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Abstract We formulate and prove a local arithmetic Siegel–Weil formula
for GSpin Rapoport–Zink spaces, which is a precise identity between the
arithmetic intersection numbers of special cycles on GSpin Rapoport–Zink
spaces and the derivatives of local representation densities of quadratic forms.
As a first application, we prove a semi-global arithmetic Siegel–Weil formula
as conjectured by Kudla, which relates the arithmetic intersection numbers of
special cycles on GSpin Shimura varieties at a place of good reduction and
the central derivatives of nonsingular Fourier coefficients of incoherent Siegel
Eisenstein series.
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1 Introduction

1.1 Background

The classical Siegel–Weil formula [44,45,57] relates certain Siegel Eisenstein
series to the arithmetic of quadratic forms, namely it expresses special values of
these series as theta functions—generating series of representation numbers of
quadratic forms. Kudla [30,31] initiated an influential program to establish the
arithmetic Siegel–Weil formula. In particular, the nonsingular part of Kudla’s
conjectural formula relates the central derivative of nonsingular Fourier coef-
ficients of Siegel Eisenstein series to the arithmetic intersection number of n
special divisors on orthogonal Shimura varieties associated toGSpin(n−1, 2).
The arithmetic Siegel–Weil formula was established by Kudla, Rapoport and
Yang [25,27,28,30] for n = 1, 2. The archimedean part of the formula for all
n was also known by Garcia–Sankaran [10] and Bruinier–Yang [5]. However,
for the nonarchimedean part for higher n, the only known cases were when
n = 3 due to Gross–Keating [8] (cf. [55]) and Terstiege [51], and some partial
results when the arithmetic intersection has dimension 0 [5,23,24].

The main result of this paper proves a semi-global (at a prime p) version
of the arithmetic Siegel–Weil formula for all n. To achieve this, we formulate
and prove a local arithmetic Siegel–Weil formula for GSpin Rapoport–Zink
spaces, which is a precise identity between the arithmetic intersection num-
bers of special cycles on GSpin Rapoport–Zink spaces and the derivatives of
local representation densities of quadratic forms. Such a local formula is an
orthogonal analogue of the Kudla–Rapoport conjecture for unitary Rapoport–
Zink spaces [26, Conjecture 1.3] recently proved in our companion paper
[37]. Compared to the unitary case in [37], several new difficulties arise in the
orthogonal case and we highlight some of them in §1.4. In fact, the geometric
difficulty in the higher dimensional orthogonal case was one of the reasons
Kudla and Rapoport shifted their perspective to the unitary case [26].

Via the doubling method of Piatetski-Shapiro and Rallis, the arithmetic
Siegel–Weil formula is intimately tied to the arithmetic inner product formula,
which relates the central derivative of the standard L-function of cuspidal
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On the arithmetic Siegel–Weil formula 1355

automorphic representations on metaplectic/orthogonal groups to the height
pairing of cycles on orthogonal Shimura varieties constructed from arithmetic
theta liftings. It can be viewed as a higher dimensional generalization of the
Gross–Zagier formula [11], and an arithmetic analogue of the Rallis inner
product formula. We hope to apply the main results in this paper to study
the arithmetic inner product formula in the future (cf. [32,33] by Liu and
one of us in the unitary case). It is also worth mentioning several other recent
advances in arithmetic Siegel–Weil formula in the unitary case, including cases
of the singular term formula [2] by Bruinier–Howard and the higher derivative
formula over function fields [7] by Feng, Yun and one of us, and it would be
interesting to study the (arguably more difficult) orthogonal analogues.

1.2 Local arithmetic Siegel–Weil formula

Let p be an odd prime. Let F = Qp with residue field κ = Fp and a uni-
formizer � . Let F̆ be the completion of the maximal unramified extension
of F . Let m = n + 1 ≥ 3 be an integer. Let ε ∈ {±1}. Let V = H ε

m be a
self-dual quadratic OF -lattice of rank m with χ(V ) = ε. Here χ(V ) = +1
(resp.−1) if the the discriminant disc(V ) is a square (resp. nonsquare) in O×

F
(see Notations §2.1). Associated to V we have a local unramified Shimura–
Hodge data (G, b, μ, C), where G = GSpin(V ), b ∈ G(F̆) is a basic element,
μ : Gm → G is a certain cocharacter, and C = C(V ) is the Clifford alge-
bra of V . Associated to this local unramified Shimura–Hodge data, we have
a GSpin Rapoport–Zink space RZG = RZ(G, b, μ, C) of Hodge type con-
structed by Howard–Pappas [15] and Kim [18]. The space RZG is a formal
scheme over Spf OF̆ , formally locally of finite type and formally smooth of
relative dimension n−1 over Spf OF̆ (see §4.1 for more details), and admits a

decomposition RZG = ⊔
�∈Z RZ(�)

G into (isomorphic) connected components.

Define N = N ε
n := RZ(0)

G to be a connected component of RZG , a formal
scheme of (total) dimension n (Definition 4.5.1).

Let V = Vε
m be the unique (up to isomorphism) quadratic space over F of

dimension m, Hasse invariant ε(V) = −ε(V ) = −1 and χ(V) = χ(V ) = ε.
Then V can be identified as the space of special quasi-endomorphisms V ⊆
End(X)⊗Q, where X is the framing p-divisible group over κ̄ for RZG (§4.2).
For any subset L ⊆ V, the special cycle Z(L) (Definition 4.6.1) is a closed
formal subscheme of N , over which all special quasi-endomorphisms x ∈ L
deforms to endomorphisms.

Let L ⊆ V be an OF -lattice of rank n (always assumed to be non-degenerate
throughout the paper, see Notations §2.1). We now associate to L two inte-
gers: the arithmetic intersection number Intε(L) and the derived local density
∂Denε(L).
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1356 C. Li, W. Zhang

Let x1, . . . , xn be an OF -basis of L . Define the arithmetic intersection
number

Intε(L):=χ(N ,OZ(x1) ⊗L · · · ⊗L OZ(xn)), (1.2.0.1)

where OZ(xi ) denotes the structure sheaf of the special divisor Z(xi ), ⊗L

denotes the derived tensor product of coherent sheaves on N , and χ denotes
the Euler–Poincaré characteristic. It is independent of the choice of the basis
x1, . . . , xn and hence is a well-defined invariant of L itself (Definition 4.11.4).

For M another quadratic OF -lattice (of arbitrary rank), define RepM,L to
be the scheme of integral representations , an OF -scheme such that for any
OF -algebra R, RepM,L(R) = QHom(L ⊗OF R, M ⊗OF R), where QHom
denotes the set of quadratic module homomorphisms. The local density of
integral representations is defined to be

Den(M, L):= lim
N→+∞

#RepM,L(OF/� N )

pN ·dim(RepM,L )F
.

Then Den(H ε
m+2k, L) is a polynomial in p−k with Q-coefficients. Define the

(normalized) local Siegel series of L to be the polynomial Denε(X, L) ∈ Z[X ]
(Theorem 3.4.5) such that for all k ≥ 0,

Denε(p−k, L) = Den(H ε
m+2k, L)

Den(H ε
m+2k, H ε

n )
.

Since L ⊆ V is an OF -lattice of rank n, it satisfies a functional equation
relating X ↔ 1

X (Theorem 3.4.6, Lemma 3.7.2 (i)),

Denε(X, L) = −Xval(L) · Denε

(
1

X
, L

)

.

Here val(L) is the valuation of L , see Notations §2.1. We thus consider the
derived local density

∂Denε(L):= − d

dX

∣
∣
∣
∣

X=1
Denε(X, L).

Our main theorem in Part 1 is the proof of a local arithmetic Siegel–Weil
formula, which asserts an exact identity between the two integers just defined.

Theorem 1.2.1 (Theorem4.15.1)Let L ⊆ V be an OF -lattice of rank n. Then

Intε(L) = ∂Denε(L).
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On the arithmetic Siegel–Weil formula 1357

We refer to Intε(L) as the geometric side of the identity (related to the
geometry of Rapoport–Zink spaces and Shimura varieties) and ∂Denε(L) the
analytic side (related to the derivatives of Eisenstein series and L-functions).

1.3 Semi-global arithmetic Siegel–Weil formula

Next let us describe a semi-global application of our local theorem. We now
switch to global notations. Let F = Q and A = AF its ring of adèles. Let
m = n+1 ≥ 3 be an integer. Let V be a quadratic space over F of dimensionm
and signature (n−1, 2). LetG = GSpin(V ).Associated toG there is aShimura
datum (G, {hG}) of Hodge type. Let K = ∏

v Kv ⊆ G(A f ) be an open
compact subgroup.Then the associatedShimura variety ShK = ShK (G, {hG})
is of dimension n − 1 and has a canonical model over its reflex field F = Q.

Assume that p is an odd prime such that K p is a hyperspecial subgroup of
G(Fp), or equivalently K p = GSpin(	p) for a self-dual lattice 	p ⊆ Vp :=
V ⊗F Fp. Then by Kisin [20], there exists a smooth integral canonical model
MK of ShK over the localization OF,(p).

LetV be the incoherent quadratic space overA of rank m nearby V , namely
V is positive definite and Vv

∼= Vv for all finite places v. Let ϕK ∈ S (Vn
f )

be a factorizable Schwartz function. We say that ϕK is p-admissible if ϕK is
K -invariant and ϕK ,p = 1(	p)n . Let T ∈ Symn(F)>0 be a positive definite
symmetric matrix of size n. Associated to (T, ϕK ) we construct semi-global
special cycles Z(T, ϕK ) over MK (§12.5). Analogous to the local situa-
tion (1.2.0.1), we may define its semi-global arithmetic intersection numbers
IntT,p(ϕK ) at p (§12.8).

On the other hand, associated to ϕ = ϕK ⊗ ϕ∞ ∈ S (Vn), where ϕ∞ is the
standard Gaussian function, there is a classical incoherent Eisenstein series
E(z, s, ϕK ) (§11.4) on the Siegel upper half space

Hn = {z = x + iy : x ∈ Symn(F∞), y ∈ Symn(F∞)>0},

where F∞ = F ⊗Q R 
 R. This is essentially the Siegel Eisenstein series
associated to a standard Siegel–Weil section of the degenerate principal series
(§11.1). The Eisenstein series here has a meromorphic continuation and a
functional equation relating s ↔ −s. The central value E(z, 0, ϕK ) = 0 by
the incoherence. We thus consider its central derivative

∂Eis(z, ϕK ):= d

ds

∣
∣
∣
∣
s=0

E(z, s, ϕK ).
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Associated to the standard additive characterψ : A/F → C×, it has a decom-
position into the central derivative of the Fourier coefficients

∂Eis(z, ϕK ) =
∑

T∈Hermn(F)

∂EisT (z, ϕK ).

When T is nonsingular, the Euler factorization of T -th Fourier coefficients
further gives a decomposition (§11.3)

∂EisT (z, ϕK ) =
∑

v

∂EisT,v(z, ϕK ).

Now we can state our application to the semi-global arithmetic Siegel–
Weil formula, which asserts an identity between the semi-global arithmetic
intersection number of special cycles and the derivative of nonsingular Fourier
coefficients of the incoherent Eisenstein series.

Theorem 1.3.1 (Theorem 12.9.1) Assume that ϕK ∈ S (Vn
f ) is p-admissible.

Then for any T ∈ Symn(F)>0,

IntT,p(ϕK )qT = cK · ∂EisT,p(z, ϕK ),

where qT := ψ∞(12 tr T z) = eπ i tr T z, cK = (−1)n

vol(K )
is a nonzero constant

independent of T and ϕK , and vol(K ) is the volume of K under a suitable
Haar measure on G(A f ).

Remark 1.3.2 In the unitary case, we also proved a global version (including
terms for all T and all places v) of the arithmetic Siegel–Weil formula [37,
Theorem 1.3.2], at least for test functions ϕK with nonsingular support at two
split places. This global version is more difficult in the orthogonal case due to
several complications, most notably the lack of the analogue of split places and
the inevitability to treat the place p = 2. We hope to return to these questions
in the future.

Remark 1.3.3 The assumption F = Qp (p odd) in Theorem 1.2.1 is required
to apply results from [15] and [18]. It would be very interesting to relax this
assumption to more general p-adic fields F by generalizing [15] and [18] to
“relative”GSpinRapoport–Zink spaces and proving a comparison between the
relative and absolute GSpin Rapoport–Zink spaces of Weil-restricted groups
ResF/Qp GSpin. Once this is done, one should also be able to relax the assump-
tion F = Q in Theorem 1.3.1 to more general totally real fields.

123



On the arithmetic Siegel–Weil formula 1359

1.4 Strategy and novelty of the proof of the main Theorem 1.2.1

Our general strategy is parallel to the unitary case proved in [37] (see also
several simplifications in [33]). More precisely, fix an OF -lattice L
 ⊆ V of
rank n−1 and denote by W = (L


F )⊥ ⊆ V. Consider functions on L
×Wan,

IntL
(x):= Intε(L
 + 〈x〉), ∂DenL
(x):=∂Denε(L
 + 〈x〉),

where Wan := {x ∈ W : (x, x) �= 0} is the set of anisotropic vectors. Then it
remains to show the equality of the two functions IntL
 = ∂DenL
 . To show
this equality, we find a decomposition

IntL
 = IntL
,H + IntL
,V , ∂DenL
 = ∂DenL
,H + ∂DenL
,V

into “horizontal” and “vertical” parts such that the horizontal identity
IntL
,H = ∂DenL
,H holds and the vertical parts IntL
,V and ∂DenL
,V
behaves well under Fourier transform.

In the unitary case, the hermitian space W is 1-dimensional over F and we
found that both IntL
,V and ∂DenL
,V are Schwartz functions onV, and satisfy
the remarkable properties that

̂IntL
,V = − IntL
,V , supp( ̂∂DenL
,V ) ⊆ V◦, (1.4.0.1)

wherêdenotes the Fourier transform on V, and V◦ := {x ∈ V : (x, x) ∈
OF } is the integral cone. Equation (1.4.0.1), together with the induction on
the valuation of L
 and the uncertainty principle, allows us to conclude that
IntL
,V = ∂DenL
,V .

In the orthogonal case, the quadratic space W is 2-dimensional over F .
WhenW is anisotropic, both IntL
,V and ∂DenL
,V are still Schwartz functions
on V. But when W is isotropic, both IntL
,V and ∂DenL
,V in general have
singularities near the isotropic cone ofW and are no longer Schwartz functions
onV. On the geometric side this reflects the fact thatZ(L
) is no longer quasi-
compact when W is isotropic. Nevertheless we may still show that IntL
,V is
locally integrable and show its Fourier invariance (up to a sign) as in (1.4.0.1),
but now understood as a distribution on V. However, on the analytic side
the singularities seem to cause essential difficulty in directly extending the
argument in [37] or [33] for controlling supp( ̂∂DenL
,V ) as in (1.4.0.1).

To overcome this difficulty, we instead perform a partial Fourier transform
along L


F and consider new functions on Wan,
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1360 C. Li, W. Zhang

Int⊥L
,V
(x) :=

∫

L

F

IntL
,V (y + x)dy,

∂Den⊥L
,V
(x) :=

∫

L

F

∂DenL
,V (y + x)dy.

On the geometric side, the Fourier transform ̂Int⊥
L
,V

of Int⊥
L
,V

on W agrees

with the restriction of ̂IntL
,V to W. Now the advantage is that the new func-
tion Int⊥

L
,V
enjoys extra invariance under the action of the orthogonal group

O(W)(F) and the scalars O×
F . Using theWeil representation and the theory of

newforms for SL2(F), we completely classify certain subspaces of invariant
distributions on W to which Int⊥

L
,V
belongs (Proposition 9.1.3, which may

be of independent interest). In particular, we observe that a certain recurrence
relation is satisfied for the values of Int⊥

L
,V
(Proposition 9.2.3). On the analytic

side, we directly verify that the same recurrence relation is also satisfied for
∂Den⊥

L
,V
(Proposition 8.1.2) via involved lattice-theoretic calculations which

occupy §8. Finally, the induction on the valuation of L
 supplies the same
initial values for the recursions on both sides, and allows us to conclude that
IntL
,V = ∂DenL
,V .

The strategy outlined above is a reminiscence of the uncertainty principle
when W is anisotropic, but is more refined when W is isotropic. We end
by mentioning several technical complications compared to the unitary case
when executing this strategy. There are two (instead of one) relevant ambient
quadratic spacesV = Vε

m of a given dimension m, which we have emphasized
with the superscript ε ∈ {±1}. On the analytic side, we extend the results of
[6] and [16] to treat both cases ε ∈ {±1} uniformly in §3, and the numerology
is more complicated than the unitary case. On the geometric side, the GSpin
Rapoport–Zink spaces is of Hodge type (instead of PEL type) which makes
several proofs more technical. In particular, we provide proofs of two results
on the vertical parts which are even new for the unitary case (see Remarks 6.1.2
and 7.4.3). Also the horizontal parts of special cycles are indexed by certain
lattices of type ≤ 2 (instead of type ≤ 1), which we call horizontal lattices
(see Definition 3.8.1), and cause more complicated numerology as well. In
particular, the horizontal identity eventually reduces to the case n = 3 and
ε = +1 (instead of n = 2).

1.5 The structure of the paper

In Part 1, we first prove necessary background results on both the analytic
side (§3) and the geometric side (§4–§6) of the local arithmetic Siegel–Weil
formula. The Fourier invariance on the geometric side is proved in §7. The
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recurrence relations satisfied by the partial Fourier transform on the analytic
side is proved in §8. Finally in §9,we establish results on invariant distributions
on 2-dimensional quadratic spaces and prove themainTheorem1.2.1. In Part 2,
we first review incoherent Eisenstein series (§11), semi-global integral models
of GSpin Shimura varieties and their special cycles (§12). We then apply the
local results in Part 1 to prove the semi-global arithmetic Siegel–Weil formula
(Theorem 1.3.1).

For the sake of readability, we make an effort to ensure that the notations
and the structure of this paper are parallel to those of the companion paper [37]
in the unitary case. We always write out the complete statements, and include
details when a proof differs from the parallel proof in [37] or point it out when
the same proof of [37] applies verbatim.

Part 1. Local arithmetic Siegel–Weil formula

2 Notations and conventions

2.1 Notations on quadratic lattices

Let p be an odd prime. Let F be a non-archimedean local field of residue
characteristic p, with ring of integers OF , residue field κ = Fq of size q,
and uniformizer � . Let val : F → Z ∪ {∞} be the valuation on F and
|·| : F → R≥0 be the normalized absolute value on F . Let F̆ be the completion
of the maximal unramified extension of F , and OF̆ its ring of integers. Let
σ ∈ Aut(OF̆ ) be the lift of the absolute q-Frobenius on κ̄ . We further assume
that F = Qp when dealing with the geometric side (the exceptions are §3, §8,
§9.1, which concern only the analytic side).

Let L be a quadratic OF -lattice of rank n with symmetric bilinear form
( , ). We say L is non-degenerate if the extension ( , ) on the quadratic space
L F := L ⊗OF F is non-degenerate. Unless otherwise specified, all quadratic
OF -lattices are assumed to be non-degenerate throughout the paper.We denote
by L∨ := {x ∈ L F : (x, L) ⊆ OF } its dual lattice under ( , ). We say that
L is integral if L ⊆ L∨. If L is integral, define its fundamental invariants to
be the unique sequence of integers (a1, . . . , an) such that 0 ≤ a1 ≤ · · · ≤
an , and L∨/L 
 ⊕n

i=1OF/� ai as OF -modules; define its valuation to be
val(L):=∑n

i=1 ai ; and define its type, denoted by t (L), to be the number of
nonzero terms in its invariant (a1, . . . , an). Denote by val(x) := val((x, x))

for any x ∈ L . A standard orthogonal basis of L is an orthogonal OF -basis
{e1, . . . , en} of L such that val(ei ) = ai , which always exists. Say L is self-
dual if L = L∨. Say L is minuscule or a vertex lattice if it is integral and
L∨ ⊆ �−1L . Note that L is a vertex lattice of type t if and only if it has
fundamental invariants (0(n−t), 1(t)), if and only if L ⊆t L∨ ⊆ �−1L , where
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1362 C. Li, W. Zhang

⊆t indicates that the OF -colength is equal to t . Notice that L is self-dual if
and only if L is a vertex lattice of type 0.

The determinant of L is defined to be

det(L) := det((xi , x j )
n
i, j=1) ∈ F×/(O×

F )2

where {x1, . . . , xn} is an OF -basis of L , and the discriminant of L is defined
to be

disc(L) := (−1)(
n
2) · det(L) ∈ F×/(O×

F )2.

Notice that val(L) = val(disc(L)).
Let χ = ( ·

�
)F : F×/(F×)2 → {±1, 0} be the quadratic residue symbol.

Define

χ(L) := χ(disc(L)) ∈ {±1, 0}.

Notice thatχ(L) = 0 if and only if val(L) is odd. If L is self-dual, thenχ(L) ∈
{±1} is the image of disc(L) under the isomorphism O×

F /(O×
F )2 ∼= {±1}.

Let W be a (non-degenerate) quadratic space over F of dimension m with
symmetric bilinear form ( , ). Similar invariants are defined for quadratic
spaces over F , and we denote them by

det(W ) ∈ F×/(F×)2, disc(W ) ∈ F×/(F×)2, χ(W ) ∈ {±1, 0}.

Then χ(W ) = +1 if and only if disc(W ) = 1. Also χ(L) = χ(W ) for any
OF -lattice L ⊆ W of full rank. Define the Hasse invariant of W to be

ε(W ) :=
∏

1≤i< j≤m

(ui , u j )F ∈ {±1},

where ( , )F : F×/(F×)2 × F×/(F×)2 → {±1} is the Hilbert symbol, and
ui = (ei , ei ) for an orthogonal basis {e1, . . . em} of W .

Recall that quadratic spaces W over F are classified by its dimensionm ≥ 1,
its discriminant disc(W ) and its Hasse invariant ε(W ). When m ≥ 3, disc(W )

and ε(W ) can take arbitrary values. When m = 2, the case disc(W ) = 1 and
ε(W ) = −1 is excluded. When m = 1, the case ε(W ) = −1 is excluded. The
space W admits a self-dual lattice if and only if ε(W ) = +1 and χ(W ) �= 0.

For k ∈ Z, denote by

W≥k := {x ∈ W : val(x) ≥ k}, W=k := {x ∈ W : val(x) = k}.
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On the arithmetic Siegel–Weil formula 1363

Denote by

W ◦ := W≥0, W ◦◦ := W≥1, W an := {x ∈ W : (x, x) �= 0},

the integral cone, the positive cone and the set of anisotropic vectors of W
respectively. For a quadratic OF -lattice L , define L◦ := L∩(L F )◦ and L◦◦ :=
L ∩ (L F )◦◦.
The set of vertex lattices of type t in W is denoted by Vertt (W ).
For ε ∈ {±1} and m ≥ 1, denote by H ε

m the self-dual OF -lattice of rank m
with χ(H ε

m) = ε (for m = 0, only H+
m = 0 is allowed by convention). Denote

by Vε
m the quadratic space over F with

χ(Vε
m) = ε and ε(Vε

m) = −1.

2.2 Notations on functions

LetW be a (non-degenerate) quadratic space over F . Fix an unramified additive
character ψ : F → C×. For an integrable function f on W , we define its
Fourier transform f̂ to be

f̂ (x) :=
∫

W
f (y)ψ((x, y))dy, x ∈ W.

We normalize the Haar measure on W to be self-dual, so ˆ̂f (x) = f (−x). For
an OF -lattice 	 ⊆ W of full rank, we have

1̂	 = vol(	)1	∨, and vol(	) = [	∨ : 	]−1/2 = q−val(	)/2. (2.2.0.1)

Note that val(	) can be defined for any lattice 	 (not necessarily integral) so
that the above equality for vol(	) holds.

Denote byS (W ) the space of Schwartz functions (i.e., compactly supported
locally constant functions) on W . Denote by D(W ) := Hom(S (W ), C) the
space of distributions on W (the linear dual ofS (W )). Any Schwartz function
is integrable. The Fourier transform preserves S (W ) and induces a Fourier
transform onD(W ) such that T̂ ( f ) = T ( f̂ ) for any T ∈ D(W ), f ∈ S (W ).
Denote by supp(T ) the support of the distribution T (the complement of the
largest open subset on which T = 0).

For any open dense subset � ⊆ W , denote by L1
loc(�) the space of locally

integrable functions on � (i.e., integrable on any compact open subset of �).
A function φ ∈ L1

loc(W ) gives a distribution Tφ ∈ D(W ) represented by φ,
i.e., Tφ( f ) = ∫

�
φ(x) f (x)dx for any f ∈ S (W ). By abuse of notation, we
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1364 C. Li, W. Zhang

often view φ ∈ L1
loc(�) as a distribution on W and write φ (resp. φ̂) instead

of Tφ (resp. T̂φ).

2.3 Notations on formal schemes

Denote by ANilpOF̆
the category of noetherian OF̆ -algebras in which � is

nilpotent. Denote by ANilpfOF̆
the category of noetherian adic OF̆ -algebras in

which � is nilpotent. Denote by ANilpfsmOF̆
⊆ ANilpfOF̆

the full subcategory
consisting of OF̆ -algebras which are formally finitely generated and formally
smooth over OF̆/� k for some k ≥ 1. Denote by AlgOF̆

the category of
noetherian � -adically complete OF̆ -algebras.

Let X be a formal scheme. Denote by X red the underlying reduced scheme.
For closed formal subschemesZ1, . . . ,Zm of X , denote by∪m

i=1Zi the formal
scheme-theoretic union, i.e., the closed formal subscheme with ideal sheaf
∩m

i=1IZi , where IZi is the ideal sheaf of Zi . A closed formal subscheme on X
is called a Cartier divisor if it is defined by an invertible ideal sheaf.

Let X be a formal scheme over Spf OF̆ . Then X defines a functor on
the category of Spf OF̆ -schemes (i.e. OF̆ -schemes on which � is locally
nilpotent). For R ∈ ANilpfOF̆

with ideal of definition I , write X (R) :=
lim←−n

X (Spec R/I n). For R ∈ AlgOF̆
, write X (R) := lim←−n

X (Spec R/� n).

When X is noetherian, denote by K Y
0 (X) the Grothendieck group (modulo

quasi-isomorphisms) of finite complexes of coherent locally freeOX -modules,
acyclic outside Y (i.e., the homology sheaves are formally supported on Y ). As
defined in [59, (B.1), (B.2)], denote byFi K Y

0 (X) the (descending) codimension
filtration on K Y

0 (X), and denote by Gri K Y
0 (X) its i-th graded piece. As in

[59, Appendix B], the definition of K Y
0 (X), Fi K Y

0 (X) and Gri K Y
0 (X) can be

extended to locally noetherian formal schemes X bywriting X as an increasing
union of open noetherian formal subschemes. Similarly, we let K ′

0(X) denote
the Grothendieck group of coherent sheaves of OX -modules. Now let X be
regular. Then there is a natural isomorphism K Y

0 (X) 
 K ′
0(Y ). For closed

formal subschemesZ1, . . . ,Zm of X , denote byZ1
L∩X · · · L∩X Zm (or simply

Z1
L∩ · · · L∩ Zm) the derived tensor product OZ1 ⊗L

OX
· · · ⊗L

OX
OZm , viewed

as an element in KZ1∩···∩Zm
0 (X).

For F a finite complex of coherent OX -modules, we define its Euler–
Poincaré characteristic

χ(X,F) :=
∑

i, j

(−1)i+ j lengthOF̆
Hi (X, Hj (F))
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if the lengths are all finite. Assume that X is regular with pure dimension
n. If Fi ∈ Fri KZi

0 (X) with
∑

i ri ≥ n, then by [59, (B.3)] we know that

χ(X,
⊗L

i Fi ) depends only on the image of Fi in Grri KZi
0 (X). In fact, we

will only need this assertion when X is a scheme (cf. Remark 7.6.11). When
X is a formal scheme, the assertion holds trivially when one of the ri is dim X ;
this special case will be used repeatedly.

2.4 Conventions

Unless otherwise specified, we will denote by L an OF -lattice of rank n, L


an OF -lattice of rank n − 1, and 	 an OF -lattice of full rank m in a quadratic
space of dimensionm. Unless otherwise specified, all OF -lattices are assumed
to be non-degenerate.

Starting from §4, we fix m = n + 1 ≥ 3 and ε ∈ {±1}. For brevity we
will suppress the superscript ε and the subscripts m and n when there is no
confusion, so V = Vε

m , N = N ε
n , Int(L) = Intε(L), ∂Den(L) = ∂Denε(L),

Den
(1, L) = Den
ε(1, L), Hor(L
) = Horε(L
) and so on.

