMυ

(
Z1/(kδ)

) + le−c2kδ2/σ 2

≤ Kθ
θ

(
pγ −θ + lkδ−θ

)
k−θ

+ pk−1e−c1kγ 2/σ 2 + le−c2kδ2/σ 2
, (20)

where c1 and c2 are absolute constants and the constant in � only depends on θ and υ .

Theorem 2.2 is proved in the Supplementary Material [8]. In comparison with (19), the extra term
Kθ

θ (pγ −θ + lkδ−θ )k−θ in (20) is due to polynomial tails, which are heavier than the sub-Gaussian
ones. In the sub-Gaussian case (i) with unbounded l (namely l → ∞), choose γ = C1(k

−1 logp)1/2,
and δ = C2(k

−1 log l)1/2, where C1 and C2 are sufficiently large constants, we have the uniform bound
maxj≤l |τ̂j − τj | = OP (d−1(k log l)1/2). The condition d/2 > γ requires that k ≥ C3d

−2 logp for a
sufficiently large constant C3. When l is bounded, by letting k = �Cd−2 logp� for a sufficiently large
C, we can similarly obtain the uniform bound maxj≤l |τ̂j − τj | = OP (d−2(logp)1/2). In the context
of detecting a deterministic signal with unknown spatial extent in the univariate sampled data model
with standard white Gaussian noises, [9] dealt with the special case μj = d1τ1≤j<τ2 and considered the
consistency of detection based on scan statistics under the condition τ2 −τ1 ≥ cpd−2 logp, where cp =
2 + ιp and ι2p logp → ∞. The latter observation has a similar flavor as our condition k ≥ C3d

−2 logp.
The polynomial-tailed case (20) is more involved. To ensure that the right-hand side of (20) goes to

0, we can choose γ = C1(k
−1p1/θ + (k−1 logp)1/2) and δ = C2(k

−1(lk)1/θ + (k−1 log l)1/2), where
C1,C2 > 0 are sufficiently large constants. Assume k ≥ C3(d

−2 logp + d−1p1/θ ) for a sufficiently
large constant C3, we have the uniform consistency maxj≤l |τ̂j − τj | ≤ OP (kδ/d). Thus the numbers
of false discoveries and missed discoveries are bounded by lOP (kδ/d). If l is bounded, then the latter
bound becomes OP [(k logp)1/2)/d].

2.3.2. Locating break-points based on two-sided test

We next present an algorithm based on the two-sided test. It is similar to Algorithm 2.1. With the square
form (13), it can pick up signals with alternating positive and negative signs. Same simulation assisted
choice of γ and δ as in the one-sided test can be used.

Algorithm 2.2. Step 1: Calculate R
†
i and let L

†
i = R

†
i−k , i = k, . . . ,p. For a pre-specified γ , let Q

†
i =

1(R
†
i > γ ) + 1(L

†
i > γ ), i = k, . . . ,p − k. The same majority vote approach as in Algorithm 2.1 is

used to smooth Q
†
i , denoted as Q̃

†
i .

Step 2: Decompose {1, . . . , p} = W0 ∪ W1 ∪ W2, where i ∈ W0 if Q̃
†
i = 0, i ∈ W1 if Q̃

†
i = 1 and

i ∈ W2 if Q̃
†
i = 2. Let M1, . . . ,Ml̂

be connected components of W1.
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Step 3. Given δ < γ , the break-points are estimated as τ̂i = argmaxj∈Mi
{R†

j : L†
j ≤ δ} if Mi is the

transition region from W0 to W2. If Mi is the transition region from W2 to W0, τ̂i = argmaxj∈Mi
{L†

j :
R

†
j ≤ δ}.

Condition 2.4. Recall Condition 2.2 for S . Let d = mini∈S |μi | > 0 and assume 2k < minf (τ1+f −
τf ).

Theorem 2.3. Assume Conditions 2.3, 2.4, and (k−1 logp)1/2 = o(d2). Let γ = c1(k
−1 logp)1/2 and

δ = c2(k
−1 log l)1/2, where c1 and c2 are sufficiently large constants. Then there exists a constant c > 0

independent of k and p such that

P

[
l̂ = l,max

j≤l
|τ̂j − τj | ≤ ckδ

d2

]
→ 1. (21)

Theorem 2.3 provides a bound for uniform deviations of the estimated break-points. It is proved in
the Supplementary Material, where the polynomial-tailed case is also studied. Same choice of γ and δ

can be used as in the one-sided test scenario.

2.4. Variance Estimation

2.4.1. Estimation of σ 2

To apply Theorem 2.1 and Corollary 2.1 for computing the cutoff values based on R◦
j and R

†
j , we need

to deal with the key issue of estimating the variance σ 2. Furthermore, to use R
†
j , we need to estimate κ2.

For the nonparametric regression model Xi = μi +Zi = f (i/p)+Zi , 1 ≤ i ≤ p, where μi = f (i/p),
f is a smooth function and Zi are i.i.d. with mean 0 and variance σ 2, the problem of estimating σ 2

has a long history; see [15] and references therein. However, the difference-based method in the latter
paper does not work here. Due to the presence of the nonzero μj s, the problem of estimating σ 2 is
highly nontrivial. The latter problem is further complicated by the fact that the nonzero μj s in the
signal segments can change wildly. Here we shall use order statistics and obtain a consistent estimator.
Let

σ̂ 2
i = 1

m

i+m−1∑
j=i

X2
j , 1 ≤ i ≤ p′,where p′ = p − m + 1. (22)

Let σ̂ 2
(1) ≤ σ̂ 2

(2) ≤ · · · ≤ σ̂ 2
(p′) be the order statistics of σ̂ 2

1 , . . . , σ̂ 2
p′ . Theorem 2.4 shows that, for any

k ≤ p′/2, σ̂ 2
(k) is a consistent estimator of σ 2 under suitable conditions of m. The intuition is as follows:

for large m, we expect that σ̂ 2
i ≈ Eσ̂ 2

i = σ 2 + m−1 ∑i+m−1
j=i μ2

j . The latter uniform closeness relation
will be made rigorous in the proof of Theorem 2.4, which is proved in the Supplementary Material.
Under Condition 2.5 below, we expect that majority of

∑i+m−1
j=i μ2

j will be 0. Thus, the median or any

lower quantile of Eσ̂ 2
i is σ 2.

