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Abstract

Consider the following computational problem: given a regular digraph G = (V,E), two vertices u, v ∈ V ,
and a walk length t ∈ N, estimate the probability that a random walk of length t from u ends at v to within
±ε. A randomized algorithm can solve this problem by carrying out O(1/ε2) random walks of length t from u
and outputting the fraction that end at v.

In this paper, we study deterministic algorithms for this problem that are also restricted to carrying out
walks of length t from u and seeing which ones end at v. Specifically, if G is d-regular, the algorithm is given
oracle access to a function f : [d]t → {0, 1} where f(x) is 1 if the walk from u specified by the edge labels in
x ends at v. We assume that G is consistently labelled, meaning that the edges of label i for each i ∈ [d] form
a permutation on V .

We show that there exists a deterministic algorithm that makes poly(dt/ε) nonadaptive queries to f ,
regardless of the number of vertices in the graph G. Crucially, and in contrast to the randomized algorithm,
our algorithm does not simply output the average value of its queries. Indeed, Hoza, Pyne, and Vadhan (ITCS
2021) showed that any deterministic algorithm of the latter form that works for graphs of unbounded size
must have query complexity at least exp(Ω̃(log(t) log(1/ε))).

In the language of pseudorandomness, our result is a separation between the query complexity of
“deterministic samplers” and “deterministic averaging samplers” for the class of “permutation branching
programs of unbounded width”. Our separation is stronger than the prior separation of Pyne and Vadhan
(CCC 2021), and has a much simpler proof (not using spectral graph theory or the Impagliazzo–Nisan–
Wigderson pseudorandom generator). On the other hand, the algorithm of Pyne and Vadhan is explicit and
computable in small space, whereas ours is not explicit (unless we assume the existence of an optimal explicit
pseudorandom generator for permutation branching programs of bounded width).

1 Introduction

Consider the following computational problem: given a regular digraph G = (V,E), two vertices u, v ∈ V , and
a walk length t ∈ N, estimate the probability that a random walk of length t from u ends at v to within ±ε.
A randomized algorithm can solve this problem by carrying out O(1/ε2) random walks of length t from u and
outputting the fraction that end at v.

In this paper, we study deterministic algorithms for this problem that are also restricted to carrying out
walks of length t from u and seeing which ones end at v. Specifically, if G is d-regular, the algorithm is given
oracle access to a function f : [d]t → {0, 1} where f(x) is 1 if the walk from u specified by the edge labels in x
ends at v. We assume that G is consistently labelled, meaning that the edges of label i for each i ∈ [d] form a
permutation on V . (It can be shown that every d-regular digraph has a consistent labelling, so this requirement
does not constrain the graph structure, only the labelling.) In the case where we have “white-box” access to the
graph, Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan [AKM+20] gave a deterministic algorithm
for this problem with space complexity Õ(log(|V | · td/ε)).

We show that there exists a deterministic algorithm that makes poly(dt/ε) nonadaptive queries to f , regardless
of the number of vertices in the graph G. Crucially, and in contrast to the randomized algorithm, our algorithm
does not simply output the average value of its queries. Indeed, Hoza, Pyne, and Vadhan [HPV21] showed that
any deterministic algorithm of the latter form that works for graphs of unbounded size must have query complexity
at least exp(Ω̃(log(t) log(1/ε))).
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Below we present these results in the language of pseudorandomness, as a separation between the query
complexity of “deterministic samplers” and “deterministic averaging samplers” for the class of “permutation
branching programs of unbounded width”. Our separation is stronger than the prior separation of Pyne and
Vadhan [PV21], and has a much simpler proof (not using spectral graph theory or the Impagliazzo–Nisan–
Wigderson pseudorandom generator). On the other hand, the algorithm of Pyne and Vadhan is explicit and
computable in small space, whereas ours is not explicit (unless we assume the existence of an optimal explicit
pseudorandom generator for permutation branching programs of bounded width).

1.1 Ordered Branching Programs Motivated by the goal of derandomizing space-bounded computation, i.e.
proving BPL = L, there has been extensive work on estimating the acceptance probabilities of ordered branching
programs, which capture how a randomized small-space algorithm uses its random bits.

Definition 1.1. An ordered branching program (OBP) B of length n and width w computes a function
B : {0, 1}n → {0, 1}. On an input σ ∈ {0, 1}n, the branching program computes as follows. It has n + 1 layers
V0, . . . , Vn, each with vertices labeled {1, . . . , w}. It starts at a fixed start state v0 ∈ V0. Then for r = 1, . . . , n, it
reads the next symbol σr and updates its state according to a transition function Br : Vr−1×{0, 1} → Vr by taking
vr = Br(vr−1, σr). For v ∈ Vi and u ∈ Vj for j > i, we write B[v, x] = u if the program transitions to state u
starting from state v on input x ∈ {0, 1}j−i.