3 Local densities of quadratic lattices

3.1 Local densities for quadratic lattices

Definition 3.1.1 Let L , M be two quadratic OF -lattices. Let RepM,L be the
scheme of integral representations , an OF -scheme such that for any OF -
algebra R,

RepM,L(R) = QHom(L ⊗OF R, M ⊗OF R), (3.1.1.1)

where QHom denotes the set of quadratic module homomorphisms. The local
density of integral representations is defined to be

Den(M, L):= lim
N→+∞

#RepM,L(OF/� N )

q N ·dim(RepM,L )F
.

Note that if L , M have rank n, m respectively and the generic fiber
(RepM,L)F �= ∅, then n ≤ m and

dim(RepM,L)F = dimOm − dimOm−n

=
(

m

2

)

−
(

m − n

2

)

= n(2m − n − 1)

2
. (3.1.1.2)
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Our next goal is to obtain an explicit formulas for Den(H ε
m, L) (Lemma

3.3.2). To do so we need some preliminaries on quadratic spaces over finite
fields.

3.2 Quadratic spaces over finite fields

Let V be a non-degenerate quadratic space over κ of dimension m. Let
χ(V ) ∈ {±1} be the image of its discriminant disc(V ) ∈ κ×/(κ×)2 under
the isomorphism κ×/(κ×)2 ∼= {±1}. By convention, if V = 0 then det(V ) =
disc(V ) = 1 and χ(V ) = +1. Denote by O(V ) the orthogonal group of V .
Then we have the well-known formula

#O(V )(κ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2q(m
2)(1− χ(V ) · q−m/2)

m/2−1∏

i=1
(1− q−2i ), m is even,

2q(m
2)

(m−1)/2∏

i=1
(1− q−2i ), m is odd.

This can be uniformly written as

#O(V )(κ) = 2q(m
2)(1− sgn(V )q−m/2)

∏

1≤i<m/2

(1− q−2i ) (3.2.0.1)

= 2q(m
2)(1+ sgn(V )q−m/2)−1

∏

1≤i≤m/2

(1− q−2i ), (3.2.0.2)

where we define

sgn(V ) :=
{

χ(V ), m is even,

0, m is odd.

Notice the formula is true even for m = 0 when interpreted as (3.2.0.2).
More generally, for a possibly degenerate quadratic spaceU over κ , we take

an orthogonal decomposition

U = U0 k U1, (3.2.0.3)

where U0 is non-degenerate and U1 is the radical of U , and define

sgn(U ) := sgn(U0) =
{

χ(U0), dimU0 is even,

0, dimU0 is odd.
(3.2.0.4)
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This is independent of the decomposition (3.2.0.3). Similarly, define

sgn′(U ) :=
{
0, dimU0 is even,

χ(U0), dimU0 is odd.
(3.2.0.5)

These two definitions can be written uniformly: for any integer m, define

sgnm(U ) :=
{

χ(U0), dimU0 ≡ m (mod 2),

0, dimU0 ≡ m + 1 (mod 2).
(3.2.0.6)

Then sgn = sgneven and sgn
′ = sgnodd.

The following lemma is a generalization of [21, §5.6 Exercise 4].

Lemma 3.2.1 Let U be a quadratic space over κ of dimension n whose rad-
ical has dimension t. Let V be a non-degenerate quadratic space over κ of
dimension m ≥ n. Let O(U, V ) be the set of isometries from U into V . Then
O(U, V ) has size

#O(U, V ) = q
n(2m−n−1)

2 (1− sgn(V ) · q−m/2)(1− χ(V ) sgnm(U )

·q−(m−n−t)/2)−1 ·
∏

(m−n−t)/2≤i<m/2

(1− q−2i ).

Namely,

#O(U, V ) = q
n(2m−n−1)

2 (1− sgn(V ) · q−m/2)

·

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1+ χ(V ) sgn(U ) · q−(m−n−t)/2)

· ∏

1≤i<(n+t)/2
(1− q2i−m), m is even,

(1+ χ(V ) sgn′(U ) · q−(m−n−t)/2)

· ∏

1≤i<(n+t+1)/2
(1− q2i−(m+1)), m is odd.

Proof The group O(V )(κ) acts transitively on O(U, V ). Fixing an isometry
φ ∈ O(U, V ) and identifying U as a quadratic subspace of V using φ, we find
the stabilizer of O(V ) on φ is isomorphic to

{g ∈ O(V ) : g|U = 1} ∼= {g ∈ O(U⊥
0 ) : g|U1 = 1} =: H.

Here U0, U1 are as in decomposition (3.2.0.3) and U⊥
0 ⊆ V is the orthogonal

complement of U0. Notice that U1 ⊆ U⊥
0 is totally isotropic. Let U2 be the

orthogonal complement ofU1 inU⊥
0 . Let P = M N ⊆ O(U⊥

0 ) be the parabolic
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1368 C. Li, W. Zhang

subgroup stabilizing the flag 0 ⊆ U1 ⊆ U2 ⊆ U⊥
0 . Then H = M ′N ⊆ P ,

where M ′ ⊆ M 
 GL(U1)×O(U2/U1) is the subgroup 1×O(U2/U1). Notice
that we have an isomorphism as affine varieties N ∼= Hom(U1, U2/U1) ×
∧2(U1). It follows that the number of isometries is equal to

#O(U, V ) = #O(V )(κ)

#H(κ)

= #O(V )(κ)

#O(U2/U1)(κ) · # Hom(U1, U2/U1)(κ) · # ∧2 (U1)(κ)
.

Notice that dim V = m, dimU2/U1 = m − n − t , and

# Hom(U1, U2/U1)(κ) = qt (m−n−t), # ∧2 (U1)(κ) = q(t
2).

We compute

#O(V )(κ)

#H(κ)
= q

n(2m−n−1)
2

·
(1− sgn(V ) · q−m/2)

∏

1≤i<m/2
(1− q−2i )

(1− sgn(U2/U1) · q−(m−n−t)/2)
∏

1≤i<(m−n−t)/2
(1− q−2i )

= q
n(2m−n−1)

2 · (1− sgn(V ) · q−m/2)

(1+ sgn(U2/U1) · q−(m−n−t)/2)
∏

(m−n−t)/2<i<m/2

(1− q−2i )

Notice that

∏

(m−n−t)/2<i<m/2

(1− q−2i ) =

⎧
⎪⎨

⎪⎩

∏

1≤i<(n+t)/2
(1− q2i−m), m is even,

∏

1≤i<(n+t+1)/2
(1− q2i−(m+1)), m is odd.

Moreover,

sgn(U2/U1) = sgn(U⊥
0 ) =

{
χ(V ) · sgn(U ), m is even,

χ(V ) · sgn′(U ), m is odd.

This completes the proof.

We deduce the following (well-known) counting formula for totally
isotropic subspaces.
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Lemma 3.2.2 (number of totally isotropic subspaces) Let V be a non-
degenerate quadratic space over κ of dimension m. Let Sb(V ) be the set
of totally isotropic κ-subspaces of dimension b in V , and Sb(V ) := #Sb(V ).
Then

Sb(V ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(qm/2 − χ(V ))(qm/2−b + χ(V ))
∏b−1

i=1 (qm−2i − 1)
∏b

i=1(q
i − 1)

, m is even,

∏b−1
i=0 (qm−1−2i − 1)
∏b

i=1(q
i − 1)

, m is odd.

Proof The group O(V )(κ) acts transitively on the set Sb(V ). Fix a totally
isotropic subspace U ∈ Sb(V ), then we have a surjection

O(U, V ) → Sb(V ), φ �→ φ(U )

with each fiber in bijection with GL(U )(κ). Hence Sb(V ) = #O(U,V )
#GL(U )(κ)

. There-
fore by Lemma 3.2.1, we know that Sb(V ) equals

q
b(2m−b−1)

2 (1− sgn(V ) · q−m/2)(1− χ(V ) sgnm(U ) · q−(m−2b)/2)−1

·∏(m−2b)/2≤i<m/2(1− q−2i )

qb2
∏b

i=1(1− q−i )
,

which simplifies to the desired formula, as in this case χ(V ) sgnm(U ) =
sgn(V ) is equal to χ(V ) when m is even and is equal to 0 when m is odd.

We record some consequences of Lemma 3.2.2, whichwill be used through-
out this article often without explicit reference.

Corollary 3.2.3 Let V be a non-degenerate quadratic space over κ of dimen-
sion m.

(i) The number of isotropic lines in V is equal to

S1(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

(qm/2 − χ(V ))(qm/2−1 + χ(V ))

q − 1
, m is even,

qm−1 − 1

q − 1
, m is odd.
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In particular,

S1(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2, m = 2, χ(V ) = +1,

0, m = 2, χ(V ) = −1,

q + 1, m = 3,

(q + 1)2, m = 4, χ(V ) = +1,

q2 + 1, m = 4, χ(V ) = −1.

(ii) The number of isotropic vectors in V is equal to

(q − 1)S1(V ) + 1 =
{

qm−1 + χ(V )qm/2 − χ(V )qm/2−1, m is even,

qm−1, m is odd.

3.3 Formulas in terms of weighted lattice counting: theorem of
Cho–Yamauchi

Definition 3.3.1 Let L be a quadratic OF -lattice of rank n. Denote by Lκ :=
L ⊗OF κ , a (possibly degenerate) quadratic space over κ , and

sgn(L) := sgn(Lκ), sgn′(L) := sgn′(Lκ), sgnm(L) := sgnm(Lκ)

as in Eqs. (3.2.0.4), (3.2.0.5) and (3.2.0.6). By definition, if L is self-dual, then
sgnn(L) = χ(L).

We have the following explicit formula for local densities in terms of
weighted lattice counting, generalizing the theorem of Cho–Yamauchi.

Lemma 3.3.2 (Cho–Yamauchi) Let L be a quadratic OF -lattice of rank n.
Then

Den(H ε
m , L) =

∑

L⊆L ′⊆L ′∨
q(n+1−m)�(L ′/L) · (1− sgn(H ε

m) · q−m/2)

(1+ ε sgnm(L ′) · q−(m−n−t (L ′))/2) ·
∏

(m−n−t (L ′))/2<i<m/2

(1− q−2i ).

(3.3.2.1)

Here the sum runs over all integral lattices L ′ ⊆ L F such that L ⊂ L ′, and

�(L ′/L):=lengthOF
L ′/L .
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Proof By [6, Equation (3.4)] (replacing 2k there by m), we have

Den(H ε
m, L) = q− n(2m−n−1)

2 ·
∑

L⊆L ′⊆L ′∨
q(n+1−m)�(L ′/L)#O(L ′

κ, (H ε
m)κ).

Here O(U, V ) denotes the set of isometries from U to V as in Lemma 3.2.1.
Strictly speaking, [6] only treats the case m is even and ε = +1, but the same
proof goes through as H ε

m is self-dual.
It follows from Lemma 3.2.1 that

Den(H ε
m, L) =

∑

L⊆L ′⊆L ′∨
q(n+1−m)�(L ′/L) · (1− sgn(H ε

m) · q−m/2)

· (1− ε sgnm(L ′) · q−(m−n−t (L ′))/2)−1

·
∏

(m−n−t (L ′))/2≤i<m/2

(1− q−2i )

=
∑

L⊆L ′⊆L ′∨
q(n+1−m)�(L ′/L) · (1− sgn(H ε

m) · q−m/2)

· (1+ ε sgnm(L ′) · q−(m−n−t (L ′))/2)

·
∏

(m−n−t (L ′))/2<i<m/2

(1− q−2i ).

This completes the proof.

We have the following induction formula for local densities, generalizing
the results of Cho–Yamauchi and Katsurada.

Lemma 3.3.3 (Induction formula) Let L
 be a quadratic OF -lattice of rank
n − 1 with fundamental invariants (a1, . . . , an−1). Let L = L
 + 〈x〉 and
L̃ = L
 + 〈�−1x〉 where x ⊥ L
 with val(x) > an−1. If m is even, then

Den(H ε
m, L) = qn+1−m · Den(H ε

m, L̃) + (1− εq−m/2)(1+ εq−(m−2)/2)

·Den(H ε
m−2, L
).

If m is odd, then

Den(H ε
m, L) = qn+1−m · Den(H ε

m, L̃) + (1− q−(m−1)) · Den(H ε
m−2, L
).

Proof When m is even and ε = +1, this is proved in [6, Corollary 4.10] (see
also [17, Theorem 2.6 (1)]). The general case can be proved similarly. More
precisely, consider the terms in (3.3.2.1) indexed by lattices L ⊆ L ′ ⊆ L ′∨
depending on L̃ ⊆ L ′ or not.
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The sum of terms in (3.3.2.1) with L ′ satisfying L̃ ⊆ L ′ evaluates to

q(n+1−m)(�(L ′/L)−�(L ′/L̃)) · Den(H ε
m, L̃) = qn+1−m · Den(H ε

m, L̃).

Now we consider those L ′’s satisfying L̃ � L ′. In this case the image of
x in L ′

κ is nonzero, hence by Nakayama’s lemma, there exists a quadratic
OF -lattice M ′ of rank n − 1 such that L ′ = M ′ + 〈x〉 and L = M + 〈x〉,
where M = L ∩ M ′. Since val(x) > an−1, we know that M and L
 has the
same fundamental invariants and moreover Den(H ε

m, M) = Den(H ε
m, L
) [6,

Remark 4.3 (5)]. So by [6, Proposition 4.8] (specialized to d = 1 in the notation
there), the sum of terms in (3.3.2.1) with L ′ satisfying L̃ � L ′ evaluates to

∑

L
⊆M ′⊆M ′∨
L ′=M ′+〈x〉

q�(L ′/L) · q(n+1−m)�(L ′/L) · (1− sgn(H ε
m) · q−m/2)

·(1+ ε sgnm(L ′) · q−(m−n−t (L ′))/2) ·
∏

(m−n−t (L ′))/2<i<m/2

(1− q−2i ).

Since t (M ′) = t (L ′)−1, �(M ′/L
) = �(L ′/L) and sgnm−2(M ′) = sgnm(L ′),
this evaluates to

(1− sgn(H ε
m) · q−m/2)

∏

(m−2)/2≤i<m/2
(1− q−2i )

(1− sgn(H ε
m−2) · q−(m−2)/2)

· Den(H ε
m−2, L
).

Notice that the extra factor evaluates to

(1− sgn(H ε
m) · q−m/2)

∏

(m−2)/2≤i<m/2
(1− q−2i )

(1− sgn(H ε
m−2) · q−(m−2)/2)

=
{

(1− εq−m/2)(1+ εq−(m−2)/2), m is even,

(1− q−(m−1)), m is odd.

This finishes the proof.

Our next goal is to define normalized local Siegel series and derive explicit
formulas for them (Theorems 3.4.5, 3.5.4 and 3.6.1). We distinguish two cases
depending on the parity of the corank of L in H ε

m .
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3.4 Odd corank case

Definition 3.4.1 Let L be a quadratic OF -lattice of rank n. Define the nor-
malizing polynomial (in the odd corank case) Norε(X, L) ∈ Q[X ] to be

Norε(X, L) = (1− sgn(H ε
n+1) · q−(n+1)/2X)

∏

1≤i<(n+1)/2

(1− q−2i X2).

(3.4.1.1)

Notice that the dependence of Norε(X, L) on L is only its rank n. By Lemma
3.3.2, we have for all k ≥ 0,

Norε(q−k, L) = Den(H ε
n+1+2k, H ε

n ).

Definition 3.4.2 Define the (normalized) local Siegel series of L (in the odd
corank case) to be the polynomial Denε(X, L) ∈ Z[X ] such that for all k ≥ 0,

Denε(q−k, L) = Den(H ε
n+1+2k, L)

Norε(q−k, L)
= Den(H ε

n+1+2k, L)

Den(H ε
n+1+2k, H ε

n )
.

Define the central derivative of the local density or derived local density to be

∂Denε(L):= − d

dX

∣
∣
∣
∣

X=1
Denε(X, L).

Notice that if L is not integral then Denε(X, L) = 0 and hence ∂Denε(L) = 0.

Remark 3.4.3 By definitionDenε(M, L) only depends on the isometry classes
of M and L , and hence Denε(X, L) and ∂Denε(L) only depends on the isom-
etry class of L .

Definition 3.4.4 Let t ≥ 1, s ∈ {±1, 0}, ε ∈ {±1} such that if t − 1 is odd
then s = 0. Define weight polynomials

m(t, s; X) := (1+ s · q(t−1)/2X)
∏

0≤i<(t−1)/2

(1− q2i X2),

mε(t, s; X) := m(t, s; εX).

By convention, define mε(0, s; X) = 1. Define weight factors
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mε(t, s):= − d

dX

∣
∣
∣
∣

X=1
mε(t, s; X)

=

⎧
⎪⎨

⎪⎩

0, t = 0,

−εs, t = 1,

2(1+ εs · q(t−1)/2)
∏

1≤i<(t−1)/2(1− q2i ), t ≥ 2.

Now we have the following explicit formula for the local Siegel series
Denε(X, L), generalizing [6, Corollary 3.16] (the case n is odd and ε = +1).

Theorem 3.4.5 Let L be a quadratic OF -lattice of rank n. Then

Denε(X, L) =
∑

L⊂L ′⊂L ′∨
X2�(L ′/L) ·mε(t (L ′), sgnn+1(L ′); X).

Proof Take m = n + 1+ 2k in Lemma 3.3.2, we obtain that

Den(H ε
n+1+2k, L) =

∑

L⊆L ′⊆L ′∨
q−2k·�(L ′/L) · (1− sgn(H ε

n+1) · q−(n+1)/2−k)

· (1+ ε sgnn+1(L ′) · q(t (L ′)−1)/2−k)

·
∏

−(t (L ′)−1)/2+k<i<(n+1)/2+k

(1− q−2i ).

Taking the ratio we obtain

Den(H ε
n+1+2k, L)

Norε(q−k, L)

=
∑

L⊆L ′⊆L ′∨
q−2k·�(L ′/L)(1+ ε sgnn+1(L ′) · q(t (L ′)−1)/2−k)

∏

−(t (L ′)−1)/2+k<i≤k

(1− q−2i )

=
∑

L⊆L ′⊆L ′∨
q−2k·�(L ′/L)(1+ ε sgnn+1(L ′) · q(t (L ′)−1)/2−k)

∏

0≤i<(t (L ′)−1)/2

(1− q2i−2k)

=
∑

L⊆L ′⊆L ′∨
X2�(L ′/L) ·mε(t (L ′), sgnn+1(L ′); X)

∣
∣
∣
∣

X=q−k
.

This completes the proof.
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We have the following functional equation for Denε(X, L).

Theorem 3.4.6 (Ikeda) Let L be a quadratic OF -lattice of rank n. Then

Denε(X, L) = wε(L) · Xval(L) · Denε

(
1

X
, L

)

,

where the sign of functional equation is equal to

wε(L) := (det L ,−(−1)(
n+1
2 )u)F · ε(L F ) ∈ {±1}, (3.4.6.1)

where u ∈ O×
F such that χ(u) = ε.

Proof This is [16, Theorem 4.1 (2)] when n is odd and ε = +1. The same
proof works in general.

Corollary 3.4.7 If Denε(X, L) has sign of functional equation wε(L) = −1,
then

∂Denε(L) =
∑

L⊂L ′⊂L ′∨
mε(t (L ′), sgnn+1(L ′)).

Remark 3.4.8 (A cancellation law for ∂Denε(L)) For a self-dual OF -lattice
M of rank r and an OF -quadratic lattice L
 of rank n − r , by Theorem 3.4.5
we have

Denε(X, L
 k M) = Denε′(X, L
)

for the unique ε′ ∈ {±1} such that H ε′
n−r+1k M ∼= H ε

n+1. Therefore we obtain
a cancellation law:

∂Denε(L
 k M) = ∂Denε′(L
). (3.4.8.1)

Remark 3.4.9 (Relation with local Whittaker functions) Let 	 = H ε
m be

a self-dual quadratic OF -lattice of rank m. Let L be a quadratic OF -lattice
of rank n. Let T = ((xi , x j ))1≤i, j≤n be the fundamental matrix of an OF -
basis {x1, . . . , xn} of L , an n × n symmetric matrix over F . Associated to
the standard Siegel–Weil section of the characteristic function ϕ0 = 1	n and
the unramified additive character ψ : F → C×, there is a local (generalized)
Whittaker function WT (g, s, ϕ0) (see §11.2, §11.3 for the precise definition).
By [30, Proposition A.6], when g = 1, it satisfies the interpolation formula
for integers s = k ≥ 0 (notice γ (V ) = 1 in the notation there),

WT (1, k, ϕ0) = Den(	 k H+
2k, L).
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Assume m = n + 1. By Definition 3.4.2, it follows that its value at s = k is

WT (1, k, ϕ0) = Den(H ε
n+1+2k, L) = Denε(q−k, L) · Norε(q−k, L),

and when wε(L) = −1, its derivative at s = 0 is

W ′
T (1, 0, ϕ0) = ∂Denε(L) · Norε(1, L) · log q.

Plugging in (3.4.1.1), we obtain

WT (1, 0, ϕ0) = Denε(1, L) · (1− sgn(H ε
n+1) · q−(n+1)/2)

·
∏

1≤i<(n+1)/2

(1− q−2i ), (3.4.9.1)

W ′
T (1, 0, ϕ0) = ∂Denε(L) · (1− sgn(H ε

n+1) · q−(n+1)/2)

·
∏

1≤i<(n+1)/2

(1− q−2i ) · log q. (3.4.9.2)

3.5 Even corank case

Definition 3.5.1 Let L be a quadratic OF -lattice of rank n. Define the nor-
malizing polynomial (in the even corank case) Nor
ε(X, L) ∈ Q[X ] to be

Nor
ε(X, L) = (1− sgn(H ε
n ) · q−n/2X)(1− εχ(L)X)−1

·
∏

0≤i<n/2

(1− q−2i X2).

Notice that the dependence of Norε(X, L) on L is only its rank n and χ(L).

Definition 3.5.2 Define the (normalized) local Siegel series of L (in the even
corank case) to be the polynomial Den
ε(X, L) ∈ Z[X ] such that for all k ≥ 0,

Den
ε(q−k, L) := Den(H ε
n+2k, L)

Nor
ε(q−k, L)
.

Definition 3.5.3 Let t ≥ 1, s ∈ {±1, 0}, χ ∈ {±1, 0}, ε ∈ {±1} such that if t
is odd then s = 0. Define weight polynomials

m
(t, s, χ; X) := (1+ s · qt/2X)(1− χ · X)

·
∏

0<i<t/2

(1− q2i X2),

m
ε(t, s, χ; X) := m
(t, s, χ; εX).
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By convention, define m
ε(0, s, χ; X) = 1.

Similar to Theorem 3.4.5, we have the following explicit formula for
Den
ε(X, L), generalizing [6, Corollary 3.16] (the case n is even and ε = +1).

Theorem 3.5.4 Let L be a quadratic OF -lattice of rank n. Then

Den
ε(X, L) =
∑

L⊂L ′⊂L ′∨
(q1/2X)2�(L ′/L) ·m
ε(t (L ′), sgnn(L ′), χ(L); X).

Proof Take m = n + 2k in Lemma 3.3.2, we obtain

Den(H ε
n+2k, L) =

∑

L⊆L ′⊆L ′∨
q(1−2k)�(L ′/L) · (1− sgn(H ε

n ) · q−n/2−k)

· (1+ ε sgnn(L ′) · qt (L ′)/2−k)

·
∏

−t (L ′)/2+k<i<n/2+k

(1− q−2i ).

Taking the ratio we obtain

Den(H ε
n+1+2k, L)

Nor
ε(q−k, L)

=
∑

L⊆L ′⊆L ′∨
q(1−2k)�(L ′/L)(1+ ε sgnn(L ′) · qt (L ′)/2−k)(1− εχ(L) · q−k)

·
∏

−t (L ′)/2+k<i<k

(1− q−2i )

=
∑

L⊆L ′⊆L ′∨
q(1−2k)�(L ′/L)(1+ ε sgnn(L ′) · qt (L ′)/2−k)(1− εχ(L) · q−k)

·
∏

0<i<t (L ′)/2
(1− q2i−2k)

=
∑

L⊆L ′⊆L ′∨
(q1/2X)2�(L ′/L) ·m
ε(t (L ′), sgnn(L ′), χ(L); X)

∣
∣
∣
∣

X=q−k
.

This completes the proof.

We have the following functional equation for Den
ε(X, L).

Theorem 3.5.5 (Ikeda) Let L be a quadratic OF -lattice of rank n. Then

Den
ε(X, L) = (q1/2X)2�
val(L)

2 � · Den
ε

(
1

q X
, L

)

.
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Proof This is [16, Theorem 4.1 (1)] when n is even and ε = +1. The same
proof works in general.

Corollary 3.5.6 Let L be a quadratic OF -lattice of rank n. Then

Den
ε(1, L) =
∑

L⊆L ′⊆L ′∨
t (L ′)≤2

q� val(L′)
2 �

·

⎧
⎪⎨

⎪⎩

1, t (L ′) = 0,

(1− εχ(L)q−1), t (L ′) = 1,

(1+ ε sgnn(L ′))(1− εχ(L)q−1), t (L ′) = 2.

Proof By Theorem 3.5.5, we have

Den
ε(1, L) = q� val(L)
2 �Den
ε(q−1, L).

By Theorem 3.5.4,

Den
ε(q−1, L) =
∑

L⊂L ′⊂L ′∨
q−�(L ′/L) ·m
ε(t (L ′), sgnn(L ′), χ(L); q−1).

Notice that the weight polynomial evaluates to

m
ε(t, s, χ; q−1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, t = 0,

(1− εχq−1), t = 1,

(1+ εs)(1− εχq−1), t = 2,

0, t > 2.

This completes the proof since q� val(L)
2 � · q−�(L ′/L) = q� val(L′)

2 �.

3.6 Induction formula

Theorem 3.6.1 (Induction formula) Let L
 be a quadratic OF -lattice of rank
n − 1 with fundamental invariants (a1, . . . , an−1). Let L = L
 + 〈x〉 and
L̃ = L
 + 〈�−1x〉 where x ⊥ L
 with val(x) > an−1. Then

Denε(X, L)= X2 · Denε(X, L̃)+(1− εχ(L
)X)−1(1− X2) · Den
ε(X, L
).

(3.6.1.1)
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Proof It follows immediately from Lemma 3.3.3 by evaluating both sides at
X = q−k (k ≥ 0) using the definition of Denε(X, L) (Definition 3.4.2) and
Den
ε(X, L
) (Definition 3.5.2).

Corollary 3.6.2 Assume the situation is as in Theorem 3.6.1. Assume that
wε(L) = −1. Then

∂Denε(L) − ∂Denε(L̃) =
{
−εχ(L
) · Den
ε(1, L
), χ(L
) �= 0,

2 · Den
ε(1, L
), χ(L
) = 0.

Proof Take − d
dX

∣
∣

X=1 on both sides of (3.6.1.1).

3.7 Lemmas on quadratic lattices

Lemma 3.7.1 Let W = W1 k W2, where Wi is a quadratic space over F of
dimension mi (i = 1, 2). Then

(i) det(W ) = det(W1) det(W2).
(ii) disc(W ) = (−1)m1m2disc(W1)disc(W2). In particular, χ(W ) = χ(W1)

χ(W2) if m1m2 is even and at least one of χ(Wi ) is nonzero.
(iii) ε(W ) = ε(W1)ε(W2)(det(W1), det(W2))F .

Proof (i) It follows from the definition.
(ii) It follows from (i) and

(m1+m2
2

) = (m1
2

)+ (m2
2

)+ m1m2.
(iii) Choose an orthogonal basis {e1, . . . , em1} of W1 and an orthogonal basis

{em1+1, . . . , em1+m2} of W2. Let ui = (ei , ei ). Then

ε(W ) =
∏

1≤i< j≤m1+m2

(ui , u j )F

=
∏

1≤i< j≤m1

(ui , u j )F ·
∏

m1+1≤i< j≤m1+m2

(ui , u j )F

·
∏

1≤i≤m1
m1+1≤ j≤m1+m2

(ui , u j )F

= ε(W1)ε(W2)
(∏

1≤i≤m1
ui ,

∏

m1+1≤ j≤m1+m2
u j

)

F

= ε(W1)ε(W2)(det(W1), det(W2))F .

This completes the proof.

Lemma 3.7.2 Take m = n + 1 and ε ∈ {±1}.
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1380 C. Li, W. Zhang

(i) Let L ⊆ Vε
m (resp. L ⊆ H ε

m,F ) be a quadratic OF -lattice of rank n. Then
the sign of functional Eq. (3.4.6.1) wε(L) = −1 (resp. +1). In particular,
a quadratic OF -lattice of rank n cannot be simultaneously embedded into
H ε

m,F and Vε
m as quadratic submodules.

(ii) Let L
 be a quadratic OF -lattice of rank n − 1. Assume that L
 can be
simultaneously embedded into H ε

m,F and Vε
m as quadratic submodules.