In practice, we choose the sample median estimate with k = p′/2.

Condition 2.5. There exists a constant c > 0 such that the length of non-signal clusters τi+1 − τi ≥ cp

for all even i, and the total length
∑

iis even(τ1+i − τi) ≥ λp with constant λ > 1/2.
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Condition 2.5 implies the natural requirement that the proportion of non-signals (namely j with
μj �= 0) is larger than 1/2.

Theorem 2.4. Assume (μj ) satisfies (3), Condition 2.5, Zi ∈ Lθ , θ > 4, p2/θ = o(m) and m = o(p).
Then we have for any k ≤ p′/2 that

σ̂ 2
(k) = σ 2 + OP (γp), where γp =

(
logp

m

)1/2

+ p2/θ

m
. (23)

If Condition 2.3 holds, logp = o(m) and m = o(p), then σ̂ 2
(k) = σ 2 + OP ((m−1 logp)1/2).

2.4.2. Estimation of κ

The estimation of κ in (15) is much more involved. The key issue is to estimate the fourth order
moment E(Z4

i ). Unlike (22), we cannot simply use order statistics of the moving window sample

averages �i := m−1 ∑i+m−1
j=i X4

j , 1 ≤ i ≤ p − m + 1, to estimate E(Z4
i ), since the median or lower

quantile of E(�i) = E(Z4
i ) + m−1 ∑i+m−1

j=i (μ4
j + 6μ2

j σ
2 + 4μ3

jE(Z3
j )) is generally not E(Z4

i ) if

E(Z3
j ) �= 0. E(�i) can be greater or less than E(Z4

i ) depending on what μj , j = i, . . . , i + m − 1 and

E(Z3
j ) are. The reason is that the function E(μ + Zj )

4 may not be minimized at μ = 0. For example,

if Zj = Ej − 1 with Ej ∼ exp(1), then E(μ + Zj )
4 is minimized at μ ≈ −0.596072. To circumvent

the latter problem, we introduce

ν̂i = 1

m

i+m−1∑
j=i

(Xj − Xj−1)
4, 2 ≤ i ≤ p − m + 1, (24)

and ν = E(Z1 − Z0)
4 = 2κ2 + 8σ 4. Note that E(μ + Z1 − Z0)

4 is indeed minimized at μ = 0. The
above estimate resembles the first order difference based estimate; see [15]. However, the setting and
the motivation are quite different. Let ν̂(2) ≤ · · · ≤ ν̂(p−m+1) be the order statistics. Corollary 2.2 below
concerns asymptotics for ν̂(k). It is proved in the Supplementary Material. Then we can estimate κ2 by
κ̂2 = ν̂(k)/2 − 4σ̂ 4

(k). In practice, we can choose k = p′/2, which corresponds to the sample median.

By Theorems 2.4 and Corollary 2.2, we have κ̂2 = κ2 + OP (φp,m), where φp,m is a function of p and
m, given in the following corollary.

Corollary 2.2. Assume (3), Condition 2.5 and that Zi ∈ Lq , q > 4, p4/q = o(m) and m = o(p). Then
we have for any k ≤ p′/2 that

ν̂2
(k) = ν + OP (φp,m), where φp,m =

(
logp

m

)1/2

+ p4/q

m
. (25)

If Condition 2.3 holds, (logp)2 = o(m) and m = o(p), then ν̂2
(k) = ν + OP ((m−1 logp)1/2).

3. Test and estimation with multiple realizations

In Section 2, only one realization (Xj )
p

j=1 is available, under the assumption that the errors Zj are
i.i.d. When we have more than one realization, we will be able to detect clustered signals even if the
variances change along the sequence. The allowance of heteroscedasticity substantially expands the
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application of our methods. Let n(≥ 2)-realizations Yi = (Yi1, . . . , Yip)T be observed, i = 1, . . . , n,
with

Yij = μj + Zij , 1 ≤ j ≤ p, (26)

where Zij has mean 0, variance σ 2
j and independent across both i and j . We are interested in testing

(4) and (3). To this end, we propose a new test statistic and derive an omnibus test under the global null
hypothesis H0 in (2). Let μ̂j = n−1 ∑n

i=1 Yij .

