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ENGINEERING

Optimal and continuous multilattice embedding

E. D. Sanders', A. Pereira?, G. H. Paulino'*

Because of increased geometric freedom at a widening range of length scales and access to a growing material
space, additive manufacturing has spurred renewed interest in topology optimization of parts with spatially varying
material properties and structural hierarchy. Simultaneously, a surge of micro/nanoarchitected materials have
been demonstrated. Nevertheless, multiscale design and micro/nanoscale additive manufacturing have yet to be
sufficiently integrated to achieve free-form, multiscale, biomimetic structures. We unify design and manufactur-
ing of spatially varying, hierarchical structures through a multimicrostructure topology optimization formulation
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with continuous multimicrostructure embedding. The approach leads to an optimized layout of multiple micro-
structural materials within an optimized macrostructure geometry, manufactured with continuously graded inter-
faces. To make the process modular and controllable and to avoid prohibitively expensive surface representations,
we embed the microstructures directly into the 3D printer slices. The ideas provide a critical, interdisciplinary link at
the convergence of material and structure in optimal design and manufacturing.

INTRODUCTION

Many natural structures and materials such as wood, bone, and shells
synthesize spatially varying mechanical properties and structural
hierarchy to achieve compelling functionalities (I). For example, teeth
have not only a hard and brittle outer layer (enamel) that is prone to
cracking but also a tough inner layer (dentin) that mitigates crack
propagation into the tooth’s interior (2); the mantis shrimp’s dactyl
club exhibits functionally graded elasticity and hardness that leads
to high impact resistance needed for striking its prey (3); bamboo’s
fiber reinforcement is functionally graded radially along the culm
(stalk) cross section for high bending rigidity per unit mass (4); and
the internal bone structure of the cuttlefish contains a porous, layered
architecture that simultaneously resists high pressures experienced
in the deep sea while remaining lightweight and enabling the cuttle-
fish to control its buoyancy (5, 6).

Many of these natural features have been borrowed to enhance
the performance of engineered structures and materials. For exam-
ple, reinforced concrete is a multimaterial system with properties
exceeding that of the constituent materials; sandwich panels use
structural hierarchy to enhance their strength-to-weight ratio; and
engineered foams provide energy absorption, thermal insulation,
and buoyancy in various engineering applications (7). Topology
optimization provides a rational way to further elicit functionalities
from such systems [e.g., artificial materials with negative thermal
expansion (8, 9) and structures exhibiting prescribed deforma-
tions (10-12)].

Fundamental to what we know today as topology optimization is
the homogenization-based method proposed by Bendsee and Kikuchi
in 1988 (13) in which an optimized material distribution is deter-
mined using homogenized microstructural-material properties, in-
terpolated as a function of the microstructure’s porosity and orientation.
A key limitation that sidelined this approach in favor of other meth-
ods [e.g., the solid isotropic material interpolation (SIMP) method
(14, 15)] was manufacturability, due to geometric complexity, small
length scales, and connectivity of the microstructures. With recent
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advances in additive manufacturing, several attempts to revive the
homogenization-based approach have been pursued (16-25), yet
only a few physical realizations have been demonstrated (25).

Although additive manufacturing is pushing architected materials
to new limits [e.g., unit cells with 300-nm minimum feature size by
two-photon lithography (26, 27) and hierarchical structures span-
ning length scales from tens of nanometers to tens of centimeters by
projection microstereolithography (28, 29)], such complex micro-
structures have yet to be cohesively coupled with macrostructures
of equally complex geometry as obtained from topology optimization.
For example, most manufactured topology-optimized parts com-
posed of architected materials have box-like macrostructures with
heterogeneity attributed only to unit cell density (30-34). On the
other hand, free-form, topology-optimized macrostructures have
been embedded with a homogeneous microstructural material (35).
The realization of geometrically heterogeneous architected materials
embedded and manufactured within free-form, three-dimensional
(3D), topology-optimized macrostructures, remains a challenge. A
limiting factor has been a means to effectively represent the 3D ge-
ometry of complex, spatially varying, multiscale parts in a way that
is meaningful (to a 3D printer). Multimaterial and multiscale addi-
tive manufacturing is shifting from impractical surface representa-
tions to procedural (36) or voxel representations (37-39) that are
less memory intensive. Here, we integrate this current trend in multi-
scale additive manufacturing with multiscale topology optimization
to achieve structures with unprecedented complexity at both the
macro- and microscales.

In an effort to achieve free-form, multiscale structures with spa-
tially varying mechanical properties and microstructural geome-
tries, we propose a multimicrostructure, density-based, topology
optimization formulation that simultaneously determines an opti-
mized macrostructural geometry and distribution of a set of porous
microstructural materials with distinct, possibly anisotropic me-
chanical behavior. We focus on volume-constrained compliance
minimization problems, but the ideas readily extend to other prob-
lems [e.g., stress-constrained topology optimization (40)]. We also
overcome a number of challenges in manufacturing spatially vary-
ing, multiscale, topology-optimized parts with functionally graded
microstructural-material interfaces via a multimaterial slicing and
continuous multimicrostructure-embedding scheme at the level of
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the 3D printer slices. We demonstrate the capabilities of our proposed
approach using a commercially available masked-stereolithography
(m-SLA) 3D printer from Prusa Research.

RESULTS

Topology-optimized parts, manufactured with continuously
embedded microstructures

We begin by using the proposed multimicrostructure topology op-
timization formulation (see Materials and Methods) and continuous
multimicrostructure-embedding scheme to design and manufac-
ture a cantilever beam, with minimized compliance, f, according to
the domain and boundary conditions defined in Fig. 1A.

