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Abstract We formulate and prove a local arithmetic Siegel-Weil formula
for GSpin Rapoport—Zink spaces, which is a precise identity between the
arithmetic intersection numbers of special cycles on GSpin Rapoport—Zink
spaces and the derivatives of local representation densities of quadratic forms.
As afirst application, we prove a semi-global arithmetic Siegel-Weil formula
as conjectured by Kudla, which relates the arithmetic intersection numbers of
special cycles on GSpin Shimura varieties at a place of good reduction and
the central derivatives of nonsingular Fourier coefficients of incoherent Siegel
Eisenstein series.
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1 Introduction
1.1 Background

The classical Siegel-Weil formula [44,45,57] relates certain Siegel Eisenstein
series to the arithmetic of quadratic forms, namely it expresses special values of
these series as theta functions—generating series of representation numbers of
quadratic forms. Kudla [30,31] initiated an influential program to establish the
arithmetic Siegel-Weil formula. In particular, the nonsingular part of Kudla’s
conjectural formula relates the central derivative of nonsingular Fourier coef-
ficients of Siegel Eisenstein series to the arithmetic intersection number of n
special divisors on orthogonal Shimura varieties associated to GSpin(n—1, 2).
The arithmetic Siegel-Weil formula was established by Kudla, Rapoport and
Yang [25,27,28,30] for n = 1, 2. The archimedean part of the formula for all
n was also known by Garcia—Sankaran [10] and Bruinier—Yang [5]. However,
for the nonarchimedean part for higher n, the only known cases were when
n = 3 due to Gross—Keating [8] (cf. [55]) and Terstiege [51], and some partial
results when the arithmetic intersection has dimension O [5,23,24].

The main result of this paper proves a semi-global (at a prime p) version
of the arithmetic Siegel-Weil formula for all n. To achieve this, we formulate
and prove a local arithmetic Siegel-Weil formula for GSpin Rapoport—Zink
spaces, which is a precise identity between the arithmetic intersection num-
bers of special cycles on GSpin Rapoport—Zink spaces and the derivatives of
local representation densities of quadratic forms. Such a local formula is an
orthogonal analogue of the Kudla—Rapoport conjecture for unitary Rapoport—
Zink spaces [26, Conjecture 1.3] recently proved in our companion paper
[37]. Compared to the unitary case in [37], several new difficulties arise in the
orthogonal case and we highlight some of them in §1.4. In fact, the geometric
difficulty in the higher dimensional orthogonal case was one of the reasons
Kudla and Rapoport shifted their perspective to the unitary case [26].

Via the doubling method of Piatetski-Shapiro and Rallis, the arithmetic
Siegel-Weil formula is intimately tied to the arithmetic inner product formula,
which relates the central derivative of the standard L-function of cuspidal
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On the arithmetic Siegel-Weil formula 1355

automorphic representations on metaplectic/orthogonal groups to the height
pairing of cycles on orthogonal Shimura varieties constructed from arithmetic
theta liftings. It can be viewed as a higher dimensional generalization of the
Gross—Zagier formula [11], and an arithmetic analogue of the Rallis inner
product formula. We hope to apply the main results in this paper to study
the arithmetic inner product formula in the future (cf. [32,33] by Liu and
one of us in the unitary case). It is also worth mentioning several other recent
advances in arithmetic Siegel—Weil formula in the unitary case, including cases
of the singular term formula [2] by Bruinier—Howard and the higher derivative
formula over function fields [7] by Feng, Yun and one of us, and it would be
interesting to study the (arguably more difficult) orthogonal analogues.

1.2 Local arithmetic Siegel-Weil formula

Let p be an odd prime. Let ' = Q, with residue field k = IF, and a uni-
formizer w. Let F be the completion of the maximal unramified extension
of F.Letm = n + 1 > 3 be an integer. Let ¢ € {£1}. Let V = H}, be a
self-dual quadratic OFp-lattice of rank m with x (V) = e. Here x (V) = +1
(resp. —1) if the the discriminant disc(V') is a square (resp. nonsquare) in O ;
(see Notations §2.1). Associated to V we have a local unramified Shimura—
Hodgedata (G, b, i, C),where G = GSpin(V), b € G(I:”) is a basic element,
u : G, — G is a certain cocharacter, and C = C(V) is the Clifford alge-
bra of V. Associated to this local unramified Shimura—Hodge data, we have
a GSpin Rapoport—Zink space RZg = RZ(G, b, u, C) of Hodge type con-
structed by Howard—Pappas [15] and Kim [18]. The space RZs is a formal
scheme over Spf O, formally locally of finite type and formally smooth of
relative dimension n — 1 over Spf O (see §4.1 for more details), and admits a

decompositionRZg = | |,c7 Rzg) into (isomorphic) connected components.

Define N' = N = Rzg)) to be a connected component of RZ, a formal
scheme of (total) dimension n (Definition 4.5.1).

Let V = V? be the unique (up to isomorphism) quadratic space over F of
dimension m, Hasse invariant € (V) = —e(V) = —1 and x (V) = x(V) = &.
Then V can be identified as the space of special quasi-endomorphisms V C
End(X) ® Q, where X is the framing p-divisible group over k for RZ (§4.2).
For any subset L C 'V, the special cycle Z(L) (Definition 4.6.1) is a closed
formal subscheme of A/, over which all special quasi-endomorphisms x € L
deforms to endomorphisms.

Let L € Vbe an OFp-lattice of rank n (always assumed to be non-degenerate
throughout the paper, see Notations §2.1). We now associate to L two inte-
gers: the arithmetic intersection number Int® (L) and the derived local density
0Den®(L).
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1356 C. Li, W. Zhang

Let xi,...,x, be an Op-basis of L. Define the arithmetic intersection
number

Int* (L):=x (N, Oz @ - @ Oz(x,), (1.2.0.1)

where Oz(,,) denotes the structure sheaf of the special divisor Z(x;), QL
denotes the derived tensor product of coherent sheaves on N, and x denotes
the Euler—Poincaré characteristic. It is independent of the choice of the basis
X1, ..., Xx, and hence is a well-defined invariant of L itself (Definition 4.11.4).

For M another quadratic Op-lattice (of arbitrary rank), define Rep,, ; to
be the scheme of integral representations , an Op-scheme such that for any
Ofp-algebra R, Repy, ; (R) = QHom(L ®o, R, M ®0, R), where QHom
denotes the set of quadratic module homomorphisms. The local density of
integral representations is defined to be

_ #Repy (Op /@)
Den(M, L):= NI_I)IEOO pN~dim(RepM,L)F

Then Den(H,, . ,,, L) is a polynomial in p~* with Q-coefficients. Define the
(normalized) local Siegel series of L to be the polynomial Den® (X, L) € Z[X]
(Theorem 3.4.5) such that for all k > 0,

Den(H,;, ., L)
Den(H?, HE)'

Den®(p~*, L) =
+2k°

Since L C V is an Op-lattice of rank n, it satisfies a functional equation
relating X < % (Theorem 3.4.6, Lemma 3.7.2 (1)),

1
Den®(X, L) = —X"4®) . Den® <}, L) .

Here val(L) is the valuation of L, see Notations §2.1. We thus consider the
derived local density

Den®(X, L).

d
dDen®(L):= — —

Our main theorem in Part 1 is the proof of a local arithmetic Siegel-Weil
formula, which asserts an exact identity between the two integers just defined.

Theorem 1.2.1 (Theorem4.15.1) Let L C V be an OFp-lattice of rank n. Then

Int®(L) = dDen®(L).
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On the arithmetic Siegel-Weil formula 1357

We refer to Int®(L) as the geometric side of the identity (related to the
geometry of Rapoport—Zink spaces and Shimura varieties) and dDen? (L) the
analytic side (related to the derivatives of Eisenstein series and L-functions).

1.3 Semi-global arithmetic Siegel-Weil formula

Next let us describe a semi-global application of our local theorem. We now
switch to global notations. Let F = Q and A = Ap its ring of adeles. Let
m = n+1 > 3 be aninteger. Let V be a quadratic space over F of dimension m
and signature (n—1, 2). Let G = GSpin(V). Associated to G there is a Shimura
datum (G, {hg}) of Hodge type. Let K = [[, K, S G(Ay) be an open
compact subgroup. Then the associated Shimura variety Shx = Shx (G, {hg})
is of dimension n — 1 and has a canonical model over its reflex field F = Q.

Assume that p is an odd prime such that K, is a hyperspecial subgroup of
G (Fp), or equivalently K;, = GSpin(A ;) for a self-dual lattice A, C V), :=
V ®F Fp. Then by Kisin [20], there exists a smooth integral canonical model
M of Shg over the localization OF (p).

Let V be the incoherent quadratic space over A of rank m nearby V, namely
V is positive definite and V,, = V,, for all finite places v. Let pg € & (V’})
be a factorizable Schwartz function. We say that gk is p-admissible if ¢k is
K -invariant and ¢g , = I(Ap)n. Let T € Sym,(F)~¢ be a positive definite
symmetric matrix of size n. Associated to (T, ¢x) we construct semi-global
special cycles Z(T, pg) over Mg (§12.5). Analogous to the local situa-
tion (1.2.0.1), we may define its semi-global arithmetic intersection numbers
Int7 ,(¢k) at p (§12.8).

On the other hand, associated to ¢ = px ® ¢ € . (V"), where ¢ is the
standard Gaussian function, there is a classical incoherent Eisenstein series
E(z,s, k) (§11.4) on the Siegel upper half space

Hl’l = {Z =X + ly L Xe Symn(FOO)v y € Symn(FOO)>0}v

where Foo = F ®@ R 2~ R. This is essentially the Siegel Eisenstein series
associated to a standard Siegel-Weil section of the degenerate principal series
(§11.1). The Eisenstein series here has a meromorphic continuation and a
functional equation relating s <> —s. The central value E(z, 0, pg) = 0 by
the incoherence. We thus consider its central derivative

, d
BEls(Z,(pK):Za E(z,s, ¢k).
s=0
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1358 C. Li, W. Zhang

Associated to the standard additive character ¢ : A/F — C*, it has a decom-
position into the central derivative of the Fourier coefficients

0Eis(z.gx)= ) 9Eisr(z k).
T eHerm,, (F)

When T is nonsingular, the Euler factorization of 7-th Fourier coefficients
further gives a decomposition (§11.3)

OEist (2. ¢x) = ) 9EisT.u(Z, 9x).

v

Now we can state our application to the semi-global arithmetic Siegel—
Weil formula, which asserts an identity between the semi-global arithmetic
intersection number of special cycles and the derivative of nonsingular Fourier
coefficients of the incoherent Eisenstein series.

Theorem 1.3.1 (Theorem 12.9.1) Assume that px € . (V’}) is p-admissible.
Then for any T € Sym, (F)~o,

Intr ,(px)q" = ck - IEist p(Z, 9k),

where g7 = lﬂoo(% r7z) = ™72 cp = 50_1—(11):) is a nonzero constant
independent of T and ¢k, and vol(K) is the volume of K under a suitable

Haar measure on G (A ).

Remark 1.3.2 In the unitary case, we also proved a global version (including
terms for all 7 and all places v) of the arithmetic Siegel-Weil formula [37,
Theorem 1.3.2], at least for test functions ¢x with nonsingular support at two
split places. This global version is more difficult in the orthogonal case due to
several complications, most notably the lack of the analogue of split places and
the inevitability to treat the place p = 2. We hope to return to these questions
in the future.

Remark 1.3.3 The assumption F' = Q,, (p odd) in Theorem 1.2.1 is required
to apply results from [15] and [18]. It would be very interesting to relax this
assumption to more general p-adic fields F by generalizing [15] and [18] to
“relative” GSpin Rapoport—Zink spaces and proving a comparison between the
relative and absolute GSpin Rapoport—Zink spaces of Weil-restricted groups
Resr/q, GSpin. Once this is done, one should also be able to relax the assump-
tion F' = Q in Theorem 1.3.1 to more general totally real fields.
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On the arithmetic Siegel-Weil formula 1359

1.4 Strategy and novelty of the proof of the main Theorem 1.2.1

Our general strategy is parallel to the unitary case proved in [37] (see also
several simplifications in [33]). More precisely, fix an Op-lattice L" C V of
rank n — 1 and denote by W = (L?p)L C V. Consider functions on L” x Wan_

Int;»(x):=1Int*(L" 4 (x)), 08Den,s(x):=dDen’(L" + (x)),

where W2 := {x € W : (x, x) # 0} is the set of anisotropic vectors. Then it
remains to show the equality of the two functions Int;» = dDen;». To show
this equality, we find a decomposition

Int;» =Intys s +Intzp 5, 9Deny» = dDeny» 4 + dDenpy 4

into “horizontal” and “vertical” parts such that the horizontal identity
Int;» ,» = dDenj» 4 holds and the vertical parts Int;» 5 and dDenj 4
behaves well under Fourier transform.

In the unitary case, the hermitian space W is 1-dimensional over F and we
found thatboth Int;» 5 and dDen;» , are Schwartz functions on V, and satisfy
the remarkable properties that

Int;, , = —Int;» », supp(dDeny, ;) C V°, (1.4.0.1)
where ~ denotes the Fourier transform on V, and V° := {x € V : (x,x) €

OF} is the integral cone. Equation (1.4.0.1), together with the induction on
the valuation of L” and the uncertainty principle, allows us to conclude that
Int;p = dDenyp .

In the orthogonal case, the quadratic space W is 2-dimensional over F.
When W is anisotropic, both Int; » ;- and dDen,» , are still Schwartz functions
on V. But when W is isotropic, both Int;» , and dDen;»  in general have
singularities near the isotropic cone of W and are no longer Schwartz functions
on V. On the geometric side this reflects the fact that Z (L") is no longer quasi-
compact when W is isotropic. Nevertheless we may still show that Int;» o is
locally integrable and show its Fourier invariance (up to a sign) as in (1.4.0.1),
but now understood as a distribution on V. However, on the analytic side
the singularities seem to cause essential difficulty in directly extending the
argument in [37] or [33] for controlling supp(aDgl\LM/) asin (1.4.0.1).

To overcome this difficulty, we instead perform a partial Fourier transform
along L; and consider new functions on W?",
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1360 C. Li, W. Zhang

Intibj/(x) = /L7 Int;» 4 (y + x)dy,

F

8Denib’7/(x) = be dDenys 4 (y + x)dy.

F
On the geometric side, the Fourier transform Intib v
with the restriction of I@ to W. Now the advantage is that the new func-
tion Intib ,, enjoys extra invariance under the action of the orthogonal group
O(W)(F) and the scalars O; . Using the Weil representation and the theory of
newforms for SL,(F), we completely classify certain subspaces of invariant
distributions on W to which IntJL-b ,» belongs (Proposition 9.1.3, which may
be of independent interest). In particular, we observe that a certain recurrence
relation is satisfied for the values of In’[i-h , (Proposition 9.2.3). On the analytic
side, we directly verify that the same recurrence relation is also satisfied for
8DenJL-b ¥ (Proposition 8.1.2) via involved lattice-theoretic calculations which
occupy §8. Finally, the induction on the valuation of L” supplies the same
initial values for the recursions on both sides, and allows us to conclude that
Int;p o = 0Denyp .