3.1. One-sided Test

Given a window size k, define

R�
j =

∑j+k

l=j+1
√

nμ̂l

v
1/2
j

, where vj =
j+k∑

l=j+1

σ 2
l ,0 ≤ j ≤ p − k. (27)

Let (G�
j )0≤j≤p−k be a mean zero Gaussian vector which has the same covariance structure as

(R�
j )0≤j≤p−k . As a stochastic realization, we can let

G�
j = Wj

v
1/2
j

, where Wj =
j+k∑

l=j+1

σlηl, vj = E
(
W 2

j

)
and ηl

i.i.d.∼ N(0,1). (28)

Let σ = (σ1, . . . , σp). Then G�
j has marginal variance 1 and covariance matrix �(σ) =

(γj,j ′(σ ))0≤j,j ′≤p−k with γj,j ′(σ ) = v
−1/2
j v

−1/2
j ′ E(WjWj ′). Note that γj,j ′(σ ) = 0 if |j − j ′| ≥ k

and (Wj ) are (k − 1)-dependent. Let the coupled distance

�� = max
0≤j≤p−k

∣∣R�
j − G�

j

∣∣. (29)

Theorem 3.1 below concerns the Gaussian approximation in terms of the closeness of R�
j and G�

j

with various metrics. It is proved in the Supplementary Material. Relation (31) is a coupling statement
which provides a tail probability inequality for the maximum distance �� on some common probability
space, while (32) is for the distributional distance

ρ� := sup
u

∣∣∣P(
max

0≤j≤p−k
R�

j ≥ u
)

− P
(

max
0≤j≤p−k

G�
j ≥ u

)∣∣∣. (30)

We shall impose the following regularity condition.

Condition 3.1. Let θ > 2. Assume that there exist positive constants σ∗, σ ∗ and Kθ such that, for all
1 ≤ j ≤ p, σ∗ ≤ σj ≤ σ ∗, and E|Zij |θ ≤ Kθ

θ .

Theorem 3.1. Assume Condition 3.1 and μi = 0, 1 ≤ i ≤ p. (i) Let θ > 2. Then there exists a Gaussian
process (G�

j )0≤j≤p−k such that on a possibly larger probability space, for all u > 0,

P
[
(nk)1/2�� ≥ c0u

] ≤ npKθ
θ

uθσ θ∗
, (31)
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where c0 is a constant only depending on θ . (ii) Let θ > 3. Then the distributional distance

ρ∗ � (nk)−1/6(logp)7/6 + (
np/(nk)θ/2)1/(θ+1)

(logp)(3θ−2)/(2+2θ), (32)

where the constant in � only depends on θ , σ∗, σ ∗ and Kθ .

We emphasize that our theorem does not require n → ∞ and it is also applicable when n is finite. For
example, when n = 2 observations are available, if we choose the window size k be sufficiently large
such that p(logp)3θ/2−1 = o(kθ/2), then by (32) and elementary manipulations we still have ρ∗ → 0.
Under the slightly weaker condition p2/θ = o(k), R�

j and G�
j are uniformly close to each other in the

sense of maxk≤j≤p−k |R�
j − G�

j | = oP (1) in view of (31).

3.2. Calculating cutoff values

If the variances σ 2
j are known, given the level 0 < α < 1, we can choose the cutoff value u = u1−α

such that

P
(

max
0≤j≤p−k

G�
j ≥ u1−α

)
= α. (33)

The above can be done by Monte Carlo simulations. Assuming that p, n, k satisfy the relation
(np)2/θ (logp)3−2/θ = o(nk). Then the right-hand side of (32) goes to 0. By Theorem 3.1, the test
max0≤j≤p−k Rj > u1−α has the asymptotically correct size α.

3.2.1. Estimation of block sum variances

In general, however, the variances σ 2
j are not known. Since we have multiple realizations, we can

estimate them by the classical unbiased variance estimate

σ̂ 2
j = 1

n − 1

n∑
i=1

(Yij − μ̂j )
2. (34)

Correspondingly, our test statistic R�
j in (27) now becomes

R̂j =
∑j+k

l=j+1
√

nμ̂l

(
∑j+k

l=j+1 σ̂ 2
l )1/2

, 0 ≤ j ≤ p − k. (35)

At first glance, if n is small, σ̂ 2
j may deviate substantially from σ 2

j . For example, if n = 2, then σ̂ 2
j =

(Y1j − Y2j )
2/2, which may be quite different from σ 2

j . This difference might suggest that replacing

σ 2
l in Rj by σ̂ 2

l can be problematic. However, interestingly, under suitable conditions on p, k, n,

R�
j and R̂j can still be uniformly close. This can be intuitively explained by the fact that, in Rj , it

is the block sum variance vj = ∑j+k

l=j+1 σ 2
l that is directly involved, not just a single σ 2

l . The sum

v̂j = ∑j+k

l=j+1 σ̂ 2
l can still be a good estimate of vj , despite that individually the difference σ̂ 2

j − σ 2
j

can be big due to a small n. The convergence rate is given in the following Proposition 3.1. It implies
that, under Condition 3.1, if p = o(nθ/2−1kθ/2), then v̂j /vj is uniformly close to 1. It is proved in the
Supplementary Material.
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Proposition 3.1. Let Condition 3.1 be satisfied. If θ > 4, we have

P
(
n max

0≤j≤p−k
|v̂j − vj | > u

)
�

npKθ
θ

uθ/2
+ p

k
exp

(
−c3

u2

nkK4
4

)
, (36)

where the constant in � and c3 > 0 only depend on θ . If 2 < θ ≤ 4, then

P
(
n max

0≤j≤p−k
|v̂j − vj | > u

)
�

npKθ
θ

uθ/2
. (37)

Note that (36) of Proposition 3.1 implies that we have the uniform convergence rate

n max
0≤j≤p−k

|v̂j − vj | = OP

(
(np)2/θ + (nk)1/2 logp

)
.

Under Condition 3.1, kσ 2∗ ≤ vj ≤ k(σ ∗)2. Thus the term nmax0≤j≤p−k |v̂j − vj | in (36) can be re-
placed by the ratio normalized version nk max0≤j≤p−k |v̂j /vj − 1| so that (36) is still valid with
the constants in � and c3 therein depending on θ , σ∗ and σ ∗. By elementary calculations, if p =
o(nθ/2−1kθ/2), the ratios v̂j /vj are uniformly close to 1 in the sense that max0≤j≤p−k |v̂j /vj − 1| =
oP (1).