To demonstrate that the proposed multimicrostructure-embedding
scheme is capable of generating smooth, well-connected transitions
between microstructures composed of unit cells with similar or dis-
similar geometries that may or may not have clear connectivity, we
design and manufacture the cantilever beam considering three dif-
ferent combinations of two microstructural materials. In Fig. 1A,
we consider materials composed of octahedron unit cells with different
bar diameters. In Fig. 1B, we consider a simple cubic and a truncated
octahedron unit cell. In Fig. 1C, we consider a face-x and a center-x
unit cell. The unit cells and associated normalized, directional ten-
sile and shear moduli, E{;/(ED;) and G1,/(GD;), obtained using
computational homogenization, are provided at the left of Fig. 1 for
each of the three cases. In addition to normalizing by the tensile and
shear moduli of the bulk material, E and G, we also normalize by the
unit cell volume fraction, 9;, to capture the conflicting volume and
stiffness requirements in the volume-constrained compliance min-
imization problem. The directional shear moduli plots represent an
envelope of shear stiffness for critical orientations of shear (see sec-
tion S1). In all cases, the bulk materials associated with microstruc-
tural materials 1 and 2 are limited to a domain volume fraction
of U; = 0.070; and T, = 0.03 Dy, respectively.

In each case, a smooth and continuous transition is demonstrat-
ed in the manufactured part. Note that the topology optimization
formulation allows spatial freedom within the domain, leading to
organic material interfaces. As a result, the microstructural materials
may require connectivity at any arbitrary cross section (not necessar-
ily at the unit cell boundaries), which poses a challenge in obtaining
well-connected structures after manufacturing. A 1D illustration of
this challenge is illustrated for the three different representative com-
binations of microstructures in Fig. 2. In Fig. 2A, a well-connected
interface with abrupt transition is shown between the two octahe-
dron unit cells that have the same geometry but different bar diam-
eters. In Fig. 2B, a discontinuous interface is shown between the
simple cubic and truncated octahedron unit cell for which connec-
tivity at any arbitrary interface is, in general, not guaranteed. In
Fig. 2C, a disconnected interface is shown between the face-x and
center-x unit cell for which connectivity is only guaranteed at the
unit cell boundaries. To achieve smooth and continuous transitions
between the unit cells, we define a set of transitional unit cells that
are obtained by interpolating the bar diameter in Fig. 2A, interpo-
lating the unit cell geometry in Fig. 2B, and composing the two unit
cells into a series of hybrid unit cells in Fig. 2C. The transitions in
Fig. 2 are shown in 1D, but in the manufactured parts, they can occur
in any arbitrary direction in 3D space.

We choose the transitional unit cells to achieve smooth and con-
tinuous geometry transitions and do not directly enforce any requirements
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on how the microstructural-material properties vary over the tran-
sition region (see plots of unit cell geometry versus normalized modu-
lus in Fig. 2). The transition regions demonstrate monotonically
decreasing stiffness over the transition in Fig. 2A, monotonically
increasing stiffness followed by some oscillations in Fig. 2B, and a
stiffening effect, much like standard connections used in engineer-
ing, in Fig. 2C. The microstructural-material property transitions in
Fig. 2A can be approximated by an exponential function of the form
En1(x) = E11(0)e”™, where the length scale of inhomogeneity in the
tensile modulus (similar for the shear modulus) is characterized by
1/a. = w/ In (E11(0)/E11(w)), with w as a given transition region
length (e.g., if w = 1in Fig. 2A, then 1/a = 0.55). Other transitioning
techniques can be used to achieve desired homogenized material
property transitions [see, e.g., (41)]. The geometry and homoge-
nized material property transitions are shown in more detail in
movie S3.

Multimaterial slicing and continuous

multimicrostructure embedding

The manufactured parts in Fig. 1 are a result of the multimaterial
slicing and continuous multimicrostructure-embedding scheme,
illustrated in Fig. 3 and a flowchart in fig. S3, which overcomes
several existing challenges in manufacturing multimicrostructure
topology-optimized parts. Homogenized material properties are used
in the multimicrostructure topology optimization step, but we re-
fer to the output simply as multimaterial density data since the
microstructural-material geometries have yet to be embedded and we
process the data as if it were multiple, solid, isotropic materials until
the multimicrostructure-embedding step. Figure 3 (A to D) shows
various ways of representing multimaterial topology optimization
density data to highlight challenges in communicating the data to a
3D printer. Oftentimes, the topology optimization density field(s)
coincide spatially with a mesh used for the finite element analysis
[here, we use centroids of a hexahedral (hex) mesh]. By discarding
densities less than a cutoff value (typically 0.5), the density data rep-
resented directly on the underlying hex mesh lead to poor resolu-
tion (Fig. 3A). Instead, it is typical to generate a smooth isosurface
of the data; however, for multimaterial, care is needed to avoid dis-
jointed material interfaces caused by low densities resulting from
the density filter (see Eq. 2 in Materials and Methods) used to regu-
larize the topology optimization problem (Fig. 3B). To promote
well-connected material interfaces and capture material variations
through the volume of the part, we project the density fields onto a
tetrahedral (tet) mesh generated within an isosurface of the com-
posite density field (Fig. 3C). Furthermore, we functionally grade
the interfaces by applying a convolution filter (see Eq. 2 in Materials
and Methods) to the multimaterial tet data (Fig. 3D), leading to
controlled mixing at the interfaces (influence of the filter radius is
investigated in fig. S5). Both the abrupt-transition and functionally
graded multimaterial tet data can be directly processed for multi-
material 3D printing [e.g., inkjet (38, 42), grayscale digital light pro-
cessing (DLP) (43, 44), and multi-vat DLP (45, 46)]; however, the
functionally graded, multimaterial tet data are needed for continu-
ously embedding the microstructural materials into the part.

