
Limitations of the Impagliazzo–Nisan–Wigderson Pseudorandom

Generator against Permutation Branching Programs

Edward Pyne∗

Harvard University
epyne@college.harvard.edu

Salil Vadhan†

Harvard University
salil_vadhan@harvard.edu

July 22, 2021

Abstract

The classic Impagliazzo–Nisan–Wigderson (INW) psesudorandom generator (PRG) (STOC ‘94) for
space-bounded computation uses a seed of length O(log n·log(nwd/ε)) to fool ordered branching programs
of length n, width w, and alphabet size d to within error ε. A series of works have shown that the analysis
of the INW generator can be improved for the class of permutation branching programs or the more
general regular branching programs, improving the O(log2 n) dependence on the length n to O(log n) or
Õ(log n). However, when also considering the dependence on the other parameters, these analyses still
fall short of the optimal PRG seed length O(log(nwd/ε)).

In this paper, we prove that any “spectral analysis” of the INW generator requires seed length

Ω (log n · log log(min{n, d}) + log n · log(w/ε) + log d)

to fool ordered permutation branching programs of length n, width w, and alphabet size d to within
error ε. By “spectral analysis” we mean an analysis of the INW generator that relies only on the
spectral expansion of the graphs used to construct the generator; this encompasses all prior analyses
of the INW generator. Our lower bound matches the upper bound of Braverman–Rao–Raz–Yehudayoff
(FOCS 2010, SICOMP 2014) for regular branching programs of alphabet size d = 2 except for a gap
between their O(log n · log log n) term and our O(log n · log log min{n, d}) term. It also matches the upper
bounds of Koucký–Nimbhorkar–Pudlák (STOC 2011), De (CCC 2011), and Steinke (ECCC 2012) for
constant-width (w = O(1)) permutation branching programs of alphabet size d = 2 to within a constant
factor.

To fool permutation branching programs in the stronger measure of spectral norm, we prove that any
spectral analysis of the INW generator requires a seed of length Ω(log n · log log n+log n · log(1/ε)+log d)
when the width is at least polynomial in n (w = nΩ(1)), matching the recent upper bound of Hoza–Pyne–
Vadhan (ITCS ‘21) to within a constant factor.

Keywords: pseudorandomness, space-bounded computation, spectral graph theory

∗Supported by NSF grant CCF-1763299.
†Supported by NSF grant CCF-1763299 and a Simons Investigator Award.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 108 (2021)

1 Introduction

Starting with the work of Babai, Nisan, and Szegedy [BNS92], there has been three decades of work of con-
structing and analyzing pseudorandom generators for space-bounded computation, motivated by obtaining
unconditional derandomization (e.g. seeking to prove that BPL=L) and a variety of other applications (e.g.
[Ind06, Siv02, HVV06, HHR11]). Although we still remain quite far from having pseudorandom generators
that suffice for a full derandomization of space-bounded computation, there has been substantial progress
on pseudorandom generators for restricted models of space-bounded computation. In particular, a series of
works have shown that the analysis of the classic Impagliazzo–Nisan–Wigderson (INW) generator [INW94]
can be significantly improved for restricted models (e.g. “permutation branching programs”), but these
analyses have not matched the parameters of an optimal pseudorandom generator. In this work, we show
that there are inherent limitations to the analysis of the INW generator for these restricted models, proving
lower bounds that nearly match the known upper bounds.

1.1 Pseudorandom Generators for Space-Bounded Computation

Like previous work, we will work with the following nonuniform model of space-bounded computation.

Definition 1.1. An ordered branching program (OBP) B of length n, width w and alphabet size
d computes a function B : [w] × [d]n → [w]. On an input σ ∈ [d]n, the branching program computes as
follows. It starts at a fixed start state v0 ∈ [w]. Then for t = 1, . . . , n, it reads the next symbol σt and
updates its state according to a transition function Bt : [w] × [d] → [w] by taking vt = Bt(vt−1, σt). Note
that the transition function Bt can differ at each time step.

Moreover, there is a set of accept states Ve ⊆ [w]. Let u be the final state of the branching program on
input σ. If u ∈ Ve the branching program accepts, denoted B(σ) = 1, and otherwise the program rejects,
denoted B(σ) = 0.

An ordered branching program can be viewed as a layered digraph, consisting of (n + 1) layers of w
vertices each, where for every t = 1, . . . , n and v ∈ [w], the v’th vertex in layer t − 1 has d outgoing edges,
going to the vertices Bt(v, 1), Bt(v, 2), . . . , Bt(v, d) ∈ [w] in layer t.

An ordered branching program corresponds to a streaming algorithm, in that the n input symbols from [d]
are each read only once, and in a fixed order. This is the relevant model for derandomization of space-bounded
computation because a randomized space-bounded algorithm processes its random bits in a streaming fashion.
Specifically, if on an input x, a randomized algorithm A uses space s and n random bits σ, the function
Bx(σ) = A(x;σ) can be computed by an ordered branching program of length n, width w = 2s and alphabet
size 2. In particular, if A is a randomized logspace algorithm (i.e. a BPL algorithm), then n = w = poly(|x|).

The standard definition of pseudorandom generator is as follows.

Definition 1.2. Let F be a class of functions f : [d]n → {0, 1}. An ε-pseudorandom generator (ε-PRG)
for F is a function GEN : {0, 1}s → [d]n such that for every f ∈ F ,∣∣∣∣ E

x←U[d]n

[f(x)]− E
x←U{0,1}s

[f(GEN(x))]

∣∣∣∣ ≤ ε,
where US is the uniform distribution over the set S. The value s is the seed length of the PRG. We say
a generator GEN is explicit if the ith symbol of output is computable in space O(s). We say that GEN
ε-fools F if it is an ε-PRG for F .

By the Probabilistic Method, it can be shown that there exist (non-explicit) ε-PRGs for the class of
ordered branching programs of length n, width w, and alphabet size d with seed length s = O(log(nwd/ε)),
and it can be shown that this is optimal up to a constant factor (provided that 2n ≥ w, n, d, w ≥ 2, d is
even, and ε ≤ 1/3). We include these bounds for completeness in Appendix C. An explicit construction with
such a seed length (even for d = 2 and ε = 1/3) would suffice to fully derandomize logspace computation
(i.e. prove BPL=L).

The classic constructions of Nisan [Nis92] and Impagliazzo, Nisan, and Wigderson [INW94] give explicit
PRGs with seed length s = O(log n · log(nwd/ε)). For the case corresponding to derandomizing general

1

logspace computation, where d and ε are constant and w is polynomially related to n, we have s = O(log2 n),
quadratically worse than the optimal seed length of s = O(log n). Brody and Verbin [BV10] showed that
these classic pseudorandom generators require seed length Ω(log2 n) even for width w = 3. Meka, Reingold,
and Tal [MRT19] recently gave a completely different explicit construction of pseudorandom generator for
width w = 3 with seed length s = Õ(log n · log(1/ε))), but for width w = 4 no explicit constructions with
seed length o(log2 n) are known.

1.2 Permutation Branching Programs

Motivated by the lack of progress on the general ordered branching program model, there has been extensive
research on restricted models:

Definition 1.3. An (ordered) regular branching program of length n, width w, and alphabet size d
is an ordered branching program where the associated layered digraph consists of regular bipartite graphs
between every pair of consecutive layers. Equivalently, for every t = 1, . . . , n and every v ∈ [w], there are
exactly d pairs (u, σ) ∈ [w]× [d] such that Bt(u, σ) = v.

Definition 1.4. An (ordered) permutation branching program of length n, width w, and alphabet
size d is an ordered branching program where for all t ∈ [n] and σ ∈ [d], Bt(·, σ) is a permutation on [w].

Every ordered permutation branching program is a regular branching program, but not conversely.
A series of works has shown that the Impagliazzo–Nisan–Wigderson (INW) pseudorandom generator can

be instantiated with smaller seed length for regular or permutation branching programs. First, Rozenman
and Vadhan [RV05] analyzed the INW generator for carrying out random walks on d-regular w-vertex graphs,
which correspond to regular branching programs in which all of the transition functions Bt are the same.
They showed that if the graph is consistently labelled (equivalently, that we have a permutation branching
program), then a seed length of s = O(log(nwd/ε)) suffices for the random walk to get within distance ε of
the uniform distribution on vertices, provided that the length n of the pseudorandom walk is polynomially
larger than the mixing time of a truly random walk. (This “pseudo-mixing” property is nonstandard but
has applications, including giving a simpler proof of Reingold’s Theorem that Undirected Connectivity is in
deterministic logspace [Rei08] and the construction of almost k-wise independent permutations [KNR05].)

Next, Braverman, Rao, Raz, Yehudayoff [BRRY10] analyzed the INW generator for regular branching
programs of alphabet size d = 2, and achieved seed length s = O(log n · log log n+ log n · log(w/ε)), thereby
improving the dependence on the length n from O(log2 n) to Õ(log n) for the standard pseudorandomness
property. For the case of permutation branching programs of constant width w = O(1) and alphabet size d =
2, Koucký and Nimbhorkar and Pudlák [KNP11] further improved the seed length to s = Ow(log n·log(1/ε)).
The hidden constant in the Ow(.) depended exponentially on the width w, but was subsequently improved
to a polynomial by De [De11] and Steinke [Ste12].

Recently, Hoza, Pyne, and Vadhan [HPV21] turned their attention to permutation branching programs
of unbounded width, and showed that the INW generator fools such programs in “spectral norm” with seed
length s = O(log n · log log n+ log n · log(1/ε) + log d). Here, fooling in spectral norm means that the w×w
matrix of probabilities of going from each initial state to each final state under the generator has distance
at most ε in spectral norm from the same matrix under truly random inputs. ε-fooling in spectral norm
can be shown to imply the standard notion of pseudorandomness for programs with a single accept state.
Surprisingly, the seed length of [HPV21] even beats the Probabilistic Method; indeed they show that a
random function requires seed length Ω(n) to fool permutation branching programs of unbounded width and
a single accept vertex with high probability.