Then χ(L
) = 0 or χ(L
) = −ε.

Proof (i) Let L ⊆ Vε
m (the case L ⊆ H ε

m,F is parallel). Write Vε
m = L F k

L⊥
F . Then by Lemma 3.7.1 (i) (iii) and (a, a)F = (a,−1)F for any a ∈

F×, we obtain

−1 = ε(Vε
m) = ε(L F )ε(L⊥

F )(det(L F ), det(Vε
m) det(L F ))

= ε(L F )ε(L⊥
F )(det(L F ),− det(Vε

m)).

The result then follows as ε(L⊥
F ) = +1 (L⊥

F is 1-dimensional).

(ii) If not, assume that χ(L
) = ε. Write H ε
m,F

∼= L

F k W and Vε

m
∼=

L

F k W ′, where W and W ′ are quadratic spaces over F of dimension 2.

By Lemma 3.7.1 (iii), we have

ε(H ε
m,F ) = ε(L


F )ε(W )(det(L

F ), det(W ))F ,

ε(Vε
m) = ε(L


F )ε(W ′)(det(L

F ), det(W ′))F .

Since χ(H ε
m,F ) = χ(Vε

m) = ε, and χ(L
) = ε, we know that det(W ) =
det(W ′) and χ(W ) = χ(W ′) = +1 by Lemma 3.7.1 (i) (ii). Since W and
W ′ are of dimension 2, we know that ε(W ) = ε(W ′) = +1. It follows
that ε(H ε

m,F ) = ε(Vε
m), a contradiction.

3.8 Horizontal lattices

Take m = n + 1 and ε ∈ {±1} in this subsection.
Definition 3.8.1 Let L
 ⊆ Vε

m be an OF -lattice of rank n − 1.

(1) Say L
 is co-isotropic (in Vε
m), if the 2-dimensional quadratic space

(L

F )⊥ ⊆ Vε

m is isotropic (i.e., χ((L

F )⊥) = +1); and co-anisotropic

otherwise. By Lemma 3.7.1 (ii), we know that L
 is co-isotropic if and
only if χ(L
) = ε.

(2) Say L
 is horizontal (in Vε
m), if L
 is integral and one of the following is

satisfied:
(a) t (L
) ≤ 1,
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(b) t (L
) = 2 and ε sgnn−1(L
) = +1.

Definition 3.8.2 Let L
 ⊆ Vε
m be an OF -lattice of rank n − 1. Denote by

Horε(L
) the set of horizontal lattices M
 ⊆ L

F such that L
 ⊆ M
.

Such horizontal lattices parametrize the horizontal parts of the special cycle
Z(L
), hence the name (see Theorem 5.3.1).

Corollary 3.8.3 Take m = n + 1 and ε ∈ {±1}. Let L
 ⊆ Vε
m be a quadratic

OF -lattice of rank n − 1 with fundamental invariants (a1, . . . , an−1).

(i) If L
 is co-isotropic, then Den
ε(1, L
) = 0 and Horε(L
) = ∅.
(ii) Assume that L
 is co-anisotropic. Let L = L
+〈x〉 and L̃ = L
+〈�−1x〉

where x ⊥ L
 with val(x) > an−1. If χ(L
) �= 0, then

∂Denε(L) − ∂Denε(L̃) = Den
ε(1, L
)

=
∑

M
∈Horε(L
)

q� val(M
)
2 � ·

⎧
⎪⎨

⎪⎩

1, t (M
) = 0,

(1+ q−1), t (M
) = 1,

2(1+ q−1), t (M
) = 2.

If χ(L
) = 0, then

∂Denε(L) − ∂Denε(L̃) = 2Den
ε(1, L
)

= 2
∑

M
∈Horε(L
)

q� val(M
)
2 � ·

{
1, t (M
) = 1,

2, t (M
) = 2.

Proof (i) Since χ(L
) = ε, by Lemma 3.7.2 (ii) we know that L
 cannot be
embedded into H ε

m as a quadratic submodule. Hence Den
ε(1, L
) = 0 by
Definition 3.5.2. By definition, if t (M
) = 2, then 1+ ε sgnn−1(M
) = 2
when M
 is horizontal, and 0 otherwise. Then the summation in Corollary
3.5.6 can be written as over M
 ∈ Horε(L
), and hence Den
ε(1, L
) = 0
implies that Horε(L
) = ∅.

(ii) Since χ(L
) �= ε, we know that

1− εχ(L
)q−1 =
{
1+ q−1, χ(L
) �= 0,

1, χ(L
) = 0.

Moreover, if χ(L
) = 0, then L

F does not admit self-dual lattices, so

t (M
) �= 0. By Lemma 3.7.2 (i), we have wε(L) = −1. The result then
follows from Corollary 3.6.2 and Corollary 3.5.6.
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Lemma 3.8.4 Take m = n+1 and ε ∈ {±1}. Let M
 be an OF -lattice of rank
n−1which embeds simultaneously into Vε

m and H ε
m as quadratic submodules.

Assume that M
 = M

F ∩ H ε

m (under the embedding of M
 into H ε
m). Then M


is horizontal (in Vε
m).

Proof To simplify notation, write M = M
 and H = H ε
m for short. Since

M = MF ∩ H , we know that H/M is a free OF -module of rank 2. We can
choose en, en+1 ∈ H whose images in H/M form an OF -basis of H/M .
Then H = M +〈en, en+1〉. Choose an orthogonal basis {e1, . . . , en−1} and let
ui = (ei , ei ) ∈ F×. The fundamental matrix of the OF -basis {e1, . . . , en+1}
of H has the form

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

u1 0 0 (e1, en) (e1, en+1)

0 u2 0 (e2, en) (e2, en+1)

0 0
. . .

...
...

(en, e1) (en, e2) · · · (en, en) (en, en+1)

(en+1, e1) (en+1, e2) · · · (en+1, en) (en+1, en+1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

If t (M) ≥ 3, then at least three of ui ’s have strictly positive valuation, and
hence the rank of T mod � is at most n, contradicting that H is self-dual.
Hence t (M) ≤ 2.

Now assume t (M) = 2. We would like to show that ε sgnn−1(M) = 1.
Let Mn−3 = 〈e1, . . . , en−3〉, M ′ = 〈en−2, en−1〉 and H ′ = M ′ + 〈en, en+1〉.
Then we may choose the basis {e1, . . . , en+1} such that val(ui ) = 0 for i =
1, . . . , n − 3, val(ui ) > 0 for i = n − 2, n − 1, and Mn−3 is orthogonal to M ′
and H ′. Then ε sgnn−1(M) is equal to

χ(H) sgnn−1(M) = χ(H ′ k Mn−3) sgnn−1(M ′ k Mn−3)

= χ(H ′) sgn2(M ′) (as Mn−3 is self-dual)

= χ(H ′) (sgn2(M ′) = 1 as M ′ has rank 2 and type 2).

On the other hand, the fundamental matrix of OF -basis {en−2, . . . , en+1} of
H ′ has the form

T ′ =

⎛

⎜
⎜
⎝

un−2 0 (en−2, en) (en−2, en+1)

0 un−1 (en−1, en) (en−1, en+1)

(en, en−2) (en, en−1) (en, en) (en, en+1)

(en+1, en−2) (en+1, en−1) (en+1, en) (en+1, en+1)

⎞

⎟
⎟
⎠ .

Since val(ui ) > 0 for i = n − 2, n − 1, we know that

det(T ′) = (det B)2 (mod �)
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is a square, where

B =
(

(en−2, en) (en−2, en+1)

(en−1, en) (en−1, en+1)

)

.

Hence χ(H ′) = χ((−1)(
4
2) det T ′) = +1 as desired.

4 Special cycles on GSpin Rapoport–Zink spaces

In this section we take F = Qp. From now on we fix m = n + 1 ≥ 3 and
ε ∈ {±1}. To simplify notation we will suppress the superscript ε and the
subscripts m and n when there is no confusion (see Convention §2.4). Let
V = V ε

m be a self-dual quadratic OF -lattice of rank m with χ(V ) = ε.1

4.1 GSpin Rapoport–Zink spaces RZG

Associated to V we have a local unramified Shimura–Hodge data (G, b, μ, C)

(in the sense of [15, Definition 2.2.4]) constructed in [15, Proposition 4.2.6],
where G = GSpin(V ), b ∈ G(F̆) is a basic element, μ : Gm → G is
a certain cocharacter, and C = C(V ) is the Clifford algebra of V (which
has rank 2m). See [15, §4.1] or [38, §2.1] for a review on GSpin groups. Let
D = HomOF (C, OF ) be the linear dual ofC . By [15, Lemma 2.2.5], this local
unramified Shimura–Hodge data gives rise to a (unique up to isomorphism) p-
divisible group X over κ̄ whose contravariant Dieudonné module D(X)(OF̆ )

is given by DOF̆
with Frobenius F = b ◦ σ . Moreover, the Hodge filtration

Fil1D(X)(κ̄) ⊆ Dκ̄ is induced by a conjugate of μκ̄ .
Let (sα)α∈I be a finite set of tensors sα in the total tensor algebra C⊗ cut-

ting out G from GL(C). Then we obtain tensors tα,0 = sα ⊗ 1 ∈ (D⊗)OF̆
=

D(X)(OF̆ )⊗, which are F-invariant elements of D(X)(OF̆ )⊗[1/p]. Each tα,0
induces a crystalline Tate tensor tα,0 onX. We recall that a crystalline Tate ten-
sor on a p-divisible group X over Spec R, where R ∈ ANilpfsmOF̆

, is a morphism

of crystals t : 1 := D(F/OF ) → D(X)⊗ such that t (R) : 1(R) → D(X)(R)⊗
is compatible with Hodge filtrations, and the inducedmorphisms of isocrystals
t : 1[1/p] → D(X)⊗[1/p] is F-equivariant.

Associated to the local unramified Shimura–Hodge data, we have a GSpin
Rapoport–Zink space RZG = RZ(G, b, μ, C) of Hodge type ([15, §4.3],
see also [18]) parametrizing p-divisible groups with crystalline Tate tensors
deforming (X, (tα,0)α∈I )). More precisely, it is a formal scheme over Spf OF̆

1 So V 
 Hε
m as quadratic OF -lattices. We use the symbol V to emphasize its role on the

geometric side.
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representing the functor sending R ∈ ANilpfsmOF̆
to the set of isomorphism

classes of tuples (X, (tα)α∈I , ρ), where

• X is a p-divisible group over Spec R.
• (tα)α∈I is a collection of crystalline Tate tensors of X .
• ρ : X ⊗κ̄ R/J → X ⊗R R/J is a framing, i.e., a quasi-isogeny such that
each tα pulls back to tα,0 under ρ, where J is some ideal of definition of R
such that p ∈ J .

The tuple (X, (tα), ρ) is required to satisfy additional assumptions [15, Defi-
nition 2.3.3 (ii), (iii)].

The GSpin Rapoport–Zink space RZG is formally locally of finite type and
formally smooth of relative dimension n − 1 over Spf OF̆ [15, Theorem B].

4.2 Space of special quasi-endomorphisms V = Vε
m

The inclusion V ⊆ Cop (where V acts on C via right multiplication) realizes
V ⊆ EndOF (D) as special endomorphisms of D. Tensoring with F̆ gives a
subspace

VF̆ ⊆ End F̆ (DF̆ ).

Define the σ -linear operator � = b̄ ◦ σ on VF̆ , where b̄ ∈ SO(V )(F̆) is the
image of b ∈ G(F̆) under the natural quotient map (the standard representa-
tion) G = GSpin(V ) → SO(V ). Then (VF̆ , �) is an isocrystal. The �-fixed
vectors form a distinguished F-vector subspace

V �

F̆
⊆ End◦(X) := End(X)[1/p],

called special quasi-endomorphisms ofX. The restriction of the quadratic form
to V �

F̆
satisfies x ◦ x = (x, x) · idX for x ∈ V �

F̆
, and we have an isomorphism

of quadratic spaces over F [15, § 4.3.1]

V = Vε
m

∼−→ V �

F̆
.

4.3 The projectors πcrys and the crystal Vcrys

The left action of V onC = C(V ) gives a G = GSpin(V )-equivariant embed-
ding V ↪→ End(C) := EndOF (C), where G acts on End(C) via g. f = g f g−1

for any g ∈ G and f ∈ End(C). We identify V ⊆ End(C) via this embedding.
Then

f ◦ f = ( f, f ) · idC , f ∈ V .
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The non-degenerate symmetric bilinear form ( , ) on End(C) defined by

( f1, f2) := 2−m tr( f1 ◦ f2), f1, f2 ∈ End(C)

extends ( , ) on V . Let {e1, . . . , em} be an orthogonal OF -basis of V . Define

π : End(C) → End(C), π( f ) :=
m∑

i=1

( f, ei )

(ei , ei )
ei .

It is clear that π is an idempotent with image V ⊆ End(C) and G stabilizes π

(cf. [39, Lemma 1.4]). Thus we can choose the list of tensors (sα)α∈I in C⊗
cutting out G from GL(C) (§4.1) to include the projector π . In this way we
obtain a crystallineTate tensorπcrys,0 on the framingobjectX. By construction,
it induces a projector of crystals

πcrys,0 : End(D(X)) → End(D(X)),

whose image Vcrys,0 := im(πcrys,0) is a crystal of Ocrys
κ̄/OF̆

-modules of rank
m. For any surjection R → κ̄ in AlgOF̆

whose kernel admits divided pow-
ers, we have Vcrys,0(R) a projective R-module of rank m. It is equipped
with a non-degenerate symmetric R-bilinear form ( , ) induced from that on
End(D(X)(R)). Moreover, the κ̄-space Vcrys,0(κ̄) is equipped with a Hodge
filtration defined by

Fil1Vcrys,0(κ̄) := Vcrys,0(κ̄) ∩ Fil1 End(D(X)(κ̄)),

which is an isotropic κ̄-line under ( , ). By construction, the F-isocrystal
Vcrys,0(OF̆ )[1/p] can be identified with (VF̆ , �).

By [18, Theorem 4.9.1] we obtain from π a universal crystalline Tate tensor
πcrys on the universal p-divisible group Xuniv over RZG , which induces a
projector of crystals

πcrys : End(D(Xuniv)) → End(D(Xuniv))

whose image Vcrys := im(πcrys) is a crystal ofOcrys
RZG /OF̆

-modules of rank m.
More generally, for any S ∈ AlgOF̆

and any z ∈ RZG(S), we similarly have
a projector of crystals

πcrys,z : End(D(Xz)) → End(D(Xz)),

whose image Vcrys,z := im(πcrys,z) is a crystal ofOcrys
S/OF̆

-modules of rank m.
Here Xz denotes the p-divisible group over S obtained by the base change of
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Xuniv to z. Similarly, for any surjection R → S in AlgOF̆
whose kernel admits

divided powers, we have Vcrys,z(R) a projective R-module of rank m. It is
equipped with a non-degenerate symmetric R-bilinear form ( , ). The projec-
tive S-module Vcrys,z(S) is equipped with a Hodge filtration Fil1Vcrys,z(S),
which is an isotropic S-line.

4.4 The group J

Let J = Jb := GSpin(V). It is a reductive group over F and an inner form of
G = GSpin(V ) (as b is basic). Then

J (F) = {g ∈ G(F̆) : gb = bσ(g)}

is the σ -centralizer of b, which acts on the framing object (X, (tα,0)) via
J (F) ⊆ End◦(X)× [15, §4.3.4], and hence acts on RZG .

4.5 Connected GSpin Rapoport–Zink spaces N = N ε
n

Wemay choose one of the tensor (sα) to be a non-degenerate symplectic form
ψ on C such that G is a subgroup of GSp(C, ψ). Then ψ induces a principal
polarization λ0 : X

∼−→ X∨, and we have an associated symplectic Rapoport–
Zink space RZ(X, λ0) parameterizing deformations of (X, λ0) as considered
in [42]. Denote by (Xuniv, λuniv) the universal object over RZ(X, λ0). Then
we have a closed immersion RZG ↪→ RZ(X, λ0), and we still denote by
(Xuniv, λuniv) the restriction of the universal object to RZG . The universal
quasi-isogeny ρuniv respects the polarizations λ0 and λuniv up to a scalar, and
hence Zariski locally on RZG we have ρuniv,∗(λuniv) = c(ρuniv)−1λ0 for some
c(ρuniv) ∈ F×. We have a decomposition of RZG into connected components
[15, Theorem D (i)]

RZG =
⊔

�∈Z

RZ(�)
G ,

where val(c(ρuniv)) = � on RZ(�)
G . Each g ∈ J (F) restricts to an isomorphism

RZ(�)
G

∼−→ RZ(�+val(η(g)))
G , where η : J → Gm is the spinor norm. The surjec-

tivity of η : J (F) → F× implies that RZ(�)
G (� ∈ Z) are all (non-canonically)

isomorphic to each other.

Definition 4.5.1 Define the connected GSpin Rapoport–Zink space N =
N ε

n := RZ(0)
G , a connected component of RZG , which has (total) dimension

m − 1 = n (hence the notation).
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The space N is related to the Rapoport–Zink space of abelian type asso-
ciated to the group SO(V ) (see for example [43, §8.1]). We still denote by
(Xuniv, λuniv) the restriction of the universal object to N . In particular, on N
we have ρuniv,∗(λuniv) = c(ρuniv)−1λ0 for some c(ρuniv) ∈ O×

F .

Remark 4.5.2 Whenm is odd, scaling the quadratic formgives an isomorphism
GSpin(V+

m ) 
 GSpin(V−
m ), which induces an isomorphism N+

n 
 N−
n . In

other words,N ε
n is independent of ε ∈ {±1}whenm is odd, andwe sometimes

simply write Nn in this case.

Example 4.5.3 When m is small, the exceptional isomorphisms between
GSpin(V ) and other classical groups induces isomorphisms between the space
N and several classical formal moduli spaces (by for example [3, p. 1215]):

(i) When m = n + 1 = 3, we have an exceptional isomorphism G =
GSpin(V ε

3 ) 
 GL2 as reductive groups over OF , and N2 
 Spf OF̆ [[t]]
is isomorphic to the Lubin–Tate deformation space of the formal group
E of dimension 1 and height 2 over κ̄ .

(ii) When m = n + 1 = 4 and ε = +1, we have an exceptional isomorphism
G = GSpin(V+

4 ) 
 GL2 ×Gm GL2 as reductive groups over OF , and
N+

3 
 Spf OF̆ [[t1, t2]] is isomorphic to the product of two copies of
Lubin–Tate deformation spaces N2 over Spf OF̆ .

(iii) When m = n + 1 = 4 and ε = −1, we have an exceptional isomor-

phism GSpin(V−
4 ) 
 GL

det∈O×
F

2,OE
(where E/F is the unramified quadratic

extension), and N−
3 is isomorphic to the formal moduli space MHB of

principally polarized supersingular p-divisible groups of dimension 2
and height 4 with a special OE -action defined in [51, §2]. The spaceN−

3
appears in the p-adic uniformization of the supersingular locus of Hilbert
modular surfaces at a good inert place p.

(iv) Whenm = n+1 = 5,we have an exceptional isomorphismGSpin(V ε
5 ) 


GSp4 as reductive groups over OF , and N4 is isomorphic to the formal
moduli space of principally polarized supersingular p-divisible groups
of dimension 2 and height 4. The space N4 appears in the p-adic uni-
formization of the supersingular locus of Siegel modular threefolds at a
good place p.

4.6 Special cycles Z(L)

Definition 4.6.1 For any subset L ⊆ V, define the special cycle Z(L) ⊆ N
to be the closed formal subscheme cut out by the condition

ρuniv ◦ x ◦ (ρuniv)−1 ⊆ End(Xuniv)
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for all x ∈ L . Notice that Z(L) only depends on the OF -linear span of L in
V, and is nonempty only when this span is an integral OF -lattice (of arbitrary
rank) in V. Notice that a similar definition of special cycles applies to the
Rapoport–Zink space RZG (instead of N ).

Let R → S be a surjection in AlgOF̆
whose kernel admits divided powers.

By definition, for any z ∈ Z(L)(S) and any x ∈ L , the crystalline real-
ization xcrys,z(R) ∈ End(D(Xz)(R)) of x ∈ End(Xz) lies in the image of
πcrys,z(R), and hence induces an element xcrys,z(R) ∈ Vcrys,z(R). We denote
by Lcrys,z(R) ⊆ Vcrys,z(R) the R-submodule spanned by xcrys,z(R) for all
x ∈ L .

Lemma 4.6.2 Let R → S be a surjection in AlgOF̆
whose kernel admits

nilpotent divided powers.

(i) Let z0 ∈ N (κ̄) and N̂z0 be the completion of N at z0. Let z ∈ N (S). Then
there is a natural bijection

{Lifts z̃ ∈ N̂z0(R) of z}
∼−→ {

isotropic R-lines Fil1Vcrys,z(R) lifting Fil1Vcrys,z(S)
}
.

(ii) Let L ⊆ V be an OF -lattice of rank r ≥ 1. Let z0 ∈ Z(L)(κ̄) and Ẑ(L)z0
be the completion of Z(L) at z0. Let z ∈ Z(L)(S). Then there is a natural
bijection

{Lifts z̃ ∈ Ẑ(L)z0(R) of z}
∼−→

{
isotropic R-lines Fil1Vcrys,z(R) lifting Fil1Vcrys,z(S)

and orthogonal to Lcrys,z(R) ⊆ Vcrys,z(R)

}

.

Proof This is a consequence ofGrothendieck–Messing theory. The same proof
of [39, Proposition 5.16] (see also [1, Proposition 4.3.2]) works.

4.7 Generalized Deligne–Lusztig varieties YW

Let W be the unique (up to isomorphism) non-split (non-degenerate) quadratic
space over κ = Fq of even dimension 2(d + 1) (d ≥ 0). The closed Fq2-
subvariety of the orthogonalGrassmannianOGrd+1(W )parameterizing totally
isotropic subspaces U ⊆ W of dimension d +1 such that dimκ(U +σ(U )) =
d + 2 has two isomorphic connected components. Define YW to be one of the
two connected components. It is a smooth projective variety of dimension d,
and has a locally closed stratification
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YW =
d⊔

i=0

X Pi (wi ),

where each X Pi (wi ) is a generalized Deligne–Lusztig variety of dimension i
associated to a certain parabolic subgroup Pi ⊆ SO(W ) [14, Proposition 3.8].
The open stratum Y ◦

W :=X Pd (wd) is a classical Deligne–Lusztig variety asso-
ciated to a Borel subgroup Pd ⊆ SO(W ) and a Coxeter element wd . Each of
the other strata X Pi (wi ) is also isomorphic to a parabolic induction of a clas-
sical Deligne–Lusztig variety of Coxeter type for a Levi subgroup of SO(W )

[12, Proposition 2.5.1]. For example, when d = 1, the Deligne–Lusztig curve
YW

∼= P1 and its open stratum is given by Y ◦
W = P1 − P1(Fq2) [14, §3.3].

4.8 Minuscule special cycles V(�)

Let 	 ⊆ V = Vε
m be a vertex lattice. Then W	:=	∨/	 is a κ-vector space

of dimension t (	), equipped with a non-degenerate quadratic form induced
from V. By [15, 5.1.2], the type t (	) of a vertex lattice 	 ⊆ V is always an
even integer such that 2 ≤ t (	) ≤ tmax, where

tmax =

⎧
⎪⎨

⎪⎩

m − 2, if m is even and ε = +1,

m − 1, if m is odd,

m, if m is even and ε = −1.

(4.8.0.1)

Thus we have the associated generalized Deligne–Lusztig variety YW	 of
dimension t (	)/2−1. The reduced subscheme of the minuscule special cycle
V(	):=Z(	)red is isomorphic toYW	,κ̄ .2 In factZ(	) itself is already reduced
[38, Theorem B], so V(	) = Z(	).

4.9 The Bruhat–Tits stratification on N red

The reduced subscheme ofN satisfiesN red = ⋃
	 V(	), where 	 runs over

all vertex lattices	 ⊆ V. For twovertex lattices	, 	′,wehaveV(	) ⊆ V(	′)
if and only if 	 ⊇ 	′; and V(	) ∩ V(	′) is nonempty if and only if 	 + 	′
is also a vertex lattice, in which case it is equal to V(	 + 	′). In this way we
obtain a Bruhat–Tits stratification of N red by locally closed subvarieties [15,
§ 6.5],

N red =
⊔

	

V(	)◦, V(	)◦:=V(	) −
⋃

	�	′
V(	′).

2 Notice that RZ	 in [15,38] is the same as our V(	∨).
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Each Bruhat–Tits stratum V(	)◦ 
 Y ◦
W	,κ̄ is a classical Deligne–Lusztig

variety of Coxeter type associated to SO(W	), which has dimension t (	)/2−
1. It follows that the irreducible components ofN red are exactly the projective
varieties V(	), where 	 runs over all vertex lattices of maximal type [15,
Theorem D (iii)].

By [46, Proposition 4.2], the reduced subschemeZ(L)red of a special cycle
Z(L) is a union of Bruhat–Tits strata,

Z(L)red =
⋃

L⊆	

V(	). (4.9.0.1)

4.10 Special divisors Z(x)

Proposition 4.10.1 Let x ∈ V be nonzero and integral. Then Z(x) ⊆ N is a
Cartier divisor (i.e., defined locally by one nonzero equation) and moreover
is flat over Spf OF̆ (i.e., locally the equation is not divisible by � ).

Proof Since x is integral, we know that Z(x) is nonempty by (4.9.0.1). Let
z ∈ Z(x)(k̄). Let Ôz be the complete local ring ofN at z withmaximal idealm.
Let J ⊆ Ôz be the ideal defining the completion ofZ(x) at z. Let R = Ôz/mJ
and I = J/mJ . Then R ∈ AlgOF̆

and I 2 = 0 (hence I admits trivial nilpotent
divided powers). By Nakayama’s lemma, to show that J is principal it suffices
to show that I is principal. It remains to show that the condition that a lifting
of z̃ ∈ N (R) of z ∈ Z(x)(S) lies in Z(x)(R) is given by the vanishing of one
nonzero element in I .

By Lemma 4.6.2, the lift z̃ corresponds to an isotropic R-line Fil1Vcrys,z(R)

lifting Fil1Vcrys,z(S). Since z ∈ Z(x)(S), we know that the pairing
(Fil1Vcrys,z(R), xcrys,z(R)) vanishes modulo I . The condition that z̃ ∈ Z
(x)(R) is equivalent to the vanishing of the pairing (Fil1Vcrys,z(R), xcrys,z(R)),
which amounts to the vanishing of one element of I after choosing a basis of
Fil1Vcrys,z(R).

It remains to show that this element is nonzero and is not divisible by � .
Since N is connected, it suffices to show that Z(x)κ̄ is not the whole special
fiber Nκ̄ . If not, then Z(x)κ̄ = Nκ̄ and hence Z(x)red = N red. By (4.9.0.1),
we know that Z(x)red = N red if and only if x ∈ 	 for any vertex lattice 	 of
maximal type t (	) = tmax. By the proof of [15, Proposition 5.1.2], such a 	

admits a decomposition

	 = 〈e1, f1 . . . , ed , fd〉k Z ,

where d = tmax/2 − 1, (ei , e j ) = ( fi , f j ) = 0, (ei , f j ) = �δi, j and Z is
anisotropic of rank m − 2d. If d > 0, then we may choose 	 such that x lies
in the subspace 〈e1, f1, . . . , ed , fd〉F . For any k ∈ Z, the lattice
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	(k) := 〈� ke1, �
−k f1 . . . , � ked , �−k fd〉k Z

is also a vertex lattice of maximal type, but clearly x /∈ 	(k) for some |k| " 0,
a contradiction. Hence if d > 0 then Z(x)κ̄ �= Nκ̄ .

If d = 0, then by (4.8.0.1) either m = 3 or m = 4 and ε = +1, and
N is isomorphic to the Lubin–Tate deformation space of the formal group of
dimension 1 and height 2 over κ̄, or the product of two copies of the Lubin–Tate
deformation space (cf. Example 4.5.3). In both cases the special endomorphism
x ensures that the universal p-divisible group over Z(x)κ̄ is non-ordinary,
while it is well-known that the universal p-divisible group over the generic
point of Nκ̄ is ordinary (e.g., by the p-adic uniformization theorem and the
fact that ordinary points are dense on a modular curve or on a product of two
modular curves). Therefore if d = 0 then Z(x)κ̄ �= Nκ̄ .

4.11 Derived special cycles LZ(L)

Using the flatness ofZ(xi ) (Proposition 4.10.1), the following linear indepen-
dence of derived intersection (Lemma 4.11.1, Corollary 4.11.2) is proved in
the the same way as [51, Lemma 4.1, Proposition 4.2].3

Lemma 4.11.1 Let x, y ∈ V be linearly independent. Then the tor sheaves
TorON

i (OZ(x),OZ(y)) vanish for all i ≥ 1. In particular,

OZ(x) ⊗L OZ(y) = OZ(x) ⊗OZ(y).