We choose an image-based manufacturing approach (m-SLA)
that enables us to easily embed the microstructures directly in the
pixelated 3D printer slices and avoid a prohibitively expensive sur-
face representation (STL) of the multimicrostructure-embedded
part. We start by defining a set of transitional unit cells that provide
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Fig. 1. Two-microstructural-material topology-optimized cantilever beams and multimicrostructure-embedded m-SLA parts. Unit cells have (A) the same geometry
and smooth/continuous transition by variable bar diameter, (B) different geometry with smooth/continuous transition by shape interpolation of the unit cell geometry,
and (C) different geometry with smooth/continuous transition by hybrid unit cells composed of the basic unit cells. Directional tensile and shear moduli (based on ho-
mogenized properties) are plotted for each microstructural-material at the left of (A), (B), and (C). In all cases, the bulk materials are limited to a domain volume fraction
of o, = 0.07D;and 7, = 0.03 D, for microstructural materials 1 and 2, respectively. Variables 31. " and D, are the unit cell bar diameter and volume, respectively, and df’a'
is the manufactured bar diameter corresponding, in this case, to unit cells with edge length of 1.5 mm. In design, we model half of the domain and impose symmetry
boundary conditions along the x; — x5 plane. Printed cantilevers are 14.5 cm tall. Scale bars, 1.5 mm. Photo credit: Emily D. Sanders, Georgia Institute of Technology.

a continuous shape morphing between each of the microstructural
materials in our design (Fig. 3E). These transitional microstructural
materials map to the graded regions of the functionally graded tet
mesh according to a color mapping. We slice the functionally grad-
ed tet mesh to obtain color-coded “macro-slices” for each print lay-
er. Using a consistent layerheight, we also slice each unit cell and tile
the slices over the build area to obtain a stack of slices representing
a one-unit-cell-high tessellation of the unit cell over the entire build
area (a small region of the first layer of the “micro-slices” for each
transitional unit cell is shown in Fig. 3E). Next, we use the colored
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macro-slices to map into the appropriate micro-slices and replace
each pixel in the macro-slice with the corresponding pixel of the
micro-slice. Essentially, we perform a Boolean intersection of the
macrostructure with tessellations of each of the unit cells, according
to the color mapping; however, we do it at the slice level rather than
in the 3D geometry to avoid an expensive STL of the multimicro-
structure-embedded part (additional details on the multimaterial
slicing and multimicrostructure-embedding scheme are provided
in Materials and Methods and in a flowchart in fig. S3). By comparing
the “embedded slices” of the multimaterial tet mesh and the functionally
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Fig. 2. Smooth and continuous microstructure connectivity. (A) Two octahedron unit cells with different bar diameters for which connectivity is always guaranteed
and a smooth transition is achieved by interpolating the bar diameter. (B) A simple cubic and a truncated octahedron unit cell for which connectivity is, in general, not
guaranteed and a smooth and continuous transition is achieved by interpolating the unit cell geometry. (C) A face-x and center-x unit cell for which connectivity is only
guaranteed at the unit cell boundaries and a smooth and continuous transition is achieved using hybrid unit cells composed of the two basic unit cells. The line plots
show how the normalized tensile and shear moduli, £11/E and G1,/G (in the reference frame and based on homogenized properties), vary over the transitional unit cells.

. ~par ~ . . .
Variables d;  and D; are the unit cell bar diameter and volume, respectively.

graded tet mesh in Fig. 3 (C and D), it is clear that functional grad-
ing is critical to ensure connectivity of the microstructural materials.
Macro-slices, micro-slices, embedded slices, and the macro-to-micro
mapping for the other two, two-microstructural-material cantilever
beams are provided in fig. S4.

Effect of porous, anisotropic microstructural materials

in topology optimization

Next, we investigate how porous, anisotropic microstructural mate-
rials affect the geometry, topology, microstructure distribution, and
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structural efficiency of the topology-optimized parts. We design the
same cantilever beam, but considering free selection from different
subsets of seven porous, anisotropic microstructural materials. For
comparison, we first design a reference beam considering a single,
solid, isotropic material with domain volume fraction limited to
7 = 0.022 (Fig. 4A). Then, using the same volume limit on the bulk
material, we design the beam considering microstructural materials
composed of the unit cells indicated to the right of each design in
Fig. 4 (B to G). The volume constraint is active in all cases, and all
designs in Fig. 4 (A to G) have the same volume of bulk material at
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Fig. 3. Multimaterial slicing and continuous multimicrostructure embedding. We demonstrate various ways of representing multimaterial topology optimization
data for 3D printing and the proposed procedure for continuously embedding multiple microstructures into topology-optimized parts. In (A), the data are projected
directly onto the underlying hex mesh, leading to stairstepping features at the boundaries and material interfaces. In (B), a separate isosurface is generated for each
material individually, leading to disjointed interfaces. In (C) and (D), the data are projected onto a tet mesh generated inside an isosurface of the composite data. By ap-
plying a convolution filter to the multimaterial tet data, we avoid the abrupt material interfaces shown in (C) and obtain the functionally graded interfaces shown in (D).
In (E), we define a number of transitional unit cells that enable us to move smoothly between the two microstructural materials (8 of the 25 transitional unit cells are
shown here). We slice each unit cell, tile the slices over the build area, and assign a color to each set of micro-slices. The colors are used to map the macro-slices to the
embedded slices shown in (C) and (D). The embedded slices in (C) are disconnected, while those in (D) are well-connected because of the transitional unit cells mapped

to the functionally graded regions.

convergence (within a tolerance of 4% after postprocessing). Normal-
ized directional tensile and shear moduli, E1;/(ED;) and G1,/(GD)),
are plotted for the solid, isotropic material and the porous, aniso-
tropic microstructural materials in Fig. 4 (H and I, respectively). To
more easily understand the microstructural-material placement, the
multimaterial tet meshes (before applying functional grading) are
plotted for each design in Fig. 4, and the reported objective function
values correspond to these multimaterial tet meshes with abrupt
interfaces.