We summarize the aforementioned analyses of the INW generator in Table 1. Let us elaborate on how
all of these results are instantations of the INW generator. Specifically, the INW generator can be viewed
as a template for a recursive construction of a PRG, where a PRG INWi−1 generating ni−1 = 2i−1 output
symbols is used to construct a PRG INWi generating ni = 2i output symbols, by running INWi−1 twice on
a pair of correlated seeds. The pair of seeds are chosen according to a random edge in an auxiliary expander
graph Hi:

INWi(e) = INWi−1(x) · INWi−1(y) for each edge e = (x, y) of Hi, (1)

2

Model Seed Length Pseudorandomness Reference
General O(log n · log(nwd/ε)) standard [INW94]

Perm., same trans. O(log(nwd/ε)) pseudo-mixing [RV05]
Regular, d = 2 O(log n · log log n+ log n · log(w/ε)) standard [BRRY10]

Permutation, d = 2 Ow(log n · log(1/ε)) standard [KNP11,De11,Ste12]
Permutation O(log n · log log n+ log n · log(1/ε) + log d) spectral [HPV21]

Table 1: Spectral Analyses of the INW Generator

where · denotes concatenation. Thus different choices of the sequence of graphs H1, H2, . . . ,Hlogn yield
different instantiations of the INW generator. In all of the aforementioned works,1 the pseudorandomness
property of the generator is proven using only the spectral expansion properties of the graphs Hi, namely
requiring that all of the nontrivial normalized eigenvalues of Hi have absolute value at most some value λi for
i = 1, . . . , log n. We call such an analysis a spectral analysis of the INW generator. Given a spectral analysis of
the INW generator, the degrees of the expanders Hi are then determined by the optimal relationship between
expansion and degree di = poly(1/λi), which in turn determines the seed length of the final generator, namely

s = Θ (log (d · d1 · d2 · · · dlogn)) = Ω

(
log d+

logn∑
i=1

log(1/λi)

)
. (2)

1.3 Our Results

Given the improved analyses of the INW generator described in Table 1, it is natural to wonder how much
further these analyses can be pushed. In particular, can the INW generator ε-fool permutation branching
programs of length n, width w, and alphabet size d with seed length matching the optimal seed length of
O(log(nwd/ε))? Our main result is that the answer is no:

Theorem 1.5 (informally stated). Any spectral analysis of the INW generator for ε-fooling permutation
branching programs of length n, width w, and alphabet size d requires seed length

s = Ω (log n · log log(min{n, d}) + log n · log(w/ε) + log d) .

Notice that this lower bound nearly matches the upper bounds in Table 1. In particular, we match
the upper bound of [BRRY10] for regular branching programs, except that we get a log n · log log n term
only when d = nΩ(1) while they have such a term even when d = 2. We also match the upper bounds
of [KNP11, De11, Ste12] for permutation branching programs of alphabet size d = 2 and constant width
w = O(1).

For fooling with respect to spectral norm, we can get a lower bound of log n·log log n whenever w = nΩ(1),
in particular matching the result of [HPV21] for unbounded-width permutation branching programs:

Theorem 1.6 (informally stated). For ε-fooling in spectral norm, any spectral analysis of the INW generator
for permutation branching programs of length n, width w, and alphabet size d requires seed length

s = Ω (log n · log log(min{n,w}) + log n · log(1/ε) + log d) .

While our theorems are quite close to the upper bounds, they leave a few regimes where a spectral
analysis of the INW generator could potentially yield an improved seed length. In particular, a couple of
open questions stand out regarding the log n · log log n in terms in the bounds:

• Can we achieve seed length O(log n · log(w/ε)) for permutation (or even regular) branching programs
of alphabet size d = 2? When the alphabet size is d = 2, the log log(min{n, d}) term disappears in
Theorem 1.5. However, the upper bound of [BRRY10] for regular branching programs still has an
O(log n · log log n) term, and the upper bounds of [KNP11, De11, Ste12] only achieve a polynomial
dependence on the width w.

1Braverman et al. [BRRY10] analyze the INW generator constructed with randomness extractors [NZ96], but the extractor
parameters they use follow from spectral expansion properties of the underlying graphs [GW97].

3

• Can we achieve seed length O(log n · log(1/ε)) for permutation branching programs with a single accept
vertex, alphabet size d = 2, and width w = n (or even unbounded width)? The best upper bound
for this model is [HPV21], which has a additional O(log n · log log n) term. This term is necessary
for fooling in spectral-norm by Theorem 1.6 but may not be necessary for the easier task of fooling
programs with a single accept vertex.

A second opportunity for improvement is to go beyond spectral analysis of the INW generator, and exploit
graphs Hi with additional properties. To indicate that there is some hope for this, we include an observation
showing that there exists an instantiation of the INW generator that achieves optimal seed length, even
against more general ordered branching programs:

Theorem 1.7. For all n,w, d ∈ N and ε > 0, there exists a sequence of graphs H such that the INW generator
constructed with this sequence ε-fools ordered branching programs of length n, width w and alphabet size d
and has seed length O(log(nwd/ε)).

This is an application of the Probabilistic Method, and so does not give an explicit PRG.
Our lower bounds also say nothing about constructions that deviate from the template of the INW

generator, and better seed lengths can potentially be obtained by modifying the INW generator or using
it as a tool in more involved constructions. Examples include the pseudorandom generator for width 3
ordered branching programs [MRT19], which combines the INW generator with pseudorandom restrictions,
and [BCG18, CL20, CDR+21, PV21, Hoz21], which construct “weighted pseudorandom generators” with a
better dependence on the error by taking linear combinations of the INW generator (or blends of the Nisan
and INW generator).

1.4 Techniques

Theorem 1.5 is really three separate lower bounds, which we state as separate theorems here to discuss the
proof ideas separately. (The lower bound of s = Ω(log d) is very simple, and we include it for completeness
in Appendix C.)

Theorem 1.8 (informally stated). Any spectral analysis of the INW generator for (1 − 1/wΩ(1))-fooling
permutation branching programs of length n, width w, and alphabet size d = 2 requires seed length s =
Ω(log n · logw).

Note that the lower bound holds for a very large error parameter, namely ε = 1 − 1/wΩ(1). In fact,
it holds even for obtaining a hitting-set generator, where we Definition 1.2 is relaxed to only require that
Ex←U[d]n

[f(x)] > ε implies that Ex←U{0,1}s [f(GEN(x))] > 0.
To prove this Theorem 1.8, we show that most of the λi’s parameterizing the INW generator must have

λi < 1/wΩ(1), which implies the seed-length lower bound by Equation (2). If that is not the case for some
value of i, we construct an auxiliary graph Hi to use in the INW generator (with λ(Hi) ≤ λi) such that a
permutation branching program only needs width poly(1/λi) ≤ w in order to perfectly distinguish a random
edge in Hi from a pair of vertices in Hi that are disconnected. Specifically, we can take Hi to be an expander
with degree ci = poly(1/λi) and c2i vertices. To be able to use such a graph in most levels in the INW
generator, we may need to pad the number of vertices to a value larger than ci. We do this by taking a
tensor product with a complete graph, which retains both the expansion of Hi and the ability of a width
w permutation branching program to distinguish edges and non-edges. We use complete graphs (with an
appropriate edge labelling) for the remaining graphs Hj in the INW generator, and argue a permutation
branching program of width w can still distinguish the output from uniform.

Theorem 1.9 (informally stated). Any spectral analysis of the INW generator for ε-fooling permutation
branching programs of length n, width w = 2, and alphabet size d = 2 requires seed length s = Ω(log n ·
log(1/ε)).

To prove Theorem 1.9 we use a construction from [RV05] used to show that the tightness of their analysis
of the “derandomized square” operation on graphs. (Composing the INW generator with a permutation
branching programs amounts to performing log n iterated derandomized square operations on the graph of
the branching program.) Specifically, in order to show that each λi satisfies λi = O(ε), we consider a graph

4

Hi that has a self-loop probability of λi but has λ(Hi) ≤ λi. When the self-loop is taken, it means that
two consecutive subsequences of the output of the INW generator of length 2i−1 are equal to each other, by
Equation (1). Thus the permutation branching program of width 2 that computes the parity of the input
bits on the union of those two subsequences will distinguish the output of the INW generator from uniform
with advantage Ω(λi).

Theorem 1.10 (informally stated). Any spectral analysis of the INW generator for .1-fooling permuta-
tion branching programs of length n, width w = 2, and alphabet size d requires seed length s = Ω(log n ·
log log(min{n, d})).

To prove Theorem 1.10, we want to show that most of the λi’s must satisfy λi ≤ O(1/ log n), where

we assume without loss of generality that d = n. It suffices to prove that
∑logn
i=1 λi ≤ O(1). To do this,

we again consider graphs Hi that have a self-loop probability of λi, but rather than considering only one
such graph, we use all of them in the INW generator. Intuitively, we want to show that the errors of Ω(λi)
accumulate to lead to an overall error of Ω(

∑
i λi) > ε. We consider a permutation branching program

that corresponds to a random walk on a graph G with w = 2 vertices that has a self-loop probability of
1 − 1/d = 1 − 1/n. A truly random walk of length n on G will end at its start vertex with probability at
most 1− n · (1/n) · (1− 1/n)n−1 < .64. We show that a pseudorandom walk using the INW generator with
the graphs Hi will end at its start vertex with probability at least .75. Specifically, we choose our edge and
vertex labellings carefully so that the self-loops in the graphs Hi cause random walks to backtrack with a
high constant probability, so that it is as if we are typically doing random walks on G of length at most n/4.

Turning to Theorem 1.11, the only part of the lower bound that does not follow from the same arguments
as above is the following:

Theorem 1.11 (informally stated). For 1/3-fooling in spectral norm, any spectral analysis of the INW
generator for permutation branching programs of length n, width w, and alphabet size d = 2 requires seed
length s = Ω(log n · log log(min{n,w})).