3.2.2. A bootstrap calibration procedure

To perform the test for H0 : μj ≡ 0 based on R̂j with σ 2
j replaced by their estimates σ̂ 2

j , we need to esti-
mate the corresponding cutoff value u1−α based on (33). Recall that �(σ) = (γj,j ′(σ ))k≤j,j ′≤p−k is the
covariance matrix for the vector (Zj )k≤j≤p−k . Write u1−α = qα(σ ) as a function of σ = (σ1, . . . , σp).
Write σ̂ = (σ̂1, . . . , σ̂p) and û1−α = qα(σ̂ ) which satisfies

P ∗( max
0≤j≤p−k

G∗
j ≥ û1−α

)
= α, (38)

where P ∗ is the probability measure given Y = (Y1, . . . , Yn) and, given σ̂ , (G∗
j )k≤j≤p−k is mean 0

Gaussian vector with covariance matrix �(σ̂ ). In particular, as (28), we can define

G∗
j = W ∗

j

v̂
1/2
j

, where W ∗
j =

j+k∑
l=j+1

σ̂lηl (39)

and ηl, l ∈ Z, are i.i.d. N(0,1) random variables that are independent of Y = (Y1, . . . , Yn). Given σ̂ ,
the cutoff value û1−α in (38) can also be computed by extensive simulations.

The following theorem shows the validity of the above plug-in method in the sense that the size of
our test is close to α. It is proved in the Supplementary Material.

Theorem 3.2. Let t1 = (logp)1/2(nk)−1/2, t2 = (pn(nk)−θ/2(logp)−2/3)1/(1/3+θ/2) and t∗ =
max(t1, t2). Recall (32) for ρ∗. Let 0 < α < 1. Then under Condition 3.1, we have∣∣∣P(

max
0≤j≤p−k

R̂j ≥ û1−α

)
− α

∣∣∣ � ρ∗ + t
1/3∗ (logp)2/3, (40)

where the constant in � only depends on σ∗, σ ∗, θ and Kθ . In particular, the right-hand side of (40) is
o(1) if pn(logp)3θ/2−1 = o((nk)θ/2).
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3.3. Estimating break-points based on one-sided test

Algorithm 3.1 shows estimating break-points based on the one-sided test. It uses R�
j assuming that σj ,

1 ≤ j ≤ p, are known. If not known, we shall use the estimates σ 2
j in (34). Same simulation assisted

γ and δ can be used as in the one realization one-sided test case. Theorem 3.3 provides theoretical
properties of the break-point estimates.

Algorithm 3.1. Step 1. Let L�
i = R�

i−k , i = k, . . . ,p − k and denote Q�
i = 1(R�

i > γ ) + 1(L�
i > γ )

for a pre-specified cutoff value γ . We use a majority vote approach to smooth Q�
i . Specifically, de-

note j�
0 = ∑j+k

i=j−k I {Q�
i = 0}, j�

1 = ∑j+k
i=j−k I {Q�

i = 1}, and j�
2 = ∑j+k

i=j−k I {Q�
i = 2}. Let Q̃�

j =
{k, such thatj�

k = maxl∈{0,1,2}j�
l }.

Step 2. Decompose {1, . . . , p} = W0 ∪ W1 ∪ W2, where i ∈ W0 if Q̃�
i = 0, i ∈ W1 if Q̃�

i = 1 and
i ∈ W2 if Q̃�

i = 2. Let M1, . . . ,Ml̂
be connected components of W1.

Step 3. Let R
�
j = ∑j+k

f =j+1
√

nμ̂f /
√

k and L
�
j = R

�
j−k . Given δ < γ , the break-points are defined as

τ̂i = argmaxj∈Mi
{R�

j : L�
j ≤ δ} if Mi is the transition region from W0 to W2. If Mi is the transition

region from W2 to W0, τ̂i = argmaxj∈Mi
{L�

j : R�
j ≤ δ}.

Differently from Algorithm 2.1, in Step 3 of Algorithm 3.1 we use R
�
j instead of R�

j in the argmax

function. The reason is for technical convenience: one has monotonicity E(R
�
j ) < E(R

�
i ) for τ1 −

k < j < i ≤ τ1, which tends to make the estimated break-point closer to τ1. In comparison E(R�
j ) is

generally not monotone, since the variances σ 2
j can be unequal.

Theorem 3.3. Assume Conditions 2.2, 2.5, Zij are σ 2-sub-Gaussian, and 2σγ ≤ d
√

nk. Let m =
�2k1/2δσn−1/2d−1�. Then

1 − P
[
l̂ = l,max

j≤l
|τ̂j − τj | ≤ m

]
� p

k
exp

(−c1γ
2) + l exp

(−c2δ
2), (41)

where the constant in � and c1, c2 > 0 are independent of k, d , n and p.

Theorem 3.3 is proved in the Supplementary Material. Assume that (logp)(log l) = o(n2d4) and
k satisfies (d2n)−1 logp = o(k) and k = o(nd2/ log l). Let γ = C1(logp)1/2, δ = C2(log l)1/2, where
C1,C2 > 0 are constants. Then the right hand side of (41) can be arbitrarily small by letting C1,
C2 sufficiently large. Theorem 3.3 implies that we can have exact recovery with probability P [l̂ =
l,maxj≤l |τ̂j − τj | = 0] → 1 since k1/2δn−1/2d−1 → 0.