As in Fig. 1, the microstructures in Fig. 4 (B to G) distribute
themselves according to the mechanics of a cantilever beam. That is,
microstructures with higher tensile stiffness in the x3 direction tend
toward the tension/compression regions farthest from the neutral
axis of the beam, and more isotropic microstructural materials that
are also stiffer in shear (in the x; — x3 plane) tend toward the in-
clined members and regions of high shear. In addition, not all of the
available microstructural materials are used. For example, in Fig. 4
(E and F), only the most efficient in tension in the x3 direction and
the most isotropic and efficient in shear in the x; — x3 plane are se-
lected. The beam geometry is also influenced by the available micro-
structures. For example, the tension/compression members farthest
from the neutral axis become increasingly inclined from the supports
to the load point as the microstructural material becomes more iso-
tropic. Notice that the design in Fig. 4B avoids this inclination as
much as possible and the inclination of these members gradually
increases as the microstructural material becomes more isotropic
from microstructure 3 in Fig. 4 (E and G) to microstructure 5 in
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Fig. 4F, microstructure 8 in Fig. 4C, and microstructure 6 in Fig. 4D.
Although the objective function values, f, normalized to that of the
reference case in Fig. 4A, fo, indicate inferior stiffness, multiscale
structures tend to have increased buckling resistance (47) and can
provide other biomimetic functionalities, e.g., buoyancy and impact
resistance (see additional discussion in section S3).

Scaling to larger build volumes
No printer is able to print structures at unlimited size; thus, scaling
is an important practical consideration. To demonstrate scalability
of the proposed multimicrostructure-embedding scheme, we de-
sign and manufacture two additional structures at a larger scale: a
hyperbolic paraboloid canopy structure and an Eiffel Tower-in-
spired structure. Although we are limited by the printer’s display
area (2560 x 1440 pixels) and build height (15 cm), we slice the parts
for a larger build volume and then divide the slices into smaller im-
ages that the printer can handle (i.e., the structures are printed in
pieces and assembled). To slice for a larger build volume, we simply
increase the number of pixels per slice (for increased length and
width) and generate a larger number of slices (for increased height).
Since we process small subsets of the pixels at a time (in parallel),
the increase in number of pixels does not lead to increased memory
requirements but does lead to increased slice time.

The hyperbolic paraboloid canopy structure is subjected to a uni-
formly distributed, vertical load on the top surface of the canopy,
which is defined on the domain xy, x, € [ — 0.5,0.5] by the equation

X3 = x: — x5 + 1. The canopy itself is a passive region occupied by a
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Fig. 4. Effect of porous, anisotropic microstructural materials in topology optimization. The multimicrostructure topology optimization scheme selects both the
appropriate microstructural materials and their locations. The design in (A) considers a single, solid, isotropic material with objective function value, f,. The designs in
(B to G) each consider a different subset, indicated to their right, of seven porous, anisotropic microstructural materials. A single volume constraint is specified in each
case such that the total volume of bulk material occupies, at most, a domain volume fraction of o = 0.022 [the volume constraint is active in all cases, and all designs in
(A to G) have the same volume of bulk material within a 4% tolerance after postprocessing]. Normalized directional tensile and shear moduli (based on homogenized
properties) are provided in (H) for the solid, isotropic material and in (I) for the seven porous, anisotropic microstructural materials. Variable 2,. *is bar diameter, D, is unit
cell volume, and f/f; is the objective function normalized to that of the structure in (A).

face-x microstructural material (shown in blue in Fig. 5), i.e., it does
not participate in the optimization. A short tube just above the struc-
ture’s fixed support is another passive region occupied by a solid,
isotropic material (shown in red in Fig. 5). No material can occupy
the inner volume of the tube or the space above the canopy. In the
remainder of the domain, we use the proposed multimicrostructure
topology optimization formulation to design a structure composed
of octet and truncated octahedron unit cells (shown in cyan and
yellow in Fig. 5) to transfer the loads from the canopy to the fixed

Sanders et al., Sci. Adv. 2021; 7 : eabf4838 14 April 2021

support. The total optimizable domain volume fraction is limited
to 0 = 0.0096. The topology optimization problem is described in
more detail in fig. S7.

The final design and multimicrostructure-embedded, manufac-
tured canopy structure are shown in Fig. 5. Details of the transition
regions between microstructural materials are provided in Fig. 6.
The manufactured part fits inside a bounding box of dimensions
11.6 cm by 11.6 cm by 14.4 cm, and the embedded unit cells are scaled
to have an edge length of 2 mm (at this scale, the bar diameters are
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Fig. 5. Canopy structure. Topology-optimized design (top) and manufactured part (bottom) with a height of 14.4 cm and unit cell edge lengths of 2 mm. Photo credit:

Emily D. Sanders, Georgia Institute of Technology.

300 um for the octet unit cells and 400 um for the face-x and trun-
cated octahedron unit cells). Because the part exceeds the printer’s
build volume, we generate 2560 x 2560 pixel slices and print half of
the structure at a time. Additional images of the canopy structure,
including support structures needed during printing and the print-
ed parts before assembly, are provided in fig. S8. Movies S1 and S2
illustrate the full design and manufacturing process for the canopy
structure.

Inspired by Gustave Eiffel's open-lattice, multiscale Eiffel Tow-
er, we also use the multimicrostructure topology optimization for-
mulation to design an Eiffel Tower-inspired structure. The domain
and boundary conditions provided in fig. S7C are roughly based on
those of the actual Eiffel Tower. Three floors are defined between
the base and the top of the tower. The width of each floor reduces to
imitate the shape of the actual tower, which was chosen by Eiffel to
efficiently resist wind loading (48, 49). Here, we adopt the shape of
the original tower and design the remaining form, considering only
vertical (gravity) loads. The structure is fully fixed at the corner re-
gions of its base. Uniformly distributed, vertical loads with total
force equal to 1, 0.766, and 0.3 are applied at floors 1, 2, and 3, re-
spectively, and a point load of magnitude 0.01 is applied at the top
of the tower. The tower is designed considering face-x, octet, and
truncated octahedron microstructures with total domain volume
fraction limited to o = 0.008.