The proof of Theorem 1.11 is similar to that of Theorem 1.10, but instead of considering random walks
on a 2-vertex graph G with large degree d, we use an graph G of degree 2 and a large number of vertices.
Specifically we take G to be the undirected cycle on w = Θ(

√
n) vertices. The key point is that the truly

random walk on the cycle mixes in n = Θ(w2) steps in spectral norm. So a truly random walk of length
n will differ from complete mixing by at most, say 1/3, in spectral norm, but due to backtracking, the
pseudorandom walks using the INW generator will differ from complete mixing by at least 2/3 in spectral
norm.

1.5 Organization

In Section 2, we introduce formal definitions and give our general recipe for proving lower bounds. In
Section 3, we prove Theorem 1.9, our lower bound in terms of the error of the pseudorandom generator. In
Section 4, we show how the error incurred in different levels of the INW generator can accumulate, leading
to Theorems 1.10 and Theorem 1.11. In Section 5, we prove Theorem 1.8, our lower bound in terms of
the width. In Appendix A, we observe that this lower-bound technique gives stronger results for fooling
general (e.g. non-regular) ordered branching programs, and in particular recovers the analysis of Brody and
Verbin for bounds against width-3 OBPs. In Appendix B, we prove Theorem 1.7, establishing the existence
of graphs enabling the INW generator to achieve optimal seed length.

2 Structure Of Lower Bounds

We now give the general approach to proving our lower bounds. To define spectral analysis, we introduce
notation related to labeled graphs and distributions.

Definition 2.1 (One-Way Labeling [RV05]). A one-way labeling of a d-regular directed (multi)graph G
assigns a label in [d] to each edge (u, v) such that for every vertex u, the labels of the outgoing edges of
u are distinct. For G with a one-way labeling, let G[u, i] denote the vertex v such that (u, v) is labeled i.

5

Furthermore, for ȳ = (y1, . . . , yk) ∈ [d]k let Gk[x, ȳ] be the vertex obtained from following the sequence of
edge labels ȳ, i.e. Gk[x, ȳ] = G[G[. . . G[x, y1], . . . , yk−1], yk].

For example, for all w ∈ N, let Jw be the complete graph on w vertices with the one-way labeling
Jw[x, y] = y for all x, y ∈ [w]. We occasionally write J∗ where the size of the graph is obvious from context.
For the remainder of the paper all graphs have one-way labelings. All logs are base-2, and [T] = {0, . . . , T−1}
for all T ∈ N. In addition, we work with the random walk matrices of graphs, and the distribution induced
by taking walks on graphs according to the output of a PRG.

Definition 2.2. For a d-regular labeled graph G on w vertices, let WG[y] ∈ {0, 1}w×w be the matrix where
entry (u, v) is 1 if and only if G[u, y] = v. Furthermore, we can define the random walk matrix of G as
WG = E[WG[U[d]]]. Furthermore, for a function GEN : [S]→ [d]k, define

WGk ◦GEN = E[WGk [GEN(U[S])]].

Note that with this notation, WGk = (WG)k for every k.

Definition 2.3. For a d-regular digraph G on w vertices, define the spectral expansion of G as λ(G) =
maxx:x⊥1 ‖xWG‖2/‖x‖2.

We now formally define the INW PRG.

Definition 2.4. Given d0 ∈ N and a set of graphsH = (H1, . . . ,H`) where deg(Hi) = di and |Hi| =
∏i−1
j=0 dj ,

the INW generator constructed with H, denoted INWH or INW` when the family is clear, is the

function INWH : [d0] × · · · × [d`] → [d0]2
`

defined recursively where for x ∈ [d0] we have INW0(x) = x and
for (x, y) ∈ ([d0]× · · · × [di], [di+1]) we have

INWi+1(x, y) = (INWi(x), INWi(Hi+1[x, y])).

The seed length of INWH is thus
⌈
log
(∏`

i=0 di

)⌉
.

We then define an analysis of the INW PRG that only “knows about” the spectral gap of the auxiliary
graphs. For the remainder of the paper (with the exception of Appendix B) we assume all auxiliary graphs
H are undirected, so we can assume WH has a basis of eigenvalues.

Definition 2.5. For d0 ∈ N and λ1, . . . , λ` ≥ 0, let INW(d0, λ1, . . . , λ`) be the set of INW PRGs GEN :

[S]→ [d0]2
`

constructed with auxilliary undirected regular graphs H1, . . . ,H` where λ(Hi) ≤ λi for all i. We
say INW(d0, λ1, . . . , λ`) ε-fools a class of functions F if every GEN ∈ INW(d0, λ1, . . . , λ`) ε-fools every f ∈ F .
Furthermore, define sINW(d0, λ1, . . . , λ`) as the minimal seed length of all PRGs in INW(d0, λ1, . . . , λ`). We
call the set (λ1, . . . , λ`) a constraint, and say a family of graphs (H1, . . . ,H`) satisfies the constraint if
λ(Hi) ≤ λi for all i.

Given a family of INW PRGs, we can derive a lower bound on the seed length via the relation between
degree and maximum expansion, as given by the following standard fact.

Proposition 2.6 (see e.g. Trevisan). Let G be an undirected d-regular graph on V vertices. Then

λ(G) ≥ 1√
d

√
V − d
V − 1

.

In particular d ≥ min{2/λ(G)2, (V + 1)/2}.

That is, the degree must be at least polynomially related to 1/λ(G) (as assumed in the seed-length
calculation in Equation (2)), unless d is very close to the number of vertices. To deal with the latter case in
our seed-length lower bounds, we will remove the terms corresponding to λi’s where the 2/λ(G)2 > (V +1)/2,
yielding the following:

6

https://lucatrevisan.wordpress.com/2014/09/01/the-alon-boppana-theorem-2/

Lemma 2.7. Given INW(d0, λ1, . . . , λ`) where λi ≥ 1/2t for all i, there is a set S ⊆ {1, . . . , `} with
|S| ≤ 2 log(`t) such that

sINW(d0, λ1, . . . , λ`) = Ω

 ∑
i∈{1,...,`}\S

log(1/λi)

 .

Proof. Recall that sINW(d0, λ1, . . . , λ`) = dlog d0 ·mpe, where mp is the minimum product of degrees over
all sets of auxiliary graphs H1, . . . ,H` with the required spectral expansion. Let H1, . . . ,H` be the family
of undirected regular graphs with minimal product of degrees over all families satisfying the constraint.
We claim without loss of generality at most 2 log(`t) such graphs are dense, in that they satisfy 2/λ(Hi)

2 >

(|Hi|+1)/2. Otherwise since |H1| ≥ 2 and |Hi| = d0 ·
∏i
j=1 deg(Hj) the seed length is trivially (3/2)2 log(`t) =

Ω(` · t) which already exceeds the lower bound. For all graphs Hi where this does not hold, we have
deg(Hi) ≥ 2/λ(Hi)

2 ≥ 2/λ2
i by Proposition 2.6. Then taking Sc to be the indices of these graphs, we have

mp ≥
∏
i∈Sc

deg(Hi) ≥
∏
i∈Sc

1

λ2
i

and so we bound sINW(d0, λ1, . . . , λ`) = dlog d0 ·mpe as desired.

3 Dependence on Error

In this section, we prove Theorem 1.9, establishing a lower bound on the seed length as a function of the
error of the generator.

Theorem 3.1 (Formal Statement of Theorem 1.9). For every n = 2` and ε ≥ 2−n
.1

and λ1, . . . , λ` ≥ 0, if
INW(2, λ1, . . . , λ`) ε-fools ordered permutation branching programs of length n, width 2, and alphabet size 2,
then sINW(2, λ1, . . . , λ`) = Ω(log n · log(1/ε)).

This follows as a consequence of the main lemma, which shows that constructing an ε-biased space using
the spectral INW generator requires constraining all spectral gaps to be O(1/ε).

Lemma 3.2. For all ε > 0, for every constraint (λ1, . . . , λ`) where there is r such that λr > 2ε, there is a
family of auxilliary graphs H = (H1, . . . ,H`) where λ(Hi) ≤ λi and a alphabet size 2, width 2, length n = 2`

permutation branching program B such that INWH fails to ε-fool B.

To prove the lemma, we define convex combinations of graphs on the same vertex set.

Definition 3.3. For G,G′ arbitrary d-regular graphs on n vertices, and λ = a/b ∈ Q ∩ [0, 1], let H =
λG+ (1− λ)G′ be the d · b-regular directed graph on n vertices where for x ∈ [n] and (y, c) ∈ [d]× [b]:

H[x, (y, c)] =

{
G[x, y] c < a

G′[x, y] c ≥ a

We remark that with this definition, WH = λWG+(1−λ)WG′ . We implicitly extend this to convex combi-
nations of graphs with non-equal degrees d, d′ by duplicating edges so both graphs have degree LCM(d, d′).

We can then construct a bad family of graphs and a distinguisher.

Proof of Lemma 3.2. Take µ = 2ε and K = 22r−1

and define

H = µIK + (1− µ)JK

where IK is the 1-regular graph on K vertices with a self-loop on each vertex. Then define the family
H = (J2, . . . , J22r−1 , H, J∗, . . . , J∗). It is clear H satisfies the constraint.

Now let B be the length n, width 2, alphabet size 2 permutation branching program where

B(σ) =
2r⊕
i=1

σi.

7

Is is clear that Pr[B(U{0,1}n) = 1] = 1/2. Furthermore, for every seed σ = (x, u, ∗) we have

INWH(σ)1..2r = INWr((x, u)) = (INWr−1(x), INWr−1(H[x, u])).

From our definition of H, with probability 1 − µ over the random seed σ the first 2r bits output are (x, y)
where (x, y) is distributed uniformly over {0, 1}2r

, and with probability µ the first 2r bits of output are
(x, x), which has parity zero for all x. Therefore letting [S] be the seed length of INWH,

Pr[B(INWH(U[S])) = 1] ≥ 1

2
(1− µ) + 1µ > 1/2 + ε

so INWH fails to ε-fool B.