The strategy outlined above is a reminiscence of the uncertainty principle
when W is anisotropic, but is more refined when W is isotropic. We end
by mentioning several technical complications compared to the unitary case
when executing this strategy. There are two (instead of one) relevant ambient
quadratic spaces V = V¢ of a given dimension m, which we have emphasized
with the superscript ¢ € {£1}. On the analytic side, we extend the results of
[6] and [16] to treat both cases ¢ € {1} uniformly in §3, and the numerology
is more complicated than the unitary case. On the geometric side, the GSpin
Rapoport—Zink spaces is of Hodge type (instead of PEL type) which makes
several proofs more technical. In particular, we provide proofs of two results
on the vertical parts which are even new for the unitary case (see Remarks 6.1.2
and 7.4.3). Also the horizontal parts of special cycles are indexed by certain
lattices of type < 2 (instead of type < 1), which we call horizontal lattices
(see Definition 3.8.1), and cause more complicated numerology as well. In
particular, the horizontal identity eventually reduces to the case n = 3 and
& = +1 (instead of n = 2).

1L
of Intva,V on W agrees

1.5 The structure of the paper
In Part 1, we first prove necessary background results on both the analytic

side (§3) and the geometric side (§4—§6) of the local arithmetic Siegel-Weil
formula. The Fourier invariance on the geometric side is proved in §7. The
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recurrence relations satisfied by the partial Fourier transform on the analytic
side is proved in §8. Finally in §9, we establish results on invariant distributions
on 2-dimensional quadratic spaces and prove the main Theorem 1.2.1. In Part 2,
we first review incoherent Eisenstein series (§11), semi-global integral models
of GSpin Shimura varieties and their special cycles (§12). We then apply the
local results in Part 1 to prove the semi-global arithmetic Siegel-Weil formula
(Theorem 1.3.1).

For the sake of readability, we make an effort to ensure that the notations
and the structure of this paper are parallel to those of the companion paper [37]
in the unitary case. We always write out the complete statements, and include
details when a proof differs from the parallel proof in [37] or point it out when
the same proof of [37] applies verbatim.

Part 1. Local arithmetic Siegel-Weil formula

2 Notations and conventions
2.1 Notations on quadratic lattices

Let p be an odd prime. Let F' be a non-archimedean local field of residue
characteristic p, with ring of integers Op, residue field k = F, of size g,
and uniformizer @w. Let val : F — 7Z U {00} be the valuation on F and
|-| : F — Rxqbe the normalized absolute value on F'. Let F be the completion
of the maximal unramified extension of F', and O its ring of integers. Let
o € Aut(Oj) be the lift of the absolute g-Frobenius on «. We further assume
that ' = Q, when dealing with the geometric side (the exceptions are §3, §8,
§9.1, which concern only the analytic side).

Let L be a quadratic Op-lattice of rank n with symmetric bilinear form
(, ). We say L is non-degenerate if the extension (, ) on the quadratic space
Lr := L ®o, F is non-degenerate. Unless otherwise specified, all quadratic
O r-lattices are assumed to be non-degenerate throughout the paper. We denote
by LY := {x € L : (x, L) € Op} its dual lattice under (, ). We say that
L is integral if L € LY. If L is integral, define its fundamental invariants to
be the unique sequence of integers (aj,...,ay) suchthat 0 < a; < --- <
ay, and LV/L =~ ®!_,0f/mw® as Op-modules; define its valuation to be
val(L):=Y""_, a;; and define its type, denoted by 7(L), to be the number of

nonzero terms in its invariant (ay, ..., a,). Denote by val(x) := val((x, x))
for any x € L. A standard orthogonal basis of L is an orthogonal OFf-basis
{e1,..., ey} of L such that val(e;) = a;, which always exists. Say L is self-

dual if L = LY. Say L is minuscule or a vertex lattice if it is integral and
LY € w~'L. Note that L is a vertex lattice of type 7 if and only if it has
fundamental invariants (09, 1®) if and only if L ' LY C w 'L, where
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1362 C. Li, W. Zhang

C! indicates that the Opg-colength is equal to z. Notice that L is self-dual if
and only if L is a vertex lattice of type O.
The determinant of L is defined to be

det(L) := det((xi, x;)} j_) € F*/(0})?

where {x1, ..., x,} is an Op-basis of L, and the discriminant of L is defined
to be

disc(L) := (1)) . det(L) € F*/(0%)>.

Notice that val(L) = val(disc(L)).
Let x = (5)F ¢ FX/(FX)2 — {£1, 0} be the quadratic residue symbol.
Define

x(L) := x(disc(L)) € {£1,0}.

Notice that x (L) = Oifand only if val(L) is odd. If L is self-dual, then x (L) €
{1} is the image of disc(L) under the isomorphism O /(0;)? = {+£1}.

Let W be a (non-degenerate) quadratic space over F of dimension m with
symmetric bilinear form ( , ). Similar invariants are defined for quadratic
spaces over F, and we denote them by

det(W) € FX/(F*)?, disc(W) € FX/(F*)?, x(W) € {1, 0}.

Then x (W) = +1 if and only if disc(W) = 1. Also x(L) = x(W) for any
Op-lattice L € W of full rank. Define the Hasse invariant of W to be

eW)y:= [] @iupre i),

I<i<j<m

where (, Vg : F*/(F*)? x F*/(F*)* — {+1} is the Hilbert symbol, and
u; = (e;, e;) for an orthogonal basis {eq, ... e} of W.

Recall that quadratic spaces W over F are classified by its dimensionm > 1,
its discriminant disc(W) and its Hasse invariant € (W). When m > 3, disc(W)
and € (W) can take arbitrary values. When m = 2, the case disc(W) = 1 and
€(W) = —1is excluded. When m = 1, the case (W) = —1 is excluded. The
space W admits a self-dual lattice if and only if e(W) = +1 and x (W) # 0.

For k € Z, denote by

k= {x e Wval(x) > k), W= {x e W:val(x) = k}.
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On the arithmetic Siegel-Weil formula 1363

Denote by
we:=w=2 we.=wzl, W¥.={xeW:(x,x) # 0},

the integral cone, the positive cone and the set of anisotropic vectors of W
respectively. For a quadratic Op-lattice L, define L° := LN(LF)°and L°° :=
LN (Lp)°°.

The set of vertex lattices of type 7 in W is denoted by Vert’ (W).

For ¢ € {1} and m > 1, denote by H;, the self-dual Of-lattice of rank m
with x (H})) = ¢ (form = 0, only HHJ{ = 0 1is allowed by convention). Denote
by V¢ the quadratic space over F with

x(Vi)=¢ and €(V;)=—L.

2.2 Notations on functions

Let W be a (non-degenerate) quadratic space over F'. Fix an unramified additive
character ¥ : F — CX. For an integrable function f on W, we define its
Fourier transform f to be

Fo) = /W FOW (e )dy, x € W.

We normalize the Haar measure on W to be self-dual, so f (x) = f(—x). For
an Op-lattice A € W of full rank, we have

1o =vol(A)1,v, and vol(A) = [AY : A]7V/2 =g W2 (22.0.1)

Note that val(A) can be defined for any lattice A (not necessarily integral) so
that the above equality for vol(A) holds.

Denote by . (W) the space of Schwartz functions (i.e., compactly supported
locally constant functions) on W. Denote by (W) := Hom(. (W), C) the
space of distributions on W (the linear dual of .(W)). Any Schwartz function
is integrable. The Fourier transform preserves .¥’(W) and induces a Fourier
transform on 2 (W) such that f"(f) = T(f) forany T € (W), f € LS (W).
Denote by supp(T') the support of the distribution 7 (the complement of the
largest open subset on which 7' = 0).

For any open dense subset 2 € W, denote by LIIOC(Q) the space of locally
integrable functions on €2 (i.e., integrable on any compact open subset of €2).
A function ¢ € Ll (W) gives a distribution Ty € Z(W) represented by ¢,

loc

ie., Ty(f) = fQ ¢ (x) f(x)dx for any f € .(W). By abuse of notation, we
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1364 C. Li, W. Zhang

often view ¢ € LllOC (€2) as a distribution on W and write ¢ (resp. ¢3) instead
of Ty (resp. f”q;).

2.3 Notations on formal schemes

Denote by ANilpOF the category of noetherian O ;-algebras in which @ is
nilpotent. Denote by ANilpfOF the category of noetherian adic O j-algebras in

which @ is nilpotent. Denote by ANilpfg;‘ C ANilpfOF the full subcategory
consisting of O jz-algebras which are formally finitely generated and formally
smooth over O/ @k for some k > 1. Denote by Algo; the category of
noetherian o -adically complete O j-algebras.

Let X be a formal scheme. Denote by X™¢ the underlying reduced scheme.
For closed formal subschemes Zi, ..., Z,, of X, denote by Ul’.”:1 Z; the formal
scheme-theoretic union, i.e., the closed formal subscheme with ideal sheaf
ﬂ;.”le z;, where 7z, is the ideal sheaf of Z;. A closed formal subscheme on X
is called a Cartier divisor if it is defined by an invertible ideal sheaf.

Let X be a formal scheme over Spf Oj. Then X defines a functor on
the category of Spf Oj-schemes (i.e. Op-schemes on which @ is locally
nilpotent). For R € ANilpfOﬁ with ideal of definition 7, write X (R) :=
1(iLnn X (Spec R/1"™).For R € Algoﬁ, write X (R) := 1(211” X (Spec R/aw").

When X is noetherian, denote by K g (X) the Grothendieck group (modulo
quasi-isomorphisms) of finite complexes of coherent locally free O x-modules,
acyclic outside Y (i.e., the homology sheaves are formally supported on Y'). As
definedin [59, (B.1), (B.2)], denote by F' K g (X) the (descending) codimension
filtration on KOY (X), and denote by Gr’ Kg (X) its i-th graded piece. As in
[59, Appendix B], the definition of Kg(X), Fi KOY(X) and Gr' Kg(X) can be
extended to locally noetherian formal schemes X by writing X as an increasing
union of open noetherian formal subschemes. Similarly, we let K;(X) denote
the Grothendieck group of coherent sheaves of Ox-modules. Now let X be
regular. Then there is a natural isomorphism Kg (X) ~ K(’)(Y ). For closed

L L
formal subschemes Z, . .., Z,, of X, denote by Z1 Ny --- Nx Z, (or simply
L L
Z1 N --- N 2Z,) the derived tensor product Oz, @%X e GZ%X Oz, , viewed
as an element in K()Z‘m"'mz’” (X).

For F a finite complex of coherent Ox-modules, we define its Euler—
Poincaré characteristic

x (X, F) = Z(—l)iﬂ' length,, H' (X, Hj(F))
ij
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if the lengths are all finite. Assume that X is regular with pure dimension
n. If ;i € F’iKOZi (X) with ). r; > n, then by [59, (B.3)] we know that
x (X, ®1L Fi) depends only on the image of F; in Gr’ KOZ "(X). In fact, we
will only need this assertion when X is a scheme (cf. Remark 7.6.11). When
X is a formal scheme, the assertion holds trivially when one of the r; is dim X;
this special case will be used repeatedly.

2.4 Conventions

Unless otherwise specified, we will denote by L an Og-lattice of rank n, L
an Op-lattice of rank n — 1, and A an Op-lattice of full rank m in a quadratic
space of dimension m. Unless otherwise specified, all O -lattices are assumed
to be non-degenerate.

Starting from §4, we fix m = n + 1 > 3 and ¢ € {£1}. For brevity we
will suppress the superscript ¢ and the subscripts m and n when there is no
confusion, so V = Vi , N = N?, Int(L) = Int®(L), dDen(L) = dDen®(L),
Den’(1, L) = Den’*(1, L), Hor(L") = Hor? (L") and so on.

3 Local densities of quadratic lattices
3.1 Local densities for quadratic lattices
Definition 3.1.1 Let L, M be two quadratic Op-lattices. Let Rep,, ; be the

scheme of integral representations , an Op-scheme such that for any Op-
algebra R,

Repy, 1 (R) = QHom(L ®o, R, M ®o; R), (3.1.1.1)

where QHom denotes the set of quadratic module homomorphisms. The local
density of integral representations is defined to be

_ #Repy, (Op/w™)
Den(M, L):= Nl_ljjrloo gV dmRepy )F

Note that if L, M have rank n,m respectively and the generic fiber
(Repys 1 )F # 9, thenn < m and

dim(Repy, ;) F = dim Oy, — dim Oy, —p,

_ (’") _ (’" _”) _n@m-n=D 110
2 2 2
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Our next goal is to obtain an explicit formulas for Den(H,;,, L) (Lemma
3.3.2). To do so we need some preliminaries on quadratic spaces over finite
fields.

3.2 Quadratic spaces over finite fields

Let V be a non-degenerate quadratic space over k of dimension m. Let
x (V) € {£1} be the image of its discriminant disc(V) € «*/(x*)* under
the isomorphism «* /(k ) = {£1}. By convention, if V = 0 then det(V) =
disc(V) = 1 and x (V) = +1. Denote by O(V) the orthogonal group of V.
Then we have the well-known formula

" m/2—1 )
261(2)(1 —x(V)- q—m/Z) [T (a1— q_Z’), m is even,
#O(V)(K) = . (n—1))2 i=1
261(2) [T (1—q7%), m is odd.
i=1

This can be uniformly written as

#0(V)(0) =20 (1 —sn(V)g™?) ] a-¢2) G201

1<i<m/2

=2¢D A +sgn(V)gH T a-¢7%)., (3202

I<i<m/2
where we define

x(V), miseven,

V):=
sen(V) {0, m is odd.

Notice the formula is true even for m = 0 when interpreted as (3.2.0.2).
More generally, for a possibly degenerate quadratic space U over k, we take
an orthogonal decomposition

U=Uy0U, (3.2.0.3)

where Uy is non-degenerate and U] is the radical of U, and define

x (Up), dim Uy is even,
sgn(U) := sgn(Uo) = 0 dim Up is odd (3.2.04)
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This is independent of the decomposition (3.2.0.3). Similarly, define

0, dim Uy is even,
sen’(U) := meer e (320.5)
x (Up), dim Uy is odd.

These two definitions can be written uniformly: for any integer m, define

x(Up), dimUy=m (mod 2),

. (3.2.0.6)
0, dmUy=m+1 (mod 2).

sgn, (U) := {

Then sgn = sgn,,, and sgn’ = sgn 4.
The following lemma is a generalization of [21, §5.6 Exercise 4].

Lemma 3.2.1 Let U be a quadratic space over k of dimension n whose rad-
ical has dimension t. Let V be a non-degenerate quadratic space over k of
dimension m > n. Let O(U, V) be the set of isometries from U into V. Then
O(U, V) has size

n2m—n—1)

#O(U,V)=q 2z (1 —sgn(V)-q¢ "*) (1 — x(V)sgn,, (V)
.q—(m—n—t)/Z)—l . 1_[ (1 _ q—Zi).

(m—n—t)/2<i<m/2

Namely,

n2m—n—1)

#O(U,V)=q 2 (1 —sgn(V)-q"?
(14 x(V)sgn(U) - g~m=—n=0/2)

I1 (1 —g% ™), m is even,
I<i<(n+1)/2

‘ (14 x(V)sgn'(U) - g~ m—n=0/2)
(1 —g*=mD)y " m is odd.