Moreover, there is an accept state vacc ∈ Vn. For x ∈ {0, 1}n, we define B(x) = 1 iff B[v0, x] = vacc. That
is, B accepts the inputs x that lead it from the start state v0 in the first layer to the accept state in the last layer
vacc.

Given a graph G = (V,E) with w vertices, outdegree 2, n ∈ N, and two vertices u, v ∈ V , we can define
an associated ordered branching program BG,u,v,n which simulates walks of length n in G. Specifically, we
set v0 = u, vacc = v, and BG,u,v,n

r (vr−1, σ) to be the σ’th neighbor of vertex vr−1 for every r = 1, . . . , n,
vr−1 ∈ Vr−1 = {1, . . . , w}, and σ ∈ {0, 1}. Then BG,u,v,n(x) = 1 iff carrying out a walk of length n according to
the edge labels in x leads from u to v in G. In particular, the probability that BG,u,v,n accepts a uniformly random
input x is exactly the probability that a random walk of length n from u ends at v, exactly the computational
problem we wish to solve. Compared to a general ordered branching program, BG,u,v,n has the same transition
function at every layer.

The definition of branching programs naturally generalizes to alphabet sizes d > 2, allowing for simulation
of random walks on graphs of degree d. We present our results just for the d = 2 case for simplicity, but they
extend to larger d as well.

Motivated by the derandomization of space-bounded computation, there has been three decades of work
on deterministically estimating the acceptance probability of ordered branching programs in small space (for
instance [BNS92, Nis92, INW94, SZ99, BCG18, MRT19, Hoz21] and many others). In the case where we have
white-box access to the branching program, the algorithm of Saks and Zhou [SZ99], as recently improved by

Hoza [Hoz21], achieves space complexity o(log3/2 n) in the case w = poly(n) and ε = 1/ poly(n).
Our focus, however, is on “black-box” derandomization, where we only have oracle access to the function

B : {0, 1}n → {0, 1}. In this setting, we consider two questions:

1. Is there a small set Q ⊆ {0, 1}n such that knowing the value of an arbitrary branching program B on all
points of Q allows us to estimate Pr[B(Un) = 1] up to additive error ε? We call the size of the smallest such
Q the query complexity of two-sided derandomization.

2. If so, can we explicitly construct this set, and compute the estimate of the probability, in space O(log |Q|)?

Such algorithms can be seen as deterministic analogues of samplers for a restricted class of functions. (See
the survey [Gol11] for a general treatment of samplers.) These are defined as follows, following the language of
Cheng and Hoza [CH20]:

Definition 1.2. Let F be a class of functions f : {0, 1}n → {0, 1}. A deterministic ε-sampler for F is an
algorithm SAMP that, given oracle access to an arbitrary f ∈ F , makes queries to f and outputs SAMPf () ∈ R
such that

| SAMPf ()− Pr[f(Un) = 1]| ≤ ε.
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We say the the query complexity S is the maximum over f ∈ F of the number of distinct queries made. We say
the sampler is explicit if, given n, ε, and parameters defining the family F and ε > 0, SAMP can be computed
by a uniform algorithm with space complexity O(logS).

We say that SAMP is nonadaptive if it makes nonadaptive queries to its oracle f . A special case of
nonadaptive samplers are deterministic averaging samplers whereby the output of the sampler is the average
of f over its set Q of oracle queries.

It can be shown that deterministic averaging ε-samplers for a class F are equivalent to ε-pseudorandom generators
(PRGs) for the class F , where the seed length of the PRG is equal to the logarithm of the query complexity of
the sampler.

We also consider deterministic hitters (i.e. hitting set generators), a weaker one-sided analogue of deterministic
samplers.

Definition 1.3. Let F be a class of functions f : {0, 1}n → {0, 1}. A deterministic ε-hitter for F is a set
H ⊆ {0, 1}n such that for every f ∈ F where Prx←Un

[f(x) = 1] > ε, there is x ∈ H such that f(x) = 1. We say
that H is explicit if the elements of H can be enumerated in space O(log |H|).

It can be shown that a deterministic ε-sampler SAMP for a class F implies a deterministic 2ε-hitter H for F ,
where H is explicit if SAMP is. (Let H be the queries made by SAMPf0 on the all-zeroes function f0.)

A standard application of the probabilistic method (see Appendix A) shows that there do exist deterministic
averaging samplers (i.e. PRGs) with polynomial query complexity for ordered branching programs of polynomial
size. Specifically, for ordered branching programs of length n and width w, there exists a deterministic
averaging ε-sampler with query complexity poly(nw/ε), and this is optimal. However, constructing an explicit
deterministic sampler with matching query complexity has been a longstanding open problem. The classic
deterministic averaging samplers (i.e. PRGs) of Nisan [Nis92] and Impagliazzo–Nisan–Wigderson [INW94] have
query complexity exp(Θ(log(n) log(nw/ε))), and this has not been improved except where w ≤ 3 or ε = n−ω(1)

or w = n−ω(1).