Here OZ(xi ) denotes the structure sheaf of the special divisor Z(xi ) and ⊗L

denotes the derived tensor product of coherent sheaves on N .

Corollary 4.11.2 Let L ⊆ V be an OF -lattice of rank r ≥ 1. Let x1, . . . , xr be
an OF -basis of L. Then OZ(x1)⊗L · · ·⊗LOZ(xr ) ∈ KZ(L)

0 (N ) is independent
of the choice of the basis.

Let L ⊆ V be an OF -lattice of rank r ≥ 1. Let x1, . . . , xr be an OF -basis of
L . Since each Z(xi ) is a Cartier divisor on N (Proposition 4.10.1), we know
that OZ(xi ) ∈ F1KZ(xi )

0 (N ) (see §2.3), and hence by [59, (B.3)] we obtain

OZ(x1) ⊗L · · · ⊗L OZ(xr ) ∈ Fr KZ(L)
0 (N ).

3 In [37, Lemma 2.8.1] we also provided an alternative proof (without using globalization)
of the linear independence in the unitary case. That alternative proof would still work for the
orthogonal case in the current paper, as long as the orthogonal analogue of the main result of
[53] (the regularity of difference divisors) is available.
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By Corollary 4.11.2, this is independent of the choice of the basis x1, . . . , xn
and hence is a well-defined invariant of L itself.

Definition 4.11.3 Define the derived special cycle LZ(L) to be the image of
OZ(x1) ⊗L · · · ⊗L OZ(xr ) in the r -th graded piece Grr KZ(L)

0 (N ).

Definition 4.11.4 When the OF -lattice L ⊆ V has rank r = n, define the
arithmetic intersection number

Int(L):=χ
(N , LZ(L)), (4.11.4.1)

where χ denotes the Euler–Poincaré characteristic (§2.3). Notice that if L is
not integral then Z(L) is empty and hence Int(L) = 0.

Remark 4.11.5 If L , L ′ ⊆ V are isometric OF -lattices of rank n, then we
may find g ∈ SO(V)(F) such that L = gL ′. We may further lift g to g̃ ∈
GSpin(V)(F) = J (F) such that η(g) = 1. Then the automorphism g̃ of N
(see §4.4, 4.5) carries LZ(L ′) to LZ(L). In particular, Int(L) only depends on
the isometry class of L .

4.12 Horizontal and vertical parts of Z(L)

Definition 4.12.1 A formal scheme Z over Spf OF̆ is called vertical (resp.
horizontal) if � is locally nilpotent on Z (resp. flat over Spf OF̆ ). Clearly
the formal scheme-theoretic union of two vertical (resp. horizontal) formal
subschemes of a formal scheme is also vertical (resp. horizontal).

We define the horizontal part ZH ⊆ Z to be the closed formal subscheme
definedby the ideal sheafOZ [�∞] ⊆ OZ . Then ZH is themaximal horizontal
closed formal subscheme of Z .

When Z is noetherian, there exists N " 0 such that � NOZ [�∞] = 0,
and we define the vertical part ZV ⊆ Z to be the closed formal subscheme
defined by the ideal sheaf � NOZ . Since OZ [�∞] ∩ � NOZ = 0, we have a
decomposition

Z = ZH ∪ ZV ,

as a union of horizontal and vertical formal subschemes. Notice that the hori-
zontal part ZH is canonically defined, while the vertical part ZV depends on
the choice of N .

When ZH = ∅, we simply define the vertical part ZV to be the entire Z .

Lemma 4.12.2 Let L ⊆ V be an OF -lattice of rank r .

(i) If r = n, or r = n − 1 and L is co-anisotropic, then Z(L) is noetherian.
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(ii) If r = n, or r = n − 1 and L is co-isotropic, then Z(L)H = ∅.

Proof (i) As a closed formal subscheme of the locally noetherian formal
scheme N , we know that Z(L) is locally noetherian. By the assumption
on L , the space L⊥

F is anisotropic and thus its integral cone (L⊥
F )◦ is an OF -

lattice. Take L1 = L k � k(L⊥
F )◦ for k " 0 depending only on L . Then

any vertex lattice 	 ⊆ V containing L satisfies L1 ⊆ 	 ⊆ L∨
1 . Hence the

number of vertex lattices 	 containing L is finite. By (4.9.0.1), we know
that Z(L)red is a closed subset in finitely many irreducible components
ofN red. Since each irreducible component ofN red is quasi-compact, we
know that Z(L) is quasi-compact, hence noetherian.

(ii) This follows immediately from Lemma 3.7.2 (i) (when r = n), Lemma
3.7.2 (ii) (when r = n − 1) and Corollary 5.5.3 below.

By Lemma 4.12.2, for L ⊆ V an OF -lattice of rank r ≥ n − 1, we obtain a
decomposition of the special cycle into horizontal and vertical parts

Z(L) = Z(L)H ∪ Z(L)V .

Again when Z(L)H �= ∅, the vertical part Z(L)V depends on the choice of
an integer N " 0. Since the choice of N is not important for our purpose we
suppress it from the notation (cf. §6.2).

4.13 Finiteness of Int(L)

Lemma 4.13.1 Let L ⊆ V be an OF -lattice of rank n. Then the formal scheme
Z(L) is a proper scheme over Spf OF̆ . In particular, Int(L) is finite.

Proof The vertical part Z(L)V is a scheme by Lemma 6.1.1 below. By
Lemma 4.12.2 (ii), the horizontal part Z(L)H is empty, and so Z(L) is a
scheme. By Lemma 4.12.2 (i), we know that Z(L)red is contained in finitely
many irreducible components of N red. Since the scheme Z(L) is a closed
formal subscheme of N and each irreducible component of N red is proper
over Spec κ̄ , it follows that the scheme Z(L) is proper over Spf OF̆ .

4.14 A cancellation law for Int(L)

Let M ⊂ V = Vε
m be a self-dual lattice of arbitrary rank r . Then we have an

orthogonal decomposition

V = Vε
m = MF k Vε′

m−r
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for a unique ε′ ∈ {±1}. By the same proof of [38, Lemma 3.2.2], we have a
natural embedding

δM : N ε′
n−r N ε

n , (4.14.0.1)

which gives an identification

N ε′
n−r

δM∼−→ Z(M) ⊆ N ε
n . (4.14.0.2)

For u ∈ Vε
m , denote by u
 the projection to Vε′

m−r . If u
 �= 0, then the special
divisor Z(u) ⊆ N ε

n intersects transversely with N ε′
n−r and its pull-back to

N ε′
n−r is the special divisor Z(u
) ⊆ N ε′

n−r . For later reference, we write this
fact as follows:

N ε′
n−r

L∩ Z(u) = Z(u
). (4.14.0.3)

By (4.14.0.3) and Definition 4.11.4, we have the following cancellation law
for Int (analogous to (3.4.8.1) for ∂Den),

Intε(L
 k M) = Intε
′
(L
). (4.14.0.4)

4.15 Local arithmetic Siegel–Weil formula

Now we can state the main theorem of this article, which proves a local arith-
metic Siegel–Weil formula on the identity between arithmetic intersection
numbers of special cycles and central derivatives of local densities.

Theorem 4.15.1 (local arithmetic Siegel–Weil formula) Let L ⊆ V be an
OF -lattice of rank n. Then

Int(L) = ∂Den(L).

This will be proved in §9.3.

Remark 4.15.2 When m = n+1 = 4, Theorem 4.15.1 was previously known
by explicitly computing both sides, see [56, §2.16] (based on Gross–Keating
[8]) for ε = +1 and Terstiege [51, Theorem 6.1] for ε = −1.

Example 4.15.3 Consider m = n + 1 = 4 and L has fundamental invariants
(1, 1, 1). Then t (L) = 3. There is exactly one integral lattice L ′ ⊇ L with
t (L ′) = 3, i.e., L ′ = L , and sgn4(L ′) = 1 (L ′ has rank 3 and type 3). The
number of integral lattices L ′ ⊇ L with t (L ′) = 1 is equal to the number of
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isotropic lines in the 3-dimensional quadratic space L∨/L over κ , which is
q + 1. Moreover we have sgn4(L ′) = 1 (since L ′ has rank 3 and type 1, the
non-degenerate part of L ′

κ is a 2-dimensional quadratic space containing an
isotropic line, hence must be split). It follows from Theorem 3.4.5 that

Denε(X, L) = (1+ εq X)(1− X2) + (q + 1)X2(1+ εX)

= 1+ εq X + q X2 + εX3.

This agrees with [50, p. 211]: in the notation there we have

Denε(X, L) = F̃q(T ; εX).

In fact, since β1 = β2 = β3 = 1, ξ̃ = ±1, σ = 2, η = +1 (L is isotropic
since βi are all odd), we compute that

F̃q(T ; X) = 1+ ηX3 + ξ̃2q(X + X2) = 1+ q X + q X2 + X3.

Now consider ε = −1. Then Den−(X, L) has sign of functional equation
w−(L) = −1. In this case

∂Den−(L) = −(−q + 2q − 3) = 3− q.

It agrees with Corollary 3.4.7: the terms with t (L ′) = 3 has weight factor
2(1 − q) and the terms with t (L ′) = 1 has weight factor 1, so in total we
obtain

∂Den−(L) = 2(1− q) · 1+ (q + 1) · 1 = 3− q.

By Example 4.5.3, the space N = N−
3 is isomorphic to MHB defined in

[51, §2], and ∂Den−(L) also agrees with Int−(L) = 3 − q computed in [51,
Proposition 5.5 (i), (ii)].

5 Horizontal parts of special cycles

We continue with the setup in §4. Let L
 ⊆ V be an OF -lattice of rank n − 1.
Our next goal is to determine the horizontal part Z(L
)H of the special cycle
Z(L
) (§4.6) in terms of primitive horizontal cycles Z(M
)◦ parametrized by
M
 ∈ Hor(L
) (Definition 3.8.2).

5.1 Quasi-canonical lifting cycles

In this subsection we consider m = n + 1 = 3. Then N2 
 Spf OF̆ [[t]]
is isomorphic the Lubin–Tate deformation space of the formal group E of
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dimension 1 and height 2 over κ̄ (Example 4.5.3). As defined in [9], for s ≥ 0
and a quadratic extension K/F , a quasi-canonical lifting EK ,s (and canonical
lifting when s = 0) is a lift of E whose endomorphism ring is

OK ,s := OF + � s · OK .

Let K̆ be the completion of the maximal unramified extension of K . Let K̆s be
ring class field of K̆ corresponding to O×

K ,s under local class field theory, with
ring of integers OK̆ ,s . By [9, Proposition 5.3], the ring of definition of EK ,s is
OK̆ ,s , and the universal quasi-canonical lifting defines a horizontal divisor

ZK ,s 
 Spf OK̆ ,s ⊆ N2

with

degOF̆
ZK ,s = [OK̆ ,s : OF̆ ]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, s = 0, K/F is unramified,

qs(1+ q−1), s ≥ 1, K/F is unramified,

2, s = 0, K/F is ramified,

2qs, s ≥ 1, K/F is ramified.

(5.1.0.1)

Let M
 ⊆ Vε
3 be an OF -lattice of rank 1. Let K (M
) = F

(√
disc(M
)

)
.

Since Vε
3 is anisotropic, we know that χ(M
) �= +1, and so K (M
)/F is

a quadratic extension, which is unramified (resp. ramified) if χ(M
) = −1
(resp. χ(M
) = 0). By [8, (5.10)] (see also [40, §3, p. 147]), we have a
decomposition as (Cartier) divisors on N2,

Z(M
) =
� val(M
)

2 �∑

s=0

ZK (M
),s .

We define the primitive part Z(M
)◦ of Z(M
) to be the closed formal
subscheme given by the unique irreducible component of Z(M
) such that
Z(M
)◦ � Z(M
′), for any OF -lattice M
′ ⊆ M


F such that M
′ � M
.

Equivalently, Z(M
)◦ = ZK (M
),s ⊆ Z(M
) for the maximal s = �val(M
)
2 �.

5.2 Gross–Keating cycles

In this subsection we consider m = n + 1 = 4 and ε = +1. In this case
N+

3 
 Spf OF̆ [[t1, t2]] is isomorphic to the product of two copies of Lubin–
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Tate deformation spaces N2 over Spf OF̆ (Example 4.5.3). The intersection
problem of special divisors on N+

3 are studied in detail by Gross–Keating
[8]. Let M
 ⊆ V+

4 be an OF -lattice of rank 2. By [8, p. 239] (see also [40,
§3, p. 147]), we know that Z(M
) is a horizontal 1-dimensional affine formal
subscheme of N+

3 , and each irreducible component of Z(M
) is isomorphic
to a quasi-canonical lifting cycle Spf OK̆ ,s for some s. We define the primitive

part Z(M
)◦ ofZ(M
) to be the closed formal subscheme given by the union
of irreducible components of Z(M
) such that Z(M
)◦ � Z(M
′), for any

OF -lattice M
′ ⊆ M

F such that M
′ � M
.

5.3 Horizontal cycles

Now consider general m = n + 1 ≥ 3 and ε ∈ {±1}. Let M
 ⊆ V be an
OF -lattice of rank n − 1. Assume that M
 is horizontal (Definition 3.8.1). We
have two cases.

If t (M
) ≤ 1, then there exists a self-dual OF -lattice Mn−2 of rank n − 2
and an OF -lattice M1 of rank 1 such that M
 = Mn−2 k M1. By (4.14.0.2),
we have an isomorphism

Z(Mn−2) 
 N2.

Under this isomorphism, we can identify the cycle Z(M
) ⊆ Z(Mn−2) with
the cycle Z(M1) ⊆ N2, which is a union of quasi-canonical lifting cycles
as in §5.1. We define the primitive part Z(M
)◦ of Z(M
) to be the closed
formal subscheme given by the primitive part Z(M1)

◦ ⊆ Z(M1) under this
identification. Notice thatZ(M
)◦ is independent of the choice of the self-dual
lattice Mn−2.

If t (M
) = 2, then there exists a self-dual OF -lattice Mn−3 of rank n − 3
and an OF -lattice M2 of rank 2 such that M
 = Mn−3 k M2. Since M
 is
horizontal, by Lemma 3.7.1 (ii) we know that

χ(M⊥
n−3,F ) = χ(V)χ(Mn−3,F ) = ε sgnn−1(M
) = +1,

and thus M⊥
n−3,F 
 V+

4 . By (4.14.0.2), we have an isomorphism

Z(Mn−3) 
 N+
3 .

Under this isomorphism, we can identify the cycle Z(M
) ⊆ Z(Mn−2) with
the cycle Z(M2) ⊆ N+

3 , which is a Gross–Keating cycle, also a union of
quasi-canonical lifting cycles as in §5.2. Similarly, we define the primitive part
Z(M
)◦ of Z(M
) to be the closed formal subscheme given by the primitive
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partZ(M2)
◦ ⊆ Z(M2)under this identification.AgainZ(M
)◦ is independent

of the choice of the self-dual lattice Mn−3.
Notice that the above two cases be combined: using (4.14.0.2) again we

may identify N2 as a special divisor on N+
3 associated to a self-dual lattice

of rank 1. So when M
 is horizontal, we may always identify Z(M
) as a
Gross–Keating cycle on N+

3 .

Theorem 5.3.1 Let L
 ⊆ V be an OF -lattice of rank n − 1. Then

Z(L
)H =
⋃

M
∈Hor(L
)

Z(M
)◦. (5.3.1.1)

Moreover, the identity

OZ(L
)H
=

∑

M
∈Hor(L
)

OZ(M
)◦ (5.3.1.2)

holds in Grn−1 KZ(L
)H
0 (N ).

Lemma 5.3.2 The primitive cyclesZ(M
)◦ on the right-hand-side of (5.3.1.1)
do not share any common irreducible component.

Proof Suppose Z(M

1)

◦ and Z(M

2)

◦ share a common irreducible component

for M

1, M


2 ∈ Hor(L
). Let M
 = M

1 + M


2. Then M
 ∈ Hor(L
). By

definition Z(M

1) ∩ Z(M


2) = Z(M
). Hence Z(M

1)

◦ and Z(M
) share a

common irreducible component. But Z(M

1)

◦ is primitive and M

1 ⊆ M
, by

definition we have M

1 = M
. Similarly, we know that M


2 = M
. Hence

M

1 = M


2 as desired.

Theorem 5.3.1 will be proved in §5.6. By Lemma 5.3.2, we know that
(5.3.1.1) implies (5.3.1.2). It is clear from construction that in (5.3.1.1) the
right-hand-side is contained in the left-hand-side. To show the reverse inclu-
sion, we use the theory of Tate modules, to be explained in next two sections.

5.4 Tate modules and the projector π ét

Let Z be a formal scheme that is formally smooth and locally formally of finite
type over Spf OF̆ . Let X be a p-divisible group over Z .We denote by T (X) the
lisse OF -sheaf of Tate modules over the rigid generic fiber Z rig, given by the
projective system of étale sheaves {X rig[� n]}. By definition, an integral étale
Tate tensor on X rig is amorphism t : 1 := OF → T (X)⊗ of lisse OF -sheaves.
By [18, Theorem 7.1.6], for any crystalline Tate tensor tcrys : 1 → D(X)⊗
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on X , there exists a unique integral étale Tate tensor tét : 1 → T (X)⊗ on
X rig such that for any classical point z ∈ Z rig, tét,z̄ ∈ T (Xz̄)

⊗ matches with
tcrys,z : 1 → D(Xz)

⊗ under the classical crystalline comparison isomorphism

Bcrys(OF̆ ) ⊗OF̆
D(Xz,κ̄ )(OF̆ )

∼−→ Bcrys(OF̆ ) ⊗F T (X)∗̄z [1/p].
(5.4.0.1)

Here z̄ is any geometric point supported at z, and Bcrys is Fontaine’s crystalline
period ring.

Applying this construction to Z = N , X = Xuniv and tcrys = πcrys, we
obtain an integral étale Tate tensor π ét on Xuniv,rig, which is a projector

π ét : End(T (Xuniv)) → End(T (Xuniv)),

whose image Vét := im(π ét) is a lisse OF -sheaf of rank m.
Now let K/F̆ be a finite extension. Let z ∈ N (OK ). Let X/OK be the

p-divisible group corresponding to z. Let Tp X be the integral p-adic Tate
module of X , a free OF -module of rank 2m with an OF -linear action of�K :=
Gal(K/K ). The projector π ét induces a projector of OF [�K ]-modules

π ét,z̄ : End(Tp X) → End(Tp X).

Its image Vét,z̄ is a free OF -module of rank m with an action of �K . The
endomorphism ring End(Tp X) has a natural quadratic module structure over
OF given by ( f1, f2) = 2−m tr( f1 ◦ f2), which induces a quadratic module
structure on Vét,z̄ satisfying f ◦ f = ( f, f ) · idTp X for f ∈ Vét,z̄ . This makes
Vét,z̄ a self-dual OF -lattice of rank m isomorphic to V . In this way we view
V 
 Vét,z̄ ⊆ End(Tp X).

5.5 Special endomorphisms

Let X/OK be the p-divisible group corresponding to z ∈ N (OK ) as in §5.4.
We have a natural injection of OF -modules

iK : End(X) ↪→ End(Tp X).

On the other hand, the reduction map induces injection of OF -modules

iκ̄ : End(X) ↪→ End(X κ̄ ).
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Tensoring with F we obtain two injections (still denoted by the same notation)
of vector spaces over F ,

End◦(X)

iK iκ̄

End◦(Tp X) End◦(X κ̄ ).

Recall that we view V ⊆ End◦(X κ̄ ) via the projector πcrys (§4.3) and
V ⊆ End(Tp X) via the projector π ét (§5.4). By the compatibility of πcrys and
π ét under the crystalline comparison isomorphism (5.4.0.1), we know that for
f ∈ End◦(X), πcrys( f ) = f if and only if π ét( f ) = f . Hence iK ( f ) ∈ VF
if and only if iκ̄ ( f ) ∈ V.

Definition 5.5.1 Define the space of special quasi-endomorphisms of X to be
subspace

SEnd◦(X) := { f ∈ End◦(X) : iK ( f ) ∈ VF }
= { f ∈ End◦(X) : iκ̄ ( f ) ∈ V} ⊆ End◦(X),

and define the space of special endomorphisms of X to be SEnd(X) :=
SEnd◦(X) ∩ End(X).

We have a natural quadratic OF -module structure on SEnd(X) satisfying
f ◦ f = ( f, f ) · idX for f ∈ SEnd(X), which is compatible with the quadratic
form on V via iK (resp. on V via iκ̄ ). In this way we obtain two injections of
quadratic spaces over F ,

SEnd◦(X)

iK iκ̄

VF V.

Lemma 5.5.2 The following identity holds:

SEnd(X) = i−1
K (V ).

Proof By definition V = VF ∩ End(Tp X), so we have iK (SEnd(X)) ⊆ VF ∩
End(Tp X) = V . Conversely, suppose f ∈ SEnd◦(X) such that iK ( f ) ∈ V .
To show that f ∈ SEnd(X) it remains to show that f ∈ End(X). By [48,
Theorem 4, Corollary 1], the map iK induces an isomorphism

iK : End(X) ∼= EndOF [�K ](Tp X),
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where �K = Gal(K/K ), and so an isomorphism

iK : End◦(X) ∼= End◦OF [�K ](Tp X).

Hence

iK ( f ) ∈ End◦OF [�K ](Tp X) ∩ V ⊆ End◦OF [�K ](Tp X) ∩ End(Tp X)

= EndOF [�K ](Tp X).

It follows that f ∈ End(X) as desired.

Corollary 5.5.3 Let M ⊆ V be an OF -lattice (of arbitrary rank). Then z ∈
Z(M)(OK ) if and only if

M ⊆ iκ̄ (i−1
K (V )). (5.5.3.1)

In particular, when z ∈ Z(M)(OK ), there exists an embedding of quadratic
OF -modules iK ◦ i−1

κ̄ : M ↪→ V .

Proof Bydefinitionwe have z ∈ Z(M)(OK ) if and only if M ⊆ iκ̄ (SEnd(X)).
The result then follows from Lemma 5.5.2.

5.6 Proof of Theorem 5.3.1

Let z ∈ Z(L
)(OK ). By Corollary 5.5.3, we know that

L
 ⊆ iκ̄ (i−1
K (V )).

Define M
:=L

F ∩iκ̄ (i−1

K (V )). By Lemma 3.8.4, we know that M
 ∈ Hor(L
).

By construction M
 is the largest lattice in L

F contained in iκ̄ (i−1

K (V )), thus
we obtain that z ∈ Z(M
)◦(OK ) by Corollary 5.5.3 again. Therefore the
OK -points of both sides of (5.3.1.1) are equal.
To finish the proof of Theorem 5.3.1, by the flatness of both sides of (5.3.1.1)

it remains to check that the OK [t]-points of both sides are equal (where t2 = 0).
Namely, wewould like to show that for each z ∈ Z(L
)(OK ), there is a unique
lift of z in Z(L
)(OK [t]). Let Vcrys,z be the crystal of rank m associated to
z (§4.3). Since the kernel of OK [t] → OK admits trivial nilpotent divided
powers, by Lemma 4.6.2, a lift z̃ ∈ Z(L
)(OK [t]) of z corresponds to an
isotropic OK [t]-line Fil1Vcrys(OK [t]) in Vcrys(OK [t]) lifting Fil1Vcrys(OK )

and orthogonal to the OK [t]-submodule L

crys,z(OK [t]) ⊆ Vcrys,z(OK [t]).

By Breuil’s theorem (as recalled in [37, §4.3]), the S-submodule (where S is
Breuil’s ring) L


crys,z(S) ⊆ Vcrys(S) has rank n − 1, and base changing from
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S to OK we know that the OK -module L

crys,z(OK ) ⊆ Vcrys(OK ) also has

rank n − 1. Hence we know that there is a unique choice of such isotropic
line Fil1Vcrys(OK [t]) orthogonal to the OK [t]-submodule L


crys,z(OK [t]) ⊆
Vcrys,z(OK [t]) of rank n − 1. Hence the lift z̃ is unique as desired.

5.7 Degree of primitive cycles

Lemma 5.7.1 Let M
 ⊆ V be an OF -lattice of rank n − 1. Assume that M


is horizontal. If χ(M
) �= 0, then

degOF̆
Z(M
)◦ = q� val(M
)

2 � ·

⎧
⎪⎨

⎪⎩

1, t (M
) = 0,

(1+ q−1), t (M
) = 1,

2(1+ q−1), t (M
) = 2.

If χ(M
) = 0, then

degOF̆
Z(M
)◦ = 2q� val(M
)

2 � ·
{
1, t (M
) = 1,

2, t (M
) = 2.

Proof Since M
 is horizontal, as in §5.3 we are reduced to the Gross–Keating
casem = 4, ε = +1. In this case, we prove the degree formula by induction on
val(M
). By induction hypothesis, the degree formula is true for all horizontal
lattices N 
 ⊆ V+

4 with val(N 
) < val(M
).
By Theorem 5.3.1, we know that

degOF̆
Z(M
)◦ = degOF̆

Z(M
) −
∑

M
�N 
∈Hor(M
)

degOF̆
Z(N 
)◦.

Choose x ∈ (M

F )⊥ such that M = M
 k 〈x〉 and M̃ = M
 k 〈�−1x〉 are

integral. By the proof of [6, Theorem 6.8], we know that

degOF̆
Z(M
) = ∂Den+(M) − ∂Den+(M̃).

Hence

degOF̆
Z(M
)◦ = (∂Den+(M) − ∂Den+(M̃))

−
∑

M
�N 
∈Hor(M
)

degOF̆
Z(N 
)◦.
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The desired degree formula forZ(M
)◦ then follows from Corollary 3.8.3 and
the induction hypothesis.

5.8 Relation with local densities

Notice that degOF̆
(Z(L
)H ) is equal to the degree of the 0-cycle Z(L
)F̆ in

the generic fiberNF̆ of the Rapoport–Zink space, which may be interpreted as
a geometric intersection number on the generic fiber. We have the following
identity between this geometric intersection number and a local density.

Corollary 5.8.1 Let L
 ⊆ V be an OF -lattice of rank n − 1. Then

degOF̆
(Z(L
)H ) =

{
Den
(1, L
), χ(L
) �= 0,

2Den
(1, L
), χ(L
) = 0.

Proof It follows immediately fromTheorem5.3.1, Lemma5.7.1 andCorollary
3.8.3.

Remark 5.8.2 Using the p-adic uniformization theorem (§12.6) and the flat-
ness of the horizontal part of the global special cycles, one may deduce from
Corollary 5.8.1 an identity between the geometric intersection number (i.e.
the degree) of a special 0-cycle on a compact Shimura variety associated to
GSpin(n − 1, 2) and the value of a Fourier coefficient of a coherent Siegel
Eisenstein series on Sp(n, n) at the near central point s = 1/2. This should
give a different proof of a theorem of Kudla [29, Theorem 10.6].

6 Vertical parts of special cycles

We continue with the setup in §4. Let L
 ⊆ V be an OF -lattice of rank n − 1.

6.1 The support of the vertical part Z(L�)V

Recall thatZ(L
)V is the vertical part of the special cycleZ(L
) ⊆ N (§4.6).

Proposition 6.1.1 Z(L
)V is supported on N red, i.e., OZ(L
)V
is annihilated

by a power of the ideal sheaf of N red ⊆ N .

Proof If not, we may find a affine formal curve C = Spf R ⊆ Z(L
)V such
that C has a unique closed point z ∈ N (κ̄). The universal p-divisible group
Xuniv over N pulls back to a p-divisible group X over Spec R. Let η be a
geometric generic point of Spec R, with algebraically closed residue field κ̄η.
Let F̆η be the fractionfield of theWitt ring of κ̄η. LetVcrys,η (resp.Vcrys,z) be the
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crystal associated to the point η (resp. z) as in §4.3. Denote the corresponding
isocrystal by (VF̆η

, �η = bη ◦ σ), where bη ∈ H(F̆η) (resp. (VF̆ , � = b̄ ◦ σ),

where b̄ ∈ H(F̆) as in §4.2), and H = SO(VF ). Recall that these isocrystals
with H -structure are classified by the class of bη and b̄ in theKottwitz set B(H)

of σ -conjugacy classes of H(F̆), and B(H) is independent of the algebraically
closed residue fields κ̄η and κ̄ [41, Lemma 1.3]. By the specialization theorem
of Rapoport–Richartz [41, Theorem 3.6], we have b̄ ≺ bη, where ≺ is the
partial ordering on B(H) [41, §2.3].

To obtain a contradiction to that z is the unique closed point of C, it suffices
to show that bη is a basic element. Since C ⊆ Z(L
)V , the lattice L
 acts on

X via special endomorphisms and hence � (resp. �η) stabilizes L


F̆
(resp.