3.4. Two-sided test: A U-statistic approach

In the one-realization case, we use (13) to test the two-sided alternative H1 of (3). If multiple realiza-
tions Yi = (Yi1, . . . , Yip)T , 1 ≤ i ≤ n, are available, we can use the U -statistic

Wj = 2

n(n − 1)

∑
1≤i<i′≤n

YijYi′j , (42)
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which is an unbiased estimate of μ2
j . This is different from (13) in that X2

j in the latter is not an unbiased

estimate of μ2
j . As an important consequence, we remark that unlike the two-sided test in Section 2.2,

here we do not need to use κ of form (15). Under H0, the variance of Wj is 2σ 4
j /(n(n − 1)). Define

Rj,4 = ((
n2 − n

)
/2

)1/2 Wj+1 + · · · + Wj+k

(σ 4
j+1 + · · · + σ 4

j+k)
1/2

. (43)

Let ηi, i ∈ Z, be i.i.d. N(0,1). Define the Gaussian process

Gj,4 = σ 2
j+1ηj+1 + · · · + σ 2

j+kηj+k

(σ 4
j+1 + · · · + σ 4

j+k)
1/2

. (44)

Theorem 3.4. Assume Condition 3.1 and μi = 0, 1 ≤ i ≤ p. Then the distributional distance

sup
u

∣∣∣P(
max

0≤j≤p−k
Rj,4 ≥ u

)
− P

(
max

0≤j≤p−k
Gj,4 ≥ u

)∣∣∣
� k−1/6(logp)7/6 + (

pk−θ/2)1/(θ+1)
(logp)(3θ−2)/(2+2θ). (45)

In Rj,4, the quantity σ 4
j is typically unknown. Here we shall propose an unbiased estimate. Note that

the natural estimate (σ̂ 2
j )2 with σ̂ 2

j given in (34) is not unbiased. Let

ω̂j = 1/4

n(n − 1)(n − 2)(n − 3)

∑
(Yij − Yi′j )

2(Yhj − Yh′j )
2, (46)

where the sum is over mutually different indexes i, i′, h,h′ ∈ {1, . . . , n}. Clearly E(ω̂j ) = σ 4
j . Similar

to (35), consider the realized version

R∗
j,4 = ((

n2 − n
)
/2

)1/2 Wj+1 + · · · + Wj+k

(ω̂j+1 + · · · + ω̂j+k)1/2
. (47)

To test H0 vs H1 in (3), we reject H0 at level α ∈ (0,1) if max0≤j≤p−k R∗
j,4 ≥ q1−α for some cutoff

value q1−α . As in (38), q1−α can be approximated by q̂1−α , which satisfies P ∗(max0≤j≤p−k G∗
j,4 ≥

q̂1−α) = α, where

G∗
j,4 = ω̂

1/2
j+1ηj+1 + · · · + ω̂

1/2
j+kηj+k

(ω̂j+1 + · · · + ω̂j+k)1/2
(48)

a Gaussian process conditioning on (Y1, . . . , Yn). As a slightly modified version, noting that for i.i.d.
N(0,1) random variables Z1, . . .Zn, the U -statistic 2

∑
1≤i<i′≤n ZiZi′ = (n2 − n)Z̄2

n − ∑n
i=1(Zi −

Z̄n)
2 is identically distributed as ζ = (n − 1)χ2

1 − χ2
n−1, where the χ2 random variables χ2

1 and χ2
n−1

are independent, we can use

G�
j,4 = ω̂

1/2
j+1ζj+1 + · · · + ω̂

1/2
j+kζj+k

(ω̂j+1 + · · · + ω̂j+k)1/2
, (49)

where ζi are independent and identically distributed as ζ/
√

2n(n − 1). If n is big, G�
j,4 gives a better

approximation.
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In the definition of ω̂j in (46), it involves a 4-fold summation with O(n4) computation complexity.
Interestingly, we can have the following expression which allows computing ω̂j within only O(n)

steps: elementary but tedious calculations show

ω̂j = (n − 1)(4Sj,3Sj,1 − nSj,4 − 3S2
j,2) + (nSj,2 − S2

j,1)
2

n(n − 1)(n − 2)(n − 3)
, where Sj,l =

n∑
i=1

Y l
ij . (50)

To compute Wj in (42), we use the well-known formula Wj = S2
j,1 − Sj,2/(n(n − 1)).

3.4.1. Estimating break-points based on two-sided test

Similar to Algorithm 2.2, we can adjust Algorithm 3.1 for locating break-points based on two-sided
test. Theorem 3.5 shows theoretical properties of Algorithm 3.2 and it is proved in the Supplementary
Material.

Algorithm 3.2. Step 1. Let Qj,4 = 1(Rj,4 > γ ) + 1(Lj,4 > γ ) for a pre-specified cutoff value
γ , j = k, . . . ,p − k. We use a majority vote approach to smooth Qj,4. Specifically, denote

l0 = ∑j+k
i=j−k I {Qj,4 = 0}, l1 = ∑j+k

i=j−k I {Qj,4 = 1}, and l2 = ∑j+k
i=j−k I {Qj,4 = 2}. Let Q̃j,4 =

{k, such thatlk = maxj∈{0,1,2}lj }.
Step 2. Decompose {1, . . . , p} = W0 ∪ W1 ∪ W2, where j ∈ W0 if Q̃j,4 = 0, j ∈ W1 if Q̃j,4 = 1 and

j ∈ W2 if Q̃j,4 = 2. Let M1, . . . ,Ml̂
be connected components of W1.