We can then prove Theorem 3.1 by combining Lemma 3.2 and Lemma 2.7.

Proof of Theorem 3.1. Applying Lemma 3.2, every family INW(2, λ1, . . . , λ`) that ε-fools length n, width w,
alphabet size 2 permutation branching programs has λi < 2ε for all i, so we obtain sINW(d0, λ1, . . . , λ`) =
Ω(log(1/ε)(log(n)−2 log log(n/ε))) via Lemma 2.7, which simplifies to Ω(log n·log(1/ε)) with the assumption

ε ≥ 2−n
.1

.

4 Accumulation of Error

In this section, we prove the lower bounds on seed length Ω(log n·log log min{n, d}) and Ω(log n·log log min{n,w})
from Theorems 1.5 and 1.6, respectively. As discussed in the introduction, in both of these lower bounds,
we wish to show that that the error Ω(λi) demonstrated in Section 3 actually accumulates to give an error
of ε = Ω(

∑
i λi), which will imply that most of the λi’s are O(1/ log n) and hence we require seed length

Ω(log n · log log n). For the standard notion of pseudorandomness, we will be able to argue this when the
alphabet size of the branching programs is polynomially related to n, and for fooling in spectral norm, we
will be able to argue it when the width of the branching program is polynomially related to n.

4.1 The INW PRG On Reversible Graphs

We will analyze the distribution of the output of the INW PRG over graphs, taking the transition function
of the branching program to equal that of the graph. We recall the connection between consistently labeled
graphs and permutation branching programs.

Definition 4.1. A d-regular labeled graph G on w vertices is consistently labeled if G[v, i] = G[v′, i]
implies v = v′ for all v, v′ ∈ [w], i ∈ [d]. Equivalently, each edge label i ∈ [d] defines a permutation over [w].

Remark 4.2. Given a d-regular consistently labeled graph G on w vertices and n ∈ N, the branching program
Gn of length n, width w and alphabet size d with transition functions G1(v, b) = . . . = Gn(v, b) = G[v, b] is
a permutation branching program.

To prove these results, we introduce a graph property that will be satisfied by the graphs we use as our
distinguishing permutation branching programs. Furthermore, given such a graph we construct a family of
expanders such that the INW PRG behaves as if it is taking walks that are a constant factor shorter than
truly random, and are thus distinguishable.

Definition 4.3. A d-regular labeled graph G on w vertices is reversible if there exists a matching π : [d]→
[d] such that for every edge label σ ∈ [d] and vertex v ∈ [w] we have G2[v, (σ, π(σ))] = G[G[v, σ], π(σ)] = v,
i.e. WG2 [(σ, π(σ))] = I for all σ.

Furthermore, given a matching π and an edge sequence σ = (σ1, . . . , σm), define π(σ)
def
= (π(σm), . . . , π(σ1)).

Then reversibility extends to arbitrary edge sequences.

Lemma 4.4. Given a d-regular reversible graph G with matching π, for every vertex v and edge sequence
σ ∈ [d]m, G2m[v, (σ, π(σ))] = v.

8

Proof. This follows from induction on m. The case m = 1 is clear from the definition, and assuming it holds
for m− 1, fix arbitrary v and σ ∈ [d]m. We have

G2m[v, (σ, π(σ))] = Gm−1[G[G[Gm−1[v, σ1..m−1], σm], π(σm)], π(σ1..m−1)]

= Gm−1[Gm−1[v, σ1..m−1], π(σ1..m−1)]

= v

so the inductive step holds.

Now given a reversible graph and a constraint set that is not too restrictive, we can construct an INW
PRG that performs in a well-behaved fashion. Intuitively, each generator output will consist of a mixture
of truly random steps and steps that are “backtracked” and thus do not contribute to mixing. These
backtracked steps will wipe out at least 3/4 of progress with high probability over the seed.

Lemma 4.5. Let G be a d-regular reversible graph and (λi)` a constraint where
∑`
i=1 λi > 8. Then there is

a family of auxiliary graphs H = (H1, . . . ,H`) where λ(Hi) ≤ λi such that INWH satisfies:

• WG2` ◦ INWH is a convex combination of W
0

G, . . . ,W
2`

G .

• In this convex combination, the sum of coefficients on W
0

G, . . . ,W
2`/4

G is at least .99.

Our strategy is to use the fact that the graph is reversible to cause PRG outputs to backtrack with high
probability. To do so, we define a property that each level of our PRG construction will satisfy.

Definition 4.6. Given a matching π : [d] → [d], a generator GEN : [S] → [d]r is balanced with respect
to π if for all v ∈ [d]r we have |GEN−1(v)| = |GEN−1(π(v))|.

We are now prepared to prove the lemma. We iteratively construct the PRG to comply with the con-
straint, while backtracking as many steps as possible.

Proof of Lemma 4.5. Let INW0 : [d] → [d] be the trivial PRG that outputs its input. At each step we
maintain that INWi is balanced with respect to π, which is clearly satisfied for level 0.

Given INWi : [Si] → [d]2
i

, we show how to construct INWi+1 : [Si+1] → [d]2
i+1

. For every output

t ∈ [d]2
i

, let [Si] ⊇ Rt = INW−1
i (t). We have by assumption that |Rt| = |Rπ(t)| for all t. Let Mt be an

arbitrary matching between Rt and Rπ(t) and define M =
⋃
t∈[d]2i Mt. Then define

Hi+1 = λi+1M + (1− λi+1)J∗.

And define INWi+1 using this graph. Then the INW PRG constructed with this graph remains balanced.

Claim 4.7. INWi+1(x, u) = (INWi(x), INWi(Hi+1[x, u])) is balanced with respect to π.

Proof. Fix an arbitrary output (a, b) ∈ [d]2
i × [d]2

i

.

• Let h be the number of seeds producing output (a, b) from neighbor relations in M . If h > 0 we have
π(a) = b, so (a, b) = (a, π(a)). But then π(a, π(a)) = (a, π(a)), so the matching is vacuously balanced.

• Let k be the number of seeds producing output (a, b) from neighbor relations in J . By the inductive
hypothesis |Rπ(a)| = |Ra| and |Rπ(b)| = |Rb| so there are also k seeds in J producing (π(b), π(a)) =
π(a, b) so outputs corresponding to neighbor relations in J are balanced.

Then since the sum of balanced functions is a balanced function we conclude.

Finally, λ(Hi) ≤ λi · λ(M) ≤ λi since the complete graph falls out, so the family satisfies the con-
straint. We then analyze the distribution of outputs of the PRG. Since INW0 is the trivial PRG we have
WG ◦ INW0 = WG.

Claim 4.8. For all i ∈ [`],

WG2i+1 ◦ INWi+1 = λi+1I|G| + (1− λi+1)(WG2i ◦ INWi)
2.

9

Proof. Fixing arbitrary v ∈ |G|, we compute the distribution of G[v, INWi+1(σ)] over a random seed σ =
(x, u)← U[Si+1] of INWi+1. From our construction of Hi+1, with probability λi+1 over the random seed this
corresponds to a neighbor in the matching M , so we have

INWi+1(σ) = (INWi(x), INWi(Hi+1[x, u])) = (t, π(t))

for some t ∈ [d]2
i

, and so G[v, INWi+1(σ)] = v. Otherwise, with probability 1 − λi+1 over the random seed
Hi+1[x, u] corresponds to a neighbor in J∗, so we have

INWi+1(σ) = (INWi(x), INWi(Hi+1[x, u])) = (INWi(x), INWi(y))

with x, y independent and uniformly distributed over U[Si], so the result follows.

It is clear by induction on the above relation that WG2` ◦ INW` defines a convex combination over

W
0

G, . . . ,W
2i

G , so it remains to bound the coefficients. To do so, for every seed σ of INW` let r(σ) denote
the number of symbols of output of INW`(σ) that are not part of some section of output of the form (t, π(t)).
Showing Pr[r(U[S`]) ≤ 2`/4] > 99/100 suffices to bound the coefficients. We say the jth symbol of the output
of INW`(σ) is matched if any of the ` neighbor relations corresponding to the jth symbol are contained in
some matching M . We show for all j, with probability at least 999/1000 the jth symbol of output of
INW`(U[S`]) is matched. Thus by linearity of expectation E[r(U[S`])] < 2`/1000 and the result follows from
Markov.

Let µ = 1
`

∑`
i=1 λi ≥ 8/`, and observe µ is the average probability a neighbor relation is contained in a

matching. Then the probability the jth symbol of output was never matched is bounded above by

∏̀
i=1

(1− λi) ≤ (1− µ)` ≤ e−`µ ≤ 1/1000

where the first inequality is AM-GM, so the expected number of non-matched symbols of output is bounded
above by 2`/1000 as desired.

4.2 Branching Programs of Large Alphabet Size

Theorem 4.9 (Formal Statement of Theorem 1.10). For every n = 2` and λ1, . . . , λ` ≥ 0, if INW(d, λ1, . . . , λ`)
1/10-fools ordered permutation branching programs of length n, width 2, and alphabet size d, then sINW(d, λ1, . . . , λ`) =
Ω(log n · log log(min{n, d})).

We can now prove the key lemmas, the first being the constraint against polynomial alphabet size
permutation branching programs of width 2. Recall that Bin(m, p, t) is the probability of obtaining t heads
from m iid Bernoulli(p) draws.

Lemma 4.10. For every n = 2` and every constraint (λ1, . . . , λ`) where
∑`
i=1 λi > 8, there is a family of

auxilliary graphs H = (H1, . . . ,H`) where λ(Hi) ≤ λi and a length n, width 2, alphabet size n permutation
branching program B such that the INW generator constructed with H fails to 1/10-fool B.

Proof. Let G be the directed 2-cycle with n− 1 self loops on each vertex. We will work with walks of length
n over this graph, equivalent to computation on the length n permutation branching program B = Gn as in
Remark 4.2.