The final design and multimicrostructure-embedded, manufac-
tured Eiffel Tower-inspired structure are shown in Fig. 7 (A and B,
respectively). The manufactured part fits inside a bounding box of
dimensions 8.2 cm by 8.2 cm by 26.0 cm, and the embedded unit
cells have the same scale as that used for the canopy structure. Be-
cause the part exceeds the printer’s build volume, we generate 2560 x

Sanders et al., Sci. Adv. 2021; 7 : eabf4838 14 April 2021

2560 pixel slices and print the bottom portion of the tower in two
pieces and the top portion of the tower as a third piece, as shown in
Fig. 7C. Additional images of the Eiffel Tower-inspired structure
are provided in fig. S9, and a comparison of the computer and phys-
ical model dimensions for the Eiffel Tower—inspired structure (and
all other models) is provided in table S1.

DISCUSSION

Aiming toward convergence of design and manufacturing, we inte-
grate porous, anisotropic microstructural materials into a general
multimaterial topology optimization formulation and establish a pro-
cedure to (i) translate the multimaterial topology optimization data
to a 3D printable, well-connected part with functionally graded in-
terfaces and (ii) continuously embed multiple microstructures into
the functionally graded part by mapping slices of a set of continuously
varying microstructures into slices of the macrostructure. Surface
representations typically used to communicate with a 3D printer cannot
adequately represent microstructures at the resolution of the 3D
printer within a complex macrostructure geometry, as demonstrat-
ed by our approach. Furthermore, most existing structures com-
posed of architected materials contain a single microstructure type
and cannot attain spatially varying mechanical properties with well-
connected interfaces, as demonstrated by our approach. Thus, the
ideas presented here enable a new class of multiscale optimized
structures that enhance our ability to mimic nature.

The presented multiscale structures are designed to maximize
stiffness, and we show that by including additional microstructural
materials that increase the design space of directional stiffness at the
microstructural material level, the global stiffness of the macrostructure
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Fig. 6. Canopy structure transition regions. (A) Octet unit cells with bar diameter
of 300 um to face-x unit cells with bar diameter of 400 um. (B) Truncated octahe-
dron unit cells with bar diameter of 400 um to face-x unit cells with bar diameter of
400 pum. (C) Truncated octahedron unit cells with bar diameter of 400 um to octet
unit cells with bar diameter of 300 um. (D) Solid to truncated octahedron unit cells
with bar diameter of 400 um. Scale bars, 2 mm. Photo credit: Emily D. Sanders,
Georgia Institute of Technology.

tends to increase. Although strength criteria are not considered in
design here, when compared to discrete interfaces, we anticipate that
the functionally graded interfaces between microstructural materi-
als will redistribute stress concentrations and mitigate detrimental
effects of interfaces on strength. Strength criteria can be considered

Sanders et al., Sci. Adv. 2021; 7 : eabf4838 14 April 2021
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Fig. 7. Eiffel Tower-inspired structure. (A) Topology-optimized design and man-
ufactured part (B) after assembly and (C) before assembly, with a unit cell edge
length of 2 mm. The assembled structure is 26 cm tall. Photo credit: Emily D. Sanders,
Georgia Institute of Technology.

using topology optimization with local stress constraints (40). De-
fects introduced by the manufacturing process (e.g., imperfect and
nonuniform microstructure nodal connectivity and strut cross sec-
tions) are also not considered here, but are expected to influence the
mechanical performance of the additively manufactured parts, es-
pecially as the minimum feature size of the microstructures approaches
the resolution of the 3D printer (50, 51).

Although the proposed multimaterial topology optimization for-
mulation can handle a sufficiently general class of porous, anisotropic
microstructural materials (i.e., those for which an elasticity tensor can
be provided), the current multimicrostructure-embedding scheme requires
a few simplifying assumptions: (i) Each microstructural-material must
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be periodic. (ii) The same translation operations must be used to
create each periodic microstructural material from its associated
unit cell. (iii) A set of transitional unit cells must be defined to en-
sure a smooth, well-connected transition between the different unit
cell geometries. The transitional unit cells can be devised using the
intuitive approaches proposed here or other methods that may have
better control over material property transitions (41, 52). In addi-
tion to the lattice-like unit cells considered here, unit cells consist-
ing of plate elements or triply periodic minimal surfaces (53) can be
directly integrated with our approach. In addition to cubic materials,
periodic materials without cubic symmetry [see examples by Zok et al.
(54)] can be handled. Nonperiodic materials [e.g., spinodal archi-
tectures (55-58)] will be the subject of future work.

In characterizing microstructural materials using homogenized
properties, we assume infinite periodicity and separation of length
scales (59), neither of which can be verified in the manufactured parts.
Two factors prevent infinite periodicity: the presence of multiple
microstructures and truncation of the periodic microstructure tessel-
lations at the structure boundaries. The first factor can be mitigated
by avoiding abrupt transitions between the microstructural materials,
which is facilitated by the proposed continuous multimicrostructure-
embedding scheme. The boundary remains a challenge. Our parts
contain truncated unit cells at the boundaries that likely influence
the mechanical behavior. These edge effects cannot be completely
removed, but making the unit cells conform to the boundary (35, 37)
can alleviate them.