I<i<(n+t+1)/2

Proof The group O(V)(x) acts transitively on O(U, V). Fixing an isometry
¢ € O(U, V) and identifying U as a quadratic subspace of V using ¢, we find
the stabilizer of O(V') on ¢ is isomorphic to

(geO(V):gly=1}={geOWUy) : gly, =1} =: H.

Here Uy, U are as in decomposition (3.2.0.3) and UOl C V is the orthogonal
complement of Up. Notice that Uy C UOL is totally isotropic. Let U; be the
orthogonal complement of U in Ud-. LetP =MN C O(Ud-) be the parabolic
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subgroup stabilizing the flag 0 C U; C U, C Uol. Then H = M'N C P,
where M’ € M >~ GL(U;) xO(U,/ Uy) is the subgroup 1 x O(U,/ U). Notice
that we have an isomorphism as affine varieties N = Hom(Uy, Uy/U;) X
A2(Uy). It follows that the number of isometries is equal to

#O(V) (k)

~ #O(Ua/U)) (k) - #Hom(Uy, U/ Up) (k) - # A2 (U (k)

Notice that dim V = m,dim U,/U; = m —n — t, and
#H __ _t(m—n—t) 2 _ (Z)
om(Uy, U2/ U (k) = ¢ s #ATWUDK) =g,

We compute

#O(V)(K)_ n(ZmEn—l)
#H(k)
(I=sen(V)-q™?) [ (=g~

I<i<m/2

(1 —sgn(Ua/Uy) - g=m=n=0/2) I1 (1—g=2)

I<i<(m—n—t)/2

n2m—n—1)

=q 2 -(I—sgn(V)-q"?)
(1 + sgn(Up/Uy) - g~ """ 017 [T a-a

(m—n—t)/2<i<m/2
Notice that

I1 (1 — g™y, m is even,

1_[ (1— q_Zi) _ J1si<@+n)2 )
| I (1 —g%=m+Dy " 1 is odd.
(m—n—t)/2<i<m/2 I<i<(n+t+1)/2

Moreover,

x(V)-sgn(U), miseven,

sgn(Uz/ Uy) = sgn(Uy) x (V) -sgn’(U), misodd.

This completes the proof. O

We deduce the following (well-known) counting formula for totally
isotropic subspaces.
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Lemma 3.2.2 (number of totally isotropic subspaces) Let V be a non-
degenerate quadratic space over k of dimension m. Let Sp(V) be the set
of totally isotropic k-subspaces of dimension b in V, and Sp(V) := #Sp(V).
Then

@™ = x(V)@"*P + x (V) TTZ g% = 1)

b (qi —1
Sp(V) = M=) =12 — 11;1121(61 )
[T-i@ =1

, mis even,

m is odd.

Proof The group O(V)(k) acts transitively on the set Sp(V). Fix a totally
isotropic subspace U € Sp(V), then we have a surjection

oW, V) — Sp(V), ¢ o)

with each fiber in bijection with GL(U)(x). Hence S, (V) = %. There-
fore by Lemma 3.2.1, we know that S, (V') equals

"7 (1 —sgn(V) - g~ (1 — x (V) sgn,, (U) - g~ m=2)/2)=1
Tlon-2y/2<i<mp (1 =47
" TT7= (1 —q)

which simplifies to the desired formula, as in this case x(V)sgn,,(U) =
sgn(V) is equal to x (V) when m is even and is equal to O when m is odd. O

We record some consequences of Lemma 3.2.2, which will be used through-
out this article often without explicit reference.

Corollary 3.2.3 Let V be a non-degenerate quadratic space over k of dimen-
sion m.

(1) The number of isotropic lines in 'V is equal to

(q"* = x (V)@ + x (V)

N , miseven,
SIV) = me1 1=

1 .
, m is odd.

qg—1
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In particular,

2, m=2, x(V)=+1,
0, m=2, x(V)=-1,
S1(V)=1qg+1, m=3,

(g+ D% m=4, x(V)=+1,
G2+1, m=4, x(V)=—1.

(i) The number of isotropic vectors in V is equal to

m—1 m/2 m/2—1 .
+ x (V) —x(V) , mis even,
(q—DS;(vVy+1=19 T T XA .
q , m is odd.

3.3 Formulas in terms of weighted lattice counting: theorem of
Cho-Yamauchi

Definition 3.3.1 Let L be a quadratic Op-lattice of rank n. Denote by L, :=
L ®o, Kk, a (possibly degenerate) quadratic space over «, and

sgn(L) :=sgn(L,), sgn'(L):=sgn'(L,), sgn, (L) :=sgn,, (L)

asin Egs. (3.2.0.4), (3.2.0.5) and (3.2.0.6). By definition, if L is self-dual, then
sgn, (L) = x (L).

We have the following explicit formula for local densities in terms of
weighted lattice counting, generalizing the theorem of Cho—Yamauchi.

Lemma 3.3.2 (Cho—Yamauchi) Let L be a quadratic Ofp-lattice of rank n.
Then

Den(Hy,, L) = Y q"T=m D (1 —sgn(HE) - g~

LCL/CLY

(1 +&sgn,, (L) - g~ "= ED/2) . I1 (1—g7%.
(m—n—t(L"))/2<i<m/2

(3.3.2.1)
Here the sum runs over all integral lattices L' C L such that L C L', and

€(L'/L):=lengthy, L'/L.
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Proof By [6, Equation (3.4)] (replacing 2k there by m), we have

_n@m—n-1)
2

Den(H:, L) =g Yo Ut EIDRO(LL, (HE)).

LnggL/\/

Here O(U, V) denotes the set of isometries from U to V as in Lemma 3.2.1.
Strictly speaking, [6] only treats the case m is even and ¢ = +1, but the same
proof goes through as H;, is self-dual.

It follows from Lemma 3.2.1 that

Den(H,fp L) — Z q(n+1fm)E(L//L) . (1 — Sgn(H’;i) . q*m/Z)
LnggL/v

(1 —esgn, (L) - q—(m—n—t(L/))/Z)—l

I1 (1—q™)

(m—n—t(L"))/2<i<m/2

= Y gL sen(Hg) )
LCL'CLY

(14 esgn,, (L) g~ m—n=1(L))/2)

[ (=g,

(m—n—t(L"))/2<i<m/2
This completes the proof. O

We have the following induction formula for local densities, generalizing
the results of Cho—Yamauchi and Katsurada.

Lemma 3.3.3 (Induction formula) Let L” be a quadratic OF-lattice of rank
n — 1 with fundamental invariants (ay, ..., an—1). Let L = L’ + (x) and
L =L"+ (w~'x) where x L L” with val(x) > a,_1. If m is even, then

Den(H:, L) = ¢"*'™™ . Den(HE, L) 4+ (1 — eq ™) (1 4+ eq~ "2/
Den(H! _,, L").
If m is odd, then
Den(H!, L) = ¢"*'™" . Den(H:, L) + (1 — ¢~ V) . Den(H¢ _,, L").
Proof When m is even and ¢ = +1, this is proved in [6, Corollary 4.10] (see
also [17, Theorem 2.6 (1)]). The general case can be proved similarly. More

precisely, consider the terms in (3.3.2.1) indexed by lattices L € L" < L"
depending on L C L’ or not.
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The sum of terms in (3.3.2.1) with L’ satisfying L C L’ evaluates to
q(n+1fm)(Z(L//L)fZ(L//I:)) - Den(HE, L) =gt - Den(HE, L.

Now we consider those L'’s satisfying L ¢ L’. In this case the image of
x in L, is nonzero, hence by Nakayama’s lemma, there exists a quadratic
Op-lattice M’ of rank n — 1 such that L’ = M’ + (x) and L = M + (x),
where M = L N M’. Since val(x) > a,_1, we know that M and L" has the
same fundamental invariants and moreover Den(H;,, M) = Den(H,,, L") [6,
Remark 4.3 (5)]. So by [6, Proposition 4.8] (specialized to d = 11nthe notation
there), the sum of terms in (3.3.2.1) with L’ satisfying L ¢ L’ evaluates to

Z qe(L//L) .q(n-l—l—m)Z(L//L) (1 — sgn(HE) - g%

ngM/gM/\/
L'=M'+(x)

(1 + e sgn,, (L)) - g~ ==t EN/2y 1_[ (1 —q~ 2.
(m—n—t(L"))/2<i<m/2

Sincet(M') = t(L")—1,£(M'/L") = €(L'/L) and sgn,, _,(M") = sgn,, (L),
this evaluates to

(1 —sgn(HE) - q~™/?) I1 (1—g~%)
(m—2)/2<i<m/2

(1 —sgn(H,, _,)-q~"=2/2)

-Den(H! _,, L").

Notice that the extra factor evaluates to

(1 —sgn(HE) - g~/ I1 (1—g~%)
(m—2)/2<i<m/2

(1 —sgn(H,_,)-q~m=2/2)

_ja- eq ") (1 4+ g~ "=2/2) mis even,
=gy, m is odd.

This finishes the proof. O

Our next goal is to define normalized local Siegel series and derive explicit
formulas for them (Theorems 3.4.5, 3.5.4 and 3.6.1). We distinguish two cases
depending on the parity of the corank of L in H,,.
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3.4 0Odd corank case

Definition 3.4.1 Let L be a quadratic OFp-lattice of rank n. Define the nor-
malizing polynomial (in the odd corank case) Nor? (X, L) € Q[X] to be

Nor®(X, L) = (1 —sgn(HE, ) - ¢~ "D/2x) ]_[ (1—¢7%x?).
I<i<(n+1)/2
(3.4.1.1)

Notice that the dependence of Nor® (X, L) on L is only its rank n. By Lemma
3.3.2, we have for all k > 0,

Nor®(¢*, L) = Den(H:, o, H).

Definition 3.4.2 Define the (normalized) local Siegel series of L (in the odd
corank case) to be the polynomial Den® (X, L) € Z[X] such that forall k > 0,

Den® (g%, L) = Den(H, 4o L) _ Den(H; o L) ‘
Noré (g, L) Den(Hy;, | o HY)

Define the central derivative of the local density or derived local density to be

d
oDen®(L):= — — Den®(X, L).

Notice that if L is not integral then Den? (X, L) = 0 and hence dDen®(L) = 0.
Remark 3.4.3 By definition Den® (M, L) only depends on the isometry classes
of M and L, and hence Den® (X, L) and dDen® (L) only depends on the isom-

etry class of L.

Definition 3.4.4 Lettr > 1,5 € {*1,0}, ¢ € {#1} such thatif r — 1 is odd
then s = 0. Define weight polynomials

mt,s: X)=1+s-¢"""2x) [ 1-¢¥X?,
0<i<(1—1)/2
mé(t, s5; X) :=m(, s; ¢X).

By convention, define m®(0, s; X) = 1. Define weight factors
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d
mé(t, 8)i=— — mé(t, 57 X)
dX X=1
0, t:()y
- —ESs, = 15

20 +es - q" V) Ticiconpd —g®), =2

Now we have the following explicit formula for the local Siegel series
Den® (X, L), generalizing [6, Corollary 3.16] (the case n is odd and ¢ = +1).

Theorem 3.4.5 Let L be a quadratic OF-lattice of rank n. Then

Den’(X.L)= »  X*"/D.mf@(L"), sgn, 41 (L): X).
LcL'cLY

Proof Take m = n + 1 + 2k in Lemma 3.3.2, we obtain that

Den(H,, L) = Z g AL (1 —sgn(HE, ) - g~ DR

LEL/ELN
(1 +esgn, (L) - q(t(L )—1)/2—k)

I1 (1—q7%).

—(t(L")=1)/24k<i<(n+1)/24k

+1+4+2k>

Taking the ratio we obtain

Den(H, 10 L)

Nor®(g=*, L)

_ Z g UL (] 4 esgn, (L) - g EI-D/2ky
LEL,EL/V

[ (1 —q™)

—(t(L)—1)/2+k<i <k

_ Z g R L eson (L) - g0 E)-D/2k)
LgL/gL/\/

1—[ (1 — g%~

0<i<(t(L)—1)/2

= 3 XPWID E (L, sgn, (L)) X)
LgL/gL/\/ X:q_k

This completes the proof. O
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We have the following functional equation for Den® (X, L).

Theorem 3.4.6 (Ikeda) Let L be a quadratic O f-lattice of rank n. Then
1
Den®(X, L) = w®(L) - X" . Den® (}’ L) ,
where the sign of functional equation is equal to

w(L) = (et L, — (=)D u)p - e(Lp) € {£1).  (3.4.6.1)

where u € O such that x (u) = ¢.

Proof This is [16, Theorem 4.1 (2)] when n is odd and ¢ = +1. The same
proof works in general. O

Corollary 3.4.7 If Den®(X, L) has sign of functional equation wé(L) = —1,
then

aDen’(L) = Y m(t(L),sgn,  (L).
LcL'cLv

Remark 3.4.8 (A cancellation law for dDen? (L)) For a self-dual Op-lattice
M of rank r and an O p-quadratic lattice L” of rank n — r, by Theorem 3.4.5
we have

Den® (X, L @ M) = Den® (X, L")

for the unique &’ € {£1} such that Hrf/_ 41 ©OM = Hp . Therefore we obtain
a cancellation law:

dDen® (L” © M) = dDen® (L"). (3.4.8.1)

Remark 3.4.9 (Relation with local Whittaker functions) Let A = H} be
a self-dual quadratic Of-lattice of rank m. Let L be a quadratic Op-lattice
of rank n. Let T = ((x;, x;))1<i, j<n be the fundamental matrix of an Op-
basis {x{,...,x,} of L, an n x n symmetric matrix over F. Associated to
the standard Siegel-Weil section of the characteristic function ¢y = 15~ and
the unramified additive character ¢ : F' — C*, there is a local (generalized)
Whittaker function Wz (g, s, ¢o) (see §11.2, §11.3 for the precise definition).
By [30, Proposition A.6], when g = 1, it satisfies the interpolation formula
for integers s = k > 0 (notice (V) = 1 in the notation there),

Wr (1, k, ¢o) = Den(A @ Hy;, L).
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Assume m = n + 1. By Definition 3.4.2, it follows that its value at s = k is
Wr (1, k, 9o) = Den(HY, | 5, L) = Den®(¢~*, L) - Nor® (g%, L),
and when w? (L) = —1, its derivative at s = 0 is
W7(1,0, ¢o) = dDen®(L) - Nor®(1, L) - log g.
Plugging in (3.4.1.1), we obtain

Wr (1,0, go) = Den®(1, L) - (1 — sgn(H ) - g~ "TD/2)
[T a-47. (3.4.9.1)

I<i<(n+1)/2
Wz (1,0, ¢o) = dDen®(L) - (1 — sgn(H,,, ;) - g~ /2
[T @a-q¢72) logq. (3.4.9.2)

1<i<(n+1)/2

3.5 Even corank case

Definition 3.5.1 Let L be a quadratic Of-lattice of rank n. Define the nor-
malizing polynomial (in the even corank case) Nor’ (X, L) € Q[X] to be

Nor’* (X, L) = (1 — sgn(H?) - ¢ "?X)(1 — ex (L)X) ™!

[T a-q2x>.

0<i<n/2
Notice that the dependence of Nor®(X, L) on L is only its rank n and x (L).