However, in other models the picture is not so clear. There has been extensive work on permutation branching
programs, which are a subset of ordered branching programs that posses additional structure.

Definition 1.4. An (ordered) permutation branching program of length n, and width w is an ordered
branching program where for all t ∈ [n] and σ ∈ {0, 1}, Bt(·, σ) is a permutation on [w].

Similarly to how general ordered branching programs can simulate walks on general directed graphs of outdegree
2, permutation branching programs can simulate walks on 2-regular and consistently labelled directed graphs G.
Indeed, for every such graph G, the ordered branching program BG,u,v,n defined earlier will be a permutation
branching program.

There are several constructions of deterministic averaging samplers for permutation branching programs that
beat the classic Nisan and INW analyses in the constant width regime [BRRY10,KNP11,De11,Ste12]. We consider
the opposite regime, that of unbounded width permutation branching programs with a single accept state. This
model was introduced by Hoza, Pyne and Vadhan [HPV21], and corresponds to derandomizing walks with no
constraint on the size of the graph, merely requiring it to be consistently labeled.

In the case of one-sided derandomization, they established that deterministic hitters for bounded-width
permutation branching programs are also deterministic hitters for unbounded width permutation BPs:

Proposition 1.1. ([HPV21] Proposition 7.1) Given n ∈ N and δ > 0, there is a value w = O(n2/δ) such
that if H ⊆ {0, 1}n is a deterministic δ-hitter for permutation branching programs of length n and width w, then
H is a deterministic 2δ-hitter for permutation branching programs of length n and unbounded width (with a single
accept state).

This result, together with an accompanying lower bound (see Claim 2.1), established that optimal hitters for
bounded-width permutation branching programs imply optimal hitters for the unbounded width case, but says
nothing about two-sided derandomization.

In the two-sided regime, they constructed an explicit deterministic averaging ε-sampler for unbounded width
permutation branching programs with query complexity exp(Õ(log(n) log(1/ε))). Moreover, they showed an
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unconditional lower bound on the query complexity of deterministic averaging samplers of exp(Ω̃(log(n) log(1/ε))).
They also showed a random set Q of points in {0, 1}n fails to produce a deterministic averaging sampler whp
unless |Q| = exp(Ω(n)), so in contrast to the case of general ordered branching programs, they obtained an
explicit deterministic sampler with exponentially smaller query complexity than is obtained via the probabilistic
method. However, there remained a gap between their upper bound of exp(Õ(log(n) log(1/ε))) and the lower
bound of (n/ε)Ω(1) = exp(Ω(log(n/ε))) on the query complexity of general (possibly non-averaging) deterministic
ε-samplers for this model.

Next, Pyne and Vadhan [PV21] constructed an explicit deterministic ε-sampler (in fact a weighted
pseudorandom generator, which outputs a fixed linear combination of the queried points) for the model with query
complexity exp(Õ(log(n)

√
log(n/ε) + log(1/ε))). This deterministic sampler obtains smaller query complexity

than every deterministic averaging sampler when ε = n−Ω(1). Thus, they obtained an unconditional separation
between the query complexity of deterministic averaging and general deterministic samplers for the model.
However, this left a gap between the lower bound on query complexity of exp(Ω(log(n/ε))) and the upper bound
of exp(min{Õ(log(n)

√
log(n/ε) + log(1/ε)), Õ(log(n) log(1/ε))}) required for two-sided derandomization of the

model. In addition, their construction was highly involved, and relied on sophisticated results in spectral graph
theory [CKK+18, AKM+20], as well as the connection between the INW generator on permutation branching
programs and the derandomized square of Rozenman and Vadhan [RV05].

1.2 Our Contribution Our main result is to resolve the query complexity of derandomizing unbounded-width
permutation branching programs.

Theorem 1.1. There is a non-explicit deterministic nonadaptive ε-sampler for permutation branching programs
of length n and unbounded width (with a single accept state) that has query complexity poly(n/ε).

Thus, we establish the optimal query complexity for deterministic algorithms estimating the fraction of fixed-
length walks from u that end at v for arbitrary u, v in an arbitrarily sized consistently-labeled graph. Furthermore,
we obtain a deterministic sampler that achieves query complexity poly(n) for ε = 1/ poly(n), whereas every
deterministic averaging sampler with these parameters has query complexity exp(Ω(log2 n)) [HPV21]. This
gives a simple unconditional separation between averaging samplers and general nonadaptive samplers in the
no-randomness regime with respect to a natural computational model.