Step 3. Let R
‡
j = ((n2 − n)/2)1/2 ∑k

h=1 Wj+h/k
1/2 and L

‡
j = R

‡
j−k . Given δ, the break-points are

defined as τ̂f = argmaxj∈Mf
{R‡

j : Lj,4 ≤ δ} if Mf is the transition region from W0 to W2. If Mf is

the transition region from W2 to W0, τ̂f = argmaxj∈Mf
{L‡

j : Rj,4 ≤ δ}.

Theorem 3.5. Assume Condition 2.4 and Zij are σ 2-sub-Gaussian. Let γ = c1(logp)1/2, δ =
c2(log l)1/2, where c1, c2 > 0 are sufficiently large constants. Assume that (logp)1/2 = o(d2n

√
k).

Then there exists a constant c > 0 independent of n, k and p such that

P

[
l̂ = l,max

j≤l
|τ̂j − τj | ≤ ck1/2(log l)1/2

nd2

]
→ 1. (51)

4. Numerical studies

In this section, we present simulation studies, assess the finite sample performance of the proposed
methods and compare them with competing methods [2,13,37]. We look at one- and two-sided tests
with one realization in Section 4.1 and Section 4.2, respectively. One- and two-sided tests with more
realizations are presented in the Supplementary Material.

4.1. Simulation study 1

Consider the model Xi = μi + Zi , 1 ≤ i ≤ p. The number of tests are p = 600,2000 and 6000.
There are 2 break-points τ1 = 1 + 0.4p, τ2 = 0.6p, 1 signal cluster [τ1, τ2] and the configuration is
displayed in Table 1 and Figure 3. We compare it with the change point detection for epidemic alterna-
tive proposed in [37]. We simulate data with three different error terms: standard normal distribution,
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Table 1. Signal configuration for the one-sided test. seq 1: the linear sequence from 0.4 to 1.6; seq 2: the linear
sequence from 1.6 to 0.4. Segment means percentage of the sequence.

Segment 40 10 10 40
Signal 0 seq 1 seq 2 0

rescaled student t distribution with 6 degree of freedom (t (6)/1.50.5) and rescaled Laplace distribution
(LP(0,1)/20.5) so that their variances are all 1.

The sliding window length k = �p1/2� is used in the calculation of R◦
i = k−1 ∑i+k

j=i+1 Xj . We also

show results for other choices of k. In order to estimate the variance σ 2, we choose the tuning parameter
m = k. Let p′ = p − m + 1, σ̂ 2

i = m−1 ∑i+m−1
j=i X2

i , 1 ≤ i ≤ p′. Theoretically speaking, any statistics

σ̂ 2
(j) with j ≤ p′/2 are consistent and we use σ̂ 2

(�p′/2�) as the estimate.
We implemented algorithm 2.1. Thresholding values γ and δ are chosen as 0.95th quantile of

σ̂max0≤j≤p−kG
◦
j and and σ̂maxj∈W1G

◦
j , respectively, where G◦

j = ∑j+k

i=j+1 ηi/k, ηi, i ∈ Z, are i.i.d.
N(0,1) and W1 are the major connected components which include indices j such that Q◦

j = 1(R◦
j >

γ ) + 1(L◦
j > γ ) = 1.

In implementing [37], we use L1, the likelihood ratio statistic as an example for illustration. Similar
results can be obtained for other test statistics. Specifically,

L1 = max1≤i<j≤p

{
j∑

k=i+1

Xk − j − i

p

p∑
k=1

Xk − 1

2
δ0(j − i)

}
, (52)

where δ0 is the signal magnitude, which is assumed to be the same within a cluster in [37]. In our setup,
we take δ0 = 1, which is the average of signal magnitude within the cluster [τ1, τ2]. We identify the

region [Î , Ĵ ] as the epidemic alternative, where
∑Ĵ

k=Î+1
Xk − p−1(Ĵ − Î )

∑p

k=1 Xk − 1
2δ0(Ĵ − Î ) is

the obtained maximum value in (52). Note that the computational speed is quadratic with number of
tests p. Our evaluation criterion is the combined error rate (CER), which is the expected value of the
ratio of the number of falsely rejected hypotheses and falsely accepted hypotheses over total number
of tests, the estimated number of break points l̂ and the average difference between the estimated break
points and true break points. For the proposed method, we also look at false discovery rate (FDR),
which is the expected value of the ratio of false rejections over total rejections and the power, which is
the expected value of the the ratio of true rejections over total number of non-nulls.

Table 2 summarizes results based on 103 replications. We can see that across different error dis-
tributions, the variance estimate σ̂ 2 has a decent performance and, as expected from our asymptotic
theory, it is close to the true ones. The proposed method has smaller CER compared to method based

Figure 1. Signal configuration when p = 600.
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Table 2. Summary statistics for one-sided test with 1000 simulations. N(0,1): standard normal; t (6)/1.50.5:
rescaled student t distribution with df 6; LP(0,1)/20.5: rescaled Laplace distribution; k is the window size; CER
is computed based on the proposed method; CERY is based on [37]; l̂ is estimated number of break points based
on the proposed method; l̂Y is estimated number of change points based on [37]; Diff is the average distance
between estimated break points and true break points based on the proposed method; DiffY is the average distance
between estimated change points and true change points based on [37]; FDR is the expected value of the ratio of
false rejections over total rejections and Power is the expected value of the the ratio of true rejections over total
number of non-nulls

k σ̂ 2 CER CERY l̂ l̂Y Diff DiffY FDR Power

p = 600
N(0,1)