Inadequate separation of length scales is due to the fact that we
cannot print the microstructure at an infinitely small scale or the
macrostructure at an infinitely large scale. However, the approach
pursued here is scalable; that is, the maximum macrostructure size
and minimum microstructure feature size are dictated by the 3D
printer and not the data representation. Thus, our approach pro-
vides a means to obtain a practical separation of length scales, e.g.,
by using large-area projection microstereolithography (29) or high-area
rapid printing (60) or by assembling the part from a number of
components manufactured at a practical scale. The latter approach,
in combination with our multimicrostructure-embedding scheme,
could make optimized, multiscale, architectural engineering-scale
structures possible. Furthermore, the scalability and modularity of
the proposed scheme facilitates extension to other existing and yet
to be invented additive manufacturing technologies that will enable
the method to be explored in ways not yet anticipated.

MATERIALS AND METHODS

Problem setting and optimization formulation

The multiscale topology optimization formulation is stated as a multi-
material problem for volume-constrained compliance minimization
of an elastostatic body that accommodates many candidate materi-
als and many local or global volume constraints (61-63)

f = FTU subject to

min
Ze[g,ﬁ]Nxm
. Tieg TeegAvmylye) - _ 0) = LK (1)
j Yeeg A e o

In Eq. 1, we define a density field, Z = {z, ...,zgm}ﬁl, where z; is a
density design variable for each of the m candidate materials at the
centroid of each of the N elements used to discretize the design
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domain, Q. The elemental density field, Y = {yg, ...,yZm}f,_V: 1> is ob-
tained as y; = Pz;, where y; and z; are the ith column of Y and Z, re-
spectively, and P is a regularization map (density filter) that enforces
well-posedness of the problem and a minimum length scale (64, 65).
The coefficients of P are defined as

hid:
L hyi = max [0, (R - lIx; — x;ll,)]

pi=— 27
! S hikAr

2

where lIx; - x;ll; is the Euclidean norm between the centroids of ele-
ments i and j, R is a filter radius, and q defines the order of the filter
(e.g., linear filter when g = 1) (66). We specify j = 1, ..., K volume
constraints that control any subset of the candidate materials in any
subregion of the domain. Hence, G; and & represent the set of materi-
al and element indices associated with constraint j, respectively. Further-
more, A, represents the volume of element £. V = {vy, ...,v@m}ﬁ L s
the material volume for each of the m candidate materials in each of
the N elements, where vo; = my(ye;) = y¢; D; accounts for the mate-
rial porosity via the unit cell volume, 9;, of material i, and 7; is the
volume fraction limit for constraint j. When the subscript, j, is omitted,
it is understood that there is only one volume constraint.

The same discretization used for the optimization problem is also
used to solve for the displacement field, U, via the discretized state
equations of static elasticity, (K + AI)U = F, which are derived from
the principle of minimum potential energy with a Tikhonov regu-
larization term, %UTU, included in the expression of total potential
energy. The Tikhonov regularization term prevents the stiffness matrix
from becoming singular because of low-density regions of the do-
main (67). In the state equations, the stiffness matrix, K = Zlgvzl Ky, is
assembled from the element stiffness matrices, F; = [ t-N;ds is the
vector of design-independent nodal loads, t is the triction applied
on the portion, T'y, of the domain boundary, and N is the vector of
interpolation (shape) functions used to interpolate quantities be-
tween the mesh nodal points.

The formulation in Eq. 1 is not specific to any type of material.
Instead, the material properties are embedded in the stiffness ma-
trix, which is a function of the penalized element densities, W =
Wets s Wemlpp, Where wy; = my(ye)=yh, with p > 1 [SIMP (14, 15)]
to penalize intermediate densities. Then, the element stiffness ma-
trix of element ¥ is obtained via a material interpolation function,
myy, that penalizes material mixing (63, 68)

m 1

k@ = mM(Wé)Z ZW@ir[l(l—’Yng)kgi,e =1,..,.N
i=1 J=
J#

3)

where wj is the £th row of W, (kgi) = IQ B]-TDlHBkdx is the ele-
ment stiffness matrix for material i in elemént ¥, Qp is the domain
of element £, B is the strain-displacement matrix of shape function
derivatives, and DIH is the (homogenized) elasticity matrix charac-
terizing material i, which is supplied as input for each of the candi-
date materials in Eq. 1. In addition, the parameter, 0 <y < 1, controls
the amount of allowable mixing. In general, we seek solutions with-
out material mixing (i.e., y = 1); however, the problem in Eq. 1 is
convex for y = 0 and p = 1, and a continuation scheme on these pa-
rameters can be used to bias the solution toward the convex one at
the beginning of the optimization iterations (63).
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Gradient-based solution scheme
To solve Eq. 1, we adopt a gradient-based approach in which we use
derivatives of the objective and constraint functions with respect to the
design variables to iteratively guide the design toward an optimal solu-
tion. We adopt the Zhang-Paulino-Ramos Jr. (ZPR) design variable
update scheme (61), which uses Lagrangian duality to solve a series of
convex approximate subproblems of Eq. 1 around the current design,
Z°. The ZPR update scheme was derived specifically for the multima-
terial formulation of interest in Eq. 1, in which each design variable is
associated with a single volume constraint. Because of separability,
the constraints can be updated independently, leading to an update
scheme that efficiently handles a large number of volume constraints at
a cost on par with that of the optimality criteria update scheme (69).