We prove this result via a reduction from the unbounded-width case to the bounded-width case. We show
that an optimal family of samplers for bounded-width permutation branching programs can be used to construct
an optimal sampler for unbounded-width ones. Since optimal non-explicit samplers for the bounded-width case
exist via the probabilistic method (See Appendix A), this immediately establishes our result.

We now state the reduction. For the remainder of the paper, rather than working with branching programs
with a single accept state vacc ∈ Vn, we allow branching programs to have a set Vacc ⊆ Vn of accept vertices,
where B(x) = 1 if B[v0, x] ∈ Vacc . We let a = |Vacc | be the number of accept vertices.

Theorem 1.2. Let S = {SAMPn,w,ε} be a family of deterministic ε-samplers SAMPn,w,ε for permutation
branching programs of length n and width w such that SAMPn,w,ε has query complexity poly(nw/ε). From S, we
can construct a deterministic ε-sampler SAMP′n,a,ε for permutation branching programs of length n and unbounded
width with a accept vertices that has query complexity poly(na/ε). Moreover, if the samplers SAMPn,w,ε in S are
explicit then so is SAMP′n,a,ε, and if the samplers SAMPn,w,ε in S are non-adaptive then so is SAMP′n,a,ε.

Note that this reduction preserves explicitness and (non-)adaptiveness, so optimal explicit deterministic
samplers (for instance, optimal explicit PRGs) for the bounded width case imply explicit deterministic samplers
for unbounded-width permutation BPs that have optimal space complexity O(log(na/ε)). Put differently, optimal
black-box two-sided derandomization of permutation branching programs with k vertices in all layers is no
harder than derandomization of permutation branching programs with k accept vertices in the final layer and no
restriction on width.

We summarize the current known derandomizations for unbounded-width permutation branching programs.
An entry of “Conditional” means an optimal explicit construction for permutation branching programs of bounded
width would imply an explicit construction.
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Object Query Complexity Explicit? Reference
Det. Hitter exp(O(log(na/ε))) Conditional [HPV21]

PRG exp(Õ(log(n) log(a/ε))) Yes [HPV21]

WPRG exp(Õ(log(n)
√

log(na/ε) + log(a/ε))) Yes [PV21]
Det. Sampler exp(O(log(na/ε))) Conditional This work.

1.3 Proof Overview Our construction is very simple, and in contrast to prior work on the model [HPV21,
PV21] the proof uses neither special properties of the INW PRG [INW94], nor results from spectral graph theory.

The key idea behind Theorem 1.2 is that compositions of layers of permutation branching programs themselves
define permutations. More concretely, fixing a permutation branching program B, an input x ∈ {0, 1}n−i and an
accept state vf ∈ Vacc in the final layer, there is at most one state v in layer i such that B[v, x] = vf . With this
observation, we can use a sparse set of strings T ⊆ {0, 1}n to restrict the branching program. For every layer
Vi, we remove all states v ∈ Vi where for all x ∈ T , B[v, x1..n−i] /∈ Vacc . Since each element of T can cause at
most a = |Vacc | vertices in every layer to be included in the restricted program, which we denote BT , we limit the
width of BT to at most |T | · a. Furthermore, by adding n|T | dummy states we have that BT can be computed by
a permutation branching program.

We next show that there is a sparse set T such that the restriction induced by T is a good approximation of the
original program. We take T to be the set of points queried by a deterministic hitter for permutation branching
programs of unbounded width. To obtain T from our hypothesis, we use a result of HPV, which proves that
samplers for the bounded-width case are hitters for the unbounded-width case (Proposition 1.1). We show that
the states not included in the restricted program are unimportant, in that removing all of them simultaneously
only changes the acceptance probability Pr[B(Un) = 1] by at most ε/2.

Then to estimate the acceptance probability of the restricted program, we use a second sampler that is good
against branching programs of width |T | · a, and return the output of the sampler on the restricted program BT .
Unfortunately, even if T is explicit it is unclear how to learn BT given only oracle access to the original program
B. To avoid having to do so, we construct a way to compute BT (x) for arbitrary x ∈ {0, 1}n given only oracle
access to B; we apply this procedure whenever the second sampler queries BT . Thus we obtain a good estimate
of Pr[BT (Un) = 1], which is itself a good estimate of Pr[B(Un) = 1], so we conclude.

1.4 Organization In Section 2 we recall that a deterministic ε-sampler for a class of functions implies a
deterministic 2ε-hitter for that class, and use this to establish the optimal space and query complexity of samplers
for unbounded-width permutation BPs. In Section 3 we prove that hitters can be used to restrict unbounded-
width permutation BPs to bounded width, and that this restriction can be done in a black-box manner, and this
restriction is a good approximation of the original program. Then in Section 4, we combine these two results and
prove the main theorem.