Definition 3.5.2 Define the (normalized) local Siegel series of L (in the even
corank case) to be the polynomial Den” (X, L) € Z[X] such thatforall k > 0,
Den(H? 2k L)

Den” _k,L: _
@b Nor*(g=*, L)

Definition 3.5.3 Letr > 1,5 € {£1, 0}, x € {£1,0}, ¢ € {1} such thatif ¢
is odd then s = 0. Define weight polynomials

m’(t, 5, x; X) = (1 +5-¢"2X)1 - x - X)

1_[ (1 21X2

O<i<t/2
m™(t, s, x; X) :=m’(t, 5, x; £X).
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By convention, define m*¢(0, s, x; X) = 1.

Similar to Theorem 3.4.5, we have the following explicit formula for
Den®¢ (X, L), generalizing [6, Corollary 3.16] (the case nisevenand ¢ = +1).

Theorem 3.5.4 Let L be a quadratic Op-lattice of rank n. Then

Den(X.L)= Y (q"?X)* /B w1 (L"), sgn, (L), x(L): X).
LcL'cLY

Proof Take m = n + 2k in Lemma 3.3.2, we obtain

Den(H};, 5, L) = Z g(1m—2OLL/L) [ (q sgn(H?) - g~"1>%)
LcL'cLY

(1 +esgn, (L) - g F)/>k

[ (=g,

—1(L")/24k<i<n/2+k
Taking the ratio we obtain

Den(H, 5. L)

Nor* (g%, L)
= 3 qUTRI A pesgn, (L) - g" PPN —ex (L) -g7)
LgL/gL/V

[T a-a

—t(L)24+k<i<k

= > ¢"EP A fesen, (L) -g" P —ex(L) g7
LgL/gL/\/

1—[ (1 — g%~

O<i<t(L)/2

= Y (") D P (1 (L)), sgn, (L), x(L): X)
LgL/gL/\/ qu_k

This completes the proof. O
We have the following functional equation for Den”® (X, L).

Theorem 3.5.5 (Ikeda) Let L be a quadratic Op-lattice of rank n. Then

val 1
Den’ (X, L) = (¢'/2%)?1"%") . Den®* (_x’ L) '
q
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Proof This is [16, Theorem 4.1 (1)] when n is even and ¢ = +1. The same
proof works in general. O

Corollary 3.5.6 Let L be a quadratic Op-lattice of rank n. Then

val(L'
Den’(1,L)= Y g%

LgL/gL/v
t(LH<2
1, t(L"h =0,
(1 —ex(L)g™h, t(L) =1,

(14 esgn, (L)1 —ex(L)g™"), t(L)=2.
Proof By Theorem 3.5.5, we have
Den (1, L) = ¢"“5"1Den’ (¢!, L).
By Theorem 3.5.4,

Den” (g~ ', Ly=" > g "/ m (L), sgn, (L), x(L); g™ ").
LCL/CL/V

Notice that the weight polynomial evaluates to

1, t =0,
- (1—exqg™h, r=1,
mbg(tas’ X’q 1) - q _1
(I+es)(I—exq ), t=2,
0, t > 2.

val(L)

. . ’ val(L')
This completes the proof since gL~ 2 1 . g~ ¢tL/0) = gl=5—1,

3.6 Induction formula
Theorem 3.6.1 (Induction formula) Let L” be a quadratic O -lattice of rank
n — 1 with fundamental invariants (ay, ..., ay—1). Let L = L’ + (x) and

L=L"+ (zzr_lx) where x L L” with val(x) > a,_. Then

Den® (X, L)=X?-Den®(X, L)+ (1 — ex (L") X)~'(1 — X?) - Den” (X, L").
(3.6.1.1)
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Proof 1t follows immediately from Lemma 3.3.3 by evaluating both sides at
X = q_k (k > 0) using the definition of Den®(X, L) (Definition 3.4.2) and
Den’® (X, L") (Definition 3.5.2). m

Corollary 3.6.2 Assume the situation is as in Theorem 3.6.1. Assume that
wé(L) = —1. Then

~ _ L") - Den(1. LP Lb 0
dDen’ (L) — aDen (L) = | XL ) Den (L L, x(L) 70,
2-Den’*(1, L), x (L") =0.

Proof Take —% |x:1 on both sides of (3.6.1.1). O

3.7 Lemmas on quadratic lattices

Lemma 3.7.1 Let W = W & W, where W; is a quadratic space over F of
dimensionm; (i =1, 2). Then

(1) det(W) = det(Wy) det(W>).
(ii) disc(W) = (—1)™"2disc(W;)disc(W>). In particular, x (W) = x (Wp)
X (Wa) if mymy is even and at least one of x (W;) is nonzero.
(iii) €(W) = e(W1)e(W2)(det(Wy), det(W2)) .

Proof (i) It follows from the definition.
(ii) It follows from (i) and ("'3™2) = ("}') + ("5?) + mymo.

(ii1) Choose an orthogonal basis {eq, ..., ey, } of W; and an orthogonal basis
{emi+1, -, €m,+m,} of Wao. Letu; = (e;, ¢;). Then
ewmy= [ @iupr

1<i<j<mi+m;

= l_[ (i, uj)p - l_[ (i, uj)F

I<i<j<m mi+1<i<j<mi+my
I1 (i, uj)r
I<i<m
mi+1<j<mi+m;
=e(W)e(W; <l_[ u; 1_[ u~)
(W)e(W2) I<i<m; my+1<j<mi+my / F

e(Wpe(W2)(det(Wy), det(W2)) F.
This completes the proof. O

Lemma 3.7.2 Take m = n + 1 and ¢ € {£1}.
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(i) Let L € V¢ (resp. L C H‘s r) be a quadratic O g-lattice of rank n. Then
the sign ofﬁmctlonal Eq. (3 4 6.1) wé(L) = —1 (resp. +1). In particular,
a quadratic O -lattice of rank n cannot be simultaneously embedded into
HY . and Ve, as quadratic submodules.

(i1) Let Lb be a quadratic Og-lattice of rank n — 1. Assume that L’ can be
simultaneously embedded into H;, . and V¢, as quadratic submodules.

Then X(Lb) = Oor)((L ) = —e.
Proof (i) Let L € V¢, (the case L C H;;’  is parallel). Write V5 = Lr ©

L#. Then by Lemma 3.7.1 (i) (iii) and (a,a)r = (a, —1)F for any a €
F*, we obtain

—1=e(V%) = e(Lp)e(LE)(det(Lp), det(VE,) det(LF))
= e(Lp)e(LF)(det(Lp), —det(V%)).

The result then follows as e(LJ-) =41 (L% 7 18 1-dimensional).
(ii) If not, assume that x (L") = e. Write HYZ’F = Lk} @O W and Vi, =

Lt} @ W', where W and W' are quadratic spaces over F of dimension 2.
By Lemma 3.7.1 (iii), we have

€(H,, ) = e(LF)e(W)(det(LF) det(W))r,
e(Ve) = e(LF)e(W )(det(LF), det(W))r.

Since x (H; F) = x(V:) =¢,and ¥ (L) = &, we know that det(W) =

det(W’) and x (W) = x(W’) = +1 by Lemma 3.7.1 (i) (ii). Since W and
W’ are of dimension 2, we know that e(W) = ¢(W’) = +1. It follows
that e(Hni’ ) = €(V;), a contradiction. O

3.8 Horizontal lattices

Take m = n + 1 and € € {£1} in this subsection.

Definition 3.8.1 Let L C V¢, be an Op-lattice of rank n — 1.

(1) Say L is co-isotropic (in V¢)), if the 2-dimensional quadratic space
(L;)J‘ C V¢, is isotropic (i.e., X((L;)J‘) = +1); and co-anisotropic
otherwise. By Lemma 3.7.1 (ii), we know that L’ is co-isotropic if and
only if x (L") = «.

(2) Say L" is horizontal (in V%)), if L” is integral and one of the following is
satisfied:

(@) (L") <1,
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(b) 1(L”) =2 and esgn, (L") = +1.

Definition 3.8.2 Let L° C V¢, be an Of-lattice of rank n — 1. Denote by
Hor? (L") the set of horizontal lattices M” C L; such that L” € M.

Such horizontal lattices parametrize the horizontal parts of the special cycle
Z(L), hence the name (see Theorem 5.3.1).

Corollary 3.8.3 Takem =n + 1 and ¢ € {£1}. Let L" C V¢ be a quadratic
Or-lattice of rank n — 1 with fundamental invariants (ay, ..., ap—1).

() If L’ is co-isotropic, then Den"® (1, L") = 0 and Hor® (L )=
(ii) Assume that L® is co- anisotropic. Let L = L°+(x )andL Lb—i-( ~Ix)
where x L L” with val(x) > a,_1. If)((Lb) %0, then

dDen® (L) — dDen’(L) = Den” (1, L")

b 1, t(M”) =0,

Lval(M)J -1 b
= Y T a+eh e =1,
MPeHor® (L") 2(1+q’1), I(Mb)=2-

If x (L") = 0, then
dDen’ (L) — dDen? (L) = 2Den’ (1, L")

val b b =
_5 Z qL 1<£4>J‘ 1, t(M°) =1,
2, t(M") =2.
MPeHor® (L)

Proof (i) Since yx (L") =&, by Lemma 3.7.2 (ii) we know that L cannot be
embedded into H,, as a quadratic submodule. Hence Den’¢(1, L") = 0 by
Definition 3.5.2. By definition, if £ (M”) = 2, then 1 +&sgn,_;(M") =2
when M" is horizontal, and 0 otherwise. Then the summation in Corollary
3.5.6 can be written as over M” € Hor® (L"), and hence Den” (1, L") = 0
implies that Hor® (L") = @

(ii) Since x (L") # &, we know that

gyt = | O X ED#0,
1, x(L") =0.
Moreover, if X(Lb) = 0, then L?, does not admit self-dual lattices, so

(M) # 0. By Lemma 3.7.2 (i), we have w®(L) = —1. The result then
follows from Corollary 3.6.2 and Corollary 3.5.6. O

@ Springer



1382 C. Li, W. Zhang

Lemma 3.8.4 Taukem = n+1ande € {£1}. Let M" be an O p-lattice of rank
n — 1 which embeds simultaneously into V', and H}, as quadratic submodules.

Assume that M” = M; N HE (under the embedding of M" into HE,). Then M”
is horizontal (in V).

Proof To simplify notation, write M = M" and H = Hy, for short. Since
M = Mg N H, we know that H/M is a free Op-module of rank 2. We can
choose e,, e,+1 € H whose images in H/M form an Op-basis of H/M.
Then H = M + (e,,, e5+1). Choose an orthogonal basis {ey, ..., e,_1} and let
u; = (e;, ¢;) € F*. The fundamental matrix of the Op-basis {eq, ..., €,+1}
of H has the form

uj 0 0 (er,en) (e1,ent1)
0 142 0 (627 en) (625 en+1)

T = 0 0 : :
(en,e1) (en,e2) --- (en,en) (en,eny1)

(ent1.e1) (ent1,€2) -+ (ent1,en) (enti, €nt1)

If t(M) > 3, then at least three of u;’s have strictly positive valuation, and
hence the rank of 7" mod @ is at most n, contradicting that H is self-dual.
Hence t (M) < 2.

Now assume 7(M) = 2. We would like to show that esgn, (M) = 1.
Let M3 = (e, ...,en_3), M = {e,_2,ey—1) and H = M’ + (e,, eyy1).
Then we may choose the basis {eq, ..., e,+1} such that val(u;) = 0 for i =
l,...,n—3,val(u;) > Ofori =n—2,n—1,and M, _3 is orthogonal to M’
and H'. Then ¢ sgn,,_; (M) is equal to

x(H)sgn, (M) = x(H & M,_3)sgn, (M & M,_3)
= x(H')sgn,(M')  (as M,,_3 is self-dual)
= x(H')  (sgny(M’) =1 as M’ has rank 2 and type 2).

On the other hand, the fundamental matrix of Of-basis {e;,_2, ..., e,4+1} of
H' has the form

Up-2 0 (en—2,en) (en—2, €nt1)

T — 0 Up—1 (en—1,en) (en—1, €nt1)
(en,en—2) (en,en—1) (en,en) (en,ent1)

(en+1, en—2) (ent1, €n—1) (€n+1, €n) (€n+t1, €nt1)

Since val(u;) > 0 fori =n — 2, n — 1, we know that

det(T') = (det B)> (mod @)

@ Springer



On the arithmetic Siegel-Weil formula 1383

is a square, where

B — <(en—2’ en) (en—2, en—{—l)) '

(en—1,en) (en—1,ent1)

Hence x(H') = X((—l)(g) det T’) = +1 as desired. O

4 Special cycles on GSpin Rapoport-Zink spaces

In this section we take ' = Q. From now on we fix m = n + 1 > 3 and
¢ € {£1}. To simplify notation we will suppress the superscript ¢ and the
subscripts m and n when there is no confusion (see Convention §2.4). Let
V = V¢ be a self-dual quadratic OFp-lattice of rank m with x (V) = gl

4.1 GSpin Rapoport-Zink spaces RZg

Associated to V we have a local unramified Shimura—Hodge data (G, b, ., C)
(in the sense of [15, Definition 2.2.4]) constructed in [15, Proposition 4.2.6],
where G = GSpin(V), b € G(I:“) is a basic element, u : G,, — G is
a certain cocharacter, and C = C(V) is the Clifford algebra of V (which
has rank 2™). See [15, §4.1] or [38, §2.1] for a review on GSpin groups. Let
D = Homy,. (C, OF) be the linear dual of C. By [15, Lemma 2.2.5], this local
unramified Shimura—Hodge data gives rise to a (unique up to isomorphism) p-
divisible group X over k whose contravariant Dieudonné module D(X)(O )
is given by Do, with Frobenius F = b o 0. Moreover, the Hodge filtration
Fil'D(X) (k) C D is induced by a conjugate of .

Let (s¢)qes be a finite set of tensors s, in the total tensor algebra C® cut-
ting out G from GL(C). Then we obtain tensors #, o0 = 54 @ 1 € (D®)0ﬁ =
DX) (O ﬁ)®, which are F-invariant elements of D(X) (O F)®[1 /pl. Each t4 o
induces a crystalline Tate tensor ty o on X. We recall that a crystalline Tate ten-
sor on a p-divisible group X over Spec R, where R € ANilpfg;‘, is a morphism

ofcrystalst : 1 :=ID(F/Ofp) — D(X)® suchthatt(R) : 1(R) — D(X)(R)®
is compatible with Hodge filtrations, and the induced morphisms of isocrystals
t:1[1/p] — D(X)®[1/p] is F-equivariant.

Associated to the local unramified Shimura—Hodge data, we have a GSpin
Rapoport-Zink space RZg = RZ(G, b, i, C) of Hodge type ([15, §4.3],
see also [18]) parametrizing p-divisible groups with crystalline Tate tensors
deforming (X, (o,0)aer)). More precisely, it is a formal scheme over Spf O

L'sov ~ HE as quadratic O f-lattices. We use the symbol V to emphasize its role on the
geometric side.
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representing the functor sending R € ANilpfOs“v1 to the set of isomorphism
F

classes of tuples (X, (fy)aer, 0), Where

e X is a p-divisible group over Spec R.

e (ty)qer 1s a collection of crystalline Tate tensors of X.

e p: X®; R/J - X ®r R/J is a framing, i.e., a quasi-isogeny such that
each 7, pulls back to 74,0 under p, where J is some ideal of definition of R
such that p € J.