L


F̆η
). Let W be the 2-dimensional orthogonal complement of L


F in V and

T = SO(W). Since � stabilizes L


F̆
, we may write b̄ = (b
, b⊥) for basic

elements b
 ∈ B(SO(L

F )) and b⊥ ∈ B(T ). Similarly, we may write bη =

(b
, b⊥η ) for some (possibly non-basic) element b⊥η ∈ B(T ). Now b⊥ is a
specialization of b⊥η implies that b⊥ ≺ b⊥η for the partial ordering on B(T ).
But T is a torus, we know that b⊥ ≺ b⊥η implies that b⊥ = b⊥η in B(T )

by [41, §1.7 and Theorem 3.6 (i)] (namely, in the notation of [41], the map
δ : N (T ) → X∗(T )� ⊗ Q is an isomorphism for any torus T , so δ(ν(b)) =
δ(ν(bη)) implies ν(b) = ν(bη)). Hence bη = b̄ ∈ B(H) is also basic, a
contradiction as desired.

Remark 6.1.2 The key observation in the proof is that the quadratic space
(L


F )⊥ has dimension 2 and hence its isometry group is a torus. In the uni-

tary case, the similar observation also holds (the hermitian space (L

F )⊥ has

dimension 1 and its isometry group is a torus) and provides an alternative
(more group-theoretic) proof of [37, Lemma 5.1.1].

6.2 Horizontal and vertical parts of LZ(L�)

Since Z(L
)H is either empty or 1-dimensional (Theorem 5.3.1), the inter-
section Z(L
)H ∩Z(L
)V must be either empty or 0-dimensional. It follows
that there is a decomposition of the (n − 1)-th graded piece

Grn−1 KZ(L
)
0 (N ) = Grn−1 KZ(L
)H

0 (N ) ⊕ Grn−1 KZ(L
)V
0 (N ).

(6.2.0.1)
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Definition 6.2.1 The decomposition (6.2.0.1) induces a decomposition of the
derived special cycle into horizontal and vertical parts

LZ(L
) = LZ(L
)H + LZ(L
)V ∈ Grn−1 KZ(L
)
0 (N ).

From this decomposition, we see that even though the vertical part Z(L
)V
may depend on the choice of an integer N " 0 (§4.12), the element
LZ(L
)V ∈ Grn−1 KZ(L
)

0 (N ) is canonical and independent of the choice
of N .

Since Z(L
)H is either empty or has the expected dimension one, the first
summand LZ(L
)H is represented by the structure sheaf of Z(L
)H by [59,
Lemma B.2 (ii)]. Abusing notation we shall write the sum as

LZ(L
) = Z(L
)H + LZ(L
)V . (6.2.1.1)

6.3 The Tate conjecture for certain Deligne–Lusztig varieties

Consider the generalized Deligne–Lusztig variety Yd :=YW and the classical
Deligne–Lusztig variety Y ◦

d :=Y ◦
W as defined in §4.7, where W is the unique

non-split quadratic space over κ of dimension 2(d + 1). Recall that we have
a stratification

Yd =
d⊔

i=0

X Pi (wi ).

Let

X◦
i :=X Pi (wi ), Xi :=X◦

i =
i⊔

k=0

X◦
k .

Then X◦
i is a disjoint union of isomorphic copies of the classical Deligne–

Lusztig variety Y ◦
i , and each irreducible component of Xi is isomorphic to

Yi .
For any Fq2-variety S, we write H j (S)(i):=H j (Sκ̄ , Q�(i)) (� �= p is a

prime). Let F = Fq2 be the q2-Frobenius acting on H j (S)(i).

Lemma 6.3.1 For any d, i ≥ 0 and s ≥ 1, the action of Fs on the following
cohomology groups are semisimple, and the space of Fs-invariants is zero
when j ≥ 1.

(i) H2 j (Y ◦
d )( j).

(ii) H2 j (X◦
i )( j).
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1406 C. Li, W. Zhang

(iii) H2 j (Yd − Xi )( j).

Proof (i) The assertion is clear when d = dim Y ◦
d ≤ 1. When d ≥ 2, by [36,

7.3 Case 2Dn (n ≥ 3)] (notice the adjoint group assumption is harmless
due to [36, 1.18]), we know that there are exactly d + 1 eigenvalues
{1, q2, . . . , q2d} of F acting on H∗

c (Y ◦
d ), with q2 j exactly appearing in

degree d + j . By the Poincare duality, we have a perfect pairing

H2d− j
c (Y ◦

d ) × H j (Y ◦
d )(d) → H2d

c (Y ◦
d )(d) 
 Q�.

Thus the eigenvalue of F on H2 j (Y ◦
d )( j) are given by q2(d− j) times the

inverse of the eigenvalue in H2(d− j)
c (Y ◦

d ), which is equal to q2 j . Hence
the eigenvalue of Fs is never equal to 1 when j ≥ 1. The semisimplicity
of the action of Fs follows from [36, 6.1].

(ii) It follows from (i) since X◦
i is a disjoint union of Y ◦

i .
(iii) It follows from (ii) since Yd − Xi = ⊔d

k=i+1 X◦
k .

Theorem 6.3.2 For any 0 ≤ i ≤ d and any s ≥ 1, we have

(i) The space of Tate classes H2i (Yd)(i)Fs=1 is spanned by the cycle classes
of the irreducible components of Xd−i . In particular, the Tate conjecture
([47, Conjecture 1], or [49, Conjecture T i ]) holds for Yd .

(ii) Let H2i (Yd)(i)1 ⊆ H2i (Yd)(i) be the the generalized eigenspace of Fs

for the eigenvalue 1. Then H2i (Yd)(i)1 = H2i (Yd)(i)Fs=1.

Proof The same proof of [37, Theorem 5.2.2] works verbatim using
Lemma 6.3.1 in place of [37, Lemma 5.2.1].

7 Fourier transform: the geometric side

We continue with the setup in §4. Let L
 ⊆ V be an OF -lattice of rank n − 1.

7.1 Decomposition of Int and ∂Den

Recall from (6.2.1.1) that there is a decomposition of the derived special cycle
LZ(L
) into a sum of vertical and horizontal parts

LZ(L
) = Z(L
)H + LZ(L
)V .

Definition 7.1.1 Let L
 ⊆ V be an OF -lattice of rank n − 1. Denote by
W := (L


F )⊥ ⊆ V, a 2-dimensional non-degenerate quadratic space over F .
Define
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On the arithmetic Siegel–Weil formula 1407

�(L
) := L

F × Wan,

an open dense subset of V. Then we have

�(L
) = {x ∈ V : L
 + 〈x〉 is a non-degenerate OF -lattice of rank n}.
Definition 7.1.2 For x ∈ �(L
), define the arithmetic intersection number

IntL
(x):= Int(L
 + 〈x〉) = χ(N ,Z(x)
L∩ Z(L
)).

Define its horizontal part to be

IntL
,H (x):=χ(N ,Z(x)
L∩ Z(L
)H ), (7.1.2.1)

and its vertical part to be

IntL
,V (x):=χ(N ,Z(x)
L∩ LZ(L
)V ). (7.1.2.2)

Then there is a decomposition

IntL
(x) = IntL
,H (x) + IntL
,V (x). (7.1.2.3)

Definition 7.1.3 Analogously, for x ∈ �(L
), define the derived local density

∂DenL
(x):=∂Den(L
 + 〈x〉).
By Corollary 3.4.7, we have

∂DenL
(x) =
∑

L
⊂L ′⊂L ′∨
m(t (L ′), sgnn+1(L ′))1L ′(x). (7.1.3.1)

Here L ′ ⊆ V are OF -lattices of rank n. Define its horizontal part to be

∂DenL
,H (x):=
∑

L
⊂L ′⊂L ′∨
L ′
∈Hor(L
)

m(t (L ′), sgnn+1(L ′))1L ′(x), (7.1.3.2)

and its vertical part to be

∂DenL
,V (x):=
∑

L
⊂L ′⊂L ′∨
L ′
 /∈Hor(L
)

m(t (L ′), sgnn+1(L ′))1L ′(x). (7.1.3.3)
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1408 C. Li, W. Zhang

Here we denote

L ′
:=L ′ ∩ L

F ⊂ L


F . (7.1.3.4)

Then there is a decomposition

∂DenL
(x) = ∂DenL
,H (x) + ∂DenL
,V (x).

7.2 The horizontal identity

Lemma 7.2.1 Let L
 ⊆ V be an OF -lattice of rank n − 1. Assume that L
 is
horizontal. Then for x ∈ �(L
),

χ(N ,Z(x)
L∩ Z(L
)◦) =

∑

L
⊂L ′⊂L ′∨
L ′
=L


m(t (L ′), sgnn+1(L ′))1L ′(x).

Proof By Theorem 5.3.1, we have

IntL
,H (x) = χ(N ,Z(x)
L∩ Z(L
)◦) +

∑

L ′
∈Hor(L
)

L ′
 �=L


χ(N ,Z(x)
L∩ Z(L ′
)◦).

(7.2.1.1)

Since L
 is horizontal, as in §5.3 we are reduced to the Gross–Keating case
m = 4, ε = +1. In this case, we prove the desired formula by induction on

val(L
). By induction hypothesis, the desired formula for each χ(N ,Z(x)
L∩

Z(L ′
)◦) in the second summand is valid. Hence

IntL
,H (x) = χ(N ,Z(x)
L∩ Z(L
)◦)

+
∑

L
⊂L ′⊂L ′∨
L ′
 �=L


m(t (L ′), sgnn+1(L ′))1L ′(x),

here L ′
 ∈ Hor(L
) holds automatically, as L
 ⊆ V = V+
4 has rank n − 1 = 2

and is horizontal. By §5.2 we have Z(L
) = Z(L
)H and hence

IntL
,H (x) = IntL
(x).
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On the arithmetic Siegel–Weil formula 1409

By Remark 4.15.2 we have

IntL
(x) = ∂DenL
(x).

It follows that

χ(N ,Z(x)
L∩ Z(L
)◦) = ∂DenL
(x)

−
∑

L
⊂L ′⊂L ′∨
L ′
 �=L


m(t (L ′), sgnn+1(L ′))1L ′(x).

The desired formula then follows from (7.1.3.1).

Theorem 7.2.2 Let L
 ⊆ V be an OF -lattice of rank n−1. Then as functions
on �(L
),

IntL
,H = ∂DenL
,H .

Proof This follows immediately from (7.2.1.1), Lemma 7.2.1 and (7.1.3.2).

7.3 Decomposition of IntL�,V

By Proposition 6.1.1, we have a change-of-support homomorphism

Grn−1 KZ(L
)V
0 (N ) Grn−1 KN red

0 (N ).

Abusing notation we will also denote the image of LZ(L
)V in the target by
the same symbol.

Lemma 7.3.1 There exist countably many (and finitely many, if L
 is co-
anisotropic) curves Ci ⊆ N red and multCi ∈ Q such that each irreducible
component of N red contains only finitely many Ci ’s and

LZ(L
)V =
∑

i

multCi [OCi ] ∈ Grn−1 KN red

0 (N ).

Proof It follows immediately from Proposition 6.1.1, where the finiteness of
such curves Ci in the co-anisotropic case is due to the noetherianess of Z(L
)

by Lemma 4.12.2 (i).
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1410 C. Li, W. Zhang

Corollary 7.3.2 There exist (countably many) Deligne–Lusztig curves Ci ⊆
N red

n (i.e., Ci = V(	) ∼= P1
κ̄ for a vertex lattice 	 ∈ Vert4(V), see §4.9)

and multCi ∈ Q such that each irreducible component of N red contains only
finitely many Ci ’s and

IntL
,V (x) =
∑

i

multCi · χ(Nn, Ci
L∩ Z(x))

as functions on �(L
), where the sum on the right-hand-side is locally finite
(and finite if L
 is co-anisotropic).

Proof The same proof of [37, Corollary 5.3.3] works using Theorem 6.3.2 in
place of [37, Theorem5.3.2] andLemma 7.3.1 in place of [37, Corollary 5.2.2],
where the local finiteness of the sum is due to the noetherianess Z(L
 + 〈x〉)
by Lemma 4.12.2 (i).

7.4 Computation of IntV(�)

Let 	 ⊆ V be a vertex lattice. Let V(	) be the Deligne–Lusztig variety in the
Bruhat–Tits stratification of N red (§4.9). Define

IntV(	)(x):=χ
(N ,V(	)

L∩ Z(x)
)
, x ∈ V\{0}. (7.4.0.1)

Next we explicitly compute IntV(	) for 	 ∈ Vert4(V), i.e., for V(	) ∼= P1
κ̄

a Deligne–Lusztig curve.

Theorem 7.4.1 Let 	 ∈ Vert4(V). Then

IntV(	)(x) =

⎧
⎪⎨

⎪⎩

(1− q), x ∈ 	,

1, x ∈ 	∨\	, and val(x) ≥ 0,

0, otherwise.

In particular, the function IntV(	) on V\{0} extends to a (necessarily unique)
function in S (V), which we still denote by the same symbol.

Proof Since 	 ∈ Vert4(V), it admits an orthogonal decomposition	 = 	
k
M , where 	
 is a rank 4 vertex lattice of type 4, and M is a self-dual lattice of
rank m − 4. Moreover, by (4.8.0.1) we know that χ(	



F ) = −1. Thus by the

same proof of [37, Lemma 6.2.1] using the cancellation law (4.14.0.2), we are
reduced to the case m = 4 and ε = −1. Namely, we may assume thatV = V−

4
and N = N−

3 . Let x ∈ V \ {0}. Since V(	) = Z(	) (§4.8), we know that
V(	) ∩ Z(x) = Z(	 + 〈x〉). If x /∈ 	∨ or val(x) < 0, then 	 + 〈x〉 is not
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integral. Hence V(	) ∩ Z(x) = ∅ and so IntV(	) = 0. If x ∈ 	∨ \ 	, then
	 + 〈x〉 ∈ Vert2(V) and hence V(	) ∩ Z(x) = V(	 + 〈x〉) consists of a
single κ̄-point, and so IntV(	)(x) = 1.

It remains to show that IntV(	)(x) = 1 − q for nonzero x ∈ 	. Since

Z(	)
L∩ Z(x) is invariant when replacing x by any nonzero element in 	 by

the proof of [51, Proposition 4.2], we know that IntV(	)(x) is a constant for all
nonzero x ∈ 	. Hence without loss of generality, we may assume val(x) = 1.

As V(	)
L∩ Z(x) is supported on the special fiber Nκ̄ and Z(x) is flat over

Spf OF̆ (Proposition 4.10.1) we know that

IntV(	)(x) = χ(N ,V(	)
L∩ Z(x)) = χ(Nκ̄ ,V(	)

L∩Nκ̄
Z(x)κ̄ ).

When val(x) = 1, via moduli interpretation [50, p. 216] we know thatZ(x) 

M is isomorphic to Drinfeld’s moduli spaceM of special formal OB-modules
(where B is the quaternion algebra over F). The special fiber Mκ̄ is a union
of P1

κ̄ ’s whose dual graph is the Bruhat–Tits tree of PGL2(F). It follows that
V(	) intersects withZ(x)κ̄ exactly (apart from the self intersection)with q+1
of adjacent P1

κ̄ ’s, and the intersection number is equal to 1 for each such P1
κ̄ .

It follows that that

χ(Nκ̄ ,V(	)
L∩Nκ̄

Z(x)κ̄ ) = (q + 1) + χ(Nκ̄ ,V(	)
L∩Nκ̄

V(	)).

This is equal to (q + 1) + (−2q) = 1 − q by Lemma 7.4.2 below, which
completes the proof.

Lemma 7.4.2 Assume that V = V−
4 and 	 ∈ Vert4(V). Let I be the ideal

sheaf of the closed subscheme V(	) ⊆ Nκ̄ . Then

(i) there is an isomorphism of coherent sheaves on V(	),

I/I2 ∼−→ O(2q),

where O(k) is the line bundle of degree k on V(	) 
 P1
κ̄ .

(ii) the self intersection number of V(	) ⊆ Nκ̄ equals

χ(Nκ̄ ,V(	)
L∩Nκ̄

V(	)) = −2q.

Proof Since V(	) is an irreducible curve on the 2-dimensional regular formal
schemeNκ̄ , it is a Cartier divisor onNκ̄ and the closed immersionV(	) → Nκ̄

is regular. Hence there is a conormal exact sequence of locally free sheaves

0 → I/I2 → �Nκ̄
|V(	) → �V(	) → 0. (7.4.2.1)
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1412 C. Li, W. Zhang

Under the identification V(	) 
 P1
κ̄ , we have the cotangent sheaf �V(	) 


O(−2).
By Example 4.5.3, the space N is isomorphic to the formal moduli space

MHB defined in [51, §2]. Let X be the universal p-divisible group overMHB
κ̄

and D(X) be its Dieudonné crystal (taken to be covariant for the purpose of
this proof). Then we have a Hodge filtration

0 → ωX∨ → D(X) → LieX → 0.

Here ωX∨,LieX are both locally free of rank 2. By Grothendieck–Messing
theory we know that the tangent sheaf is given by

TMHB
κ̄


 HomOE
(ωX∨,LieX ).

The special OE -action on X induces Z/2Z-grading

D(X) = D(X)0 ⊕ D(X)1, ωX∨ = ωX∨,0 ⊕ ωX∨,1,

LieX = LieX,0⊕LieX,1

compatible with the Hodge filtration. Each of ωX∨, and LieX,i (i ∈ Z/2Z) is
locally free of rank 1. Hence there is an isomorphism

TMHB
κ̄


 Hom(ωX∨,0,LieX,0) ⊕ Hom(ωX∨,1,LieX,1). (7.4.2.2)

Now recall the identification V(	) 
 P1
κ̄ in [51, §2] and [23, §4]. There exists

a unique critical index i ∈ Z/2Z for V(	). For i critical, there exists an OE -
lattice 	i of rank 2 such that for any z ∈ V(	)(κ̄), we have D(Xz)i (OF̆ ) =
	i,OF̆

and V(	) 
 P1(	i,κ̄ ). The line corresponding to z ∈ P1
κ̄ = P1(	i,κ̄ )

is then given by the Hodge filtration for the (critical) i-th grading

ωX∨
z ,i ⊆ D(Xz)i (κ̄) = 	i,κ̄ .

It follows that if i is critical for V(	), then ωX∨,i |V(	) is the tautological line
bundle O(−1) on P1

κ̄ , and thus

Hom(ωX∨,i ,LieX,i )|V(	) 
 Hom(O(−1),O(1)) 
 O(2).

Moreover ωX∨,i+1|V(	) is the Frobenius twist of LieX,i |V(	) by [23,
Lemma 4.3 (i)], and thus

Hom(ωX∨,i+1,LieX,i+1)|V(	) 
 Hom(O(q),O(−q)) 
 O(−2q).
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It follows from Equation (7.4.2.2) that the tangent sheaf

TNκ̄
|V(	) 
 TMHB

κ̄
|V(	) 
 O(2) ⊕O(−2q),

and so the cotangent sheaf

�Nκ̄
|V(	) 
 O(−2) ⊕O(2q).

By Eq. (7.4.2.1), we obtain

I/I2 
 O(2q).

This completes the proof of the first assertion.
To show the second assertion, we use the short exact sequence

0 → I → ONκ̄
→ OV(	) → 0.

Applying ⊗ONκ̄
OV(	) gives an exact sequence

0 → Tor
ONκ̄

1 (OV(	),OV(	)) → I/I2 → OV(	) → OV(	) → 0.

Hence we obtain an isomorphism

Tor
ONκ̄

1 (OV(	),OV(	)) 
 I/I2.

SinceV(	) is a Cartier divisor onNκ̄ , we know that Tor
ONκ̄

i (OV(	),OV(	)) =
0 for all i ≥ 2. Thus the derived intersection is represented by a complex

V(	)
L∩Nκ̄

V(	) 
 [OV(	) → I/I2],

whereOV(	) is in degree 0 and I/I2 is in degree 1. It follows from definition
that

χ(Nκ̄ ,V(	)
L∩Nκ̄

V(	)) = χ(V(	),OV(	)) − χ(V(	), I/I2).

Under the identifications V(	) 
 P1
κ̄ and I/I2 
 O(2q), this is equal to

χ(P1
κ̄ ,O) − χ(P1

κ̄ ,O(2q)) = degO − degO(2q) = −2q

by the Riemann–Roch theorem.
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Remark 7.4.3 A proof similar to that of Theorem 7.4.1 works for the unitary
case and provides an alternative way (independent of the displays computa-
tions in [52]) of computing IntV(	)(x) = 1 − q2 for nonzero x ∈ 	 in [37,
Lemma 6.2.1]. In fact, in the unitary case the Deligne–Lusztig curve V(	) is
isomorphic to the Fermat curve of degree q + 1 in P2

κ̄ and its conormal sheaf
I/I2 is isomorphic to the pullback to V(	) of the line bundle O(2q − 1) on
P2

κ̄ . Thus the self intersection number of V(	) is (1− 2q)(q + 1). Moreover,
when val(x) = 1 the special fiber Z(x)κ̄ is a union of Fermat curves, whose
intersection pattern is governed by the vertices of the Bruhat–Tits tree of the
quasi-split unitary group in 2 variables: q + 1 intersection points lie on each
Fermat curve and q + 1 Fermat curves pass through each intersection point.
Hence we obtain IntV(	)(x) = q(q + 1) + (1− 2q)(q + 1) = 1− q2.

Remark 7.4.4 The number −2q also agrees with the global result on the self
intersection number of irreducible components of the supersingular locus of
Hilbert modular surfaces at a good inert prime [54].

Corollary 7.4.5 Let 	 ∈ Vert4(V). Then

IntV(	) = −q(1+ q)1	 +
∑

	⊂	′∈Vert2(V)

1	′ .

Proof We compute the value of the right-hand-side at x ∈ V according to
three cases.

(i) If x ∈ 	, then there are exactly q2 + 1 type 2 lattices 	′ containing 	,
and the value is

−q(1+ q) + (q2 + 1) = 1− q.

(ii) If x ∈ 	∨ \ 	 and val(x) ≥ 0, then 	 + 〈x〉 ∈ Vert2(V). Then there are
exactly one lattice 	′ = 	 + 〈x〉 appearing in the sum, and the value is
0+ 1 = 1.

(iii) If x /∈ 	∨ or val(x) ≤ 0, then 	 + 〈x〉 is not integral, and the value is
clearly 0.

The result then follows from Theorem 7.4.1.

Corollary 7.4.6 The function IntL
,V is in L1
loc(�(L
)) (see Notations §2.2)

and extends (uniquely) to a distribution in D(V) (and a function in S (V) if
L
 is co-anisotropic), which we still denote by the same symbol.

Proof It follows from Corollaries 7.3.2 and 7.4.5 that IntL
,V is a locally finite
(and finite if L
 is co-anisotropic) linear combination of functions in S (V)

and hence locally integrable on �(L
) (and inS (V) if L
 is co-anisotropic).
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7.5 Fourier transform: the geometric side; “Local modularity”

We compute the Fourier transform of IntV(	) as a function in S (V).

Lemma 7.5.1 Let 	 ∈ Vert4(V). Then IntV(	) ∈ S (V) satisfies

ÎntV(	) = γV IntV(	) .

Here γV = −1 is the Weil constant.

Proof By Corollary 7.4.5 and (2.2.0.1), we obtain

ÎntV(	) = − vol(	) · q(1+ q) · 1	∨ +
∑

	⊂	′∈Vert2(V)

vol(	′) · 1	′∨

= −(1+ q−1) · 1	∨ +
∑

	⊂	′∈Vert2(V)

q−1 · 1	′∨ .

Now we compute its value at u ∈ V according to four cases.

(i) If u ∈ 	, there are exactly q2 + 1 type 2 lattices 	′ containing 	, and
the value is

−(1+ q−1) + q−1(q2 + 1) = q − 1.

(ii) If u ∈ 	2 \	 for some 	2 ∈ Vert2(V), i.e., the image of ū of u in 	∨/	

is an isotropic vector. Notice that u ∈ 	′∨ if and only if u is orthogonal
to the line given by the image of (	′)∨ in 	∨/	. So there is exactly one
such 	′ ∈ Vert2(V), i.e., 	′ = 	2, and we obtain the value

−(1+ q−1) + q−1 = −1.

(iii) If u ∈ 	∨ \ 	 but u /∈ 	2 \ 	 for any 	2 ∈ Vert2(V). Then u is
anisotropic in 	∨/	. Notice that 〈u〉⊥ is a non-degenerate quadratic
space of dimension 3, and 	′ corresponds to an isotropic line in 〈u〉⊥. So
there are exactly q + 1 of such 	′ ∈ Vert2(V), and we obtain the value

−(1+ q−1) + q−1(q + 1) = 0.

(iv) If u /∈ 	∨, then the value at u is clearly 0.

The result then follows from Theorem 7.4.1.

Remark 7.5.2 It follows from Lemma 7.5.1 that IntV(	) is SL2(OF )-invariant
under the Weil representation. This invariance may be viewed as a “local
modularity”, an analog of the global modularity of arithmetic generating series
of special divisors (such as in [13]).
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Corollary 7.5.3 The following identity in D(V) (and in S (V) if L
 is co-
anisotropic) holds,

̂IntL
,V = γV IntL
,V .

Proof This follows from Corollary 7.3.2 and Lemma 7.5.1.

7.6 Fourier transform: the geometric side; “Higher local modularity”

In this subsection we generalize Lemmas 7.4.5 and 7.5.1 on the function
IntV(	) for vertex lattices 	 of type 4 to vertex lattices 	 of arbitrary type
t (	) = 2d + 2 ≥ 4 (i.e., d ≥ 1). Let

ch : K0(V(	))Q →
d⊕

i=0

Chi (V(	))Q

be the Chern character from the Grothendieck ring to the Chow ring of V(	),
which is an isomorphism of graded rings. In particular, it induces an isomor-
phism

chi : Gri K0(V(	))Q
∼−→ Chi (V(	))Q,

for 0 ≤ i ≤ d. Let

cli : Chi (V(	))Q → H2i (V(	), Q�)(i)

be the �-adic cycle class map and let

cl =
d⊕

i=0

cli :
d⊕

i=0

Chi (V(	))Q →
d⊕

i=0

H2i (V(	), Q�)(i).

Then cl intertwines the intersection product on the Chow ring and the cup
product on the cohomology ring, namely the following diagram commutes,

Gri K0(V(	))Q

chi∼

× Gr j K0(V(	))Q

ch j∼

·
Gri+ j K0(V(	))Q

chi+ j∼

Chi (V(	))Q

cli

× Ch j (V(	))Q

cl j

·
Chi+ j (V(	))Q

cli+ j

H2i (V(	)), Q�)(i) × H2 j (V(	), Q�)( j)
∪

H2(i+ j)(V(	), Q�)(i + j).

(7.6.0.1)
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Denote by Tate2i
� (V(	)) ⊆ H2i (V(	), Q�)(i) the subspace of Tate classes,

i.e., the elements fixed by Fs for some power s ≥ 1. Then by Theorem 6.3.2,
we have the identity

im(cli )Q�
= Tate2i

� (V(	)),

and moreover Tate2i
� (V(	)) is spanned by the cycle classes of V(	′) ⊆ V(	),

where 	′ ⊇ 	 runs over vertex lattices of type 2(d − i) + 2. Denote by

K 0(V(	)) := K0(V(	))Q/ ker(cl ◦ ch),
Ch

i
(V(	)) := Chi (V(	))Q/ ker cli . (7.6.0.2)

Then ch and cl induce isomorphisms

ch : K 0(V(	))
∼−→

d⊕

i=0

Ch
i
(V(	)),

cl :
d⊕

i=0

Ch
i
(V(	))Q�

∼−→
d⊕

i=0

Tate2i
� (V(	)). (7.6.0.3)

By Theorem 6.3.2 (ii) and that the cup product is F-equivariant, the Poincaré
duality induces a perfect pairing

∪ : Tate2i
� (V(	)) × Tate2d−2i

� (V(	)) → Q�. (7.6.0.4)

Definition 7.6.1 For x ∈ V \ {0}, define KV(	)(x) ∈ K 0(V(	)) to be the
image of

V(	)
L∩ Z(x) ∈ KV(	)

0 (N )
∼−→ K0(V(	))

under (7.6.0.2).

Remark 7.6.2 Our main result in this subsection (Theorem 7.6.9) shows that
the function KV(	) satisfies the local modularity analogous to Lemma 7.5.1.

Since Z(x) is a Cartier divisor on N , we know that V(	)
L∩ Z(x) is

explicitly represented by the two-term complex of line bundles on V(	),

[ON (−Z(x))|V(	) → ON |V(	)] ∈ F1K0(V(	)).
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1418 C. Li, W. Zhang

Thus we have the Chern character

ch(V(	)
L∩ Z(x)) = ch(ON (−Z(x))|V(	)) − ch(OV(	))

= exp(c1(ON (−Z(x))|V(	))) − exp(c1(OV(	)))

=
d∑

i=1

c1(ON (−Z(x))|V(	))
i

i ! .