2 Samplers Imply Hitters

We first recall that an arbitrary deterministic ε-sampler for a model that includes the all-zeroes function (which
includes functions computed by permutation branching programs of width at least 2) induces a deterministic 2ε-
hitter for the model. We use this to establish tight lower bounds on space and query complexity for deterministic
samplers for permutation branching programs of unbounded width.

Proposition 2.1. Let F be a class of functions f : {0, 1}n → {0, 1} that includes the constant function f0(x) = 0.
Then if A is an deterministic ε-sampler for F , the set of queries Q made by A on the all-zeroes function f0 is a
deterministic 2ε-hitter for F , and moreover Q is explicit if A is.

Proof. Assuming for contradiction this is not the case, there is f ∈ F such that f(Q) = 0 but Pr[f(Un) = 1] > 2ε.
But since the sampler must output a single estimate SAMPf () = SAMPf0() for f and the all-0 program f0 (since
the value of both functions on all queried points are identical), it must fail to estimate the acceptance probability
of one to within ε, a contradiction.

We then recall the optimal seed length for deterministic hitters for permutation branching programs of
unbounded width.
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Claim 2.1. ([HPV21] Claim 7.3) Given n, a ∈ N and ε ∈ (1/4, 0) such that 1/2 > ε/a ≥ 2−n, let H ⊆ {0, 1}n
be a deterministic ε-hitter for permutation branching programs of unbounded width and at most a accept vertices.
Then |H| = (na/ε)Ω(1) = exp(Ω(log(na/ε))).

We recall the proof in Appendix A. From this, we can derive the optimal space and query complexity of a
sampler.

Corollary 2.1. Given 1/8 > ε ≥ 2−n and n, a ∈ N, let A be a deterministic ε-sampler for permutation
branching programs of length n and unbounded width with at most a accept vertices, where ε/a ≥ 2−n. Then A
has query complexity (na/ε)Ω(1). Moreover, if A is explicit it has space complexity s = Ω(log(na/ε)).

Proof. We apply Proposition 2.1 to A and obtain a deterministic 2ε-hitter Q ⊆ {0, 1}n for permutation branching
programs of length n with at most a accept vertices. By Claim 2.1 we obtain |Q| = (na/ε)Ω(1) which establishes
the claimed bound on query complexity. Furthermore if A is explicit and has space complexity s, it must run in
time 2O(s) since it is required to halt, and thus its query complexity |Q| is at most 2O(s). Combined with the
lower bound on |Q|, we have that s = Ω(na/ε).

3 Hitters Induce Bounded-Width Approximators

We next show that, given a permutation branching program B and a sufficiently good deterministic hitter, the set
of states v ∈ Vi for which there is a hitter output whose prefix reaches an accept state starting from v forms an
approximator of the original program. To show this, we define the program “cut out” by a deterministic hitter.
Then we show that we can evaluate this approximator program on any input given only oracle access to B.

Definition 3.1. Given a set H ⊆ {0, 1}n and a permutation branching program B of length n with a accept
vertices Vacc and vertices V0, . . . , Vn, let the hit states in layer i be

Ki = {v ∈ Vi : ∃x ∈ H s.t. B[v, x1..n−i] ∈ Va}.

WLOG pad all such sets to have size K = maxn
i=0 |Ki|, where all transitions from padding states in Ki do not

lead to Ki+1. The induced hit program BH is the length n permutation branching program with states in layer
i given by {Ki}∪ {{0, . . . , n}× [K]}, where we identify states in {0, . . . , n}× [K] by (j, v). For v ∈ Ki, define the
transition function

(BH)i(v, b) =

{
Bi(v, b) Bi(v, b) ∈ Ki+1

(i, v) otherwise.

Then greedily define transitions for {(i, v) : v ∈ [K]} to maintain the permutation property. For all states (j, v)
for j 6= i, let (BH)i((j, v), b) = (j, v).

We next show that the width of the induced hit program is bounded by the size of the domain of H (and thus its
seed length). This will allow us to derandomize the induced hit program as a standard bounded-width permutation
branching program.

Lemma 3.1. Given H ⊆ {0, 1}n and a permutation branching program B of length n with a accept vertices, the
width of the induced hit program BH is at most |H| · (n+ 2) · a.

To prove this, we require a proposition essentially showing that composing multiple layers of a permutation
branching program produces a permutation branching program of higher degree. This is the only element of the
proof that uses the fact that B is a permutation, rather than regular, branching program.

Proposition 3.1. For every permutation branching program B, for every distinct v, v′ ∈ Vi and σ ∈ {0, 1}k so
that i+ k ≤ n, B[v, σ] 6= B[v′, σ].