The tuple (X, (¢y), p) is required to satisfy additional assumptions [15, Defi-
nition 2.3.3 (ii), (ii1)].

The GSpin Rapoport—Zink space RZ is formally locally of finite type and
formally smooth of relative dimension n — 1 over Spf O [15, Theorem B].

4.2 Space of special quasi-endomorphisms V = V¢,

The inclusion V. € C°P (where V acts on C via right multiplication) realizes
V € Endg, (D) as special endomorphisms of D. Tensoring with F' gives a
subspace

Vi € EndF(DF)'

Define the o-linear operator ® = b oo on Vi, where be SO(V)(F) is the
image of b € G (F) under the natural quotient map (the standard representa-

tion) G = GSpin(V) — SO(V). Then (Vj, ®) is an isocrystal. The ®-fixed
vectors form a distinguished F-vector subspace

VI;D - Endo(X) = EHd(X)[l/p]v

called special quasi-endomorphisms of X. The restriction of the quadratic form
to V;’ satisfies x o x = (x, x) - idx for x € V;F, and we have an isomorphism
of quadratic spaces over F [15, § 4.3.1]

V=V, > V2

4.3 The projectors 7 crys and the crystal Vpys
The left action of V on C = C (V) gives a G = GSpin(V)-equivariant embed-
ding V < End(C) := Endg, (C), where G actson End(C) viag. f = gfg_1

forany g € G and f € End(C). We identify V € End(C) via this embedding.
Then

fof=(f)ide, feV.
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The non-degenerate symmetric bilinear form (, ) on End(C) defined by

(f1, ) :==2""1tu(fio f2), fi,f2 €End(C)

extends (, )on V. Let{ey, ..., e;,} be an orthogonal Of-basis of V. Define
m
(f,ei)
 : End(C) — End(C), =(f):= e;.
Z (eirei) '

i=1

It is clear that r is an idempotent with image V € End(C) and G stabilizes &
(cf. [39, Lemma 1.4]). Thus we can choose the list of tensors (sq)gcs in C®
cutting out G from GL(C) (§4.1) to include the projector &. In this way we
obtain a crystalline Tate tensor 7 .y o on the framing object X. By construction,
it induces a projector of crystals

Terys,0 - End(D(X)) — End(D(X)),

whose image Virys 0 := im(erys,0) is a crystal of (’)Er/y(s)v—modules of rank
F

m. For any surjection R — k in Algoﬁ whose kernel admits divided pow-
ers, we have Vs 0(R) a projective R-module of rank m. It is equipped
with a non-degenerate symmetric R-bilinear form (, ) induced from that on
End(ID(X)(R)). Moreover, the k-space Vys o(k) is equipped with a Hodge
filtration defined by

Fil' Verys 0 () := Verys 0(€) N Fil' End(D(X) (7)),
which is an isotropic ik-line under ( , ). By construction, the F-isocrystal
Verys, 000 ) [1/ p] can be identified with (V, ).
By [18, Theorem 4.9.1] we obtain from 7 a universal crystalline Tate tensor

Tcrys on the universal p-divisible group X'V over RZ¢, which induces a
projector of crystals

Tcrys - End(]D)(XuniV)) — EHd(D(XuniV))

whose image Vys 1= im(7crys) is a crystal of (’)lcgz / Oi—modules of rank m.
More generally, for any S € AlgOF and any z € RZ(S), we similarly have
a projector of crystals

Tcrys,z - End(D(X;)) — End(D(X3)),

whose image Vys ; := im (% ¢rys, ;) 1S a crystal of O;r/y(s)ﬁ -modules of rank m.
Here X, denotes the p-divisible group over S obtained by the base change of
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XUV o 7. Similarly, for any surjection R — S in Algoﬁ whose kernel admits
divided powers, we have Verys ;(R) a projective R-module of rank m. It is
equipped with a non-degenerate symmetric R-bilinear form (, ). The projec-
tive S-module Vrys - (S) is equipped with a Hodge filtration FilchryS,Z(S),
which is an isotropic S-line.

4.4 The group J

Let J = Jp := GSpin(V). It is a reductive group over F and an inner form of
G = GSpin(V) (as b is basic). Then

J(F)=1{g € G(F): gb =bo(g))

is the o-centralizer of b, which acts on the framing object (X, (y,0)) via
J(F) € End°(X)* [15, §4.3.4], and hence acts on RZg.

4.5 Connected GSpin Rapoport-Zink spaces N = N/?

We may choose one of the tensor (sy) to be a non-degenerate symplectic form
¥ on C such that G is a subgroup of GSp(C, ). Then ¢ induces a principal
polarization g : X = XV, and we have an associated symplectic Rapoport—
Zink space RZ(X, Ag) parameterizing deformations of (X, Ag) as considered
in [42]. Denote by (X"™", AU"") the universal object over RZ(X, Ag). Then
we have a closed immersion RZg — RZ(X, Ag), and we still denote by
(XUniV AUniVY the restriction of the universal object to RZg. The universal
quasi-isogeny p"™" respects the polarizations g and A"™" up to a scalar, and
hence Zariski locally on RZg we have pUMV-*(AW1V) = ¢(p"V) =13 for some
c(p"™) ¢ F*. We have a decomposition of RZ¢ into connected components
[15, Theorem D (1)]

RZg = | |RZ).
LeZ

where val(c(p"™")) = £ on RZ(C?. Each g € J(F) restricts to an isomorphism
RZ((? 5 Rzg”a“’“g)”, where 1 : J — G, is the spinor norm. The surjec-
tivity of n : J(F) — F* implies that Rzg) (¢ € Z) are all (non-canonically)
isomorphic to each other.

Definition 4.5.1 Define the connected GSpin Rapoport—Zink space N =
Nf = RZE(;)), a connected component of RZg, which has (total) dimension
m — 1 = n (hence the notation).
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The space N is related to the Rapoport—Zink space of abelian type asso-
ciated to the group SO(V) (see for example [43, §8.1]). We still denote by
(XUniVAUniVY the restriction of the universal object to . In particular, on N/
we have p"iV-*(QUnivy — ¢(pWiv)=13 0 for some c(p"™V) € 0.

Remark 4.5.2 When m is odd, scaling the quadratic form gives an isomorphism
GSpin(V,I) >~ GSpin(V,,), which induces an isomorphism A;F ~ A/ ~. In
other words, N} is independent of ¢ € {1} when m is odd, and we sometimes
simply write A\, in this case.

Example 4.5.3 When m is small, the exceptional isomorphisms between
GSpin(V) and other classical groups induces isomorphisms between the space
N and several classical formal moduli spaces (by for example [3, p. 1215]):

(i) When m = n + 1 = 3, we have an exceptional isomorphism G =
GSpin(Vy) =~ GL; as reductive groups over O, and Ny >~ Spf O plltl]
is isomorphic to the Lubin—Tate deformation space of the formal group
E of dimension 1 and height 2 over k.

(ii)) Whenm =n+1 =4 and ¢ = 41, we have an exceptional isomorphism
G = GSpin(V4+) ~ GL; xg,, GL; as reductive groups over Of, and
/\/3Jr >~ Spf Op[lt1, 12]] is isomorphic to the product of two copies of
Lubin-Tate deformation spaces N> over Spf O 3.

(iii) Whenm = n+ 1 = 4 and ¢ = —1, we have an exceptional isomor-

phism GSpin(V, ) ~ GLS%EEOF (where E/F is the unramified quadratic

extension), and V5~ is isomorphic to the formal moduli space MHB of
principally polarized supersingular p-divisible groups of dimension 2
and height 4 with a special Og-action defined in [51, §2]. The space N3_
appears in the p-adic uniformization of the supersingular locus of Hilbert
modular surfaces at a good inert place p.

(iv) Whenm = n+1 = 5, we have an exceptional isomorphism GSpin(ng) ~
GSp, as reductive groups over O, and Ny is isomorphic to the formal
moduli space of principally polarized supersingular p-divisible groups
of dimension 2 and height 4. The space Ny appears in the p-adic uni-
formization of the supersingular locus of Siegel modular threefolds at a
good place p.

4.6 Special cycles Z(L)

Definition 4.6.1 For any subset L C V, define the special cycle Z(L) € N
to be the closed formal subscheme cut out by the condition

puniv oxo (puniv)—l C End(Xuniv)
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for all x € L. Notice that Z(L) only depends on the Op-linear span of L in
V, and is nonempty only when this span is an integral O g-lattice (of arbitrary
rank) in V. Notice that a similar definition of special cycles applies to the
Rapoport—Zink space RZ¢ (instead of ).

Let R — S be a surjection in Alg 0; whose kernel admits divided powers.

By definition, for any z € Z(L)(S) and any x € L, the crystalline real-
ization x¢rys ;(R) € End(D(X;)(R)) of x € End(X;) lies in the image of
T crys,z (R), and hence induces an element X¢rys - (R) € Verys - (R). We denote
by Lerys,z(R) € Virys,z(R) the R-submodule spanned by xcrys . (R) for all
x € L.

Lemma 4.6.2 Let R — S be a surjection in AlgOF whose kernel admits
nilpotent divided powers.

(i) Let zg € N (k) and f\\/'zo be the completion of N at z¢. Let z € N'(S). Then
there is a natural bijection

{Lifts 7 € Noy(R) of 2}

— lisotropic R-lines Fil' Verys - (R) lifting Fil' Verys -(S)} .

(ii) Let L €V be an OFf-lattice of rankr > 1. Let 79 € Z(L)(k) and Z/(r)ZO
be the completion of Z(L) at zo. Let z € Z(L)(S). Then there is a natural
bijection

{Lifts 7 Z/(\L)ZO(R) of 7}

-~ isotropic R-lines Filchrys,Z(R) lifting Filchrys?Z(S)
and orthogonal to Lrys ;(R) € Verys, 2 (R) )

Proof Thisis aconsequence of Grothendieck—Messing theory. The same proof
of [39, Proposition 5.16] (see also [1, Proposition 4.3.2]) works. O

4.7 Generalized Deligne—Lusztig varieties Yy

Let W be the unique (up to isomorphism) non-split (non-degenerate) quadratic
space over k = [, of even dimension 2(d + 1) (d > 0). The closed qu—
subvariety of the orthogonal Grassmannian OGr 41 (W) parameterizing totally
isotropic subspaces U € W of dimension d + 1 such that dim, (U + o (U)) =
d + 2 has two isomorphic connected components. Define Yy to be one of the
two connected components. It is a smooth projective variety of dimension d,
and has a locally closed stratification
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d

Yw = |_| Xp,(wj),

i=0

where each X p, (w;) is a generalized Deligne—Lusztig variety of dimension i
associated to a certain parabolic subgroup P; € SO(W) [14, Proposition 3.8].
The open stratum Yy, :=Xp, (wg) is a classical Deligne-Lusztig variety asso-
ciated to a Borel subgroup P; € SO(W) and a Coxeter element w,. Each of
the other strata X p, (w;) is also isomorphic to a parabolic induction of a clas-
sical Deligne—Lusztig variety of Coxeter type for a Levi subgroup of SO(W)
[12, Proposition 2.5.1]. For example, when d = 1, the Deligne—Lusztig curve
Yw = P! and its open stratum is given by Yy, = P! — P! (Iqu) [14, §3.3].

4.8 Minuscule special cycles V(A)

Let A €V = V¢ be a vertex lattice. Then Wx:=A"/A is a k-vector space
of dimension ¢ (A), equipped with a non-degenerate quadratic form induced
from V. By [15, 5.1.2], the type ¢t (A) of a vertex lattice A € V is always an
even integer such that 2 < #(A) < fiyax, Where

m—2, ifmisevenand e = +1,
tmax = 1m — 1, if m is odd, (4.8.0.1)
m, ifmisevenand ¢ = —1.

Thus we have the associated generalized Deligne—Lusztig variety Yy, of
dimension ¢ (A)/2 — 1. The reduced subscheme of the minuscule special cycle
V(A):=Z(A)™ isisomorphic to Yyy AR 2Infact Z(A)itselfis already reduced
[38, Theorem B], so V(A) = Z(A).

4.9 The Bruhat-Tits stratification on A/Ted

The reduced subscheme of A satisfies N4 = | J, V(A), where A runs over
all vertex lattices A C V. Fortwo vertex lattices A, A’, wehave V(A) C V(A')
if and only if A 2 A’; and V(A) N V(A') is nonempty if and only if A + A’
is also a vertex lattice, in which case it is equal to V(A + A’). In this way we
obtain a Bruhat-Tits stratification of N9 by locally closed subvarieties [15,
§ 6.5],

N = vy, vaye=vw) - [ vad.
A

ACA’

2 Notice that RZ, in [15,38] is the same as our V(AVY).
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Each Bruhat-Tits stratum V(A)® ~ Yy, . is a classical Deligne-Lusztig
variety of Coxeter type associated to SO(WA) which has dimension # (A) /2 —
1. It follows that the irreducible components of A" are exactly the projective
varieties V(A), where A runs over all vertex lattices of maximal type [15,
Theorem D (iii)].

By [46, Proposition 4.2], the reduced subscheme Z (L) of a special cycle
Z(L) is a union of Bruhat-Tits strata,

Z(L)ed = U V(A). (4.9.0.1)
LCA

4.10 Special divisors Z(x)

Proposition 4.10.1 Let x € V be nonzero and integral. Then Z(x) C N is a
Cartier divisor (i.e., defined locally by one nonzero equation) and moreover
is flat over Spf O (i.e., locally the equation is not divisible by @ ).

Proof Since x is integral, we know that Z(x) is nonempty by (4.9.0.1). Let
z€Z (x)(k) Let 0 be the complete local ring of A" at z with maximal 1dea1m
LetJ C 0 be the ideal defining the completion of Z(x) atz.Let R = 0Z /mJ
and/ = J/mJ.Then R € Algoﬁ and I = 0 (hence / admits trivial nilpotent
divided powers). By Nakayama’s lemma, to show that J is principal it suffices
to show that / is principal. It remains to show that the condition that a lifting
of 7 € N(R) of z € Z(x)(S) lies in Z(x)(R) is given by the vanishing of one
nonzero element in /.

By Lemma 4.6.2, the lift Z corresponds to an isotropic R-line Filchrys, (R)
lifting FilchryS, (8). Since z € Z(x)(S), we know that the pairing
(Filchrys, 2(R), Xcrys,z(R)) vanishes modulo /. The condition that 7 € Z
(x)(R) isequivalent to the vanishing of the pairing (Filchrys, 2(R), Xerys,z (R)),
which amounts to the vanishing of one element of / after choosing a basis of
Fil' Verys - (R).

It remains to show that this element is nonzero and is not divisible by .
Since N is connected, it suffices to show that Z(x)g is not the whole special
fiber NVz. If not, then Z(x);z = Nz and hence Z(x)™d = A" By (4.9.0.1),
we know that Z(x) = A" if and only if x € A for any vertex lattice A of
maximal type t(A) = fimax. By the proof of [15, Proposition 5.1.2], such a A
admits a decomposition

=(e1, f1-..,¢ea fa) O Z,
where d = tmax/z — 1, (e,-,ej) = (f,,fj) = O, (ei, f]) = wéi’j and Z is

anisotropic of rank m — 2d. If d > 0, then we may choose A such that x lies
in the subspace (e1, f1,...,eq, fa)F. For any k € Z, the lattice
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Ak) = (mre, o fi...,oFes, o F > 2Z

is also a vertex lattice of maximal type, but clearly x ¢ A (k) for some |k| > 0,
a contradiction. Hence if d > 0 then Z(x)z # Nxk.