Definition 7.6.3 For x ∈ V \ {0}, define
c1,V(	)(x) := c1(ON (−Z(x))|V(	)) ∈ Ch1(V(	))Q,

and

cV(	)(x) := c1(ON (−Z(x))|V(	))
d ∈ Chd(V(	))Q

deg∼−→ Q.

Lemma 7.6.4 The function c1,V(	) (resp. cV(	)) is 	-invariant, under the
translation by 	. In particular, the function c1,V(	) (resp. cV(	)) extends
uniquely to an 	-invariant function on V, or equivalently, a function on V/	

(still denoted by the same symbol).

Proof The same proof of [37, Lemma 6.4.4] works verbatim.

Lemma 7.6.5 Let 	 ∈ Vert2d+2(V). Then for any x ∈ 	, we have

c1,V(	)(x) = − 1

1+ qd+1

∑

y∈W	\{0}
(y,y)=0

c1,V(	)(y) ∈ Ch1(V(	))Q,

where W	 = 	∨/	 is a quadratic space over κ of dimension 2d + 2 (see
§4.8).

Proof Since the cycle class map for divisors cl1 : Ch1(V(	))Q →
H2(V(	), Q�)(1) is injective, we know from (7.6.0.3) that

Ch1(V(	))Q�

∼−→ Tate2�(V(	)).

It follows from the perfect pairing (7.6.0.4) that to show the desired identity it
suffices to show that for any Deligne–Lusztig curve V(	′) ⊆ V(	) (t (	′) =
4), the following identity

c1,V(	)(x) · [V(	′)] = − 1

1+ qd+1

∑

y∈W	\{0}
(y,y)=0

c1,V(	)(y) · [V(	′)] (7.6.5.1)
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holds in Chd(V(	))Q
∼−→ Q. By the projection formula,

c1,V(	)(x) · [V(	′)] = c1,V(	′)(x), c1,V(	)(y) · [V(	′)] = c1,V(	′)(y).

Since t (	′) = 4, we know from Theorem 7.4.1 that

c1,V(	′)(x) = Int V(	′)(x) = (1− q),

c1,V(	′)(y) = Int V(	′)(y) =
⎧
⎨

⎩

(1− q), y ∈ 	′/	,

1, y ∈ 	′∨/	, y /∈ 	′/	,

0, y /∈ 	′∨/	.

Since	′/	 ⊆ W	 is totally isotropic, the number of nonzero isotropic vectors
y ∈ 	′/	 equals #(	′/	) − 1 = qd−1 − 1. The number of isotropic vectors
y ∈ 	′∨/	, y /∈ 	′/	 equals #(	′/	) times the number of nonzero isotropic
vectors in 	′∨/	′, which evaluates to qd−1 · (q2 + 1)(q − 1). It follows that

∑

y∈W	\{0}
(y,y)=0

c1,V(	)(y) · [V(	′)]

= (qd−1 − 1) · (1− q) + qd−1(q2 + 1)(q − 1) = −(1− q)(1+ qd+1).

Hence

− 1

1+ qd+1

∑

y∈W	\{0}
(y,y)=0

c1,V(	)(y) · [V(	′)]

= (1− q) = c1,V(	)(x) · [V(	′)],

and the desired identity (7.6.5.1) holds.

Lemma 7.6.6 Let 	 ∈ Vert2d+2(V). Then

cV(	)(x) = c(d) ·

⎧
⎪⎨

⎪⎩

(1− qd), x ∈ 	,

1, x ∈ 	∨ \ 	, val(x) ≥ 0,

0, otherwise.

Here c(1) = 1 and c(d) = ∏d−1
i=1 (1− qi ).

Proof We induct on d. The base case d = 1 follows from Theorem 7.4.1.
By the same proof as in Theorem 7.4.1, we know that cV(	)(x) = 0 unless
x ∈ 	∨ and val(x) ≥ 0. By the 	-invariance of cV(	) in Lemma 7.6.4, to
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1420 C. Li, W. Zhang

show the result it remains to show that

cV(	)(0) = c(d)(1− qd), cV(	)(x) = c(d) (7.6.6.1)

for any x ∈ W	 \ {0} with (x, x) = 0.
By Lemma 7.6.5, we have

cV(	)(0) = c1,V(	)(0)
d−1c1,V(	)(0)

= c1,V(	)(0)
d−1

⎛

⎜
⎜
⎝− 1

1+ qd+1

∑

y∈W	\{0}
(y,y)=0

c1,V(	)(y)

⎞

⎟
⎟
⎠ .

By the projection formula, we have

c1,V(	)(0)
d−1c1,V(	)(y) = c1,V(	+〈y〉)(0)d−1,

which by induction equals

cV(	+〈y〉)(0) = c(d − 1)(1− qd−1)

since t (	 + 〈y〉) = 2d. The number of nonzero isotropic vectors y ∈ W	

equals (qd+1 + 1)(qd − 1). Hence

cV(	)(0) = (qd+1 + 1)(qd − 1) ·
(

− 1

1+ qd+1 c(d − 1)(1− qd−1)

)

= (1− qd)(1− qd−1) · c(d − 1).

On the other hand, for any x ∈ W	 \ {0} with (x, x) = 0, by the projection
formula, we have

cV(	)(x) = c1,V(	)(x)d−1c1,V(	)(x) = c1,V(	+〈x〉)(x)d−1,

which by induction equals

cV(	+〈x〉)(x) = c(d − 1)(1− qd−1)

since t (	 + 〈x〉) = 2d. The desired identity (7.6.6.1) then follows as c(d −
1)(1− qd−1) = c(d).
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Lemma 7.6.7 Let 	 ∈ Vert2d+2(V). Then

cV(	) = c(d)

c′(d)

∑

	′∈Vert4(V)
	′⊇	

IntV(	′) .

Here c′(1) = 1 and c′(d) = ∏d
i=2(1+ qi+1) when d ≥ 2.

Proof We distinguish three cases.

(i) For x ∈ 	, we have IntV(	′)(x) = 1−q for any	′ in the sum byTheorem
7.4.1. The number of such	′ is the number of (d−1)-dimensional totally
isotropic subspaces in W	, which equals Sd−1(W	) (in the notation of
Lemma 3.2.2). Since dimκ W	 = 2d + 2 and χ(W	) = −1, the right-
hand-side evaluates to

c(d)

c′(d)
Sd−1(W	)(1− q) = c(d)

∏d
i=2(1+ qi+1)

·(q
d+1 + 1)(q2 − 1)

∏d
i=3(q

2i − 1)
∏d−1

i=1 (qi − 1)
(1− q) = c(d)(1− qd),

which equals cV(	)(x) by Lemma 7.6.6.
(ii) For x ∈ 	∨ \ 	 with val(x) ≥ 0, we have

IntV(	′)(x) =
{

(1− q), x ∈ 	′,
1, x ∈ 	′∨ \ 	′.

The number of 	′ such that x ∈ 	′ is the number of (d −2)-dimensional
totally isotropic subspaces in W	+〈x〉, which equals Sd−2(W	+〈x〉). The
number of	′ such that x ∈ 	′∨ \	′ is the number of (d−1)-dimensional
totally isotropic subspaces W ⊆ W	 such that x /∈ W but x ∈ W⊥. In
this case the map W �→ W + 〈x〉/〈x〉 gives a surjection onto the set
of (d − 1)-dimensional totally isotropic subspaces in 〈x〉⊥/〈x〉, whose
fiber has size equal to the number of (d − 1)-dimensional subspaces of
W + 〈x〉 not containing 〈x〉. Hence the number of such W is equal to
Sd−1(W	+〈x〉) · qd−1. Since dimκ W	+〈x〉 = 2d and χ(W	+〈x〉) = −1,
the right-hand-side evaluates to

c(d)

c′(d)
(Sd−2(W	+〈x〉)(1− q) + Sd−1(W	+〈x〉) · qd−1)

= c(d)
∏d

i=2(1+ qi+1)

(
(qd + 1)(q2 − 1)

∏d−1
i=3 (q2i − 1)

∏d−2
i=1 (qi − 1)

(1− q)
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1422 C. Li, W. Zhang

+(qd + 1)(q − 1)
∏d−1

i=2 (q2i − 1)
∏d−1

i=1 (qi − 1)
qd−1

)

= c(d),

which equals cV(	)(x) by Lemma 7.6.6.
(iii) If x /∈ 	∨ or val(x) < 0, then both sides are zero.

Corollary 7.6.8 Let 	 ∈ Vert2d+2(V). Then cV(	) ∈ S (V) satisfies

ĉV(	) = γV cV(	).

Proof It follows immediately from Lemmas 7.6.8 and 7.5.1.

Theorem 7.6.9 (K -theoretic local modularity) Let 	 ∈ Vert2d+2(V). For any
linear map l : K 0(V(	)) → Q, the function l◦KV(	) extends to a (necessarily
unique) function in S (V) and satisfies

̂l ◦ KV(	) = γV l ◦ KV(	).

Here, we refer to Definition 7.6.1 for KV(	).

Proof The same proof of [37, Theorem 6.4.9] works using Corollary 7.6.8.

Now we return to the function IntV(	) defined by (7.4.0.1).

Corollary 7.6.10 (Higher local modularity) Let 	 ∈ Vert2d+2(V). Then
IntV(	) extends to a (necessarily unique) function in S (V) and satisfies

ÎntV(	) = γV IntV(	) .

Proof The same proof of [37, Corollary 6.4.10] works using Theorem 7.6.9.

Remark 7.6.11 Corollary 7.6.10 allowsus to give an alternative proof ofCorol-
lary 7.5.3 without a priori knowing that only the (n−1)-th graded piece of the
derived special cycle contributes to IntL
,V (x) in the decomposition (7.1.2.3),
in particular, without using [59, (B.3)] for a formal scheme.

8 Fourier transform: the analytic side

We continue with the steup of §4, but we also allow F to be any non-
archimedean local field of odd residue characteristic in this subsection. Fix
an OF -lattice L
 ⊂ V of rank n − 1, and denote by W = (L


F )⊥ ⊆ V.
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8.1 The partial Fourier transform ∂Den⊥
L�,V

Definition 8.1.1 For x ∈ Wan, define the partial Fourier transform of
∂DenL
,V by

∂Den⊥L
,V
(x) :=

∫

L

F

∂DenL
,V (y + x)dy.

Our main goal is this section is to prove the following recurrence relations
for the partial Fourier transform ∂Den⊥

L
,V
.

Proposition 8.1.2 (i) If L
 is co-anisotropic, then

∂Den⊥L
,V
(x) = ∂Den⊥L
,V

(�−1x),

for all x ∈ W◦◦ ∩ Wan.
(ii) If L
 is co-isotropic, then

∂Den⊥L
,V
(x) − ∂Den⊥L
,V

(�−1x)

is a constant for all x ∈ W◦◦ ∩ Wan.

Proof By Lemma 3.7.2 (i) and Corollary 3.4.7, we obtain

∂Den⊥L
,V
(x) =

∫

L

F

∑

L
⊆L ′⊆L ′∨
L ′
 /∈Hor(L
)

m(t (L ′), sgnn+1(L ′))1L ′(y + x)dy.

Here L ′ runs over OF -lattices of rank n in the non-degenerate quadratic space
L


F + 〈x〉F .

Let π
 : V → L

F be the orthogonal projection sending x = x
 + x⊥ to x
.

We may break the sum according to L ′ ∩ L

F and π
(L ′). Define

Lat(L ′
, L̃ ′
) := {L ′ : L ′ ∩ L

F = L ′
, π
(L ′) = L̃ ′
}.

Then

∂Den⊥L
,V
(x) =

∑

L
⊆L ′

L ′
 /∈Hor(L
)

∑

L ′
⊆L̃ ′

L̃ ′
/L ′
 cyclic

∑

L ′∈Lat(L ′
,L̃ ′
)
m(t (L ′), sgnn+1(L ′))

·
∫

L

F

1L ′(y + x)dy.
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Notice that the sum is absolutely convergent which allows us to change the
order of integration and summation.

Fix u
 ∈ L

F such that L̃ ′
 = L ′
 + 〈u
〉 (i.e., u
 is a generator of the cyclic

OF -module L̃ ′
/L ′
). For L ′ in the sum, we may write L ′ = L ′
 + 〈u〉 for
some u = u
 + u⊥. Write x = λu⊥ for some λ ∈ F×. Then y + x ∈ L ′ if and
only if val(λ) ≥ 0 and y − λu
 ∈ L ′
. It follows that

∫

L

F

1L ′(y + x) − 1L ′(y + �−1x)dy =
{
vol(L ′
), 〈u⊥〉 = 〈x〉,
0, otherwise.

Hence the difference

∂Den⊥L
,V
(x) − ∂Den⊥L
,V

(�−1x)

=
∑

L
⊆L ′

L ′
 /∈Hor(L
)

vol(L ′
)
∑

L ′
⊆L̃ ′

L̃ ′
/L ′
 cyclic

∑

u⊥∈〈x〉 generator
L ′=L ′
+〈u
+u⊥〉

m(t (L ′), sgnn+1(L ′)).

Since x ∈ W◦◦, the integrality of L ′ implies that u
 is also integral, and
u
 ∈ (L ′
)∨. Hence the two inner sums become

∑

u
∈(L ′
)∨/L ′

val(u
)≥0

∑

L ′=L ′
+〈u
+x〉
m(t (L ′), sgnn+1(L ′)).

It remains to show this sum is a constant independent of x ∈ W◦◦ ∩ Wan and
is zero when L
 is co-anisotropic.

Choose an orthogonal basis {e1, . . . , en−1} of L ′
 such that val(e1), . . . , val
(et ) > 0, where t = t (L ′
). Let L0 := 〈et+1, . . . , en−1〉, a self-dual lattice. Let
L1 := 〈e1, . . . , et 〉. Then L ′
 = L0 k L1. Let u1 be the orthogonal projection
of u
 to L1. Since x ∈ W◦◦, looking at the fundamental matrix of L ′ for the
basis {e1, . . . , en−1, u
 + x} we obtain

t (L ′) =

⎧
⎪⎨

⎪⎩

t (L ′
) + 1, val(u1) > 0, and val((ei , u1)) > 0 for all i = 1, . . . , t,

t (L ′
), val(u1) = 0, and val((ei , u1)) > 0 for all i = 1, . . . , t,

t (L ′
) − 1, val(u1) ≥ 0, and val((ei , u1)) = 0 for some i = 1, . . . , t.

(8.1.2.1)

Notice that the three cases in (8.1.2.1) exactly correspond to the three condi-
tions
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u1 ∈ (� L∨
1 )◦◦/L1,

u1 ∈ ((� L∨
1 )◦ \ (� L∨

1 )◦◦)/L1,

u1 ∈ ((L∨
1 )◦ \ (� L∨

1 )◦)/L1.

Thus to show the desired constancy we need to show that the weight factor
m(t (L ′), sgnn+1(L ′)) depends only on L ′
 and u1, but not on x .

We have two cases:

(i) If t (L ′
) is odd, we compute that m(t (L ′), sgnn+1(L ′)) equals

2
∏

1≤i<(t (L ′
)−2)/2

(1− q2i )

·

⎧
⎪⎨

⎪⎩

(1− qt (L ′
)−1), u1 ∈ (� L∨
1 )◦◦/L1,

1+ ε sgnn+1(L ′)q(t (L ′
)−1)/2, u1 ∈ ((� L∨
1 )◦ \ (� L∨

1 )◦◦)/L1,

1, u1 ∈ ((L∨
1 )◦ \ (� L∨

1 )◦)/L1.

The only possible dependence on x is when u1 ∈ ((� L∨
1 )◦ \

(� L∨
1 )◦◦)/L1. In this case, the rank of the self-dual part L0 k 〈u1〉 of L ′

has the same parity as n + 1, and

sgnn+1(L ′) = χ(L0 k 〈u1〉),

which depends only on L1 and u1 as desired. Moreover, when χ(L
) �= 0
and L
 is co-anisotropic, we have χ(L
) = −ε. In this case let 〈u1〉⊥F be
the orthogonal complement of 〈u1〉F in L1,F , which has even dimension
t (L ′
) − 1. Then χ(L0 k 〈u1〉) = χ(〈u1〉⊥F )χ(L
), and hence

ε sgnn+1(L ′) = −χ(〈u1〉⊥F ).

Thus we obtain the desired vanishing result when L
 is co-anisotropic by
Proposition 8.2.5 below applied to the lattice L1.

(ii) If t (L ′
) is even, we compute that m(t (L ′), sgnn+1(L ′)) equals

2
∏

1≤i<(t (L ′
)−2)/2

(1− q2i )

·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1+ ε sgnn+1(L ′)qt (L ′
)/2)

·(1− qt (L ′
)−2), u1 ∈ (� L∨
1 )◦◦/L1,

1− qt (L ′
)−2, u1 ∈ ((� L∨
1 )◦ \ (� L∨

1 )◦◦)/L1,

1+ ε sgnn+1(L ′)qt (L ′
)/2−1, u1 ∈ ((L∨
1 )◦ \ (� L∨

1 )◦)/L1.
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When u1 ∈ (� L∨
1 )◦◦/L1, we have

sgnn+1(L ′) = χ(L0).

When u1 ∈ ((L∨
1 )◦ \ (� L∨

1 )◦)/L1, we have

sgnn+1(L ′) = χ(L0)χ(〈e1, u1〉) = χ(L0).

Hence the independence on x follows. Moreover, when χ(L
) �= 0 and
L
 is co-anisotropic, we have χ(L ′


F ) = −ε and so

εχ(L0) = −χ(L1).

Thus we obtain the desired vanishing result when L
 is co-anisotropic by
Proposition 8.2.7 below applied to the lattice L1.

8.2 Weighted counting identities

In this subsection we proved the weighted counting identities needed in the
proof of Proposition 8.1.2.

Definition 8.2.1 Assume that t > 1. Let L be a quadratic OF -lattice of rank
t and type t . Set

μ+(L) := #(� L∨)◦◦/L ,

μ0(L) := #((� L∨)◦ \ (� L∨)◦◦)/L ,

μ−(L) := #((L∨)◦ \ (� L∨)◦)/L .

If χ(L) = 0, for any s ∈ {±1} set
μ0,s(L) := #{x ∈ (� L∨)◦ \ (� L∨)◦◦ : χ(〈x〉F ) = s}/L .

If χ(L) �= 0, for any s ∈ {±1} set
μ0,s(L) := #{x ∈ (� L∨)◦ \ (� L∨)◦◦ : χ(〈x〉⊥F ) = s}/L ,

where 〈x〉⊥F is the orthogonal complement of 〈x〉F in L F .

Definition 8.2.2 Assume that t > 1. Let L and M be quadratic OF -lattices of
rank t and type t such that L ⊆ M ⊆ �−1L . Set

μ?(L , M) := μ?(L) − [M : L]μ?(M),

where ? ∈ {+, 0,−, {0,+}, {0,−}}.
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Lemma 8.2.3 Assume that t > 1. Let L and M be quadratic OF -lattices of
rank t and type t such that L ⊆ M ⊆ �−1L. Then

μ+(L , M) + μ0(L , M) + μ−(L , M) = qt−1 · μ+(L , M).

Proof Notice that (� L∨)◦ ⊆ (M∨)◦ as M ⊆ �−1L , to prove the desired
identity it remains to show that the multiplication-by-� map:

((L∨)◦ \ (M∨)◦)/L → ((� L∨)◦◦ \ (� M∨)◦◦)/L

is surjective with every fiber of size qt−1. Take x ∈ � L∨ in the target. The
fiber at x is given by the set

{�−1(y + x) ∈ (L∨)◦ : y ∈ L/� L}.

Notice that x ∈ � L∨, the condition �−1(y + x) ∈ (L∨)◦ is equivalent to

y ∈ (L ∩ � L∨)/� L = L/� L , (y + x, y + x) ≡ 0 (mod � 2).

Let {e1, . . . , et } be a standard orthogonal basis of L with (ei , ei ) = εi�
ai ,

εi ∈ O×
F . Then

� L∨ =
⊕

i

〈�−ai+1ei 〉.

Write

x =
∑

i

λi�
−ai+1ei ∈ � L∨, λi ∈ OF , y =

∑

i

μi ei ∈ L , μi ∈ OF .

Then

(y, y) ≡
∑

ai=1

(μi ei , μi ei ) =
∑

ai=1

μ2
i εi� (mod � 2),

(y, x) =
∑

i

(μi ei , λi�
−ai+1ei ) =

∑

i

μiλiεi�.

Since x ∈ (� L∨)◦◦, we know that the condition (y+x, y+x) ≡ 0 (mod � 2)

is equivalent to the equation

�−1(x, x) +
∑

ai=1

(
μ2

i εi + 2μiλiεi
)+

∑

ai >1

2μiλiεi ≡ 0 (mod �).
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Since x /∈ � M∨, we know that λi �≡ 0 (mod �) for some i such that ai > 1.
Thus we may choose arbitrary μi ∈ OF/� OF for any i such that ai = 1 and
solve for the equation for μi ∈ OF/� OF ’s with ai > 1,

∑

ai >1

2μiλiεi + b ≡ 0 (mod �),

where

b = �−1(x, x) +
∑

ai=1

(
μ2

i εi + 2μiλiεi
)
.

This is a nontrivial linear equation in t variables over Fq = OF/� OF , so the
total number of solutions is exactly qt−1. This finishes the proof.

Now the discussion will depend on the parity of the type. First we consider
the case of odd type.

Lemma 8.2.4 Assume that t > 1 is odd. Let L be a quadratic OF -lattice
of rank t and type t. Assume that χ(L) �= 0. Then there exists a quadratic
OF -lattice M of rank t and type t such that L ⊆1 M and

μ0,+(L , M) = μ0,−(L , M).

Proof We need to prove that

#{x ∈ (� L∨)◦ \ (� M∨)◦ : χ(〈x〉⊥F ) = +1}/L

= #{x ∈ (� L∨)◦ \ (� M∨)◦ : χ(〈x〉⊥F ) = −1}/L .

Let {e1, . . . , et } be a standard orthogonal basis of L with (ei , ei ) = εi�
ai ,

εi ∈ O×
F . We distinguish two cases.

(i) If at ≥ 3, then we may choose M = 〈e1, . . . , et−1, �
−1et 〉 with funda-

mental invariants (a1, . . . , at−1, at − 2). In this case

� L∨ =
⊕

i

〈�−ai+1ei 〉, � M∨ =
(
⊕

i<t

〈�−ai+1ei 〉
)

⊕ 〈�−at+2et 〉.

We fix an

x0 =
∑

i<t

λi�
−ai+1ei , λi ∈ OF ,
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and consider the sets for s ∈ {±1},

Ss := {x ∈ (� L∨)◦ \ (� M∨)◦ : x = x0 + λt�
−at+1et ,

λt ∈ OF , χ(〈x〉⊥F ) = s}/L .

It suffices to show that #S+ = #S−. Notice that x /∈ � M∨ if and only if
λt ∈ O×

F . We compute

(x, x) = (x0, x0) + λ2t εt�
−at+2.

Hence x ∈ Ss if and only if

(x0, x0) + λ2t εt�
−at+2 ∈ O×

F ,

and

χ((x0, x0) + λ2t εt�
−at+2) = sχ(L F ).

Write

λt =
∞∑

i=0

bi�
i , −� at−2ε−1

t (x0, x0) =
∞∑

i=0

ci�
i ,

the � -adic expansions with bi , ci ∈ OF/� OF = Fq . Then x ∈ Ss is
equivalent the following equations

c0 = b20,

c1 = 2b0b1,

c2 = 2b0b2 + b21,

· · ·
cat−3 = b0bat−3 + b1bat−4 · · · + bat−3b0,

sχ(L F ) = χ(cat−2 − (b0bat−2 + b1bat−3 · · · + bat−2b0)).

It is clear that the number of solutions of b0, . . . , bat−2 is independent of
s ∈ {±1}, and thus #S+ = #S− as desired.

(ii) If at = at−1 = 2, then we may choose M with fundamental invari-
ants (a1, . . . , at−2, at−1 − 1, at − 1). We may choose { f1, . . . , ft } be an
orthogonal basis of � M∨ such that

val( fi ) = −ai + 2, i = 1, . . . , t − 2, val( ft−1) = val( ft ) = 1.

123



1430 C. Li, W. Zhang

and

� L∨ = 〈 f1, . . . , ft−1, �
−1( ft−1 + ft )〉, � M∨ = 〈 f1, . . . , ft 〉.

We fix an

x0 =
∑

i<t

λi fi , λi ∈ OF ,

and consider the sets for s ∈ {±1},

Ss := {x ∈ (� L∨)◦ \ (� M∨)◦ : x = x0 + λt�
−1( ft−1 + ft ),

λt ∈ OF , χ(〈x〉⊥F ) = s}/L .

It suffices to show that #S+ = #S−. Notice that x /∈ � M∨ if and only if
λt ∈ O×

F . We compute

(x, x) = (x0, x0) + 2λt−1λt�
−1( ft−1, ft−1)

+λ2t �
−2(( ft−1, ft−1) + ( ft , ft )).

Similarlywrite down the equation for the� -adic expansion ofλt required
for x ∈ Ss , we see the number of solutions is independent of s ∈ {±1} as
desired.

Proposition 8.2.5 Assume that t > 1 is odd. Let L be a quadratic OF -lattice
of rank t and type t. Then

(1− qt−1)μ+(L) + (1− sq(t−1)/2)μ0,+(L)

+(1+ sq(t−1)/2)μ0,−(L) + μ−(L) = 0

when χ(L) = 0 and s ∈ {±1}, or χ(L) �= 0 and s = +1.

Proof We induct on val(L). Since L has type t , we know that val(L) ≥ t . We
have two base cases depending on the parity of val(L). Let {e1, . . . , et } be a
standard orthogonal basis of L with (ei , ei ) = εi�

ai , εi ∈ O×
F .

(1) if val(L) = t , we know that L is a vertex lattice of type t and χ(L) = 0.
So L∨/L is a nondegenerate Fq -quadratic space of odd dimension t . By
definition we have (L∨)◦/L is the set of isotropic vectors in L∨/L and
(� L∨)◦/L = (� L∨)◦◦/L = {0}. Hence

#(L∨)◦/L = qt−1, #(� L∨)◦/L = 1, #(� L∨)◦◦/L = 1.
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So

μ−(L) = qt−1 − 1, μ0(L) = 0, μ+(L) = 1

satisfies the desired identity for any s ∈ {±1}.
(2) if val(L) = t+1, we know that L has fundamental invariants (1, . . . , 1, 2)

and χ(L) �= 0. Then L∨ = 〈�−1e1, . . . , �−1et−1, �
−2et 〉. Let

x = λ1�
−1e1 + · · · + λt−1�

−1et−1 + λt�
−2et ∈ L∨, λi ∈ OF .

Then x ∈ (L∨)◦ if and only if � 2(x, x) ≡ 0 (mod � 2), namely,

t−2∑

i=1

λ2i � + λ2t−1εt−1� + λ2t εt ≡ 0 (mod � 2),

or equivalently

t−2∑

i=1

λ2i + λ2t−1εt−1 ≡ 0 (mod �), λt = 0 (mod �).

It follows that

#(L∨)◦/L = ((q(t−1)/2 − s)(q(t−3)/2 + s) + 1)q.

Here s = χ(〈e1, . . . , et−1〉) ∈ {±1}. Similarly let

x = λ1e1 + · · · + λt−1et−1 + λt�
−1et ∈ � L∨, λi ∈ OF .

Then x ∈ (� L∨)◦ always, and x ∈ (� L∨)◦◦ if and only if λt ≡ 0
(mod �). Hence

#(� L∨)◦ = q, #(� L∨)◦◦ = 1.

So

μ−(L) = (q(t−1)/2 ± 1)(q(t−3)/2 ∓ 1)q, μ0(L) = q − 1, μ+(L) = 1.

Notice that when x ∈ (� L∨)◦\(� L∨)◦◦, we have χ(〈x〉⊥F ) =
χ(〈e1, . . . , et−1〉) = s, and thus

μ0,s(L) = q − 1, μ0,−s(L) = 0.

123



1432 C. Li, W. Zhang

Hence the we have the desired identity

(
q

t−1
2 − s

) (
q

t−3
2 + s

)
q + (q − 1)

(
1− sq

t−1
2

)
+ (

1− qt−1) = 0.

Nowwe run induction on val(L). Let M be an OF -lattice of rank t and type
t such that L ⊆1 M as in Lemma 8.2.4. Then val(M) < val(L). By induction
hypothesis it remains to prove the similar identity for the difference

(1− qt−1) · μ+(L , M) + (1− sq(t−1)/2) · μ0,+(L , M)

+(1+ sq(t−1)/2) · μ0,−(L , M) + μ−(L , M) = 0,

for any s ∈ {±1}. This follows from the two stronger relations in Lemmas
8.2.3 and 8.2.4.