Proof. We prove this by induction on k. The base case of k = 0 is vacuously true. Assuming it holds for k, let
B be an arbitrary permutation branching program and v, v′ ∈ Vi arbitrary distinct states. Let σ ∈ {0, 1}k+1

be arbitrary. From the permutation property it must be the case that u1 = B[v, σ1] 6= B[v′, σ1] = u2, so
B[v, σ] = B[u1, σ2..k] 6= B[u2, σ2..k] = B[v′, σ] where the inequality follows from the inductive step, and since σ,
B and v, v′ were arbitrary we conclude.
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We can then prove Lemma 3.1.

Proof. It suffices to show that the number of included states of the original program satisfies |Ki| ≤ |H| · a for all
i ∈ {0, . . . , n− 1}, since the width of BH is bounded by (n+ 2) ·K = (n+ 2) ·maxn

i=0 |Ki|. For every fixed accept
state u ∈ Vacc , there are at most |H| states v ∈ Vi such that there exists x ∈ H such that B[v, x1..n−i] = u by
Proposition 3.1, so we conclude via a union bound.

The induced hit program is well defined for every H ⊆ {0, 1}n. However, we wish to show that the program
induced by a sufficiently good deterministic hitter is a close approximation of the original permutation branching
program.

Lemma 3.2. Let H ⊆ {0, 1}n be a deterministic δ/na-hitter for permutation branching programs of length n and
unbounded width with a single accept state. Then for every permutation branching program B of length n and
unbounded width with at most a accept vertices, the induced hit program BH satisfies

|Pr[BH(Un) = 1]− Pr[B(Un) = 1]| ≤ δ.

Proof. Let Vneg be the set of states of B not included in the induced hit program BH . For every v ∈ Vneg in
layer n − k, using the fact that H is a deterministic δ/na-hitter for branching programs of length n, and hence
for length n− k ≤ n since branching programs can ignore bits, we obtain

Pr[B[v, Uk] ∈ Vacc ] =
∑

u∈Vacc

Pr[B[v, Uk] = u] ≤ a · δ
na
.

If v0 ∈ Vneg then BH is the all zeroes program and the above implies Pr[B(Un) = 1] ≤ δ so we are done. Thus
assume that v0 /∈ Vneg. For arbitrary x ∈ {0, 1}n such that B(x) 6= BH(x), it must be the case that B(x) = 1 while
BH(x) = 0, i.e. B passes through some element of Vneg in its computation on x and B[v0, x] ∈ Vacc . Therefore,

|Pr[BH(Un) = 1]− Pr[B(Un) = 1]| ≤ Pr
x←Un

[B(x) 6= BH(x)]

= Pr
x←Un

[
(B[v0, x] ∈ Vacc)

∧(
n∨

i=1

B[v0, x1..i] ∈ Vneg

)]

≤
n∑

i=1

∑
v∈Vi∩Vneg

Pr
x←Un

[(B[v0, x1..i] = v) ∧ (B[v, xi+1..n] ∈ Vacc)]

=
n∑

i=1

∑
v∈Vneg∩Vi

Pr[B[v0, Ui] = v] · Pr[B[v, Un−i] ∈ Vacc ]

≤
n∑

i=1

 ∑
v∈Vneg∩Vi

Pr[B[v0, Ui] = v]

 · δ
n

≤
n∑

i=1

1 · δ
n

= δ.

Finally, we show that given H, we can evaluate an arbitrary input on the induced hit program.

Lemma 3.3. Given a permutation branching program B of length n and a set H ⊆ {0, 1}n, for every x ∈ {0, 1}n
we have

BH(x) =
n∧

i=0

∨
y∈H

B(x1..i||yi+1..n)


where || denotes string concatenation and x1..0 and yn+1..n are the empty string.
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Proof. Fix arbitrary x ∈ {0, 1}n and let vi = B[v0, x1..i] for all i ∈ {0, . . . , n}. First suppose the RHS evaluates
to 1. For i ∈ {0, . . . , n} we have 1 =

∨
y∈H B(x1..i||yi+1..n), so there is some y ∈ H such that B[vi, yi+1..n] ∈ Vacc ,

which is precisely the condition for including vi in the induced hit program BH , and this holds for every i, so
BH(x) = 1. Now suppose the RHS evaluates to 0. Fixing the least i such that

∨
y∈H B(x1..i||yi+1..n) = 0, we

have that vi is not included in BH and so B[vi−1, xi] = u /∈ Ki. Since u is always subsequently wired to itself and
marked as reject in the final layer we have BH(x) = 0.

Note that this implies that we can evaluate BH(x) given x and oracle access to B, and this procedure is explicit
if H is.