If d = 0, then by (4.8.0.1) either m = 3 orm = 4 and ¢ = +1, and
N is isomorphic to the Lubin-Tate deformation space of the formal group of
dimension 1 and height 2 over «, or the product of two copies of the Lubin—Tate
deformation space (cf. Example 4.5.3). In both cases the special endomorphism
x ensures that the universal p-divisible group over Z(x); is non-ordinary,
while it is well-known that the universal p-divisible group over the generic
point of Nz is ordinary (e.g., by the p-adic uniformization theorem and the
fact that ordinary points are dense on a modular curve or on a product of two
modular curves). Therefore if d = 0 then Z(x)z # Ng. O

4.11 Derived special cycles “Z(L)

Using the flatness of Z(x;) (Proposition 4.10.1), the following linear indepen-
dence of derived intersection (Lemma 4.11.1, Corollary 4.11.2) is proved in
the the same way as [51, Lemma 4.1, Proposition 4.2].3

Lemma 4.11.1 Let x, y € V be linearly independent. Then the tor sheaves

M?N (Oz(x), Oz(y)) vanish for all i > 1. In particular,

Oz ®" Oz(y) = Oz(x) ® Oz(y).

Here Oz (y,) denotes the structure sheaf of the special divisor Z(x;) and @
denotes the derived tensor product of coherent sheaves on N

Corollary 4.11.2 Let L C V be an Op-lattice of rankr > 1. Let xy, . . ., x, be
an Op-basis of L. Then Oz(x) - -- @ Oz, € Kég(L)(./\/') is independent
of the choice of the basis.

Let L € V be an Op-latticeof rankr > 1.Letxy, ..., x, be an O g-basis of
L. Since each Z(x;) is a Cartier divisor on A/ (Proposition 4.10.1), we know

that Oz .,y € F'KS " (W) (see §2.3), and hence by [59, (B.3)] we obtain

Oza) - @ 0z, € FrKOZ(L)(N)-

3 In [37, Lemma 2.8.1] we also provided an alternative proof (without using globalization)
of the linear independence in the unitary case. That alternative proof would still work for the
orthogonal case in the current paper, as long as the orthogonal analogue of the main result of
[53] (the regularity of difference divisors) is available.
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By Corollary 4.11.2, this is independent of the choice of the basis x1, ..., x,
and hence is a well-defined invariant of L itself.

Definition 4.11.3 Define the derived special cycle “Z(L) to be the image of
Oz @Y -+ - ®% Oz, in the r-th graded piece Gr” K()Z(L)(N).

Definition 4.11.4 When the Op-lattice L C V has rank r = n, define the
arithmetic intersection number

Int(L):=x (N, “2(L)), (4.11.4.1)

where y denotes the Euler—Poincaré characteristic (§2.3). Notice that if L is
not integral then Z(L) is empty and hence Int(L) = 0.

Remark 4.11.5 If L, L’ C V are isometric Op-lattices of rank n, then we
may find g € SO(V)(F) such that L = gL’. We may further lift g to g €
GSpin(V)(F) = J(F) such that n(g) = 1. Then the automorphism g of A/
(see §4.4,4.5) carries “Z (L) to“Z(L). In particular, Int(L) only depends on
the isometry class of L.

4.12 Horizontal and vertical parts of Z(L)

Definition 4.12.1 A formal scheme Z over Spf O is called vertical (resp.
horizontal) if @ is locally nilpotent on Z (resp. flat over Spf Of). Clearly
the formal scheme-theoretic union of two vertical (resp. horizontal) formal
subschemes of a formal scheme is also vertical (resp. horizontal).

We define the horizontal part Z » C Z to be the closed formal subscheme
defined by the ideal sheaf O z[ew*°] € O7. Then Z 4 is the maximal horizontal
closed formal subscheme of Z.

When Z is noetherian, there exists N > 0 such that @V Oz[w™®] = 0,
and we define the vertical part Zy C Z to be the closed formal subscheme
defined by the ideal sheaf @ NOyz. Since Oz[w®]Nw@N Oz = 0, we have a
decomposition

L =ZyrU”Zy,

as a union of horizontal and vertical formal subschemes. Notice that the hori-
zontal part Z 4 is canonically defined, while the vertical part Z depends on
the choice of N.

When Z » = &, we simply define the vertical part Zy to be the entire Z.

Lemma 4.12.2 Let L €V be an OFp-lattice of rank r.

(1) Ifr =n, orr =n — 1 and L is co-anisotropic, then Z(L) is noetherian.
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(i) Ifr =n, orr =n — 1 and L is co-isotropic, then Z(L) » = Q.

Proof (1) As a closed formal subscheme of the locally noetherian formal
scheme N, we know that Z(L) is locally noetherian. By the assumption
on L, the space L# is anisotropic and thus its integral cone (Lllg)O isan Of-
lattice. Take L1 = L & ZU"(L#)O for k£ > 0 depending only on L. Then
any vertex lattice A € V containing L satisfies L} € A C le. Hence the
number of vertex lattices A containing L is finite. By (4.9.0.1), we know
that Z(L)™ is a closed subset in finitely many irreducible components
of N4 Since each irreducible component of N is quasi-compact, we
know that Z(L) is quasi-compact, hence noetherian.

(i1) This follows immediately from Lemma 3.7.2 (i) (when r = n), Lemma
3.7.2 (i1) (when r = n — 1) and Corollary 5.5.3 below.

|

By Lemma 4.12.2, for L € V an Op-lattice of rank r > n — 1, we obtain a
decomposition of the special cycle into horizontal and vertical parts

Z(L)=Z(L)w U Z(L)y.

Again when Z(L)_» # O, the vertical part Z(L)y depends on the choice of
an integer N > 0. Since the choice of N is not important for our purpose we
suppress it from the notation (cf. §6.2).

4.13 Finiteness of Int(L)

Lemma 4.13.1 Let L C V be an Op-lattice of rank n. Then the formal scheme
Z(L) is a proper scheme over Spf O j. In particular, Int(L) is finite.

Proof The vertical part Z(L)y is a scheme by Lemma 6.1.1 below. By
Lemma 4.12.2 (ii), the horizontal part Z (L)~ is empty, and so Z(L) is a
scheme. By Lemma 4.12.2 (i), we know that Z (L)™d is contained in finitely
many irreducible components of A™4, Since the scheme Z(L) is a closed
formal subscheme of N and each irreducible component of A™¢ is proper
over Spec k, it follows that the scheme Z(L) is proper over Spf O . O

4.14 A cancellation law for Int(L)

Let M C V = V¢, be a self-dual lattice of arbitrary rank r. Then we have an
orthogonal decomposition

V=V =Mr &V,
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for a unique ¢’ € {#1}. By the same proof of [38, Lemma 3.2.2], we have a
natural embedding

Sz N, —=NE | (4.14.0.1)

which gives an identification

dm

NE S5 Z(M) C NE. (4.14.0.2)

n—r

For u € V¢, denote by u” the projection to Vﬁ;_r. If u” # 0, then the special
divisor Z(u) € N¥ intersects transversely with A¢_ and its pull-back to

N,f,_, is the special divisor Z w”) C J\/',f,_r For later reference, we write this
fact as follows:

NE A Zw) = Z). (4.14.0.3)

By (4.14.0.3) and Definition 4.11.4, we have the following cancellation law
for Int (analogous to (3.4.8.1) for dDen),

Int®(L* & M) = Ints/(Lb). (4.14.0.4)

4.15 Local arithmetic Siegel-Weil formula

Now we can state the main theorem of this article, which proves a local arith-
metic Siegel-Weil formula on the identity between arithmetic intersection
numbers of special cycles and central derivatives of local densities.

Theorem 4.15.1 (local arithmetic Siegel-Weil formula) Let L € V be an
Op-lattice of rank n. Then

Int(L) = 0Den(L).

This will be proved in §9.3.

Remark 4.15.2 Whenm = n+1 = 4, Theorem 4.15.1 was previously known
by explicitly computing both sides, see [56, §2.16] (based on Gross—Keating
[8]) for e = +1 and Terstiege [51, Theorem 6.1] for ¢ = —1.

Example 4.15.3 Consider m = n 4+ 1 = 4 and L has fundamental invariants
(1,1, 1). Then (L) = 3. There is exactly one integral lattice L’ O L with
t(L') = 3,ie., L = L,and sgn,(L") = 1 (L has rank 3 and type 3). The
number of integral lattices L’ O L with #(L") = 1 is equal to the number of
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isotropic lines in the 3-dimensional quadratic space LY /L over k, which is
g + 1. Moreover we have sgn, (L") = 1 (since L’ has rank 3 and type 1, the
non-degenerate part of L/ is a 2-dimensional quadratic space containing an
isotropic line, hence must be split). It follows from Theorem 3.4.5 that

Den®(X,L) = (1 +egX)(1 — X*) + (¢ + DX?*(1 + £X)
=1+egX +gX>+eX’.

This agrees with [50, p. 211]: in the notation there we have
Den® (X, L) = F,(T; X).

In fact, since B; = B2 = B3 = ,E=+l,0 =2,p=+1(Lis isotropic
since B; are all odd), we compute that

Fy(T;: X) =14+ nX3 + 82X + X?) = 1+ gX +¢X*> + X°.

Now consider ¢ = —1. Then Den™ (X, L) has sign of functional equation
w™ (L) = —1. In this case

oDen" (L) = —(—g+29 —3)=3—gq.

It agrees with Corollary 3.4.7: the terms with 7(L’) = 3 has weight factor
2(1 — @) and the terms with #(L’) = 1 has weight factor 1, so in total we
obtain

Den (L) =2(1—¢q) - 1+(@+1)-1=3—q.
By Example 4.5.3, the space N' = A is isomorphic to MB defined in

[51, §2], and 0Den™ (L) also agrees with Int™ (L) = 3 — ¢ computed in [51,
Proposition 5.5 (i), (ii)].

5 Horizontal parts of special cycles

We continue with the setup in §4. Let L C V be an Op-lattice of rank n — 1.
Our next goal is to determine the horizontal part Z(L") ,» of the special cycle
Z(L") (§4.6) in terms of primitive horizontal cycles Z(M bye parametrized by
M" € Hor(L") (Definition 3.8.2).

5.1 Quasi-canonical lifting cycles

In this subsection we consider m = n + 1 = 3. Then A, ~ Spf O plltll
is isomorphic the Lubin-Tate deformation space of the formal group E of
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dimension 1 and height 2 over ¥ (Example 4.5.3). As defined in [9], for s > 0
and a quadratic extension K / F, a quasi-canonical lifting Ex s (and canonical
lifting when s = 0) is a lift of E whose endomorphism ring is

OK,s = Ofr +o’ Og.

Let K be the completion of the maximal unramified extension of K. Let K, be
ring class field of K corresponding to O ;é ; under local class field theory, with
ring of integers O (. By [9, Proposition 5.3], the ring of definition of Ek s is
O ., and the universal quasi-canonical lifting defines a horizontal divisor

K,s’
Zg.s = Spf Ok,s C N>
with

degOF Zrs = [015’5 1 Opl

1, s =0, K/F is unramified,

_Jaa +q¢ Y, s>1, K/F %s unra‘miﬁed, (5.1.0.1)
2, s =0, K/F isramified,
2g°, s > 1, K/F is ramified.

Let M* C V% be an Op-lattice of rank 1. Let K(M") = F (w/disc(Mb)).

Since V5 is anisotropic, we know that X (M) # 41, and so K(Mb)/F is
a quadratic extension, which is unramified (resp. ramified) if y (M "y = —1
(resp. X(M") = 0). By [8, (5.10)] (see also [40, §3, p. 147]), we have a
decomposition as (Cartier) divisors on N3,

val(M)
[—5—]

Z(M") = Z Zr ).
s=0

We define the primitive part Z(M *ye of Z(M”) to be the closed formal
subscheme given by the unique irreducible component of Z(M") such that

Z(M")° ¢ Z(M""), for any Op-lattice M* < M?, such that M” D M.
Equivalently, Z(M")° = Zg 4y, € Z(M") for the maximal s = I_—Val(sz)J.

5.2 Gross—Keating cycles

In this subsection we consider m = n + 1 = 4 and ¢ = +1. In this case
NG~ Spf O [l[11, £2]] is isomorphic to the product of two copies of Lubin—
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Tate deformation spaces N> over Spf O (Example 4.5.3). The intersection
problem of special divisors on N;r are studied in detail by Gross—Keating
[8]. Let M* € V be an Op-lattice of rank 2. By [8, p. 239] (see also [40,
§3, p. 147]), we know that Z(M ®) is a horizontal 1-dimensional affine formal
subscheme of 5", and each irreducible component of Z(M") is isomorphic
to a quasi-canonical lifting cycle Spf O  for some s. We define the primitive
part Z(M >ye of Z(MP) to be the closed formal subscheme given by the union
of irreducible components of Z(M *) such that Z(M")° ¢_ Z(M b/), for any

O p-lattice M C M; such that M"' 2 M.

5.3 Horizontal cycles

Now consider general m = n+ 1 > 3 and ¢ € {£1}. Let M C V be an
O p-lattice of rank n — 1. Assume that M" is horizontal (Definition 3.8.1). We
have two cases.

If 1 (M") < 1, then there exists a self-dual Op-lattice M,,_» of rank n — 2
and an Op-lattice M; of rank 1 such that M” = M,_» & M,. By (4.14.0.2),
we have an isomorphism

Z(Mn—Z) = NZ'

Under this isomorphism, we can identify the cycle Z(M Yy € Z(M,_») with
the cycle Z(M;) € N>, which is a union of quasi-canonical lifting cycles
as in §5.1. We define the primitive part Z(M")° of Z(M") to be the closed
formal subscheme given by the primitive part Z(M)° € Z(M;) under this
identification. Notice that Z(M")° is independent of the choice of the self-dual
lattice M,,_».

If t(M") = 2, then there exists a self-dual Og-lattice M,,_3 of rank n — 3
and an Op-lattice M, of rank 2 such that M" = M,_3 & M,. Since M" is
horizontal, by Lemma 3.7.1 (ii) we know that

X(My=3 ) = X (V)X (My—3,F) = £ 5gn, _1 (M) = +1,
and thus Mnl_&F o~ VI. By (4.14.0.2), we have an isomorphism
Z(My—3) =~ N5
Under this isomorphism, we can identify the cycle Z(M”) € Z(M,_,) with
the cycle Z(M,) < N, which is a Gross—Keating cycle, also a union of

quasi-canonical lifting cycles as in §5.2. Similarly, we define the primitive part
Z(M")° of Z(M") to be the closed formal subscheme given by the primitive
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part Z(M>)° C Z(M>) under this identification. Again Z(M")° is independent
of the choice of the self-dual lattice M,,_3.

Notice that the above two cases be combined: using (4.14.0.2) again we
may identify N, as a special divisor on ./\/'3+ associated to a self-dual lattice
of rank 1. So when M" is horizontal, we may always identify Z(M") as a
Gross—Keating cycle on N3+ .