Next we consider the case of even type.

Lemma 8.2.6 Assume that t > 1 is even. Let L be a quadratic OF -lattice of
rank t and type t. Then there exists a quadratic OF -lattice M of rank t and
type t such that L ⊆1 M and

μ+(L , M) + μ0(L , M) = q · μ+(L , M).

Proof We need to prove that

q · #((� L∨)◦◦ \ (� M∨)◦◦)/L = #((� L∨)◦ \ (� M∨)◦)/L .

Let {e1, . . . , et } be a standard orthogonal basis of L with (ei , ei ) = εi�
ai ,

εi ∈ O×
F . We distinguish two cases.

(i) If at ≥ 3, then we may choose M = 〈e1, e2, . . . , �−1et 〉 (with funda-
mental invariants (a1, . . . , at−1, at − 2). Notice that

� L∨ =
⊕

i

〈�−ai+1ei 〉, � M∨ =
(
⊕

i<t

〈�−ai+1ei 〉
)

⊕ 〈�−at+2et 〉.

We fix an

x0 =
∑

i<t

λi�
−ai+1ei , λi ∈ OF ,

and consider the sets

S◦ := {x ∈ (� L∨)◦ \ (� M∨)◦ : x = x0 + λt�
−at+1et ,
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λt ∈ OF }/L .

S◦◦ := {x ∈ (� L∨)◦◦ \ (� M∨)◦◦ : x = x0 + λt�
−at+1et ,

λt ∈ OF }/L .

It suffices to show that q · #S◦◦ = #S◦. Notice that x /∈ � M∨ if and only
if λt ∈ O×

F . We compute

(x, x) = (x0, x0) + λ2t εt�
−at+2.

Hence x ∈ S◦ if and only if

� at−2(x0, x0) + λ2t εt ≡ 0 (mod � at−2), λt ∈ O×
F ,

and x ∈ S◦◦ if and only if

� at−2(x0, x0) + λ2t εt ≡ 0 (mod � at−1), λt ∈ O×
F .

Write λt = b0 + b1� + b2� 2 + · · · to be the � -adic expansion of λt .
Then x ∈ S◦◦ if and only if x ∈ S◦ together with an additional equation

b0bat−2 = c,

for c ∈ Fq determined by (x0, b0, . . . , bat−3), which has exactly one
solution bat−2 ∈ Fq . Hence q · #S◦◦ = #S◦ as desired.

(ii) If at = at−1 = 2, then we may choose M with fundamental invari-
ants (a1, . . . , at−2, at−1 − 1, at − 1). We may choose { f1, . . . , ft } be an
orthogonal basis of � M∨ such that

val( fi ) = −ai + 2, i = 1, . . . , t − 2, val( ft−1) = val( ft ) = 1.

and

� L∨ = 〈 f1, . . . , ft−1, �
−1( ft−1 + ft )〉, � M∨ = 〈 f1, . . . , ft 〉.

We fix an

x0 =
∑

i<t

λi fi , λi ∈ OF ,

and consider the sets

S◦ := {x ∈ (� L∨)◦ \ (� M∨)◦ :
x = x0 + λt�

−1( ft−1 + ft ), λt ∈ OF }/L .
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S◦◦ := {x ∈ (� L∨)◦◦ \ (� M∨)◦◦ :
x = x0 + λt�

−1( ft−1 + ft ), λt ∈ OF }/L .

It suffices to show that q · #S◦◦ = #S◦. Notice that x /∈ � M∨ if and only
if λt ∈ O×

F . Similarly write down the equation for the � -adic expansion
of λt required for x ∈ S◦ (resp. S◦◦), we see that q · #S◦◦ = #S◦ as
desired.

Proposition 8.2.7 Assume that t > 1 is even. Let L be a quadratic OF -lattice
of rank t and type t. Then

(1− sqt/2)(1+ sqt/2−1)μ+(L) + (1+ sqt/2−1)μ0(L) + μ−(L) = 0

when χ(L) = 0 and s ∈ {±1}, or χ(L) = s ∈ {±1}.
Proof We induct on val(L). Since L has type t , we know that val(L) ≥ t . We
have two base cases depending on the parity of val(L). Let {e1, . . . , et } be a
standard orthogonal basis of L with (ei , ei ) = εi�

ai , εi ∈ O×
F .

(1) if val(L) = t , we know that L is a vertex lattice of type t and χ(L) �= 0.
So L∨/L is a nondegenerate Fq -quadratic space of even dimension t . By
definition we have (L∨)◦/L is the set of isotropic vectors in L∨/L and
(� L∨)◦/L = (� L∨)◦◦/L = {0}. Let s = sgn(L∨/L). Then

#(L∨)◦/L = (qt/2 − s)(qt/2−1 + s) + 1,

#(� L∨)◦/L = 1, #(� L∨)◦◦/L = 1.

So

μ−(L) = (qt/2 − s)(qt/2−1 + s), μ0(L) = 0, μ+(L) = 1

satisfies the desired identity for s = χ(L).
(2) if val(L) = t+1, we know that L has fundamental invariants (1, . . . , 1, 2)

and χ(L) = 0. Then L∨ = 〈�−1e1, . . . , �−1et−1, et 〉. Let

x = λ1�
−1e1 + · · · + λt−1�

−1et−1 + λt�
−2et ∈ L∨, λi ∈ OF .

Then x ∈ (L∨)◦ if and only if � 2(x, x) ≡ 0 (mod � 2), namely,

t−2∑

i=1

λ2i � + λ2t−1εt−1� + λ2t εt ≡ 0 (mod � 2),
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or equivalently

t−2∑

i=1

λ2i + λ2t−1εt−1 ≡ 0 (mod �), λt = 0 (mod �).

It follows that

#(L∨)◦/L = qt−2 · q = qt−1.

Similarly let

x = λ1e1 + · · · + λt−1et−1 + λt�
−1et ∈ � L∨, λi ∈ OF .

Then x ∈ (� L∨)◦ always, and x ∈ (� L∨)◦◦ if and only if λt ≡ 0
(mod �). Hence

#(� L∨)◦ = q, #(� L∨)◦◦ = 1.

So

μ−(L) = qt − q, μ0(L) = q − 1, μ+(L) = 1.

Hence the we have the desired identity

(1− sqt/2)(1+ sqt/2−1) + (1+ sqt/2−1)(q − 1) + (qt−1 − q) = 0

for any s ∈ {±1}.
Now we run induction on val(L). Let M be an OF -lattice of rank t and

type t such that L ⊆1 M ⊆ as in Lemma 8.2.6. Then val(M) < val(L). By
induction hypothesis it remains to prove the similar identity for the difference

(1+ sqt/2)(1− sqt/2−1)μ+(L , M)

+(1− sqt/2−1)μ0(L , M) + μ−(L , M) = 0

for any s ∈ {±1}. This follows from the two stronger relations in Lemmas
8.2.3 and 8.2.6.

9 Invariant distributions and the proof of the main theorem

9.1 Invariant distributions on isotropic 2-dimensional quadratic spaces

In this section, we consider a general non-degenerate 2-dimensional quadratic
spaceW over a non-archimedean local field F with odd residue characteristic.
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The general linear group GL(W)(F) naturally acts onS (W) andD(W) (see
Notations §2.2) via

(hϕ)(x) = ϕ(h−1x), (hT )(ϕ) = T (h−1ϕ),

h ∈ GL(W)(F), ϕ ∈ S (W), T ∈ D(W).

Definition 9.1.1 Let k ≥ 0. Let D(W)k be the space of distributions T ∈
D(W) such that

(i) T is O(W)(F)-invariant.
(ii) T is O×

F -invariant.
(iii) supp(T ) ⊆ W≥−k .
(iv) supp(T̂ ) ⊆ W◦.

We will need the following lemma (cf. the analogous identity for GL2 in
[4, (4.26)]), which should be well-known but we include a proof for the sake
of completeness.

Lemma 9.1.2 Denote by

• B ⊆ SL2 the Borel subgroup of upper triangular matrices.
• A ⊆ SL2 the torus of diagonal matrices.
• N ⊆ SL2 (resp. N− ⊆ SL2) the subgroup of upper (resp. lower) triangular

unipotent matrices.
• K0(�

k) := {( a b
c d

) : c ∈ � k OF } ⊆ SL2(OF ) for k ≥ 0.

Then we have, for k ≥ 1,

K0(�
k) = N−(� k OF )A(OF )N (OF ).

Proof Clearly the right-hand-side is contained K0(�
k). Let

(
a b
c d

) ∈ K0(�
k).

Since k ≥ 1, we know that a ∈ O×
F . Then the identity

(
a b
c d

)

=
(

1 0
a−1c 1

)(
a 0
0 a−1

)(
1 a−1b
0 1

)

shows that
(

a b
c d

)
is an element of the right-hand-side.

Proposition 9.1.3 Assume that W is isotropic (equivalently, χ(W) = +1).

(i) D(W)k has dimension 2k for k ≥ 1.
(ii) Define functions

φ0(x) :=
∑

i≥0
1W≥i (x) =

{
val(x) + 1, x ∈ W◦,
0, otherwise,
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φ1(x) := 1W≥−1(x) =
{
1, x ∈ W≥−1,

0, otherwise,

φ2i−2(x) :=
{
1, x ∈ W=−i and � i (x, x) ∈ (O×

F )2,

0, otherwise,
i ≥ 2,

φ2i−1(x) :=
{
1, x ∈ W=−i and � i (x, x) /∈ (O×

F )2,

0, otherwise,
i ≥ 2.

Then D(W)k has a basis given by the distributions represented by
φ0, φ1, . . . , φ2k−1 ∈ L1

loc(W
an) for k ≥ 1 and φ0 for k = 0.

Proof (i) We use theWeil representationω of SL2(F) onS (W) (associated
to our fixed unramified additive character ψ : F → C×). Recall that ω

is defined by

ω

(
a

a−1

)

φ(x) = |a|φ(ax),

ω

(
1 b
1

)

φ(x) = ψ

(
1

2
b (x, x)

)

φ(x),

ω

(
1

−1

)

φ(x) = φ̂(x),

where a ∈ F×, b ∈ F . Let T ∈ D(W). By the definition of ω, we have
• T is O×

F -invariant if and only if T is invariant under A(OF ) ⊆ SL2(F),
• supp(T ) ⊆ W≥−k if and only if T is invariant under N (� k OF ).
• supp(T̂ ) ⊆ W◦ if and only if T is invariant under N−(OF ).
Since k ≥ 1, by Lemma 9.1.2 we obtain

D(W)k = D(W)O(W)(F)×K0(�
k)t

, (9.1.3.1)

the space of O(W)(F) × K0(�
k)t -invariants of D(W), where (−)t

denotes the transpose.
On the other hand, consider the degenerate principal series I (1) :=
IndSL2(F)

B(F) (1), which consists of locally constant functions f : SL2(F) →
C such that

f
((

a b
0 a−1

)
g
)
= |a| f (g),

(
a b
0 a−1

)
∈ B(F), g ∈ SL2(F),
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and on which SL2(F) acts via right translation. We have an SL2(F)-
equivariant map (the Siegel–Weil section)

S (W) → I (1), φ �→ ω(g)φ(0).

By [30, Proposition1.1], thismaps factors through the spaceS (W)O(W)(F)

ofO(W)(F)-coinvariants, and induces an isomorphismS (W)O(W)(F)
∼−→

I (1) (as W is the unique 2-dimensional quadratic space with χ(W) =
+1). Taking contragredients it follows that there is isomorphism as
SL2(F)-representations between the space D(W)O(W)(F) of O(W)(F)-
invariant distributions and the contragredient representation I (1)∨. Using
I (1)∨ ∼= I (1−1) = I (1), we know that

D(W)O(W)(F) ∼= I (1) (9.1.3.2)

as SL2(F)-representations. Combining (9.1.3.1) and (9.1.3.2), we obtain

D(W)k
∼= I (1)K0(�

k)t
.

The result then follows from the fact that dim I (1)K0(�
k)t =

dim I (1)K0(�
k) = 2k by the theory of newforms for SL2(F) [35, Propo-

sition 3.2.4].
(ii) Since φi ’s are clearly linearly independent, by part (i) it remains to show

that φi ∈ D(W)k for i = 0, . . . , 2k − 1 when k ≥ 1 and φ0 ∈ D(W)0.
The properties Definition 9.1.1 (i–iii) are clearly satisfied by definition, so
it remains to check Definition 9.1.1 (iv), i.e., supp(φ̂i ) ⊆ W◦. To compute
supp(φ̂i ), we realize φi as an O(W)(F)-orbital integral on W. Recall that
for any ϕ ∈ S (W), its O(W)(F)-orbital integral is defined by

Orb(x, ϕ) :=
∫

O(W)(F)

ϕ(h−1x)dh,

and denote by Ôrb(x, ϕ) its Fourier transform (in the first variable x).
Then by definition we have an identity in D(W),

Ôrb(x, ϕ) = Orb(x, ϕ̂). (9.1.3.3)

Since W is isotropic, we may choose a basis {e1, e2} of W such that its
fundamental matrix is

(
0 1
1 0

)
. Define compact open subsets of W,

�0 = OF e1 × OF e2 = 〈e1, e2〉,
�1 = �−1O×

F e1 × OF e2,
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�2i−2 = �−i (O×
F )2e1 × (O×

F )2e2, i ≥ 2,

�2i−1 = �−iε(O×
F )2e1 × (O×

F )2e2, i ≥ 2,

where ε ∈ O×
F \ (O×

F )2. Define ϕi = 1�i ∈ S (W) for i ≥ 0. Then it is
easy to see that we have

φi (x) = Orb(x, ϕi ),

(possibly up to a nonzero scalar, which we ignore). Hence by (9.1.3.3)
we obtain

φ̂i (x) = Orb(x, ϕ̂i ).

It remains to show that supp(Orb(x, ϕ̂i )) ⊆ W◦.
First consider ϕ0 and ϕ1. Notice that

ϕ0 = 1〈e1,e2〉, ϕ1 = 1〈e1,e2〉 − 1〈�−1e1,e2〉.

Since 〈e1, e2〉∨ = 〈e1, e2〉 and 〈�−1e1, e2〉∨ = 〈e1, �e2〉, by (2.2.0.1)
we have

ϕ̂0 = 1〈e1,e2〉, ϕ̂1 = 1〈e1,e2〉 − q · 1〈e1,�e2〉.

Hence supp(ϕ̂i ) ⊆ 〈e1, e2〉 for i = 0, 1. The O(W)(F)-orbits of elements
in 〈e1, e2〉 are contained in W◦, hence supp(Orb(x, ϕ̂i )) ⊆ W◦ for i =
0, 1 as desired.
Now consider i ≥ 2. Notice that ϕ2i−2 (resp. ϕ2i−1) is a linear combina-
tion of functions ϕ = 1� of compact open subsets � ⊆ W of form

� = �−i (a + � OF )e1 × (b + � OF )e2
= 〈�−i+1e1, �e2〉 + (�−i ae1 + be2),

where a, b ∈ O×
F . It remains to show that supp(Orb(x, ϕ̂)) ⊆ W◦. We

compute

ϕ̂(x) =
∫

W

ϕ(y)ψ((x, y))dy

=
∫

W

1〈�−i+1e1,�e2〉(y)ψ((x, y + �−i ae1 + be2))dy

= ψ((x, �−i ae1 + be2))
∫

W

1〈�−i+1e1,�e2〉(y)ψ((x, y))dy

= ψ((x, �−i ae1 + be2)) · 1̂〈�−i+1e1,�e2〉(x).
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Hence by (2.2.0.1) we have supp(ϕ̂) ⊆ 〈�−i+1e1, �e2〉∨ = 〈�−1e1,
� i−1e2〉. The O(W)(F)-orbits of elements in 〈�−1e1, � i−1e2〉 are con-
tained in W◦ (as i ≥ 2), hence supp(Orb(x, ϕ̂)) ⊆ W◦ as desired.

Corollary 9.1.4 Let k ≥ 0 and T ∈ D(W)k . Then T is represented by a
function φ ∈ L1

loc(W
an) such that φ(x) − φ(�−1x) is a constant for all

x ∈ W◦◦ ∩ Wan.

Proof This follows from Proposition 9.1.3 as each basis distribution φi of
D(W)k clearly satisfies the claimed property.

9.2 The partial Fourier transform Int⊥
L�,V

Now we come back to the setup of §4. Fix an OF -lattice L
 ⊂ V of rank n−1
and denote by W = (L


F )⊥ ⊆ V.

Definition 9.2.1 For x ∈ Wan, define the partial Fourier transform of IntL
,V
by

Int⊥L
,V
(x) :=

∫

L

F

IntL
,V (y + x)dy.

By Corollary 7.4.6, we have Int⊥
L
,V

∈ L1
loc(W

an) (and Int⊥
L
,V

∈ S (W) if L


is co-anisotropic).

Lemma 9.2.2 Int⊥
L
,V

∈ D(W)k for some k ≥ 0.

Proof We show that all items (i–iv) in Definition 9.1.1 are satisfied for Int⊥
L
,V

.

(i) To show that Int⊥
L
,V

is O(W)(F)-invariant, it suffices to show that the

function IntL
,V (y + x) on Wan is O(W)(F)-invariant for any y ∈ L

F .

If x ′ lies in the O(W)-orbit of x , then the two quadratic OF -lattices L
 +
〈y + x〉 and L
 + 〈y + x ′〉 are isometric. By Remark 4.11.5 we have
IntL
(y+x) = IntL
(y+x ′). ByTheorem7.2.2 and (7.1.3.2),we also have
IntL
,H (y+ x) = IntL
,H (y+ x ′). Hence IntL
,V (y+ x) = IntL
,V (y+
x ′).

(ii) For any ε ∈ O×
F , by the change of variable y �→ εy and |ε| = 1 we

obtain

Int⊥L
,V
(εx) =

∫

L

F

Int⊥L
,V
(y + εx)dy =

∫

L

F

Int⊥L
,V
(εy + εx)dy,
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which equals Int⊥
L
,V

(x) as L
 + 〈εy + εx〉 = L
 + 〈y + x〉 for ε ∈ O×
F .

So Int⊥
L
,V

is O×
F -invariant.

(iii) If Int⊥
L
,V

(y + x) �= 0, then L
 + 〈y + x〉 is integral. Hence y ∈ (L
)∨
and the integrality of y + x implies that there exists k ≥ 0 such that
val(x) ≥ −k when y runs over (L
)∨/L
. So Int⊥

L
,V
(y + x) is supported

on W−k for all y ∈ L

F , and hence supp(Int

⊥
L
,V

) ⊆ W≥−k .
(iv) By definition, for x ∈ Wan, we have

̂Int⊥
L
,V

(x) = ̂IntL
,V (x),

wherê denotes the Fourier transform onW (resp.V) on the left-hand-side
(resp. right-hand-side). Combining with Corollary 7.5.3 we know that

̂Int⊥
L
,V

(x) = γV IntL
,V (x).

Since IntL
,V (x) is zero unless x is integral,weknow that supp( ̂Int⊥
L
,V

) ⊆
W◦ as desired.

Now we can prove the following recurrence relations for the partial Fourier
transform Int⊥

L
,V
(analogous to those for ∂Den⊥

L
,V
in Proposition 8.1.2).

Proposition 9.2.3 (i) If L
 is co-anisotropic, then Int⊥
L
,V

(x) is a constant
for all x ∈ W◦.

(ii) If L
 is co-isotropic, then Int⊥
L
,V

(x) − Int⊥
L
,V

(�−1x) is a constant for
all x ∈ W◦◦ ∩ Wan.

Proof (i) By Lemma 9.2.2, we know that supp( ̂Int⊥
L
,V

) ⊆ W◦. Since W

is anisotropic, we know that W◦ ⊆ W is an integral OF -lattice. Hence
Int⊥

L
,V
is invariant under translation by the dual lattice (W◦)∨, in partic-

ular, invariant under translation by W◦ ⊆ (W◦)∨. It follows that Int⊥
L
,V

is a constant for all x ∈ W◦.
(ii) It follows immediately from Lemma 9.2.2 and Corollary 9.1.4.

9.3 The proof of main Theorem 4.15.1

Lemma 9.3.1 Let L
 ⊆ V be an OF -lattice of rank n − 1. Let x ∈ �(L
).
Assume that L
 is integral. Let (a1, . . . , an−1) be the fundamental invariants
of L
.

(i) If x /∈ L
kW≥an−1 , then there exists L ′
 ⊆ V an OF -lattice of rank n−1
and x ′ ∈ V such that L ′
 + 〈x ′〉 = L
 + 〈x〉 and val(L ′
) < val(L
).
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(ii) If x ∈ L
 k W=an−1 and L
 ⊆ V is co-isotropic, then there exists a
co-anisotropic OF -lattice L ′
 ⊆ V of rank n − 1 and x ′ ∈ V such that
L ′
 + 〈x ′〉 = L
 + 〈x〉 and val(L ′
) = val(L
).

Proof. Let {e1, . . . , en−1} be a standard orthogonal basis of L
.

(i) Since x /∈ L
 k W≥an−1 , we have two cases: If x
 ∈ L
, then val(x⊥) <

an−1. Taking L ′
 = 〈e1, . . . , en−2, x⊥〉 and x ′ = en−1 works. If x
 /∈ L
,
write x
 = λ1e1 + · · · + λn−1en−1, then val(λi ) < 0 for some 1 ≤ i ≤
n − 1. The fundamental matrix of L
 +〈x〉 for the basis {e1, . . . , en−1, x}
has the form

T =

⎛

⎜
⎜
⎜
⎝

(e1, e1) (e1, x)
. . .

...

(en−1, en−1) (en−1, x)

(x, e1) · · · (x, en−1) (x, x)

⎞

⎟
⎟
⎟
⎠

.

Let (a′1, . . . , a′n) be the fundamental invariants of L
+〈x〉. By the theory of
Smith normal forms, we know that a′1+· · ·+a′n−1 is equal to theminimum
among the valuations of the determinants of all (n − 1)× (n − 1)-minors
of T . The set of such minors is bijective to the set of (i, j)-th entry:
removing i-th row and j-th column to get such a minor. The valuation of
the determinant of the (n, i)-th minor is

val((ei , x)) − ai + (a1 + · · · + an−1).

Since val(λi ) < 0, it follows that val((ei , x)) < ai , and hence a′1 + · · · +
a′n−1 < a1 + · · · + an−1. Let {e′1, . . . , e′n} be a standard orthogonal basis
of L
 + 〈x〉. Then taking L ′
 = 〈e′1, . . . , e′n−1〉 and x ′ = e′n works.

(ii) Since x
 ∈ L
, replacing x by x⊥ we may assume that x ∈ W=an−1 . Let
λ = (x,x)

(en−1,en−1)
. Then val(λ) = 0. We have two cases: If λ ∈ (O×

F )2, then

we may find μ ∈ O×
F such that 1 + μ2λ ∈ O×

F \ (O×
F )2. Let e′n−1 =

en−1 + μx . Then

(e′n−1, e′n−1)

(en−1, en−1)
= (en−1, en−1) + μ2(x, x)

(en−1, en−1)
= 1+ μ2λ ∈ O×

F \ (O×
F )2.

Let L ′
 = 〈e1, . . . , en−2, e′n−1〉. Then

χ(L ′
) = χ

(
(e′n−1, e′n−1)

(en−1, en−1)

)

χ(L
) = χ(1+ μ2λ) = −χ(L
).
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Then L
 is co-isotropic implies that L ′
 is co-anisotropic (see Definition
3.8.1). Taking L ′
 and x ′ = x then works.
If λ ∈ O×

F \ (O×
F )2, then similarly taking L ′
 = 〈e1, . . . , en−2, x〉 and

x ′ = en−1 works, as

χ(L ′
) = χ

(
(x, x)

(en−1, en−1)

)

χ(L
) = χ(λ)χ(L
) = −χ(L
).

Theorem 9.3.2 Let L
 ⊆ V be an OF -lattice of rank n−1. Then as functions
on �(L
),

IntL
 = ∂DenL
 (9.3.2.1)

Proof When L
 is not integral both sides are zero, so we may assume that
L
 is integral. Let (a1, . . . , an−1) be the fundamental invariants of L
. When
a1 = 0 by the cancellation laws (4.14.0.4) and (3.4.8.1) we may reduce to the
case for smaller n, hence by induction on n we may assume that a1 ≥ 1 and
thus an−1 ≥ 1. Now we induct on val(L
). There are two cases:

(i) Assume that L
 is co-anisotropic. By Lemma 9.3.1 (i), when x /∈ L
 k
W≥an−1 , there exists L ′
 ⊆ V of rank n−1 and x ′ ∈ V such that val(L ′
) <

val(L
) and

IntL
(x) = IntL ′
(x ′), ∂DenL
(x) = ∂DenL ′
(x ′).

By the induction hypothesis we know that when x /∈ L
 k W≥an−1 the
equality

IntL
(x) = ∂DenL
(x)

holds. Hence the difference function has support

supp(IntL
 −∂DenL
) ⊆ L
 k W≥an−1 .

Since both IntL
 and ∂DenL
 are invariant under translation by L
, by the
support condition we know that

IntL
 −∂DenL
 = 1L
 ⊗ φ⊥

for some function φ⊥ on Wan with supp(φ⊥) ⊆ W≥an−1 . It remains
to show that φ⊥ = 0. Using Theorem 7.2.2 and performing the partial

123



1444 C. Li, W. Zhang

Fourier transform, we have

supp(Int⊥L
,V
−∂Den⊥L
,V

) = supp(φ⊥) ⊆ W≥an−1 .

Since an−1 ≥ 1, we know that Int⊥
L
,V

−∂Den⊥
L
,V

vanishes on W=−1 ∪
W=0. Hence by Proposition 9.2.3 (i) and Proposition 8.1.2 (i) we know
that Int⊥

L
,V
−∂Den⊥

L
,V
vanishes identically, and hence φ⊥ = 0 as

desired.
(ii) Assume that L
 is co-isotropic. By Lemma 9.3.1 (i) and the induction

hypothesis, we similarly know that

supp(IntL
 −∂DenL
) ⊆ L
 k W≥an−1 .

Moreover by Lemma 9.3.1 (ii) and the already proved co-anisotropic case,
we know that

supp(IntL
 −∂DenL
) ⊆ L
 k W≥an−1+1.

Hence IntL
 −∂DenL
 = 1L
 ⊗ φ⊥ for some function φ⊥ on Wan

with supp(φ⊥) ⊆ W≥an−1+1. Since an−1 + 1 ≥ 2, we know that
Int⊥

L
,V
−∂Den⊥

L
,V
vanishes on W=−1 ∪W=0 ∪W=1. Hence by Propo-

sition 9.2.3 (i) and Proposition 8.1.2 (i) we know that Int⊥
L
,V

−∂Den⊥
L
,V

vanishes identically, and hence φ⊥ = 0 as desired.

Our main Theorem 4.15.1 now follows immediately from Theorem 9.3.2
by decomposing L = L
 + 〈x〉 for some non-degenerate OF -lattice L
 ⊆ V

of rank n − 1 and x ∈ �(L
) (for example L
 = 〈e1, . . . , en−1〉 and x = en
for a standard orthogonal basis {e1, . . . , en} of L).

Part 2. Semi-global arithmetic Siegel–Weil formula

In this part we apply our main Theorem 4.15.1 to prove an identity between
the intersection number of special cycles on the integral canonical model of
GSpin Shimura varieties at a good place and the derivative of Fourier coeffi-
cients of Siegel–Eisenstein series (also known as the semi-global arithmetic
Siegel–Weil formula). This is achieved by relating the special cycles on GSpin
Shimura varieties to those on GSpin Rapoport–Zink spaces via the p-adic
uniformization, and by relating the Fourier coefficients to local representation
densities. This deduction is more or less standard (see [5,23,51]), and we will
formulate and prove the results for GSpin Shimura varieties with general tame
level structures.
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On the arithmetic Siegel–Weil formula 1445

10 Notations on quadratic spaces

In this part we switch to global notations. Denote by F a totally real number
field and A = AF its ring of adèles (starting from §12.4, we restrict to the
case F = Q). Denote by V a quadratic space over A of rank m = n + 1 ≥ 3
with symmetric bilinear form ( , ). For a place v of F , write Vv = V ⊗A Fv ,
a quadratic space over the local field Fv. We say V is totally positive definite
if Vv has signature (n, 0) for all places v|∞ of F . We define

det(V) := (det(Vv))v ∈ A×/(A×)2,

disc(V) := (disc(Vv))v ∈ A×/(A×)2,

ε(V) :=
∏

v

ε(Vv) ∈ {±1}.

Define a quadratic character χV : A× → {±1} such that for any (av)v ∈ A×,

χV((av)v) =
∏

v

(av, disc(Vv))Fv .