The original ZPR update scheme was derived for a monotonically
decreasing objective function. Since the derivatives of the objective
function in Eq. 1 may become positive in regions of material mixing
(62, 63), we integrate sensitivity separation into the ZPR update
scheme (70, 71) by decomposing the objective function gradient
into positive and negative components to arrive at the following
nonmonotonic, convex approximation of the objective function

m -
f(Z):ﬂZ")+Z(%Q

i=1 ! zi:z?

f+ T
0 0
(azi zzq> (Zi_zi)

The approximation in Eq. 4 is the sum of a constant term that
can be neglected for optimization, a monotonically decreasing convex
function in exponential intermediate variables, £p;(z¢;) = z{i“,oc > 0,
and a monotonically (linearly) increasing function. For decomposi-
tion of the objective gradient, we adopt the scheme proposed in
(70), which uses approximate second-order information to account
for the curvature of the objective function such that the negative
and positive components, respectively, are

T
> (Edz) -8z} +

(4)

af” . | gy | 2o;
0z m1n< 1+o

where hgi is a Broyden-Fletcher-Goldfarb-Shanno (72) approxima-
tion of the diagonal terms of the objective function’s Hessian matrix.

For brevity, we omit the full derivation of the ZPR update scheme
considering sensitivity separation with approximate second-order
information but refer the reader to (70), where they arrive at the
following update

%)

of \ of " _ of of
"0zei )’ 0z Ozui  Oze

+ * +
Zop Lo = Zg

new _ - * -

i T Yo i S Ly O
Zp» Otherwise

with z,; " as the design at the next iteration and zzi as the candidate

design for the next iteration that is accepted if it is within bounds

™)

7y = max (B,zgi—M), zy; = min (p,zy; + M)
defined by box constraints, p and p, and move limit, M. The candi-
date design, z,,, is obtained from a fixed-point iteration of the form
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* G (N
Zp =P+ (Bei)““(z Puzy, - E) (8)
k=1
where
i
9z¢i 7-7°
Bei - _i % (9)
024 770 0z¢i 7.-7°

and Eq. 8 includes the heuristic ZPR filter introduced in (62, 63).
The sensitivities needed in Eqs. 5 and 9 are found using the
chain rule

of dy;ow; of 9g _ 9y;0V,0¢g
az,- h Bz,-ay,-aw,-’ aZi B aZ,‘ayiaVi’

i=1,..mj=1..,K (10)
where dy,/0z; = P" and the other components are as follows
of __yrOK y 9y _ {pyggl, ife=kandj=i ),
Owei owei  Oyui 0, otherwise
ag; A, Ovg D;, ift = kandj = i
= N = . (12)
Ve Diee, Al OYu 0, otherwise
To compute Eq. 11, we also need the following derivative
H1(1 —ywe) Ky—
=
J#
0 kk m m .
Twy ;;ywepr[[l(l —yw@,)kgp, ife = k (13)
p#i r#p
r#i
0, otherwise

The iterative solution scheme is said to have converged when
either the maximum number of iterations is reached or the change
in the design is small

max(|znew_Zo|)
p-p

< tol (14)

Topology optimization algorithmic parameters

and computational resources

The topology optimization results were obtained using the follow-
ing algorithmic parameters: ZPR move limit, M = 0.15; ZPR inter-
mediate variable exponent, o = 1; and box constraints, p = 0
andp = 1. To bias the solution toward the convex one, we perform
five continuation steps on the material interpolation parameters: p =
[1,1.5,2,2.5,3] and vy = [0,0.2,0.5,0.8,1]. Each continuation step is
said to converge after reaching the maximum number of iterations,
MaxlIter = [100,100,100,100,200], or the convergence tolerance, tol =
0.01. In each problem, the initial guess is specified such that the
volume fraction limit of each constraint is evenly distributed among
the design variables associated with each available material. For ex-
ample, in the seven-microstructural-material design in Fig. 4G, the
initial value of each design variable is 7/7 (the effect of the initial
guess is studied in section S4). For the cantilever problems, the filter
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exponent and radius are g = 3 and R = 0.064, respectively, and the
problem is solved on half of the domain (symmetry enforced on the
x1 —x3 plane) on a 3 x 0.625 x 1 hex mesh with 192 x 40 x 64 elements,
for a total of 491,520 elements. For the canopy problem, the filter
exponent and radius are g = 3 and R = 0.032, respectively, and the
problem is solved on a 1 x 1 x 1.5 hex mesh with 80 x 80 x 120 ele-
ments; however, elements with centroid above the hyperbolic
paraboloid surface and interior to the tube are removed, for a total
0f 510,411 elements. For the Eiffel Tower—inspired problem, the fil-
ter exponent and radius are g = 3 and R = 0.025, respectively, and
the problem is solved on a quarter of the domain (symmetry en-
forced on the x; — x3 and x, — x3 planes) on a 0.5 x 0.5 x 2.75 hex
mesh with 46 x 46 x 253 elements, for a total of 535,381 elements.
All problems were run using MATLAB 2019a on an Intel(R) Xeon(R)
central processing unit (CPU) ES-1660 v3 @ 3.0 GHz with 256-GB
random-access memory (RAM) and NVIDIA Quadro M5000
graphics processing unit (GPU) or MATLAB 2018b on a Dual Intel(R)
Xeon(R) Silver 4116 CPU@2.10 GHz with 256-GB RAM and NVIDIA
Quadro P1000 GPU.

Homogenized properties of porous, anisotropic
microstructural materials
The formulation in Eq. 1 can handle any material for which the full
material tensor is available. For simplicity, we consider microstruc-
tural materials composed of a periodic tessellation of lattice-based
unit cells defined on the unit cube, where the lattice elements are
cylindrical bars. Effective macroscopic properties are obtained using
computational homogenization (59, 73), specifically using an edu-
cational MATLAB code (74). The geometry of the lattice unit cell is
inscribed in a hex mesh that is used in the homogenization compu-
tations. Borrowing ideas from the educational polygonal mesh genera-
tor, PolyMesher (75), we use signed distance functions to compute
the signed distance of each hex centroid from the boundary of the
cylinders. Any hex element with a negative signed distance to one of
the cylinders’ boundaries is determined to be inside the unit cell
structure and is assigned a value of one. All other hex elements are
void and are assigned a value of zero. Such implementation facili-
tates extension to other types of unit cells (e.g., unit cells composed
of noncylindrical bars or plates). The educational homogenization
code (74) outputs the homogenized stiffness elasticity tensor of mi-
crostructural material i in matrix (Voigt) notation, DIH, and we can
easily compute the volume fraction of microstructural material ’s
unit cell, D; as the sum of the solid hex element volumes. These two
properties, D and 0, are needed for each candidate microstructural
material defined in Eq. 1. The directional tensile and shear moduli
are extracted from D after performing a coordinate transforma-
tion [see section S1 and references (76, 77) for more details].