24 1.0533 0.0503 0.0538 2 2 15.35 16.63 0.0016 0.75
30 1.0665 0.0475 0.0508 2 2 14.30 15.68 0.0029 0.77
36 1.0605 0.0528 0.0492 2 2 15.85 15.24 0.0021 0.74

t (6)/1.50.5

24 1.0363 0.0489 0.0513 2 2 14.66 15.84 0.0015 0.76
30 1.0312 0.0511 0.0533 2 2 15.33 16.44 0.0019 0.75
36 1.0425 0.0554 0.0543 2 2 16.61 16.75 0.0020 0.73

LP(0,1)/20.5

24 1.0128 0.0517 0.0528 2 2 18.50 16.33 0.0033 0.74
30 1.0377 0.0532 0.0548 2 2 17.08 16.85 0.0051 0.74
36 1.0630 0.0528 0.0497 2 2 15.84 15.36 0.0010 0.74

p = 2000
N(0,1)

44 1.0469 0.0262 0.0495 2 2 29.54 50.05 0.0021 0.87
55 1.0535 0.0244 0.0514 2 2 25.96 51.90 0.0016 0.88
66 1.0420 0.0251 0.0499 2 2 25.15 50.36 0.0025 0.88

t (6)/1.50.5

44 1.0342 0.0279 0.0505 2 2 31.46 50.97 0.0015 0.86
55 1.0394 0.0248 0.0503 2 2 26.64 50.82 0.0019 0.88
66 1.0355 0.0265 0.0518 2 2 26.52 52.28 0.0032 0.87

LP(0,1)/20.5

44 1.0382 0.0278 0.0524 2 2 32.84 52.91 0.0006 0.86
55 1.0569 0.0228 0.0500 2 2 22.77 50.46 0.0018 0.89
66 1.0475 0.0111 0.0498 2 2 26.15 50.33 0.0017 0.87

p = 6000
N(0,1)

60 1.0433 0.0170 0.0495 2 2 51.51 148.85 0.0007 0.92
77 1.0396 0.0116 0.0489 2 2 40.67 147.34 0.0009 0.94

100 1.0395 0.0108 0.0509 2 2 32.34 153.22 0.0015 0.95

t (6)/1.50.5

60 1.0308 0.0168 0.0505 2 2 66.74 152.02 0.0008 0.92
77 1.0330 0.0127 0.0505 2 2 43.87 151.99 0.0014 0.94

100 1.0345 0.0103 0.0507 2 2 30.94 152.71 0.0011 0.95

LP(0,1)/20.5

60 1.0429 0.0181 0.0493 2 2 65.60 148.27 0.0004 0.91
77 1.0465 0.0136 0.0499 2 2 46.42 150.07 0.0009 0.93

100 1.0452 0.0111 0.0498 2 2 33.16 150.05 0.0014 0.95
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Table 3. BH procedure with Gaussian error term. The definition of FDR, Power and CER are the same as that in
Table 2

p FDRBH PowerBH CERBH

600 0.0435 0.0011 0.0724
6000 0.0433 0.0003 0.1101

on [37], especially with large number of tests. Both procedures correctly identified 2 break points. The
difference between estimated break points and true ones are smaller based on the proposed method
especially with large samples. Our results are robust to different error terms and the sliding window
length k. For different error distributions the respective values of CER are quite close, as expected from
our theoretical result.

Per the request of a referee, we implement the BH procedure [2] with Gaussian error term and
summarize the results in Table 3. The simulation set up is the same as that in Table 2. At FDR level
5%, we can see that the BH procedure always controls FDR but with low power for clustered signals.

We also conduct simulation studies to check the empirical type-I error rates under the global null
with Gaussian error term. The results are summarized in Table 4. At significance level 5%, the proposed
method has a similar type-I error rate to BH procedure under the global null as evidenced from Table 4.

4.2. Simulation study 2

In this section, we examine the two-sided test procedure. Data is generated through model (2.1). Let
p = 600,2000 and 6000. The signal configuration is summarized in Table 5. We look at the robustness
of our procedure with different error terms (N(0,1)/20.25, t (10)/(75/16)0.25 and LP(0,1)/200.25),
which are standardized to have κ = 1. Window size k = �p1/2� and m = �p1/2� are used for illustra-
tion. The calculation of σ̂ 2, γ and δ are the same as that in simulation study 1 except that κ̂ is used
instead of σ̂ and the calculation of κ̂ is through κ̂2 = ν̂(k)/2 − 4σ̂ 4

(k). We follow Algorithm 2.2 to im-

plement our method. As a comparison, results based on true values of σ 2 and κ are presented as well.
From Table 6, we can see that procedures using the estimated parameters and the true ones have a
comparable performance in terms of CER, FDR, power, estimated number of break points and the dif-
ference between estimated break points and true break points. This is consistent with our large sample
theory. The results are relatively robust across different error terms. As numbers of tests increase, CER
and FDR decrease and power and the difference between estimated break points and true break points
increase.

Table 4. Type-I error rates under the global null with Gaussian error term. FDR represents FDR based on the
proposed method and FDRBH represents FDR based on BH procedure

p k FDR FDRBH

600 36 0.0594 0.0495
6000 60 0.0396 0.0495
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Table 5. Signal configuration for the two-sided test. “−1 and 1 alternating”: μi is −1 if i is odd and 1 if i is even,
seq(0.5,1.5): a linear sequence from 0.5 to 1.5 and seq(1.5,0.5): a linear sequence from 1.5 to 0.5

Segment (%) 30 10 20 5 5 30
Signal strength 0 −1 and 1 alternating 0 seq(0.5,1.5) seq(1.5,0.5) 0

5. Applications to real data

We now apply our procedure to an array-based Comparative Genomic Hybridization (array CGH) data.
Array CGH is a powerful technology for measuring copy numbers at thousands of loci simultaneously.
The output of array CGH experiment is usually a long vector, spanning each chromosome, recording
the log2 ratios of the normalized probe intensities from the test samples vs. the reference samples.
These ratios of intensities are used to approximate the ratios of DNA copy numbers in the test samples
vs. the reference samples. A log2 ratio far from 0 (either positive or negative) indicates a possible DNA
copy number amplification or deletion for the probe. Identification of chromosomal alteration regions
will provide valuable information to elucidate disease etiology and to discover novel disease related
genes.