4 Putting it All Together

We can now go from samplers for bounded-width permutation branching programs to samplers for unbounded-
width permutation branching programs. We follow the outline in the proof sketch in Section 1.4. First, we use an
optimal sampler for the bounded-width case to generate an optimal deterministic hitter for the bounded-width
case, which implies an optimal deterministic hitter H for the unbounded-width case. Then we use a second
sampler and evaluate it on the induced hit program BH , and by choosing the parameters for the second sampler
appropriately obtain an accurate estimate of Pr[BH(Un) = 1] and thus Pr[B(Un) = 1].

Theorem 4.1. Let S = {SAMPn,w,ε} be a family of deterministic ε-samplers SAMPn,w,ε for permutation
branching programs of length n and width w such that SAMPn,w,ε has query complexity poly(nw/ε). From S, we
can construct a deterministic ε-sampler SAMP′n,a,ε for permutation branching programs of length n and unbounded
width with a accept vertices that has query complexity poly(na/ε). Moreover, if the samplers SAMPn,w,ε in S are
explicit then so is SAMP′n,a,ε, and if the samplers SAMPn,w,ε in S are non-adaptive then so is SAMP′n,a,ε.

Proof. By assumption, we have a deterministic ε-hitter for permutation branching programs of length n and
width w = O(n3a/ε), where this w is that obtained from Proposition 1.1 with n = n and δ = ε/(8na). Applying
Proposition 2.1, we obtain a deterministic ε/(4na)-hitter H ⊆ {0, 1}n for permutation BPs of length n and width
w = O(n3a/ε), with |H| = (na/ε)O(1) = exp(O(log(na/ε))). Applying Proposition 1.1, we have that H is a
deterministic ε/2na-hitter for permutation branching programs of unbounded width with a single accept state.

Now let A = SAMPn,w′,ε/2 be an ε/2-sampler for permutation branching programs of length n and width
w′ = |H| · (n+ 2) · a = poly(na/ε). By assumption, A has query complexity poly(na/ε).

Finally, given an arbitrary permutation branching program B with at most a accept vertices, define

SAMP
′B
n,a,ε() = ABH (), where whenever A queries the value of BH on x ∈ {0, 1}n, we apply Lemma 3.3, so

SAMP
′B
n,a,ε queries

{(x1..i||y1..n−i) : i ∈ {0, . . . , n}, y ∈ H}.

Thus SAMP′n,a,ε has query complexity that equals the query complexity of A times (n+ 1) · |H |, for a total query
complexity of poly(na/ε). If S = {SAMPn,w,ε} is non-adaptive (i.e. the queries made by A do not depend on
BH and thus B) then SAMP′n,a,ε is. Finally, if S = {SAMPn,w,ε} is explicit then SAMP′n,a,ε is by definition.

Finally, we prove SAMP′n,a,ε is an ε-sampler. We have that BH is a permutation branching program of length
n and width at most |H| · (n+ 2) · a by Lemma 3.1, so by our choice of parameters A is an ε/2-sampler for BH ,
i.e. |ABH ()− Pr[BH(Un) = 1]| ≤ ε/2. Then we conclude by the triangle inequality:

| SAMP
′B
n,a,ε()− Pr[B(Un) = 1]|

= |ABH ()− Pr[B(Un) = 1]| (Lemma 3.3)

≤ |ABH ()− Pr[BH(Un) = 1]|+ |Pr[BH(Un) = 1]− Pr[B(Un) = 1]|
≤ |ABH ()− Pr[BH(Un) = 1]|+ ε/2 (Lemma 3.2)

≤ ε

and since B was arbitrary we obtain the result.
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A The Optimal Seed Length For Deterministic Hitters

We prove the optimal seed length for deterministic hitters for unbounded-width permutation branching programs.
The proof is identical to that given in Hoza et al. [HPV21] except we explicitly consider the number of accept
vertices in the final layer.

Claim 2.1. ([HPV21] Claim 7.3) Given n, a ∈ N and ε ∈ (1/4, 0) such that 1/2 > ε/a ≥ 2−n, let H ⊆ {0, 1}n
be a deterministic ε-hitter for permutation branching programs of unbounded width and at most a accept vertices.
Then |H| = (na/ε)Ω(1) = exp(Ω(log(na/ε))).

Proof. We prove the bounds on n and ε/a separately:

1. If |H| ≤ n− 1, there is some nonzero vector z ∈ Fn
2 such that for every x,

n⊕
i=1

zi ·H(x)i = 0.

The function B(x) = I[⊕n
i=1zi · xi = 1] can be computed by a permutation branching program (of width 2)

with a single accept state, and Pr[B(Un) = 1] ≥ 1/2, but B(x) = 0 for all x ∈ H, a contradiction.