It is easy to see that G is reversible (in fact with π the identity function), so we apply Lemma 4.5 with
G and (λ1, . . . , λ`) and obtain a PRG INWH where H satisfies the constraint.

To obtain the separation, we examine the probability that a random output of INWH ends at state 0
from state 0 (i.e. (WGn ◦ INWH)0,0), compared to the equivalent probability over truly random input (i.e.

(WGn)0,0 = (W
n

G)0,0).
The probability a random walk of length n from state 0 in G ends at state 0 is lower bounded by 1 minus

the probably such a walk takes exactly one non-self loop step. Therefore,

(WGn)0,0 ≤ 1− Bin(n, 1/n, 1) = 1− 1

n
n

(
1− 1

n

)n−1

≤ .633.

10

Intuitively, in the PRG output no backtracked section can possibly change the parity of the state, so
(WGn ◦ INWH)0,0 is at least the probability that none of the non-backtracked steps (which are truly ran-

dom) traverse edges in the cycle. Formally, for all m ∈ N we have (W
m

G)0,0 ≥ Bin(m, 1/n, 0). Since this
bound is monotonically decreasing with m, we lower bound (WGn ◦ INWH)0,0 by Lemma 4.5:

(WGn ◦ INWH)0,0 ≥
1

100
Bin(n, 1/n, 0) +

99

100
Bin(n/4, 1/n, 0)

≥ 99

100
(1− (1− 1/n)n/4)

≥ .75

Therefore (WGn ◦ INWH)0,0 − (WGn)0,0 ≥ .11 and we have an Ω(1) separation as desired.

We can then use this lemma to prove Theorem 4.9.

Theorem 4.9 (Formal Statement of Theorem 1.10). For every n = 2` and λ1, . . . , λ` ≥ 0, if INW(d, λ1, . . . , λ`)
1/10-fools ordered permutation branching programs of length n, width 2, and alphabet size d, then sINW(d, λ1, . . . , λ`) =
Ω(log n · log log(min{n, d})).

Proof. Let t = log(min{n, d}) and fix some constraint (λ1, . . . , λ`) such that INW(d, λ1, . . . , λ`) 1/10-fools
the model.

Claim 4.11. Every block (λi, . . . , λi+t) satisfies
∑i+t
j=i λj < 8.

Proof. Note that given (λi, . . . , λi+t) with
∑i+t
j=i λi ≥ 8, Lemma 4.10 gives a length 2t ≤ n, width 2, alphabet

size 2t ≤ d permutation branching program B and a family of auxiliary graphs H = (Hi, . . . ,Hi+t) satisfying
the constraint such that INWH fails to 1/10-fool B, so it remains to show how to embed this into a length-n,
alphabet size d-construction. If 2t = n (so d ≥ n) this follows from simply identifying symbol k ∈ [d] with
k mod 2t. This will change the probability of switching states in a truly random step from 1/n to at least
1/2n, and so after adjusting constant factors does not affect the separation.

Now if 2t = d ≤ n, we must modify B to be length n and the family of auxiliary graphs to be size `. The
new program B′ will ignore the final n− 2t layers, and we can take Hj = J∗ for all ` ≥ j > i+ t. To handle
lower levels, we again use the tensor product trick. Letting the first i − 1 levels of the modified family be
J1, . . . , J22i−1 , we modify B such that it only reads the first symbol of each block of length 2i, with identity
transitions on all other symbols. For the graphs, take Hj ← Hj ⊗ J∗ for all j ∈ [i, . . . , i + t]. Then letting
H′ be the modified family, the distribution of outputs of INWH′ on symbols 1, 1 + 2i, . . . , 1 + 2i2t will be
identical to that of INWH on the original distinguishing construction, so INWH′ will fail to 1/10-fool the
alphabet size d, length n modified program.

Now as an immediate consequence of the claim we have
∑`
i=1 λi ≤ 8`/t, so at least 1/2 of the constraints

satisfy λi < 16/t by Markov, so we obtain sINW(d, λ1, . . . , λ`) = Ω(log(t) · (log n − log log n)) = Ω(log n ·
log log(min(n, d)) via Lemma 2.7.

4.3 Branching Programs of Large Width

Theorem 4.12 (Formal Statement of Theorem 1.11). For every n = 2` and λ1, . . . , λ` ≥ 0, if INW(2, λ1, . . . , λ`)
1/3-fools ordered permutation branching programs of length n, width w, and alphabet size 2 with respect to
spectral norm, then sINW(2, λ1, . . . , λ`) = Ω(log n · log log(min{n,w})).

To prove this, we introduce notation for distributions over a branching program, using the notation of
Reingold Steinke and Vadhan [RSV13].

Definition 4.13. Given a length n, width w, alphabet size d branching program B with transition functions
B1, . . . , Bn, for t ∈ [n] let Bt : [d] → Rw×w be defined where Bt[s]i,j = 1 if Bt(i, s) = j and 0 otherwise.
For 0 ≤ i < j ≤ n let Bi..j be defined as Bi..j [si+1 . . . sj] = Bi+1[si+1] · · ·Bj [sj], and let B = B0..n. For a
function GEN : [S]→ [d]n, define the distribution of B on GEN as B ◦GEN = E[B[GEN(U[S])]].

11

Note that this definition exactly matches Definition 2.2 when the branching program is equal to Gn for
a consistently labeled graph G (with Bt = G for all steps t as in Remark 4.2). We can then define fooling
with respect to a norm.

Definition 4.14. Let ‖ · ‖ be a norm on w×w real matrices and B a set of (n,w) branching programs. We
say a function GEN : {0, 1}s → [d]n ε-fools B with respect to ‖ · ‖ if for every B ∈ B we have∥∥B ◦GEN−B ◦ U[d]n

∥∥ ≤ ε.
To use this definition, we need to select a matrix norm. We will work with two different norms on matrices

A ∈ Rw×w. Note that throughout the paper, all vectors are row vectors. Some examples include:

• ‖A‖2 = maxx∈Rw−{0} ‖xA‖2/‖x‖2. We call this the spectral norm, and it is what we obtain bounds
against.

• ‖A‖1 = maxx∈Rw−{0} ‖xA‖1/‖x‖1 = maxi ‖Ai,·‖ where Ai,· is the ith row of A.

• ‖A‖max = maxi,j |Ai,j |.
We remark that fooling in `1 norm is equivalent to the conventional notion of fooling programs with an
arbitrary set of accept vertices, and fooling in max-norm is equivalent to fooling programs with a single
accept vertex. We work with `1 norm in Appendix B, whereas here we obtain bounds against spectral norm.

We now prove the main lemma for spectral fooling of polynomial width permutation BPs over a binary
alphabet.

Lemma 4.15. For every n = 2` and every constraint (λ1, . . . , λ`) where
∑`
i=1 λi > 8, there is a family of

auxilliary graphs H = (H1, . . . ,H`) where λ(Hi) ≤ λi and a length n, width n, alphabet size 2 permutation
branching program B such that the INW generator constructed with H fails to 1/3-fool B with respect to
spectral norm.

Proof. Our distinguishing permutation branching program is again a consistently labeled graph, with tran-
sitions equal at every layer, as in Remark 4.2. For every m ∈ N, let Cm be the 2-regular consistently labeled
undirected m-cycle and let v2 be a normalized eigenvector of WCm with second largest eigenvalue. For an

m × m matrix A, let λ2(A)
def
= v2Av

T
2 , and recall that λ2(WCm

) = cos(2π/m) = 1 − Θ(1/m2). We will

apply this definition to matrices A ∈ span{I,WCm
,W

2

Cm
, . . .}; v2 is an eigenvector of all these matrices,

but it is not always the second eigenvector. Nonetheless, it is convenient for us to measure expansion with
respect to v2. Note that when v2 is an eigenvector of A, λ2(Ak) = λ2(A)k for all k.

Recall that λ2(W
n

Cm
) = λ2(WCm)n = (1 − Θ(1/m2))n. Now given n, choose w = Θ(

√
n) to be some

integer such that random walks of length n are 1/3 mixed with respect to λ2, but walks of length n/2 are
not. Formally let w = minm∈N(1/9 ≤ λ2(W

n

Cm
) < 1/3).

We then observe that G = Cw is reversible, so we apply Lemma 4.5 with G and (λ1, . . . , λ`) and obtain
a PRG INWH where H satisfies the constraint.

Intuitively, “wasting” a constant fraction of steps by not making progress on mixing is enough to distin-

guish INW output from truly random in spectral norm. Since λ2(W
a

Cw
) ≤ λ2(W

b

Cw
) for all a ≥ b, we again

obtain a lower bound by Lemma 4.5:

λ2(WCn
w
◦ INWH) ≥ 1

100
λ2(W

n

Cw
) +

99

100
λ2(W

n/4

Cw
) =

1

100
λ2(WCw)n +

99

100
λ2(WCw)n/4.

But then ∥∥WCn
w
◦ INWH −WCn

w
◦ U{0,1}n]

∥∥
2
≥ v2(WCn

w
◦ INWH −W

n

Cw
)vT2

= λ2(WCn
w
◦ INWH)− λ2(W

n

Cw
)

≥ 1

100
λ2(WCw)n +

99

100
λ2(WCw)n/4 − λ2(WCw)n

≥ min
x∈[1/9,1/3)

(x1/4 − x)
99

100

≥ .34.

Where the final line follows from a numerical calculation, so we have the desired separation.

12

We can then use this lemma to prove Theorem 4.12.

Theorem 4.12 (Formal Statement of Theorem 1.11). For every n = 2` and λ1, . . . , λ` ≥ 0, if INW(2, λ1, . . . , λ`)
1/3-fools ordered permutation branching programs of length n, width w, and alphabet size 2 with respect to
spectral norm, then sINW(2, λ1, . . . , λ`) = Ω(log n · log log(min{n,w})).