In all cases studied here, the bulk material has Young’s modulus,
E =1, and Poisson’s ratio, v = 0.3. In addition, the computational
homogenization is performed using a hex mesh with at least 160 x
160 x 160 elements.

Multimaterial slicing and continuous

multimicrostructure embedding

Although the multimaterial interpolation in Eq. 3 prevents material
mixing, small mixing regions occur at the material interfaces as an
artifact of the density filter used in topology optimization. Further-
more, in some elements that contain mixing, the total density of
material may sum to greater than one (62). Thus, we first remove

Sanders et al., Sci. Adv. 2021; 7 : eabf4838 14 April 2021

mixing from the converged topology-optimized result and limit the
total element densities to one by assigning

Yo = {min[l’ka:I}’Ek] if yp; = max [yel,...,yem]’e ~ 1N (15)
0 otherwise

At this stage, we maintain intermediate densities at the structure
boundaries and at the material interfaces that also result from the
density filter. Using an appropriate isovalue (i.e., one that preserves
the volume fraction specified in topology optimization to within a
tolerance of 4%), we generate an isosurface of the composite density
field, which is defined as y, = Y.iZ1ye€ = 1,..., N, and generate a
tet mesh within, using the iso2mesh toolbox (78), which relies on
TetGen (79). Making use of the disjointed isosurfaces generated for
each material individually (see Fig. 3B), we use the inpolyhedron func-
tion from MATLAB’s file exchange to determine which tet centroids
fall within each of the material isosurfaces and assign a material accord-
ingly. A relatively small number of tets near the material interfaces
that do not fall within any of the disjointed isosurfaces (i.e., interface
tets) are assigned a material according to the nearest density of the
postprocessed topology optimization data. The functionally graded
tet mesh is then obtained by applying the filter in Eq. 2 to tets within
radius, R, of the interface tets (fig. S5 shows the effect of the magnitude
of R on the length scale of the graded region). For the cantilever
problems, the filter power and radius used to generate the function-
ally graded tet mesh are ¢ = 1 and R = 0.10, respectively, for the
canopy problem, g = 1 and R = 0.04, and for Eiffel Tower-inspired
problem, g =1and R = 0.08, where the filter radius, R, is relative to the
dimensionless domain dimensions provided in Fig. 1 and fig. S7.

Next, we slice the multimaterial tet mesh by thinking of the printer’s
build volume as a 3D voxel matrix, where the voxel dimensions are
controlled by the printer’s pixel dimensions and the layerheight.
From the functionally graded tet mesh, we generate a scattered in-
terpolant, F(x;, x5, x3), that takes in a voxel’s 3D coordinate and
outputs a nearest-neighbor interpolated material. The 3D printer
has more than 11 billion voxels, but using the postprocessed topol-
ogy optimization data on the underlying hex mesh, we reduce the
number of voxels that need to be evaluated. First, all voxels that fall
outside the hex mesh are known to be void. In addition, all voxels
that fall within a hex element with density equal to one can be im-
mediately assigned the corresponding material. Thus, we only need
to determine a material for the subset of voxels that fall within gray-
scale hex elements, i.e., those near the structure boundaries and at
the material interfaces. From this subset of voxels, we find those that
fall inside of the composite isosurface (using inpolyhedron), evalu-
ate them using the scattered interpolant, F(x), x,, x3), and assign a
material accordingly. Memory requirements are controlled by eval-
uating small subsets of the voxel matrix in parallel.

Using the multimaterial voxel matrix, we can easily obtain pix-
elated slices for each layer, using color to represent the functionally
graded materials. Next, we generate the mapping between color and
microstructure and embed the microstructures into the pixelated
slices as described in Results. Last, the images are converted to black
and white and sent to the 3D printer in png format. A flowchart
summarizing the overall process from design to manufacturing is
provided in fig. S3. All computations needed to translate the multi-
material topology optimization data to microstructure-embedded
3D printer slices were done using MATLAB 2019a on an Intel(R)
Xeon(R) CPU ES-1660 v3 @ 3.0 GHz with 256-GB RAM.
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m-SLA manufacturing

All physical models were fabricated using the Original Prusa SL1 m-SLA
3D printer (Prusa Research, Czech Republic), which shines ultraviolet
light onto the underside of a resin vat, masked by a 2560 x 1440 pixel
liquid crystal display according to pixelated images (slices), to cure
the part layer by layer. The pixel edge length is 47.25 um, and we
print with a 50-um layer height. The build volume is 120.96 mm by
68.04 mm by 150 mm. All models are built using Prusa’s Transparent
Red Tough Resin with 6-s exposure time per layer. Slicing and multi-
microstructure embedding are done with the in-house MATLAB
code described previously, and the generated black-and-white png
images for each layer are provided to the 3D printer. Support material
was not required for any of the cantilever designs or the Eiffel Tower-
inspired structure. The canopy required a support structure, which
was designed using Rhino software (see fig. S8). Because of build
volume restrictions, the canopy and Eiffel Tower—inspired structure
were printed in two parts and three parts, respectively, and bonded
together using Krazy Glue (see photos in Fig. 7 and fig. S8).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/16/eabf4838/DC1
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