If disc(V) ∈ F× mod (A×)2, then by the product formula χV factors through
A×/F× → {±1}. In this case, we say V is coherent if ε(V) = +1 and
incoherent if ε(V) = −1. Notice that if V is coherent then there exists a
global quadratic space V over F of rank m such that V 
 V ⊗F A. If V is
incoherent, then such global quadratic space V does not exist, but for any place
v0 of F , there exists a nearby global quadratic space V (associated to v0) such
that χV = χV , and ε(Vv) = ε(Vv) for all v �= v0.

11 Incoherent Eisenstein series

11.1 Siegel Eisenstein series

Let W be the standard symplectic space over F of dimension 2n. Let P =
M N ⊆ Sp(W ) be the standard Siegel parabolic subgroup, so that under the
standard basis of W ,

M(F) =
{

m(a) =
(

a 0
0 t a−1

)

: a ∈ GLn(F)

}

,

N (F) =
{

n(b) =
(
1n b
0 1n

)

: b ∈ Symn(F)

}

.
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Let Mp(WA) be the metaplectic extension of Sp(W )(A),

1 → C1 → Mp(WA) → Sp(W )(A) → 1,

where C1 = {z ∈ C× : |z| = 1}. There is an isomorphism Mp(WA)
∼−→

Sp(W )(A) × C1 with the multiplication on the latter is given by the global
Rao cycle, which allows us to write an element ofMp(WA) as (g, t)where g ∈
Sp(W )(A) and t ∈ C1. Recall that the metaplectic extension has a canonical
splitting over Sp(W )(F) and N (A), hence we may view Sp(W )(F) and N (A)

as subgroups of Mp(WA) [30, p. 549].
Write

Gn(A) =
{
Sp(W )(A), n odd,

Mp(WA), n even,

for short. Let Pn(A) = Mn(A)Nn(A) be the standard Siegel parabolic sub-
group of Gn(A), i.e., Pn(A) (resp. Mn(A)) is P(A) (resp. M(A)) if n is odd
and is the pullback of P(A) (resp. M(A)) along the metaplectic extension if
n is even; and Nn(A) = N (A). In particular,

Mn(A) =
{
{m(a) : a ∈ GLn(A)}, n odd,

{(m(a), t) : a ∈ GLn(A), t ∈ C1}, n even,

Nn(A) = {n(b) : b ∈ Symn(A)}.
When n is even, by abusing notation we write m(a) ∈ Mn(A) for the element
(m(a), 1) ∈ Mn(A).

Fix a quadratic character χ : A×/F× → C×. Fix the additive character
ψ = ψQ ◦ trF/Q : A/F → C×, where ψQ : AQ/Q → C× is the standard
addicitve character such thatψQ,∞(x) = e2π i x . We may view χ as a character
on Mn(A) by

{
χ(m(a)) = χ(det a), n odd,

χ(m(a), t) = χ(det a) · γ (det a, ψ)−1 · t, n even.

and extend it to Pn(A) trivially on Nn(A). Here γ (x, ψ) is the Weil index, an
8-th root of unity [30, p. 548]. Define the degenerate principal series to be the
unnormalized smooth induction

In(s, χ):=IndGn(A)
Pn(A)

(χ · | · |s+(n+1)/2
F ), s ∈ C.

For a standard section �(−, s) ∈ In(s, χ) (i.e., its restriction to the stan-
dard maximal compact subgroup of Gn(A) is independent of s), define the
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associated Siegel Eisenstein series

E(g, s, �):=
∑

γ∈P(F)\Sp(W )(F)

�(γ g, s), g ∈ Gn(A),

which converges for Re(s) " 0 and admits meromorphic continuation to
s ∈ C. Notice that E(g, s, �) depends on the choice of χ .

11.2 Fourier coefficients and derivatives

We have a Fourier expansion

E(g, s, �) =
∑

T∈Symn(F)

ET (g, s, �),

where

ET (g, s, �) =
∫

Nn(F)\Nn(A)

E(n(b)g, s, �)ψ(− tr(12T b)) dn(b),

and the Haar measure dn(b) is normalized to be self-dual with respect to ψ .
When T is nonsingular, for factorizable � = ⊗v�v we have a factorization
of the Fourier coefficient into a product

ET (g, s, �) =
∏

v

WT,v(gv, s, �v),

where the local (generalized) Whittaker function is defined by

WT,v(gv, s, �v) =
∫

Nn(Fv)

�v(w
−1
n n(b)g, s)ψ(− tr(12T b)) dn(b),

wn =
(

0 1n
−1n 0

)

.

and has analytic continuation to s ∈ C. Thus we have a decomposition of the
derivative of a nonsingular Fourier coefficient at s = s0,

E ′
T (g, s0, �) =

∑

v

E ′
T,v(g, s0, �), (11.2.0.1)

where

E ′
T,v(g, s, �) = W ′

T,v(gv, s, �v) ·
∏

v′ �=v

WT,v′(gv′, s, �v′). (11.2.0.2)
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11.3 Incoherent Eisenstein series

LetV be a quadratic space overA of rankm = n+1 with χV = χ . LetS (Vn)

be the space of Schwartz functions on Vn . The fixed choice of χ and ψ gives
a Weil representation ω = ωχ,ψ of Gn(A) × O(V) onS (Vn). Explicitly, for
ϕ ∈ S (Vn) and x ∈ Vn ,

ω(m(a))ϕ(x) = χ(m(a))| det a|m/2
F ϕ(x · a) m(a) ∈ Mn(A),

ω(n(b))ϕ(x) = ψ(tr 1
2T (x)b)ϕ(x), n(b) ∈ Nn(A),

ω(wn)ϕ(x) = γ n
V · ϕ̂(x), wn =

(
0 1n−1n 0

)
,

ω(h)ϕ(x) = ϕ(h−1 · x), h ∈ O(V),

ω(1, t)ϕ(x) = t · ϕ(x), t ∈ C1, if n even.

Here T (x) = ((xi , x j ))1≤i, j≤n is the fundamental matrix of x, the constant

γV = γ (detV, ψ)−1γ (ψ)−mε(V)

is theWeil constant (cf. [30, p. 642]), and ϕ̂ is the Fourier transform of ϕ using
the self-dual Haar measure on Vn with respect to ψ .

For ϕ ∈ S (Vn), define a function

�ϕ(g):=ω(g)ϕ(0), g ∈ Gn(A).

Then �ϕ ∈ In(0, χ). Let �ϕ(−, s) ∈ In(s, χ) be the associated standard
section, known as the standard Siegel–Weil section associated to ϕ. For ϕ ∈
S (Vn), we write

E(g, s, ϕ):=E(g, s, �ϕ), ET (g, s, ϕ):=ET (g, s, �ϕ),

E ′
T,v(g, s, ϕ):=E ′

T,v(g, s, �ϕ),

and similarly for WT,v(gv, s, ϕv). When V is incoherent, the central value
E(g, 0, ϕ) automatically vanishes. In this case, wewrite the central derivatives
as

∂Eis(g, ϕ):=E ′(g, 0, ϕ), ∂EisT (g, ϕ):=E ′
T (g, 0, ϕ),

∂EisT,v(g, ϕ):=E ′
T,v(g, 0, ϕ).

Remark 11.3.1 Let T ∈ Symn(F) be nonsingular. There exists a unique
quadratic space V over A of rank m = n + 1 with χV = χ representing
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T , which satisfies that for any place v

ε(Vv) = ε(Tv)(det Tv, detVv · det Tv)Fv (11.3.1.1)

in view of Lemma 3.7.1 (iii) (cf. [30, Proposition 1.3]). More generally, we
define Diff(T, V) to be the set of places v for which (11.3.1.1) does not hold.
By [30, Proposition 1.4], we know that WT,v(gv, 0, ϕv) �= 0 only if v /∈
Diff(T, V). Hence by (11.2.0.2) we know that ∂EisT,v(g, ϕ) �= 0 only if
Diff(T, V) = {v}.

11.4 Classical incoherent Eisenstein series

Assume that V is totally positive definite and incoherent. The hermitian sym-
metric domain for Sp(W ) is the Siegel upper half space

Hn = {z = x + iy : x ∈ Symn(F∞), y ∈ Symn(F∞)>0},

where F∞ = F ⊗Q R. Define the classical incoherent Eisenstein series to be

E(z, s, ϕ):=χ∞(m(a))−1| det(a)|−m/2
F · E(gz, s, ϕ),

gz:=n(x)m(a) ∈ Gn(A),

where a ∈ GLn(F∞) such that y = at a. We write the central derivatives as

∂Eis(z, ϕ):=E ′(z, 0, ϕ), ∂EisT (z, ϕ):=E ′
T (z, 0, ϕ),

∂EisT,v(z, ϕ):=E ′
T,v(z, 0, ϕ).

Then we have a Fourier expansion

∂Eis(z, ϕ) =
∑

T∈Symn(F)

∂EisT (z, ϕ). (11.4.0.1)

For an open compact subgroup K ⊆ GSpin(V)(A f ), we will choose

ϕ = ϕK ⊗ ϕ∞ ∈ S (Vn)

such that ϕK ∈ S (Vn
f ) is K -invariant and ϕ∞ is the Gaussian function

ϕ∞(x) = e−π tr T (x):=
∏

v|∞
e−π tr T (xv).
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For our fixed choice of Gaussian ϕ∞, we write

E(z, s, ϕK ) = E(z, s, ϕK ⊗ ϕ∞), ∂Eis(z, ϕK ) = ∂Eis(z, ϕK ⊗ ϕ∞)

and so on for short.

12 Special cycles on GSpin Shimura varieties

12.1 GSpin Shimura varieties

Let F be a totally real number field. Let V be a totally positive definite inco-
herent quadratic space over A of rank m = n + 1 ≥ 3. A choice of an infinite
place v0|∞ of F gives rise to a global nearby quadratic space V (associated
to v0) such that its signatures at infinite places v|∞ are given by

sgn(Vv) =
{

(m − 2, 2), v = v0,

(m, 0), v �= v0.

Define G = ResF/Q GSpin(V ).
For an oriented negative 2-plane Z = 〈e1, e2〉 ⊆ Vv0 such that the R-basis

{e1, e2} has fundamental matrix
(−1 0

0 −1

)
, define anR-algebra homomorphism

into the even part of the Clifford algebra of Vv0 .

C → C+(Vv0), a + bi �→ a + be1e2.

Its restriction to C× lands in GSpin(Vv0)(R) ⊆ C+(Vv0)
× and gives a homo-

morphism

hZ : C× → GSpin(Vv0)(R) 
 GSpin(m − 2, 2)(R).

Define a cocharacter

hG : C× → G(R) =
∏

v|∞
GSpin(Vv)(R) 
 GSpin(m − 2, 2)(R)

×
∏

v �=v0

GSpin(m, 0)(R),

whose v-component is given by

(hG(z))v =
{

hZ (z), v = v0,

1, v �= v0.
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Let D be its G(R)-conjugacy class, which is isomorphic to the hermitian
symmetric domain of oriented negative 2-planes in Vv0 and has two connected
components. The action of G(R) on D factors through the natural quotient
map G(R) → SO(Vv0)(R).

We obtain a Shimura datum (G,D), which is of Hodge type when F = Q

and of abelian type in general. Let K ⊆ G(A f ) be an open compact subgroup.
Denote by ShK = ShK (G,D) the canonical model of the Shimura variety
with complex uniformization

ShK (C) = G(Q)\[D × G(A f )/K ].

The canonical model ShK is a smooth Deligne–Mumford stack (and a smooth
quasi-projective variety when K is neat) over the reflex field F ⊆ C (via the
embedding induced by the chosen infinite place v0), which is proper when V
is anisotropic (e.g., when F �= Q).

12.2 Special cycles Z(T, ϕK )

Let 1 ≤ r ≤ m − 2. Let x = [x1, . . . , xr ] ⊆ V r be an r -tuple of vectors in
V . Assume that the fundamental matrix T (x) = ((xi , x j ))i, j ∈ Symr (F)>0
(totally positive definite). So 〈x1, . . . , xr 〉 is a totally positive definite subspace
of V , and we denote by Vx its orthogonal complement in V . Then Vx has
signatures

sgn(Vx,v) =
{

(m − r − 2, 2), v = v0,

(m − r, 0), v �= v0.

Let Gx = ResF/Q GSpin(Vx) and Dx be the hermitian symmetric domain
of oriented negative 2-planes in Vx,v0 . Then we have a natural embedding of
Shimura data

(Gx,Dx) ↪→ (G,D).

Let g ∈ G(A f ). Define the special cycle Z(x, g)K on ShK (G,D) to be the
image of the composition

ShgK g−1∩Gx(A f )
(Gx,Dx) ↪→ ShgK g−1(G,D)

·g−→ ShK (G,D).

It admits complex uniformization

Z(x, g)K (C) 
 Gx(Q)\[Dx × Gx(A f )gK/K ].
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Let ϕK ∈ S (Vr
f ) be a K -invariant Schwartz function. Let T ∈ Symr (F)>0.

Define the (weighted) special cycle Z(T, ϕK ) on ShK (G,D) to be

Z(T, ϕK ) :=
∑

x∈G(Q)\V r

T (x)=T

∑

g∈Gx(A f )\G(A f )/K

ϕK (g−1x) · Z(x, g)K

∈ Zr (ShK (G,D))C.

12.3 Semi-global integral models M = MK at hyperspecial levels

Let p be a prime. Let ν be a place of F above p.We take K = ∏
v|p Kv×K p ⊆

G(Qp) × G(A
p
f ). Assume that

(H1) for each v|p, the group Kv is a hyperspecial subgroup of GSpin(Vv)(Fv)

(e.g., the stabilizer of a self-dual lattice 	v ⊆ Vv).
(H2) K p ⊆ G(A

p
f ) is an open compact subgroup.

ThenbyKisin [20] (p > 2) andKim–Madapusi–Pera [22] (p = 2), there exists
a smooth integral canonical model MK of ShK over the localization OF,(ν).
We remark that by thework ofLovering [34], these semi-global integralmodels
over OF,(ν) glue to an integral canonical model over the ring of S-integers of
F , for any S containing all finite places v where Kv is not hyperspecial.
We often fix the level K as above and writeM = MK for short.

12.4 The quadratic lattice of special endomorphisms V (AS)

From now on we assume that F = Q (thus ν = p, Fν = Qp, OF,(ν) = Z(p))
and p > 2. Assume that K p is the stabilizer of of a self-dual lattice 	p ⊆ Vp.
The Shimura datum (G,D) is of Hodge type, and there exists an embedding
of Shimura datum

(G,D) → (G̃ = GSp(C(V )),H)

into a symplectic Shimura datum [39, §3.5]. Let K̃ p ⊆ G̃(Qp) be the stabilizer
the lattice C(	p) ⊆ C(Vp). Let K̃ p ⊆ G̃(A f ) be an open compact subgroup
such that K p = K̃ p ∩ G(A f ). Then we obtain a finite unramified morphism
of Shimura varieties known as the Kuga–Satake morphism

ShK (G,D) → ShK̃ (G̃,H).

The Siegel modular variety ShK̃ (G̃,H) has a smooth integral model M̃ over
OF,(ν) via moduli interpretation of principally polarized abelian varieties
with K̃ p-level structures [39, §3.9]. Kisin’s integral canonical model M of
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ShK (G,D) over OF,(ν) is the normalization of the Zariski closure of ShK in
M̃ [39, Theorem 4.4] (moreover the normalization is redundant in view of the
recent work of Xu [58]).

Denote by (A, λ, η̄p) the pullback of the universal object on M̃ toM. Here

(i) (A, λ) is a principally polarized abelian variety (the Kuga–Satake abelian
variety),

(ii) η̄p is a K̃ p-level structure, i.e., an K̃ p-orbit of A
p
f -linear isomorphisms

of lisse A
p
f –sheaves

ηp : H1
ét(A, A

p
f )

∼−→ C(V ) ⊗F A
p
f .

For an M-scheme S, we denote by

V (AS) ⊆ End(AS) ⊗ OF,(p)

the space of special endomorphisms as defined in [39, Definition 5.11].
By [39, Lemma 5.12], V (AS) is equipped with a positive definite OF,(p)-

quadratic form such that f ◦ f = ( f, f ) · id. Let r ≥ 1. Given an
r -tuple x = [x1, . . . , xr ] ∈ V (AS)

r , define its fundamental matrix to be
T (x):=((xi , x j ))i, j ∈ Symr (OF,(p)).

12.5 Semi-global special cycles Z(T, ϕK )

Let r ≥ 1. We say a Schwartz function

ϕK =
⊗

v�∞
ϕK ,v ∈ S (Vr

f )

is p-admissible if it is K -invariant and ϕK ,p = 1(	p)r . Given such a p-
admissible Schwartz function ϕK and a nonsingular T ∈ Symr (F), define
the semi-global special cycle Z(T, ϕK ) overM as follows.

First consider a special p-admissible Schwartz function of the form

ϕK = (ϕi ) ∈ S (Vr
f ), ϕi = 1�i , i = 1, . . . , r, (12.5.0.1)

where �i ⊆ V f is a K -invariant open compact subset such that �i,p = 	p.

Notice that the prime-to-p part �(p)
i can be viewed as a subset

�
(p)
i ⊆ V

(p)
f = V ⊗F A

p
f ⊆ End(C(V ) ⊗F A

p
f ).

For an M-scheme S, define Z(T, ϕK )(S) to be the set of r -tuples x =
[x1, . . . , xr ] ∈ V (AS)

r such that
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(i) T (x) = T ,
(ii) ηp ◦ x∗i ◦ (ηp)−1 ∈ �

(p)
i , for i = 1, . . . , r . Here x∗i ∈ End(H1

ét(A, A
p
f ))

is induced by xi .

The functor S �→ Z(T, ϕK )(S) is represented by a (possibly empty)
Deligne–Mumford stackwhich is finite and unramified overM (cf. [23, Propo-
sition 1.3], [24, Proposition 2.5], [39, Proposition 6.13]), and thus defines a
cycle Z(T, ϕK ) ∈ Z∗(M). By definition Z(T, ϕK ) is nonempty only when
T ∈ Symr (OF,(p))>0. Notice that the generic fiber Z(T, ϕK )F of the special
cycle Z(T, ϕK ) is nonempty only when 1 ≤ r ≤ m − 2 (cf. [46, Proposi-
tion 3.6]), in which case it agrees with the special cycle Z(T, ϕK ) defined in
§12.2. When r = m − 1 = n and T ∈ Symr (OF,(p))>0, the generic fiber
Z(T, ϕK )F is empty, and Z(T, ϕK ) is supported in the supersingular locus
Mss

κν
of the special fiber Mκν (cf. [46, Proposition 3.7]).

For a general p-admissible Schwartz function ϕK ∈ S (Vr
f ) (which can

be written as a C-linear combination of special p-admissible functions, after
possibly shrinking K ), we obtain a cycle Z(T, ϕK ) ∈ Z∗(M)C by extending
C-linearly.

12.6 p-Adic uniformization of the supersingular locus of M

Let M̂ss be the completion of the base change MOF̆ν
along the supersin-

gular locus Mss
κν
. Then by [15, Theorem 7.2.4] (see also [19]), we have an

isomorphism of formal stacks over Spf OF̆ν
(the p-adic uniformization)

� : G ′(Q)\[RZG p ×G(A
p
f )/K p] ∼−→ M̂ss. (12.6.0.1)

Here G ′ = GSpin(V ′) for the nearby quadratic space V ′ ofV associated to the
place ν, and RZG p is the GSpin Rapoport–Zink space defined in §4.1. Notice
that G ′

p is the inner form of G p defined in §4.4 and thus G ′(Q) naturally acts
on RZG p via the embedding G ′(Q) ↪→ G ′

p(Fp); and G ′(Q) naturally acts on
G(A

p
f ) via the embedding G ′(Q) ↪→ G ′(Ap

f ) 
 G(A
p
f ).

12.7 p-adic uniformization of ̂Zss(T, ϕK )

Let r ≥ 1, T ∈ Symr (OF,(p))>0 and ϕK ∈ S (Vr
f ) be p-admissible. First

consider that ϕk is of the special form (12.5.0.1). Denote by Ẑss(T, ϕK ) the
completion of the base change Z(T, ϕK )OF̆ν

along its supersingular locus

Zss(T, ϕK ) := Z(T, ϕK )×Mκν
Mss

κν
, viewed as an element of K ′

0(M̂ss). For

a general p-admissible ϕK , we obtain an element Ẑss(T, ϕK ) ∈ K ′
0(M̂ss)C
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by extending C-linearly. For x ∈ V ′r , we may view x as a subset of V ′
p, which

gives the local special cycles Z(x) on RZG p defined as in §4.6.

Proposition 12.7.1 Assume that F = Q and p > 2. Assume that ϕK ∈
S (Vr

f ) is p-admissible (§12.5). Then for any T ∈ Symr (OF,(p))>0, the p-
adic uniformization isomorphism � in (12.6.0.1) induces the following identity
in K ′

0(M̂ss)C,

Ẑss(T, ϕK ) =
∑

x∈G ′(Q)\V ′r
T (x)=T

∑

g∈G ′
x(Q)\G ′(Ap

f )/K p

ϕK (g−1x) · �(Z(x), g).

(12.7.1.1)

Proof By the C-linearality, it suffices to treat the case of special Schwartz
functions ϕK = 1� as in (12.5.0.1), in which case the assertion amounts to an
isomorphism of formal stacks induced by the morphism �,

Ẑss(T, ϕK ) 
 G ′(Q)\
[ ⊔

x∈V ′r
T (x)=T

⊔

g∈G ′(Ap
f )/K p

g−1x∈�

(Z(x), g)
]
. (12.7.1.2)

Choose a point y0 ∈ M(κ̄) giving rise to the local unramified Shimura–Hodge
data of §4.1 by [15, Proposition 7.2.3]. Then y0 corresponds to a supersingular
abelian variety A0 over κ̄ togetherwith the level structureη

p
0 : H1

ét(A0, A
p
f )

∼−→
C(V ) ⊗F A

p
f . Its p-divisible group X = A0[p∞] gives rise to the framing

object of the Rapoport–Zink space RZG p . By [15, Remark 7.2.5], the space of
special quasi-endomorphisms V (A0) ⊗ Q is isomorphic to V ′.

The isomorphism � is explicitly described as follows (see the proof of
[15, Theorem 3.2.1] and [42, §6.14]). We fix a lift X̃ of X over OF̆ν

and

let Ã0 be the corresponding lift of A0. Let R ∈ ANilpOF̆ν
. Let (z, g) ∈

RZG p(R) × G(A
p
f )/K p. Then z corresponds to a p-divisible group X over

R with a quasi-isogeny ρX : X̃ ⊗OF̆ν
R → X . Let y = �(z, g) ∈ M̂ss(R).

Then y corresponds to an abelian scheme A over R such that

(i) there is a quasi-isogeny ρA : Ã0⊗OF̆ν
R → A inducing ρX on p-divisible

groups, which identifies V ′ 
 V (A0) ⊗ Q with V (A) ⊗ Q by x →
ρA ◦ x ◦ ρ−1

A .

(ii) the level structure on A is given by ηp = g−1(η
p
0 ◦ ρ∗

A) : H1
ét(A, A

p
f )

∼−→
C(V ) ⊗F A

p
f .

Let x ∈ V ′r such that T (x) = T . It then follows from (i) and (ii) that
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(i) z ∈ Z(x)(R) if and only if x ∈ V (A);
(ii) g−1x ∈ � if and only if ηp ◦ x∗ ◦ (ηp)−1 ∈ �(p).

Then by the definition of Ẑss(T, ϕK ), we know that� induces the isomorphism
in (12.7.1.2) after dividing the action of G ′(Q).

12.8 Arithmetic intersection number IntT, p(ϕK )

Assume T ∈ Symn(F)>0. Let t1, . . . , tn be the diagonal entries of T . Let
ϕK ∈ S (Vn

f ) be a special Schwartz function as in (12.5.0.1). Define

IntT,p(ϕK ):=χ(Z(T, ϕK ),OZ(t1,ϕ1) ⊗L · · · ⊗L OZ(tn,ϕn)) · log p,

(12.8.0.1)

where OZ(ti ,ϕi ) denotes the structure sheaf of the semi-global special divisor
Z(ti , ϕi ), ⊗L denotes the derived tensor product of coherent sheaves on M,
and χ denotes the Euler–Poincaré characteristic (an alternating sum of lengths
of OF,(ν)-modules). We extend the definition of IntT,p(ϕK ) to a general p-
admissible ϕK ∈ S (Vn

f ) by extending C-linearly.

12.9 Arithmetic Siegel–Weil formula: the semi-global identity

Now we are ready to prove our main semi-global application to the arithmetic
Siegel–Weil formula. Recall that m = n + 1 ≥ 3.

Theorem 12.9.1 Assume that F = Q and p > 2. Assume that ϕK ∈ S (Vn
f )

is p-admissible (§12.5). Then for any T ∈ Symn(F)>0,

IntT,p(ϕK )qT = cK · ∂EisT,p(z, ϕK ),

where cK = (−1)n

vol(K )
is a nonzero constant independent of T and ϕK , and vol(K )

is the volume of K under a suitable Haar measure on G(A f ).

Proof If T /∈ Symn(OF,(p)), then IntT,p(ϕK ) vanishes (asZ(T, ϕK ) is empty
by definition) and so does ∂EisT,p(z, ϕK ) by (11.2.0.2) and (3.4.9.2). So we
may assume that T ∈ Symn(OF,(p))>0. Since Z(T, ϕK ) is supported on the
supersingular locus, by (12.7.1.1) we know that

IntT,p(ϕK ) =
∑

x∈G ′(Q)\V ′n
T (x)=T

∑

g∈G ′
x(Q)\G ′(Ap

f )/K p

ϕK (g−1x)

·χ(RZG p ,Z(x1) ⊗L · · · ⊗L Z(xn)) · log p.
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Let N = RZ(0)
G p

be the connected GSpin Rapoport–Zink space in §4.5. Then
we have an isomorphism [15, §7.2.6]

G ′(Q)\[RZG p ×G(A
p
f )/K p] 
 G ′(Q)0\[N × G(A

p
f )/K p],

where G ′(Q)0 ⊆ G ′(Q) consists of elements whose spinor norm is a p-unit.
Hence

IntT,p(ϕK ) =
∑

x∈G ′(Q)0\V ′n
T (x)=T

∑

g∈G ′
x(Q)0\G ′(Ap

f )/K p

ϕK (g−1x)

·χ(N ,Z(x1) ⊗L · · · ⊗L Z(xn)) · log p.

By Theorem 4.15.1 and Remark 3.4.9, we have

χ(N ,Z(x1) ⊗L · · · ⊗L Z(xn)) · log p = cp · W ′
T,p(1, 0, ϕK ,p)

for an explicit constant cp independent of T and ϕK .
Since G ′(Q) acts on V ′ via its quotient G ′(Q) → SO(V ′)(Q), under

which G ′(Q)0 surjects onto SO(V ′)(Q), we know that G ′(Q)\V ′n =
SO(V ′)(Q)\V ′n . Thus

IntT,p(ϕK ) = cp · W ′
T,p(1, 0, ϕK ,p)

·
∑

x∈SO(V ′)(Q)\V ′n
T (x)=T

∑

g∈G ′
x(Q)0\G ′(Ap

f )/K p

ϕK (g−1x).

Since T is nonsingular, we know that there exists a unique orbit in
SO(V ′)(Q)\V ′n with T (x) = T . Since V ′

x is 1-dimensional, we know that
G ′

x is the center Z ′ 
 Gm ⊆ G ′. Since G ′/Z ′ 
 SO(V ′) and the function ϕK
is invariant under the action of G ′

x(Q) and Z ′(Ap
f ), it follows that there exists

a Haar measure dg on G ′(Ap
f ) independent of T and ϕK such that

IntT,p(ϕK ) = cp · W ′
T,p(1, 0, ϕK ,p) · 1

vol(K p)
·
∫

SO(V ′)(Ap
f )

ϕK (g−1x) dg.

By [30, Proposition 1.2], we have

∫

SO(V ′)(Ap
f )

ϕK (g−1x) dg = cp,∞ ·
∏

v �=p,∞
WT,v(1, 0, ϕK ,v),
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for a nonzero constant cp,∞ independent of T and ϕK . Thus we have

IntT,p(ϕK ) = cpcp,∞

vol(K p)
· W ′

T,p(1, 0, ϕK ,p) ·
∏

v �=p,∞
WT,v(1, 0, ϕK ,v).

Since T > 0, by [5, Proposition 4.3 (ii)] we have qT = c∞ ·WT,∞(z, 0, ϕ∞),
where c∞ is a nonzero constant independent of T . The result then follows
from the factorization (11.2.0.2) after scaling the Haar measure by cpc∞cp,∞.
Notice that the normalization factor (−1)n comes from theWeil constant γ n

V
=

(−1)n as V is incoherent (so that vol(K ) > 0).
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