Proof. Let t = log(min{n,w}) and fix some constraint (λ1, . . . , λ`) such that INW(d, λ1, . . . , λ`) 1/3-fools
the model.

Claim 4.16. Every block (λi, . . . , λi+t) satisfies
∑i+t
j=i λj < 8.

The proof of this is essentially identical to that of Claim 4.11, except that embedding a width 2t < w
branching program into a width w BP is direct. Then as an immediate consequence of the claim we
have

∑`
i=1 λi ≤ 8`/t, so at least 1/2 of the constraints satisfy λi < 16/t by Markov, so we obtain

sINW(2, λ1, . . . , λ`) = Ω(log(t) · (log n− log log n)) = Ω(log n · log log(min(n,w)) via Lemma 2.7.

5 Dependence on Width

In this section, we prove Theorem 1.8, establishing a lower bound on the seed length as a function of the
width of the permutation branching program. Since we prove the INW generator does not even hit the
distinguisher, we recall the formal definition of a hitting set generator.

Definition 5.1. Let F be a class of functions f : [d]n → {0, 1}. An ε-hitting set generator (ε-HSG)
for F is a function GEN : {0, 1}s → [d]n such that for every f ∈ F where Ex←U[d]n

[f(x)] > ε, there exists
y ∈ {0, 1}s such that f(GEN(y)) = 1.

We are now prepared to give the formal statement.

Theorem 5.2 (Formal Statement of Theorem 1.8). For every n = 2` and w ≤ 2n
.1

and λ1, . . . , λ` ≥ 0,
if INW(2, λ1, . . . , λ`) is a 1− w−1/8-hitting set generator for ordered permutation branching programs (with
arbitrary sets of accept vertices) of length n, width w, and alphabet size 2, then sINW(2, λ1, . . . , λ`) = Ω(log n·
logw).

The proof proceeds by showing that any INW PRG must constrain almost all spectral gaps to be at most
1/wΩ(1). To do this, we establish that if there is a constraint where λr > 1/wc for some c > 0, there is a
graph E on

√
w vertices and a permutation branching program that perfectly distinguishes between a pair

of edges in E and random vertices. To enable this to work for all levels of the PRG, we tensor E with a
large complete graph. We now state the main lemma.

Lemma 5.3. There exists c > 0 such that for all ` ∈ N and w ≥ w0, for every constraint (λ1, . . . , λ`)
where there exists r ≥ log logw such that λr > 1/wc, there is a family of auxiliary graphs H = (H1, . . . ,Hr)
where λ(Hi) ≤ λi and a alphabet size 2, width w, length 2r permutation branching program B such that
Pr[B(U{0,1}2r) = 1] ≥ 1− w−1/8 and INWr fails to hit B.

To prove this, we define the tensor product of graphs, and recall a basic fact about their expansion, as
we will construct the auxiliary graphs via tensoring a small expander with the complete graph.

Definition 5.4. Given a pair of labeled graphs G,H on w1, w2 vertices with degrees d1, d2 respectively,
define the tensor product G ⊗ H to be the d1d2-regular graph on w1w2 vertices with neighbor relation
(G⊗H)[(u, v), (e1, e2)] = (G[u, e1], H[v, e2]).

Proposition 5.5 (see e.g. [Vad12, Lemma 4.33]). Let G,H be undirected regular graphs. Then λ(G⊗H) =
max(λ(G), λ(H)).

We further recall the existence of expanders that are not too dense.

Proposition 5.6 (see e.g. [AR94]). There are global constants c > 0 and v0 ∈ N such that for every
S = 28s ≥ v0, there is an undirected regular graph E on S vertices such that deg(E) <

√
S and λ(E) < 1/Sc.

13

The v0 requirement can in practice be ignored since in all cases we obtain bounds that are asymptotic in
the number of vertices of the graph. Counterintutively, our lower bound relies on the existence of expanders
with an upper bound on their degree.

Proof of Lemma 5.3. Let 2s = S be the power of two satisfying w1/4 ≤ S < w1/2. Let E be the graph on S
vertices with deg(E) = D where D <

√
S and λ(E) ≤ 1/wc obtained from Proposition 5.6, where we choose

w0 = v4
0 to guarantee S ≥ v0. Then for some K = 2k ≥ S to be chosen later define

HK = E ⊗ JK/S .

Given v ∈ [K] and (i, j) ∈ [D]× [K/S], the neighbor relation of HK decomposes as:

HK [v, (i, j)] = (E[vs, i], JK/S [v′, j])

where vs denotes the s bit prefix of v and v′ the k − s bit suffix. Choose K = 22r−1

and let the family be
H = (J2, . . . , J22r−1 , HK).

Claim 5.7. For all i ∈ [1, . . . , r], λ(Hi) ≤ λi.

Proof. For all i 6= r we have λ(Hi) = 0 ≤ λi, and for i = r we have we have from Proposition 5.5

λ(HK) = λ(E ⊗ JK/S) = λ(E) ≤ 1/wc < λr.

We now construct a branching program of width S2 < w and length 2k = 2r ≤ n that checks neighbor
relations in E. Write the input to INWr as σ = (x, i, ∗) where x ∈ [K], i ∈ [D] and ∗ is all subsequent bits
of seed. Then the PRG output can be written as

INWr(σ) = (INWr−1(x), INWr−1(HK [x, (i, ∗)]))
= (x,HK [x, (i, ∗)])
= (xs, x

′, E[xs, i], J [x′, ∗]]).

Note that from our choice of labeling for the complete graphs, INWr−1 is the trivial PRG on 2r−1 bits. We can
now build a permutation branching program of length 2r, denoted B, to store the bits of output determined
by E. Label the states in each layer as (v, w) ∈ [S] × [S] with start state (0, 0). We define the branching
program B as follows. Write the input to B as (xs, x

′, ys, y
′) ∈ {0, 1}s×{0, 1}k−s×{0, 1}s×{0, 1}k−s. Then

define the transition function as:

Bt((v, w), b) =


(v + b · 2t−1, w) t ∈ {1, . . . , s}
(v, w + b · 2t−k−1) t ∈ {k + 1, . . . , k + s}
(v, w) otherwise.

Observe that on input (xs, x
′, ys, y

′), B reaches state (xs, ys) in the final layer. Then in layer 2k = 2r, mark
state (v, w) as an accept state if and only if (v, w) /∈ E.

Claim 5.8. INWr is not a 1− w−1/8-HSG for B.

Proof. All states (v, w) in the final layer have equal probability of being reached over U{0,1}2k . Then since

for each v ∈ [S] there are at most D reject vertices (v, ·) and we have D <
√
S we have Pr[B(U{0,1}2r) =

1] > 1− (S
√
S)/S2 ≥ 1−w−1/8. But B(INWr(σ)) reaches final state (xs, E[xs, i]) which by construction is

not an accept vertex for all σ = (x, i, ∗), so INWr fails to hit B and we have the desired separation.

Therefore we have a family H = (H1, . . . ,Hr) satisfying the constraint and a distinguishing permutation
BP with the desired properties.

We now apply this lemma to prove the theorem.

14

Proof of Theorem 5.2. Applying Lemma 5.3, every family INW(2, λ1, . . . , λ`) that is a 1 − w−1/8-HSG for
permutation branching programs of length n, width w and alphabet size 2 must have λi < 1/wΩ(1) for all
i ∈ [log logw, . . . , `]. This follows from the lemma, since given a family of graphs H = (H1, . . . ,Hr) and a
length 2r PBP B, we can add n − 2r identity layers to B, and by taking Hm = J∗ for ` ≥ m > k obtain a
generator INW` that satisfies the subsequent constraints and behaves identically to INWr on B. Thus we
obtain sINW(2, λ1, . . . , λ`) = Ω(logw(log n − 2 log log(nw) − log log(w)) via Lemma 2.7, which simplifies to

Ω(log n · logw) with the assumption w ≤ 2n
.1

.

6 Acknowledgements

We thank Ronen Shaltiel for asking a question at ITCS 2021 that prompted us to write this paper. S.V.
thanks Omer Reingold and Luca Trevisan for discussions many years ago that provided some of the ideas
in this paper, in particular the tensor product construction used in the proof of Theorem 1.8 and the
probabilistic existence proof in Theorem 1.7.

References

[AR94] Noga Alon and Yuval Roichman. Random Cayley graphs and expanders. Random Structures &
Algorithms, 5(2):271–284, 1994.

[BCG18] Mark Braverman, Gil Cohen, and Sumegha Garg. Hitting sets with near-optimal error for read-
once branching programs. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors,
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018,
Los Angeles, CA, USA, June 25-29, 2018, pages 353–362. ACM, 2018.

[BNS92] László Babai, Noam Nisan, and Márió Szegedy. Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs. Journal of Computer and System Sciences, 45(2):204–232,
1992. Twenty-first Symposium on the Theory of Computing (Seattle, WA, 1989).

[BRRY10] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators for
regular branching programs. In FOCS [IEE10], pages 40–47.

[BV10] Joshua Brody and Elad Verbin. The coin problem and pseudorandomness for branching programs.
In FOCS [IEE10], pages 30–39.

[CDR+21] Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. Error Reduction for
Weighted PRGs Against Read Once Branching Programs. In Valentine Kabanets, editor, 36th
Computational Complexity Conference (CCC 2021), volume 200 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 22:1–22:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

[CL20] Eshan Chattopadhyay and Jyun-Jie Liao. Optimal error pseudodistributions for read-once
branching programs. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs,
pages 25:1–25:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[De11] Anindya De. Pseudorandomness for permutation and regular branching programs. In IEEE
Conference on Computational Complexity, pages 221–231. IEEE Computer Society, 2011.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties: A
quality-size trade-off for hashing. Random Structures & Algorithms, 11(4):315–343, 1997.

[HHR11] Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the randomized iterate.
SIAM Journal on Computing, 40(6):1486–1528, 2011.

[Hoz21] William Hoza. Better pseudodistributions and derandomization for space-bounded computation.
ECCC preprint TR21-019, 2021.