Theorem 5.3.1 Ler L” C 'V be an Op-lattice of rank n — 1. Then

2e= ) zory. (5.3.1.1)
MPeHor (L")

Moreover, the identity

OZ(Lb)t%p - Z OZ(Mb)O (5312)
MPeHor (L")

b
holds in Gr*=" K27 (A,

Lemma 5.3.2 The primitive cycles Z(M")° on the right-hand-side of (5.3.1.1)
do not share any common irreducible component.

Proof Suppose Z(M ;) )°and Z (M;)O share a common irreducible component
for M, M, € Hor(L"). Let M* = M + Mj. Then M* € Hor(L"). By
definition Z(M}) N Z(M;) = Z(M"). Hence Z(M,)° and Z(M") share a
common irreducible component. But Z (M lb )¢ is primitive and M lb C M’ by
definition we have M lb = M". Similarly, we know that M; = M". Hence
Mlb = M; as desired. O

Theorem 5.3.1 will be proved in §5.6. By Lemma 5.3.2, we know that
(5.3.1.1) implies (5.3.1.2). It is clear from construction that in (5.3.1.1) the
right-hand-side is contained in the left-hand-side. To show the reverse inclu-
sion, we use the theory of Tate modules, to be explained in next two sections.

5.4 Tate modules and the projector

Let Z be a formal scheme that is formally smooth and locally formally of finite
type over Spf O . Let X be a p-divisible group over Z. We denote by T (X) the
lisse Op-sheaf of Tate modules over the rigid generic fiber Z"2, given by the
projective system of étale sheaves {X"¢[zo"*]}. By definition, an integral étale
Tate tensor on X" is amorphism? : 1 := O — T(X)® oflisse O p-sheaves.
By [18, Theorem 7.1.6], for any crystalline Tate tensor Z¢rys : 1 — (X )@
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on X, there exists a unique integral étale Tate tensor fg : 1 — T(X )® on
X" such that for any classical point z € Z"¢, 15 ; € T (X:)® matches with
lerys,z - 1 — D(X .)® under the classical crystalline comparison isomorphism

Berys(0) ®0,; D(X:2)(0¢) = Berys(0) ® T(X)E[1/pl.
(5.4.0.1)

Here z is any geometric point supported at z, and B.ys is Fontaine’s crystalline
period ring.

Applying this construction to Z = N, X = X univ and ferys = Terys, We
obtain an integral étale Tate tensor g on X"™V"'& which is a projector

mg : End(T(X"Y)) — End(T (X"")),

whose image Vg 1= im(m¢ ) is a lisse Op-sheaf of rank m.

Now let K/I:” be a finite extension. Let z € N(Og). Let X/Og be the
p-divisible group corresponding to z. Let 7, X be the integral p-adic Tate
module of X, afree O p-module of rank 2 with an O-linear action of I'g :=
Gal(f/ K). The projector g induces a projector of Of[I" g ]-modules

w7 - End(Tp X) — End(T), X).
Its image Vg ; is a free Op-module of rank m with an action of I'g. The
endomorphism ring End(7, X) has a natural quadratic module structure over
Or given by (f1, f2) = 27" tr(f1 o f2), which induces a quadratic module
structure on Vg ; satisfying f o f = (f, f) -idr,x for f € Vg ;. This makes

V¢.z a self-dual O p-lattice of rank m isomorphic to V. In this way we view
V >~ V¢ : € End(T),X).

5.5 Special endomorphisms

Let X /O be the p-divisible group corresponding to z € N (Og) as in §5.4.
We have a natural injection of O r-modules

ix : End(X) — End(T,X).
On the other hand, the reduction map induces injection of O g-modules
iz : End(X) — End(Xj).
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Tensoring with F we obtain two injections (still denoted by the same notation)
of vector spaces over F,

End°(X)

End®(T,X) End°(Xg).

Recall that we view V C End°(Xz) via the projector 7y (§4.3) and
V C End(T), X) via the projector ¢ (§5.4). By the compatibility of 7 ys and
7 ¢ under the crystalline comparison isomorphism (5.4.0.1), we know that for
f € End®°(X), mwerys(f) = f if and only if w¢ (f) = f. Hence i (f) € Vr
if and only if iz (f) € V.

Definition 5.5.1 Define the space of special quasi-endomorphisms of X to be
subspace

SEnd®(X) := {f € End°(X) : ix (f) € V)
= {f € End°(X) : iz(f) € V} € End°(X),

and define the space of special endomorphisms of X to be SEnd(X) :=
SEnd®(X) N End(X).

We have a natural quadratic O p-module structure on SEnd(X) satisfying
fof=C(f, f)-idx for f € SEnd(X), which is compatible with the quadratic
form on V viaig (resp. on V via i¢). In this way we obtain two injections of
quadratic spaces over F,

SEnd®(X)

Vi V.
Lemma 5.5.2 The following identity holds:
SEnd(X) = ig' (V).
Proof By definition V = Vp NEnd(7), X), so we have ix (SEnd(X)) C VN
End(T), X) = V. Conversely, suppose f € SEnd°(X) such thatig (f) € V.
To show that f € SEnd(X) it remains to show that f € End(X). By [48,

Theorem 4, Corollary 1], the map ix induces an isomorphism

iK : End(X) = EndOp[Fk](TpX)a
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where 'y = Gal(f/ K), and so an isomorphism
Hence

ix(f) € End}, r1(TpX) NV S Endy (T X) N End(T,X)
= EndOF[I‘K](TpX)-

It follows that f € End(X) as desired. O

Corollary 5.5.3 Let M C V be an Op-lattice (of arbitrary rank). Then 7 €
Z(M)(Og) if and only if

M C (i (V). (5.5.3.1)

In particular, when z € Z(M)(Ok), there exists an embedding of quadratic
Op-modules ig Oi,z_l M= V.

Proof By definition we have z € Z(M)(Og)ifandonlyif M C iz (SEnd(X)).
The result then follows from Lemma 5.5.2. O

5.6 Proof of Theorem 5.3.1
Letz € Z(Lb)(OK). By Corollary 5.5.3, we know that
L’ Cizig' (V).

Define M":=L",Niz(ix' (V)). By Lemma3.8.4, we know that M" € Hor(L").
By construction M > is the largest lattice in LbF contained in i (iI}1 (V)), thus
we obtain that z € Z(M")°(Ok) by Corollary 5.5.3 again. Therefore the
Ok -points of both sides of (5.3.1.1) are equal.

To finish the proof of Theorem 5.3.1, by the flatness of both sides of (5.3.1.1)
itremains to check that the Ok [#]-points of both sides are equal (where 2= 0).
Namely, we would like to show that foreachz € Z (L")(Ok), there is a unique
lift of z in Z (Lb)(O k[t]). Let Vipys . be the crystal of rank m associated to
7 (§4.3). Since the kernel of Ok[t] — Ok admits trivial nilpotent divided
powers, by Lemma 4.6.2, a lift 7 € Z(L")(Ok[t]) of z corresponds to an
isotropic Ok [t]-line Filchrys(OK[t]) in Vs (Ok [1]) lifting Filchrys(O K)
and orthogonal to the Og[¢]-submodule Lzryw(OK[t]) C Vs 2 (Ok[1]).
By Breuil’s theorem (as recalled in [37, §4.3]), the S-submodule (where S is
Breuil’s ring) Lirys, 2(8) € Virys(S) has rank n — 1, and base changing from
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S to Og we know that the Og-module LEWS,Z(OK) C Veys(Ok) also has
rank n — 1. Hence we know that there is a unique choice of such isotropic

line Filchrys(OK[t]) orthogonal to the Ok [t]-submodule LEWS,Z(OK [r]) <
Verys,z (Ok [t]) of rank n — 1. Hence the lift Z is unique as desired.

5.7 Degree of primitive cycles

Lemma 5.7.1 Let M° C V be an OrF-lattice of rank n — 1. Assume that MP
is horizontal. If x (M") # 0, then

1, t(MP) =0,
(I4+g7hH, M) =1,
21 4+g¢7 Y, t(M°) =2.

o val(M")
degp, Z(M")° =q' "7

If x(M") = 0, then

1, (M) =1,

dego, Z(M")° = 291"
go; - 2. 1(MP) =2.

Proof Since M > is horizontal, as in §5.3 we are reduced to the Gross—Keating
casem = 4, & = +1. In this case, we prove the degree formula by induction on
val(M"). By induction hypothesis, the degree formula is true for all horizontal
lattices N” C VI with val(N®) < val(M").

By Theorem 5.3.1, we know that

degp, Z(M)° =dego Z(M") = Y degp, Z(N")°.
M CNPeHor (M)

Choose x € (M?,)l such that M = M’ @ (x) and M=Ma (o~ 'x) are
integral. By the proof of [6, Theorem 6.8], we know that

degy Z(M”) = dDent (M) — 9Den™t (M).
Hence

dego, Z(M")° = (9Dent (M) — 3Den™ (M))

—~ > degy, Z(N)°.
M°CN°eHor(MP)
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The desired degree formula for Z(M”)° then follows from Corollary 3.8.3 and
the induction hypothesis. O

5.8 Relation with local densities

Notice that degoﬁ (Z(L") ) is equal to the degree of the O-cycle Z(Lb)ﬁ in
the generic fiber . of the Rapoport—Zink space, which may be interpreted as
a geometric intersection number on the generic fiber. We have the following
identity between this geometric intersection number and a local density.

Corollary 5.8.1 Let L C V be an Op-lattice of rank n — 1. Then

Den’(1, L"), x(L") #0,
dego, (Z(L7).) = 2Den’(1, L"), x(L") = 0.

Proof It follows immediately from Theorem 5.3.1, Lemma 5.7.1 and Corollary
3.8.3. O

Remark 5.8.2 Using the p-adic uniformization theorem (§12.6) and the flat-
ness of the horizontal part of the global special cycles, one may deduce from
Corollary 5.8.1 an identity between the geometric intersection number (i.e.
the degree) of a special O-cycle on a compact Shimura variety associated to
GSpin(n — 1, 2) and the value of a Fourier coefficient of a coherent Siegel
Eisenstein series on Sp(n, n) at the near central point s = 1/2. This should
give a different proof of a theorem of Kudla [29, Theorem 10.6].

6 Vertical parts of special cycles

We continue with the setup in §4. Let L C V be an O p-lattice of rank n — 1.

6.1 The support of the vertical part Z (L")

Recall that Z (L") is the vertical part of the special cycle Z(L") € N (§4.6).

Proposition 6.1.1 Z(L")y is supported on N™Y, i.e., Oz(1», is annihilated
by a power of the ideal sheaf of N™4 C N.

Proof 1f not, we may find a affine formal curve C = Spf R C Z (L")y such
that C has a unique closed point z € N (k). The universal p-divisible group
XU over A pulls back to a p-divisible group X over Spec R. Let 1 be a
geometric generic point of Spec R, with algebraically closed residue field k.

Let I:”,, be the fraction field of the Wittring of k). Let Verys,  (resp. Verys, ;) be the
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1404 C. Li, W. Zhang

crystal associated to the point 7 (resp. z) as in §4.3. Denote the corresponding
isocrystal by (Vﬁn, ®, =b,o00), where b, € H(Fn) (resp. (Vi, @ = boo),
where b € H (1:" ) asin §4.2), and H = SO(VF). Recall that these isocrystals
with H -structure are classified by the class of b, and b in the Kottwitz set B(H)
of o-conjugacy classes of H (F),and B(H) is independent of the algebraically
closed residue fields k,, and k [41, Lemma 1.3]. By the specialization theorem
of Rapoport—Richartz [41, Theorem 3.6], we have b < by, where < is the
partial ordering on B(H) [41, §2.3].

To obtain a contradiction to that z is the unique closed point of C, it suffices
to show that b, is a basic element. Since C € Z (L"), the lattice L” acts on

A& via special endomorphisms and hence ® (resp. ®,) stabilizes Lbﬁ (resp.
Lbﬁn)‘ Let W be the 2-dimensional orthogonal complement of L; in V and
T = SO(W). Since @ stabilizes L;, we may write b = (b”, b) for basic
elements b° € B(SO(L;)) and b+ € B(T). Similarly, we may write by, =
", b#) for some (possibly non-basic) element bnl € B(T). Now bt is a
specialization of an implies that b+ < an for the partial ordering on B(T).

But 7 is a torus, we know that b+ < bé‘ implies that b+ = bé‘ in B(T)
by [41, §1.7 and Theorem 3.6 (i)] (namely, in the notation of [41], the map
§: N(T) - X.(T)" @ Qis an isomorphism for any torus 7', so §(v(b)) =

8(v(by)) implies v(b) = v(by)). Hence b, = b € B(H) is also basic, a
contradiction as desired. O

Remark 6.1.2 The key observation in the proof is that the quadratic space
(L;)J- has dimension 2 and hence its isometry group is a torus. In the uni-

tary case, the similar observation also holds (the hermitian space (pr)L has
dimension 1 and its isometry group is a torus) and provides an alternative
(more group-theoretic) proof of [37, Lemma 5.1.1].

6.2 Horizontal and vertical parts of “Z (L")
Since Z(L") 4 is either empty or 1-dimensional (Theorem 5.3.1), the inter-

section Z (L") » N Z(L")y must be either empty or O-dimensional. It follows
that there is a decomposition of the (n — 1)-th graded piece

Gl kKZEI W) = Gt kEET (v @ G kKEE (),
(62.0.1)
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Definition 6.2.1 The decomposition (6.2.0.1) induces a decomposition of the
derived special cycle into horizontal and vertical parts

Lz = Y2 0w + 2"y € G KEEO (W),

From this decomposition, we see that even though the vertical part Z (L)
may depend on the choice of an integer N > 0 (§4.12), the element
Lz, e Gr! KOZ (Lb)(/\/' ) is canonical and independent of the choice
of N.

Since Z(L") 4 is either empty or has the expected dimension one, the first
summand “Z (L"), is represented by the structure sheaf of Z (L") » by [59,

Lemma B.2 (ii)]. Abusing notation we shall write the sum as

Lz =z e + F2y. 6.2.1.1)

6.3 The Tate conjecture for certain Deligne-Lusztig varieties

Consider the generalized Deligne—Lusztig variety Y;:=Yw and the classical
Deligne-Lusztig variety Y;:=Yy;, as defined in §4.7, where W is the unique
non-split quadratic space over « of dimension 2(d + 1). Recall that we have
a stratification

d
Yy = |_| Xp,(w;).

i=0

Let
o i
Xp=Xpw), Xi=X7 =] |x}.
k=0

Then X} is a disjoint union of isomorphic copies of the classical Deligne—
Lusztig variety Y7, and each irreducible component of X; is isomorphic to
Y;.

For any F-variety S, we write H/(S)(i):=H/ (S, Q¢(i)) (£ # pis a
prime). Let F = qu be the q2-Fr0benius acting on H 1($) ().
Lemma 6.3.1 Foranyd,i > 0 and s > 1, the action of F* on the following

cohomology groups are semisimple, and the space of ¥*-invariants is zero
when j > 1.

(i) HY (X))
(if) H2 (X9)()).
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(i) H¥ (Yy — X)) ().

Proof (i) The assertionis clear whend = dim Y; < 1. Whend > 2, by [36,
7.3 Case 2D, (n > 3)] (notice the adjoint group assumption is harmless
due to [36, 1.18]), we know that there are exactly d 4 1 eigenvalues
{1,4%, ..., g%} of F acting on HX(Y7), with g*/ exactly appearing in
degree d + j. By the Poincare duality, we have a perfect pairing

HX (Y9 x HI(Y9)(d) — HX(Y$)(d) ~ Q.