In the study conducted by [26], cDNA microarray CGH was profiled across 6691 mapped hu-
man genes in 44 breast tumor samples and 10 breast cancer cell lines. The raw data can be down-
loaded from the PNAS website (https://www.pnas.org/content/suppl/2002/09/23/162471999.DC1/
4719CopyNoDatasetLegend.html). We picked the breast cancer cell line BT474 as an example, and
applied our method to detect DNA copy number amplification. Details of one realization are in the
Supplementary Material and the results are presented in Table 7

For multiple realization analysis, we consider the one-sided test using cell line 1 in addi-
tion to BT474 for analysis. We compute μ̂i and σ̂ 2

i for i = 1, . . . , p, and test statistics R̂j =∑j+k−1
l=j

√
2μ̂l/(

∑j+k−1
l=k σ̂ 2

l )1/2, j = 1, . . . , p − k + 1. We use the same window length as in the

one realization case k = �p1/2� = 78, and compute Q�
j = 1(R�

j > γ ) + 1(L�
j > γ ) following al-

gorithm 3.1. Critical values γ = 3.8907 and δ = 1.0992 are obtained through the 0.95th quan-

Table 6. Summary statistics for two-sided test with 1000 simulations. Underscore e is based on estimated σ 2 and
κ , and underscore t is based on true σ 2 and κ

p CERe CERt FDRe FDRt Powere Powert l̂e l̂t Diffe Difft

N(0,1)/20.25

600 0.0822 0.0743 0.0207 0.0323 0.61 0.65 4 4 19.67 21.53
2000 0.0390 0.0354 0.0091 0.0142 0.81 0.84 4 4 19.47 19.81
6000 0.0223 0.0202 0.0048 0.0101 0.89 0.91 4 4 35.64 38.68

t (10)/(75/16)0.25

600 0.0817 0.0753 0.0266 0.0367 0.61 0.65 4 4 17.62 18.84
2000 0.0378 0.0339 0.0129 0.0203 0.82 0.85 4 4 36.37 30.40
6000 0.0208 0.0192 0.0073 0.0109 0.90 0.91 4 4 51.26 64.54

LP(0,1)/200.25

600 0.0758 0.0642 0.0217 0.0295 0.64 0.71 4 4 18.53 13.03
2000 0.0350 0.0327 0.0140 0.0173 0.84 0.85 4 4 35.70 41.91
6000 0.0199 0.0178 0.0078 0.0103 0.91 0.92 4 4 79.76 79.63

https://www.pnas.org/content/suppl/2002/09/23/162471999.DC1/4719CopyNoDatasetLegend.html
https://www.pnas.org/content/suppl/2002/09/23/162471999.DC1/4719CopyNoDatasetLegend.html
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Table 7. Results based on one sequence and multiple sequence with one-sided test

One realization Multiple realizations

Chromosome Beginning Ending Chromosome Beginning Ending
number loci loci number loci loci

11 68434309 81603744 11 46512342 81,603,744
14 16522721 106,822,024
15 17156123 18,891,425

17 28552955 82172608 17 28552955 42,040,770
20 43585793 66314778 20 44457372 66,314,778
21 12430025 15830914 21 12430025 15,889,676

Note: Chromosome 14 and 15 are connected as one cluster with very short segments in chromosome 15 with multiple realizations
analysis, chromosome 20 and 21 are connected as one cluster with both one realization and multiple realizations analysis.

tile of the empirical distribution of max1≤j≤p−k+1G
�
j and maxj∈W1G

�
j , respectively, where G�

j =∑j+k−1
l=j σ̂lηl/(

∑j+k−1
l=j σ̂ 2

l )1/2, j ∈ Z, ηj are i.i.d. N(0,1) random variables and W1 is the transition

region which includes indices j such that the smoothed Q̃�
j = 1.

The results are summarized in Table 7. We can see that four clustered regions are detected by the
multiple realizations analysis, three of which overlap with those detected by one realization analysis,
which shows that amplifications in these genome regions are shared among the two breast cancer
patients. The identified chromosomal amplification regions are implicated in the literature to harbor
genes associated with breast cancer [25]. In cancer studies, “passenger” mutations tend to occur more
or less randomly throughout the genome, and “driver” mutations tend to cluster and favor certain
genome positions containing functionally relevant genes. An important goal in the analysis of tumor
cell lines is to find the “driver” mutations, which play a functional role in driving tumor progression
[30]. Thus our analysis can suggest followup studies and intervention strategies. We choose to conduct
our data analysis at the genome level, rather than at the chromosome level because genome scale
analysis allows the detection of copy number aberrations involving entire chromosome arms, which
might be missed in chromosome-level analyses for which no actual changepoints exist.
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Supplement to “Testing and estimation for clustered signals” (DOI: 10.3150/21-BEJ1355SUPP;
.pdf). Supplementary material Section 1 provides proofs for some results in Sections 2 and 3. Supple-
mentary material Section 2 presents some additional simulation studies and real data analysis
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