15

[HPV21] William M. Hoza, Edward Pyne, and Salil P. Vadhan. Pseudorandom generators for unbounded-
width permutation branching programs. In James R. Lee, editor, 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185
of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[HVV06] Alexander Healy, Salil Vadhan, and Emanuele Viola. Using nondeterminism to amplify hardness.
SIAM Journal on Computing, 35(4):903–931 (electronic), 2006.

[IEE10] IEEE. 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society, 2010.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream com-
putation. Journal of the ACM, 53(3):307–323, 2006.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network algo-
rithms. In Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing,
pages 356–364, Montréal, Québec, Canada, 23–25 May 1994.

[KNP11] Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom generators for group
products: extended abstract. In Lance Fortnow and Salil P. Vadhan, editors, STOC, pages
263–272. ACM, 2011.

[KNR05] Eyal Kaplan, Moni Naor, and Omer Reingold. Derandomized constructions of k-wise (almost)
independent permutations. In Proceedings of the 8th International Workshop on Randomization
and Computation (RANDOM ‘05), number 3624 in Lecture Notes in Computer Science, pages
354 – 365, Berkeley, CA, August 2005. Springer.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3 branching
programs. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 626–637. ACM, 2019.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, February 1996.

[PV21] Edward Pyne and Salil Vadhan. Pseudodistributions That Beat All Pseudorandom Generators
(Extended Abstract). In Valentine Kabanets, editor, 36th Computational Complexity Conference
(CCC 2021), volume 200 of Leibniz International Proceedings in Informatics (LIPIcs), pages
33:1–33:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[Rei08] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):Art. 17, 24,
2008.

[RSV13] Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for regular branching
programs via Fourier analysis. In Sofya Raskhodnikova and José Rolim, editors, Proceedings of
the 17th International Workshop on Randomization and Computation (RANDOM ‘13), volume
8096 of Lecture Notes in Computer Science, pages 655–670. Springer-Verlag, 21–23 August 2013.
Full version posted as ECCC TR13-086 and arXiv:1306.3004 [cs.CC].

[RV05] Eyal Rozenman and Salil Vadhan. Derandomized squaring of graphs. In Proceedings of the 8th
International Workshop on Randomization and Computation (RANDOM ‘05), number 3624 in
Lecture Notes in Computer Science, pages 436–447, Berkeley, CA, August 2005. Springer.

[Siv02] D. Sivakumar. Algorithmic derandomization via complexity theory. In Proceedings of the Thirty-
Fourth Annual ACM Symposium on Theory of Computing, pages 619–626 (electronic), New York,
2002. ACM.

16

[Ste12] Thomas Steinke. Pseudorandomness for permutation branching programs without the group the-
ory. Technical Report TR12-083, Electronic Colloquium on Computational Complexity (ECCC),
July 2012.

[Vad12] Salil P Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer Science,
7(1–3):1–336, 2012.

A General Branching Programs

We note that our approach to Theorem 5.2 gives stronger results for fooling general (e.g. non-regular) ordered
branching programs, and recovers the analysis of Brody and Verbin for bounds against width-3 OBPs. Both
results use the error amplification technique of Brody and Verbin [BV10], and we include them only as a
note.

Theorem A.1. For every n = 2` and 3 ≤ w ≤ 2n
.05

and λ1, . . . , λ` ≥ 0, if INW(2, λ1, . . . , λ`) is a 1−onw(1)-
HSG against ordered branching programs of length n, width w, and alphabet size 2, then sINW(2, λ1, . . . , λ`) =
Ω(log n · log(nw)).

To prove the theorem, we boost the error of Lemma 5.2 and show how to use the edge checking argument
for w = 3, if the distinguishing program does not have to be a permutation BP.

Corollary A.2. There exists c > 0 such that for all n = 2` ∈ N and w ≥ w0, for every constraint
(λ1, . . . , λ`) where there exists `/2 ≥ r ≥ log logw such that λr > 1/wc, there is a family of auxiliary graphs
H = (H1, . . . ,H`) where λ(Hi) ≤ λi and a length n, width w, alphabet size 2 branching program B such that
Pr[B(U{0,1}n) = 1] ≥ 1− 2− log(w)

√
n/8 and INWH fails to hit B.

Proof. Let w0 and c be the same as in Lemma 5.3, and let the family of auxiliary graphs H1, . . . ,Hr and
the length 2r PBP B be those obtained from applying Lemma 5.3 with r = r. Furthermore, for ` ≥ m > r
take Hm = J∗, so it is clear that the family satisfies the entire constraint.

Rather than checking only the bits of input determined by the output of INWr (and thus neighbor
relation in E), we check all such sections and compute the OR. We construct an ordered branching program
B′ of width w computing the function f : {0, 1}n → {0, 1} defined as

f(σ) =

n/2r−1∨
i=0

B(σ1+2r·i...2r(i+1)).

Once can see that we can construct a branching program computing f with n/2r successive copies of B, plus
a single additional state ⊥. At the final transition in each copy, all transitions previously leading to accept
states are instead sent to ⊥, and transitions leading to non-accept states are sent to state (0, 0). Finally ⊥
is always wired to itself and marked as the accept vertex in layer n.

Since on input INWH(s) each clause computes B(INWr(si)) for some input si, we have that INWH fails
to hit B′. However, truly random input will satisfy each such clause with probability at least 1 − w−1/8 by
Lemma 5.3, the clauses are independent, and there at least n/2r ≥

√
n such clauses. Therefore we have

Pr[B′(U{0,1}n) = 1] ≥ 1− 2− log(w)
√
n/8.

So we obtain a super-constant (with respect to n and w) HSG separation.

We can further modify the idea to obtain an Ω(log2 n) lower bound, even for width-3 OBPs. The method
is similar to the (sketched) proof in [BRRY10] that ordered branching programs can distinguish coins slightly
biased towards 1, and is essentially the argument of Brody and Verbin [BV10].

Lemma A.3. There exists c > 0 such that for all n = 2` ∈ N, for every constraint (λ1, . . . , λ`) where there
exists `/4 ≥ r ≥ log log n such that λr > 1/nc, there is a family of auxiliary graphs H = (H1, . . . ,H`) where
λ(Hi) ≤ λi and a length n, width 3, alphabet size 2 branching program B such that Pr[B(U{0,1}n) = 1] ≥
1− 2−

√
n and INWH fails to hit B.

17

Proof. Let 2s = S be the power of two satisfying n1/8 ≤ S < n1/4. Let E be the graph on S vertices with
deg(E) = D where D <

√
S and λ(E) ≤ 1/nc obtained from Proposition 5.6, where we assume S ≥ v0 since

the result is asymptotic in n. Then for some K = 2k ≥ S to be chosen later define

HK = E ⊗ JK/S .

Given v ∈ [K] and (i, j) ∈ [D]× [K/S], the neighbor relation of HK decomposes as:

HK [v, (i, j)] = (E[vs, i], J [v′, j])

where vs denotes the s bit prefix of v and v′ the k − s bit suffix. Choose K = 22r−1

and let the family
be H = (J2, . . . , J22r−1 , HK , J∗, . . . , J∗). Verifying that H satisfies the constraint is identical to the proof of
Lemma 5.3.

Then choose some (x, y) ∈ [S] × [S] such that (x, y) /∈ E and create the length n, width 3 branching
program B computing the function f : {0, 1}n → {0, 1} defined as

f(σ) =

n/2r−1∨
i=0

(σ2r·i+1...2r·i+s = x ∧ σ2r·i+k+1...2r·i+k+s = y).

Since (x, y) is chosen such that it will never be output by INWH in the bits of output corresponding to
neighbor relations in E, and these bits are precisely those checked by B, we have that INWH fails to hit B.
However, a truly random input satisfies each clause with probability (1− 2−2s) = (1− 2− log(n)/2) and since
there are n/2r ≥ n3/4 such clauses, the accept probability is at least

Pr[B(U{0,1}n) = 1] = 1− (1− 1/
√
n)n

3/4

≥ 1− exp(−n1/4)

So we obtain a super-constant HSG separation.

We can then prove the theorem:

Proof of Theorem A.1. Applying Corollary A.2 and Lemma A.3, every family INW(2, λ1, . . . , λ`) that min(1−
2− log(w)

√
n/8, 1− exp(−n1/4))-fools ordered branching programs of length n, width w ≥ 3 and alphabet size

2 must have λi < min(1/wΩ(1), 1/nΩ(1)) for all i ∈ [log logw, . . . , `/4], so we obtain sINW(2, λ1, . . . , λ`) =
Ω(log2 n+ logw(log(n)/4− 2 log log(nw)− log log(w)) via Lemma 2.7, which simplifies to Ω(log2 n+ log n ·
log(w)) with the assumption w ≤ 2n

.05

.

B Existence of Optimal INW Generators

Despite spectral analysis of INW PRGs already reaching lower bounds in multiple cases, and clearly being
incapable of giving a full derandomization of space bounded computation, there exists an INW PRG with
asymptotically optimal seed length.

Theorem B.1. For all d,w and n = 2` ∈ N, there is a family of graphs H = (H1, . . . ,H`) such that INWH
ε-fools ordered branching programs of length n, width w and alphabet size d, and this generator has seed
length O(log(nwd/ε)).

The proof is slightly more involved than showing a random function is a PRG with high probability, but
proceeds using essentially the same idea. For the first O(log log(nwd/ε)) levels, we construct the generator
with complete graphs (i.e. the trivial PRG on O(log(nwd/ε)) bits). At higher levels, we choose a graph such
that the INW generator constructed with this graph is a good approximation of the concatenation of two
lower level generators over every branching program.

We require a basic Chernoff bound:

Proposition B.2. Let X1, . . . , Xr be independent [0, 1] random variables and let X =
∑r
i=1Xi and µ = EX.

Then for 0 ≤ δ ≤ 1,
Pr[|X − µ| > δµ] ≤ 2 exp(−δ2µ/3).