2. If |H| ≤ a/4ε, there are at most a/4ε distinct length l = dlog(ε/a)e − 1 prefixes of elements of H. Letting
B be a permutation branching program that reaches the ith state in the final layer on input x if

l∑
j=1

2j−1 · xj = i,

we have that the final state of B(Un) is distributed uniformly over {0, . . . , 2l− 1}. Then choosing a distinct
states in the final layer that are not reached by every output of H (where we use that 2l − a/4ε ≥ a) and
marking them as accept, we obtain that Pr[B(Un) = 1] ≥ a(2ε/a) = 2ε whereas B(x) = 0 for all x ∈ H, a
contradiction.

We also note the optimal seed length for hitters for general ordered branching programs (which include
permutation branching programs of bounded width). Together with the result converting deterministic samplers
into hitters (Proposition 2.1), this establishes the query complexity of two-sided derandomization for the model
is (nw/ε)Ω(1).

Claim A.1. Given n,w ∈ N and 1/2 > ε ≥ 2−n, let H ⊆ {0, 1}n be a deterministic ε-hitter for ordered branching
programs of width w and length n. Then |H| = (nw/ε)Ω(1).

Proof. We prove the bounds on w and 1/ε separately. The bound |H| = nΩ(1) is identical to the same bound in
the prior proof.

1. If |H| ≤ 1/2ε, there is some string σ of length l = dlog(1/ε)e − 1 such that x1..l 6= σ for every x ∈ H. Then
let B be a width-2 ordered branching program where

B(x) = 1 ⇐⇒ x1..l = σ

(note that we use the program is non-regular to keep the width at 2), we have Pr[B(Un) = 1] ≥ 2ε but
B(x) = 0 for all x ∈ H, a contradiction.

2. If |H| ≤ w/2, there are at most w/2 distinct length l = dlog(w)e prefixes of elements of H. Letting B be a
branching program that reaches the ith state in the final layer on input x if

l∑
j=1

2j−1 · xj = i,

we have that the final state of B(Un) is distributed uniformly over {0, . . . , 2l − 1}. Then choosing w/2
distinct states in the final layer that are not reached by every x ∈ H and marking them as accept states,
we obtain that Pr[B(Un) = 1] ≥ 1/2 whereas B(x) = 0 for all x ∈ H, a contradiction.
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We recall the existence of non-explicit deterministic averaging samplers for ordered branching programs
of bounded width. Since ordered branching programs are a superset of permutation branching programs, this
likewise implies the existence of optimal non-explicit averaging samplers for bounded-width permutation branching
programs. Together with Theorem 1.2 this implies Theorem 1.1.

Proposition A.1. There is a family S = {SAMPn,w,ε} of (non-explicit) deterministic ε-samplers SAMPn,w,ε

for ordered branching programs of length n and width w such that SAMPn,w,ε has query complexity poly(nw/ε).

Proof. First note that a branching program of length n and width w has a description using k = poly(nw) bits,
so there are at most 2k such programs. Now fix n,w ∈ N and ε > 0 and consider a random set Q of size
|Q| = 3k/ε where Qi is a random independently chosen element of {0, 1}n for all i. Fixing an arbitrary ordered
branching program B of length n and width w, let µ = Pr[B(Un) = 1] be its accept probability and WLOG
assume µ ≥ 1/2, since an additive estimate of the accept probability implies an equivalent estimate of the reject
probability. Then let Yi = B(Qi) be the random variable that is 1 when B accepts on Qi. We have Yi ∈ [0, 1] and
they are independent for all i. Applying a Chernoff bound over the randomness of the strings in Q, we obtain for
all δ ∈ (0, 1)

Pr

[∣∣∣∣∣ 1

|Q|
∑
i

Yi − µ

∣∣∣∣∣ ≥ δµ
]
≤ 2 exp(−|Q|2δ2µ/3).

Then choosing δ = ε we obtain

Pr

[∣∣∣∣∣ 1

|Q|
∑
i

Yi − µ

∣∣∣∣∣ ≥ ε
]
≤ 2 exp(−3k2).

By a union bound, the probability that a random set Q of the chosen size fails to be a deterministic averaging
sampler for at least one of the 2k length n, width w branching programs is at most 2 exp(k − 3k2) < 1. Thus
there exists some Qgood that is good for all such programs, so Qgood generates a deterministic averaging ε-sampler
SAMPn,w,ε for ordered branching programs of length n and width w. By construction, |Qgood| = poly(nw/ε).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited67

D
ow

nl
oa

de
d 

07
/0

6/
22

 to
 1

73
.4

8.
18

4.
73

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y


	Introduction
	Ordered Branching Programs
	Our Contribution
	Proof Overview
	Organization

	Samplers Imply Hitters
	Hitters Induce Bounded-Width Approximators
	Putting it All Together
	The Optimal Seed Length For Deterministic Hitters