18

We first prove a lemma on the existence of good graphs for all sufficiently high levels of the INW generator.
We view the previous levels of the PRG simply as a fixed function with sufficient seed length, and use the
probabilistic method to find a one-outregular digraph such that the INW generator constructed with this
graph (and the fixed function as a base) approximates the concatenation of two copies of the fixed function.

Lemma B.3. For every d,w, n ∈ N and ε > 0, there is L = Θ(poly(ndw/ε)) such that given a fixed function
F : [S] → [d]r with S ≥ L and m ≤ n/2, there exists a 1-outregular digraph H on S vertices such that,
defining F ′(x) = (F (x), F (H[x, 0])) and (F, F)(x, y) = (F (x), F (y)), for every alphabet size d, width w,
length 2m ordered branching program B we have∥∥∥B ◦ F ′ −B ◦ (F, F)

∥∥∥
1
≤ ε/n.

Proof. Let UG be the uniform distribution over 1-outregular graphs on S vertices where for each vertex
s ∈ [S] we include an edge (s, z) where z ← U[S].

Now fix an arbitrary ordered branching program B of width w and length 2m, an arbitrary start state v,

and an arbitrary set of accept vertices A. If α
def
=
∑
j∈A(B ◦ (F, F))v,j < 1/2 take A← Ac. This is without

loss of generality, since an additive approximation of the reject probability implies an equal approximation
of the accept probability. We will define random variables on the space of 1−outregular digraphs H on S
vertices in terms of this tuple (B, v,A).

For all s ∈ [S], define the random variable Xs (as a function of H) as

Xs =
∑
j∈A

B[(F (s), F (H[s, 0]))]v,j

i.e. Xs evaluates to one if and only if (F (s), F (H[s, 0])) causes B to reach a vertex in A from start vertex v.
Recalling the definition of F ′ given a fixed H, we have

E
s
[Xs] =

∑
j∈A

(B ◦ F ′)v,j .

Furthermore, we have that Xs ∈ [0, 1], and the Xs are independent for all s. Using that the neighbor of
every vertex s is distributed uniformly over the set of graphs:

E
H

[
E
s
[Xs]

]
= E

s

[
E
H

[Xs]
]

= E
s

∑
j∈A

B[(F (s), F (U[S]))]v,j


=
∑
j∈A

B[(F (U[S]), F (U[S]))]v,j

=
∑
j∈A

(B ◦ (F, F))v,j

= α

So showing there is a graph H such that |Es[Xs] − α| ≤ ε for all tuples (B, v,A) is precisely equivalent to
the desired `1 approximation. We now apply the probabilistic method to show there exists such a good H.
Recalling Proposition B.2 and rearranging, we obtain:

Pr
H

[∣∣∣E
s
[Xs]− α

∣∣∣ > δα
]
≤ 2 exp(−δ2Sα/3)

Then since α ∈ [1/2, 1] we bound our additive error by ε by choosing δ = ε. Then the bound becomes:

Pr
H

[∣∣∣E
s
[Xs]− α

∣∣∣ > ε
]
≤ 2 exp(−(ε2/6) · S).

19

Note that we obtain an exponential decrease in the failure probability in the existing number of seeds. Then
for a random H, the probability Es[Xs] fails to ε-approximate α for any of the 2poly(nwd) tuples (B, v,A) is
bounded by 2 exp(poly(nwd)− (ε2/6) ·S). Taking L = poly(nwd/ε) to be sufficiently large and using S ≥ L,
we obtain that the failure probability is strictly below 1, so there is a graph H that is good for all tuples.
Letting F ′(x) = (F (x), F (H[x, 0])), for all 2m,w, d branching programs B, v ∈ [w] and A ⊂ [w],∣∣∣∣∣∣

∑
j∈A

(B ◦ F ′)v,j −
∑
j∈A

(B ◦ (F, F))v,j

∣∣∣∣∣∣ ≤ ε
and as both rows are distributions this implies the desired `1 approximation.

We can then use this to prove the main theorem.

Theorem B.1. For all d,w and n = 2` ∈ N, there is a family of graphs H = (H1, . . . ,H`) such that INWH
ε-fools ordered branching programs of length n, width w and alphabet size d, and this generator has seed
length O(log(nwd/ε)).

Proof. Let L = poly(nwd/ε) be the value guaranteed to exist by Lemma B.3 with the same n,w, d and ε and
define r as the smallest integer such that 22r ≥ L. For i ∈ {1, . . . , r} let Hi = J22i−1 . Then for r ≤ k ≤ `,
given Hk = (H1, . . . ,Hk) let Hk+1 be the 1-outregular graph obtained from applying Lemma B.3 with the
same n,w, d and ε and F = INWHk

.
Then fix an arbitrary ordered branching program B of width w, alphabet size d and length 2`. For all

x, y ∈ {0, . . . , 2`} and i ∈ {0, . . . , `}, let a = (y − x)/2i and define

Tx,y,i = Bx..y ◦ (INWi, . . . , INWi︸ ︷︷ ︸
a times

).

Where Ta,a,i = Iw and the matrix is not defined if y − x is not divisible by 2i. Then∥∥B ◦ INW` −B ◦ U[d]n
∥∥

1

= ‖T0,n,` −T0,n,0‖1

≤
∑̀
i=1

‖T0,n,i −T0,n,i−1‖1

≤
∑̀
i=1

n/2i∑
k=1

∥∥T0,2i(k−1),i(T2i(k−1),2ik,i −T2i(k−1),2ik,i−1)T2ik,n,i−1

∥∥
1

≤
∑̀
i=1

n/2i∑
k=1

∥∥T0,2i(k−1),i

∥∥
1
·
∥∥T2i(k−1),2ik,i −T2i(k−1),2ik,i−1

∥∥
1
·
∥∥T2ik,n,i−1

∥∥
1

=
∑̀
i=1

n/2i∑
k=1

∥∥T2i(k−1),2ik,i −T2i(k−1),2ik,i−1

∥∥
1

=
∑̀
i=1

n/2i∑
k=1

∥∥∥B2i(k−1)..2ik ◦ INWi −B2i(k−1)..2ik ◦ (INWi−1, INWi−1)
∥∥∥

1

≤
∑̀
i=1

n

2i
· ε
n

≤ n ε
n

Where the penultimate line follows from Lemma B.3. Since B was arbitrary we obtain that INWH is an
ε-PRG for the class with respect to ‖ · ‖1 norm, which implies the conventional notion of fooling. The seed
length is clearly log(L) = O(log(nwd/ε)).

20

C Seed Length Lower Bound

We include a proof of the lower bound for seed length for pseudorandom generators against permutation
branching programs for completeness.

Proposition C.1. Given n, d ∈ N with d even and ε > 0, let G : {0, 1}s → [d]n be an ε-PRG for permutation
branching programs of length n and alphabet size d with a single accept vertex. Then s = Ω(log(nd/ε)),
provided 2−n ≤ ε ≤ 1/3. Furthermore, the same lower bound holds if G is an ε-spectral PRG.

Proof. First, note that for any matrix M ∈ Rw×w, we have ‖M‖max ≤ ‖M‖2. From this, we obtain that
lower bounds against δ-fooling a program with a single accept vertex imply the equivalent lower bounds
against δ-fooling in spectral norm, since

δ ≤
(
B ◦G−B ◦ Un

)
v0,vacc

≤
∥∥B ◦G−B ◦ Un

∥∥
2
.

For the bounds against n and ε, let v : [d]→ {0, 1} be a balanced function.

1. If s ≤ log(d)−1, there are at most d/2 distinct first symbols output by G. Then there exists a width-2
permutation branching program B with a single accept vertex that accepts input σ if and only if σ1

is not output by G. This program satisfies Pr[B(U[d]n) = 1] ≥ 1/2 but Pr[B(G(Us)) = 1] = 0 by
construction, a contradiction.

2. If s ≤ log(1/ε) − 1, since s ≤ n − 1 (where we use the assumption ε ≥ 2−n) there is some set of
coordinates S ⊆ [n] such that

|{x : ⊕i∈Sv(G(x)i) = 1}| 6= |{x : ⊕i∈Sv(G(x)i) = 0}|,

which follows from the fact that the only 0-biased distribution over all subsets of {0, 1}n is Un. Then
there is a width-2 permutation program B that computes

B(σ) =
⊕
i∈S

v(σi),

and we have Pr[B(U[d]n) = 1] = 1/2 but |Pr[B(G(Us)) = 1] − 1/2| ≥ 1/2s ≥ 2ε, so G fails to be an
ε-PRG.

3. Finally, for the dependence on n we recall the proof of [HPV21]:

If 2s ≤ n− 1, there is some nonzero vector z ∈ Fn2 such that for every x,

n∑
i=1

zi · v(G(x)i) = 0.

The function B(x) =
∑n
i=1 zi · b(xi) = 1 (mod 2) can be computed by a width-2 alphabet size-

d permutation branching program with a single accept vertex, and Pr[B(U[d]n) = 1] ≥ 1/2, but
Pr[B(G(Us)) = 1] = 0, a contradiction.

Finally, we note that by allowing an arbitrary set of accept vertices, we also obtain a lower bound in
terms of width:

Proposition C.2. Given n,w, d ∈ N with d even, if G : {0, 1}s → [d]n is a 1/3-PRG for permutation
branching programs of width w with an arbitrary set of accept vertices then s = Ω(logw), provided w ≤ 2n.

Proof. Again let v : [d] → {0, 1} be a balanced function. If s ≤ log(w) − 1, there are at most w/2 distinct
PRG outputs in the first log(w) symbols. Then there exists a width-w, length n permutation branching
program B computing the function

B(σ) =

logw∑
i=1

2i−1 · v(σi)

where we use logw ≤ n. By marking states in the final layer as accepting if they are not reached by an
output of G, we obtain Pr[B(U[d]n) = 1] ≥ 1/2, since applying v cannot increase the number of distinct PRG
outputs, yet Pr[B(G(Us)) = 1] = 0, a contradiction.

21
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