Thus the eigenvalue of F on H%/ (Y7)(j) are given by ¢*@=7 times the

inverse of the eigenvalue in HC2 @= )(Yj), which is equal to ¢2/. Hence
the eigenvalue of F® is never equal to 1 when j > 1. The semisimplicity
of the action of F* follows from [36, 6.1].

(ii) It follows from (i) since X} is a disjoint union of Y.

(iii) It follows from (ii) since Y; — X; = |_|f{l:i 1 Xp- O

Theorem 6.3.2 Forany 0 <i <d and any s > 1, we have

(1) The space of Tate classes H 20y, (i )FS:1 is spanned by the cycle classes
of the irreducible components of X 4—;. In particular, the Tate conjecture
([47, Conjecture 1], or [49, Conjecture Ti]) holds for Yg.

(i) Let H¥(Y)(i); € H*(Y,)(i) be the the generalized eigenspace of F*

for the eigenvalue 1. Then H*(Y) () = HZ"(Yd)(i)FS:l.

Proof The same proof of [37, Theorem 5.2.2] works verbatim using
Lemma 6.3.1 in place of [37, Lemma 5.2.1]. O

7 Fourier transform: the geometric side

We continue with the setup in §4. Let L C V be an Op-lattice of rank n — 1.

7.1 Decomposition of Int and dDen

Recall from (6.2.1.1) that there is a decomposition of the derived special cycle
Lz (L") into a sum of vertical and horizontal parts

P = Z(L) e+ P2y
Definition 7.1.1 Let L” C V be an Op-lattice of rank n — 1. Denote by

W = (L';v)L C V, a 2-dimensional non-degenerate quadratic space over F.
Define
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QL) = L), x W,
an open dense subset of V. Then we have
Q(Lb) ={xeV: L+ (x) is a non-degenerate O g-lattice of rank n}.

Definition 7.1.2 For x € (L"), define the arithmetic intersection number
b Lo b
Int;p(x):=Int(L" 4 (x)) = x (N, Z(x) N Z(L")).
Define its horizontal part to be
Lo b
Intys ,(x):=xWN, Z(x) N Z(L") ), (7.1.2.1)
and its vertical part to be
Loy, b
Int;s » (X):=x (N, Z(x) N “Z(L")y). (7.1.2.2)
Then there is a decomposition
Int;»(x) = Intyp s (x) + Intys 4 (x). (7.1.2.3)
Definition 7.1.3 Analogously, forx € Q (L"), define the derived local density

dDen; s (x):=dDen(L" + (x)).

By Corollary 3.4.7, we have
dDen;»(x) = Z m(r (L"), sgn, | (L)1 (x). (7.1.3.1)
L°cL'cLV

Here L’ C 'V are Op-lattices of rank n. Define its horizontal part to be

dDenys s (x):= Z m(t (L"), sgn, (L)1 (x), (7.1.3.2)

L°cL'cL"Y
L"eHor (L")

and its vertical part to be

aDenps (x):= Y m(t(L)), sgn, (L)1 (x). (7.1.3.3)

L’cL'cLY
L"¢Hor (L")
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Here we denote
b b
L":=L'NL,CLy. (7.1.3.4)
Then there is a decomposition

dDen;»(x) = dDeny» - (x) + dDenyp 4 (x).

7.2 The horizontal identity

Lemma 7.2.1 Let L €V be an Op-lattice of rank n — 1. Assume that L" is
horizontal. Then for x € Q(Lb),

L byo / /
XN, Z(x) N Z(L")°) = Z m(z (L), sgn, 4 (L)1 (x).

L°cL'cL”Y
L/b:Lb

Proof By Theorem 5.3.1, we have

L L
Int;s ,(x) = x(N.Z@) N ZAD)+ Y xW, Z@) N Z(L")).

L"eHor(L")
L/b#Lb
(7.2.1.1)

Since L is horizontal, as in §5.3 we are reduced to the Gross—Keating case
m = 4, ¢ = +1. In this case, we prove the desired formula by induction on

L
val(L"). By induction hypothesis, the desired formula for each x (N, Z(x) N
Z(L")°) in the second summand is valid. Hence
L byo
Int;r ,(x) = x(N, Z(x) N Z(L")°)
+ Y m(L), sgn, g (L)1 (),

L[)CL/CLN
L/b;éLb

here L” € Hor(L") holds automatically, as L' CV= VI hasrankn —1 =2
and is horizontal. By §5.2 we have Z(L") = Z(L") s and hence

IntLb’ﬂ(x) = IntLb(x)
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By Remark 4.15.2 we have
IntLD (X) = 8Dean (x)
It follows that

XN, Z(x) A Z(L")°) = dDen s (x)
— > m@L), sgn, (L)1 (x).

L°cL'cLY
L/b;éLb
The desired formula then follows from (7.1.3.1). O

Theorem 7.2.2 Let L* C V be an O p-lattice of rank n — 1. Then as functions
on Q(L"),

IntLbe = aDCan”yK.

Proof This follows immediately from (7.2.1.1), Lemma 7.2.1 and (7.1.3.2).
O

7.3 Decomposition of Int;,
By Proposition 6.1.1, we have a change-of-support homomorphism
b [
Grn—l K?(L )y (N) Grn—l KO./\/’r d(N)‘
Abusing notation we will also denote the image of “Z (L") in the target by

the same symbol.

Lemma 7.3.1 There exist countably many (and finitely many, if L’ is co-
anisotropic) curves C; € N™ and multe, € Q such that each irreducible
component of N4 contains only finitely many C;’s and

LZ(L)y = Y multe,[Oc,] € Gr" ! kg™ ().

1

Proof 1t follows immediately from Proposition 6.1.1, where the finiteness of
such curves C; in the co-anisotropic case is due to the noetherianess of Z(L")
by Lemma 4.12.2 (i). O
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Corollary 7.3.2 There exist (countably many) Deligne—Lusztig curves C; C
./\f,fed (ie, Ci = V(A) = IP’I% for a vertex lattice A € Vert*(V), see §4.9)
and multc, € Q such that each irreducible component of N red contains only
finitely many C;’s and

L
Int o (x) = Y multe, - x (N, Ci N Z(x))

as functions on Q (L"), where the sum on the right-hand-side is locally finite
(and finite if L” is co-anisotropic).

Proof The same proof of [37, Corollary 5.3.3] works using Theorem 6.3.2 in
place of [37, Theorem 5.3.2] and Lemma 7.3.1 in place of [37, Corollary 5.2.2],
where the local finiteness of the sum is due to the noetherianess Z(L” + (x))
by Lemma 4.12.2 (i). O

7.4 Computation of Inty(,)

Let A C V be a vertex lattice. Let V(A) be the Deligne—Lusztig variety in the
Bruhat—Tits stratification of N4 (§4.9). Define

Intyp) (x):=x (N, V(A) A Z(x)), x e V\{0}. (7.4.0.1)

Next we explicitly compute Intyp) for A € Vert*(V), i.e., for V(A) = IP’}(
a Deligne—Lusztig curve.

Theorem 7.4.1 Let A € Vert*(V). Then

(I—¢q), x €A,
Inty(p)(x) = 1 1, x € AV\A, and val(x) > 0,
0, otherwise.

In particular, the function Intyny on V\{0} extends to a (necessarily unique)
Sfunction in . (V), which we still denote by the same symbol.

Proof Since A € Vert*(V), it admits an orthogonal decomposition A = A" @
M, where A” is a rank 4 vertex lattice of type 4, and M is a self-dual lattice of
rank m — 4. Moreover, by (4.8.0.1) we know that x (AbF) = —1. Thus by the
same proof of [37, Lemma 6.2.1] using the cancellation law (4.14.0.2), we are
reduced to the case m = 4 and ¢ = —1. Namely, we may assume that V =V,
and N = N5 . Let x € V\ {0}. Since V(A) = Z(A) (§4.8), we know that
V(AN Z(x) = Z(A+ (x)).If x ¢ AY or val(x) < 0, then A + (x) is not
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integral. Hence V(A) N Z(x) = @ and so Intya) = 0. If x € AV \ A, then
A+ (x) € Vert?(V) and hence V(A) N Z(x) = V(A + (x)) consists of a
single k-point, and so Intya)(x) = 1.

It remains to show that Intys)(x) = 1 — ¢ for nonzero x € A. Since

L
Z(A) N Z(x) is invariant when replacing x by any nonzero element in A by
the proof of [51, Proposition 4.2], we know that Inty,(4)(x) is a constant for all
nonzero x € A. Hence without loss of generality, we may assume val(x) = 1.

L
As V(A) N Z(x) is supported on the special fiber N and Z(x) is flat over
Spf O (Proposition 4.10.1) we know that

L L
Intya)(x) = X (N, V(A) N Z(x)) = x (Ne, V(A) Np; Z(x)i).

When val(x) = 1, via moduli interpretation [50, p. 216] we know that Z(x) =~
M is isomorphic to Drinfeld’s moduli space M of special formal O g-modules
(where B is the quaternion algebra over F'). The special fiber M is a union
of IP’II2 ’s whose dual graph is the Bruhat-Tits tree of PGL,(F). It follows that
V(A) intersects with Z(x)z exactly (apart from the self intersection) with g +1
of adjacent IP’,Iz ’s, and the intersection number is equal to 1 for each such IP’}E.
It follows that that

L L
XN, V(A) Ny Z2(0)e) = (g + 1) + x Ne, V(A) Np V(A)).

This is equal to (¢ + 1) + (—2¢q) = 1 — g by Lemma 7.4.2 below, which
completes the proof. O

Lemma 7.4.2 Assume that V =V, and A € Vert* (V). Let T be the ideal
sheaf of the closed subscheme V(A) € Ni. Then

(i) there is an isomorphism of coherent sheaves on V(A),
/7% = 0Q2q),

where O(k) is the line bundle of degree k on V(A) =~ IP’}E.
(ii) the self intersection number of V(A) C Ni equals

L
XN, V(A) N V(A)) = —2g.

Proof Since V(A) is an irreducible curve on the 2-dimensional regular formal
scheme A, itis a Cartier divisor on Nz and the closed immersion V(A) — Nz
is regular. Hence there is a conormal exact sequence of locally free sheaves

0 — I/I* — Qu;lva) — Q) — 0. (7.4.2.1)
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Under the identification V(A) ~ IP’,%, we have the cotangent sheaf Qy(p) =~
O(-2).

By Example 4.5.3, the space N is isomorphic to the formal moduli space
MHMB defined in [S1, §2]. Let X be the universal p-divisible group over MHB
and D(X) be its Dieudonné crystal (taken to be covariant for the purpose of
this proof). Then we have a Hodge filtration

0 — wyv — D(X) — Liex — 0.

Here wyxv, Liey are both locally free of rank 2. By Grothendieck—Messing
theory we know that the tangent sheaf is given by

TMEB ~ HomOE (wxv, Liey).
The special Og-action on X induces Z/27Z-grading

D(X) =D(X)o ®D(X)1, wyxv=wxvo®wxv1,
LieX = LiGX,O@LieX’I

compatible with the Hodge filtration. Each of wxv, and Liey ; (i € Z/2Z) is
locally free of rank 1. Hence there is an isomorphism

T,ms >~ Hom(wxv o, Liex o) ® Hom(wyv 1, Liex 1). (7.4.2.2)

Now recall the identification V(A) =~ IP’I% in [51, §2] and [23, §4]. There exists
a unique critical index i € Z/27Z for V(A). For i critical, there exists an Og-
lattice A; of rank 2 such that for any z € V(A)(k), we have D(X;);(Op) =
Ai 0, and V(A) ~ ]P’I(Ai,,g). The line corresponding to z € ]P’,% = IP’I(AL,;)
is then given by the Hodge filtration for the (critical) i-th grading

wxyi € D(X)i(k) = Aik.

It follows that if 7 is critical for V(A), then wxv ;|y(a) 1s the tautological line
bundle O(—1) on IP’,%, and thus

Hom(wyv ;, Liex ;)|[va) =~ Hom(O(—1), O(1)) = O(2).

Moreover wxv it+1lya) 1s the Frobenius twist of Liex;|ya) by [23,
Lemma 4.3 (i)], and thus

Hom(wxv j4+1, Liex i+1)lva) = Hom(O(g), O(—q)) =~ O(-2q).
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It follows from Equation (7.4.2.2) that the tangent sheaf
Tnelvay = Tyslva) = 02) ® O(-2q),
and so the cotangent sheaf
Qnz vy = 0(=2) @ O(29).
By Eq. (7.4.2.1), we obtain
/7% ~ 02q).

This completes the proof of the first assertion.
To show the second assertion, we use the short exact sequence

0—7— On. — Oy — 0.
Applying ®0,. Oy(a) gives an exact sequence
ON 2
0 — Tor, " “ (Oya), Ovr)) = Z/Z7 — Oyay) = Oya) — 0.
Hence we obtain an isomorphism
ON; 2
Tor; 7" (Oya), Ov)) ~Z/77.

OpN-
Since V(A) is a Cartier divisor on Nz, we know that Tor, A& (Oyay, Ova)) =
0 for all i > 2. Thus the derived intersection is represented by a complex

L
V(A) N V(A) =[Oy — /77,

where Oy () is in degree 0 and 7 /T? is in degree 1. It follows from definition
that

L
XN, V(A) Ny VA) = x (V(A), Opa)) — x(V(A), T/T7).
Under the identifications V(A) =~ ]P’,lz and Z/7% ~ O(2q), this is equal to
X (Bt O) = x (Pg, 0(29)) = deg O — deg O(2¢) = ~2¢q
by the Riemann—Roch theorem. O
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Remark 7.4.3 A proof similar to that of Theorem 7.4.1 works for the unitary
case and provides an alternative way (independent of the displays computa-
tions in [52]) of computing Intya)(x) = 1 — q2 for nonzero x € A in [37,
Lemma 6.2.1]. In fact, in the unitary case the Deligne—Lusztig curve V(A) is
isomorphic to the Fermat curve of degree ¢ + 1 in IP’I% and its conormal sheaf
T /Z2 is isomorphic to the pullback to V(A) of the line bundle O(2¢g — 1) on
]P)I%. Thus the self intersection number of V(A) is (1 — 2g)(g + 1). Moreover,
when val(x) = 1 the special fiber Z(x)z is a union of Fermat curves, whose
intersection pattern is governed by the vertices of the Bruhat-Tits tree of the
quasi-split unitary group in 2 variables: g + 1 intersection points lie on each
Fermat curve and g + 1 Fermat curves pass through each intersection point.
Hence we obtain Intya)(x) =q(g+ 1) + (1 —2g)(g+1)=1— qz.

Remark 7.4.4 The number —2¢ also agrees with the global result on the self
intersection number of irreducible components of the supersingular locus of
Hilbert modular surfaces at a good inert prime [54].

Corollary 7.4.5 Let A € Vert*(V). Then

Intyn) = —q(L+Ia+ Y 1a.
ACA’eVert?(V)

Proof We compute the value of the right-hand-side at x € V according to
three cases.

() If x € A, then there are exactly g + 1 type 2 lattices A’ containing A,
and the value is

g+ + @+ =1-q.

(ii) If x € AV \ A and val(x) > 0, then A + (x) € Vert?(V). Then there are
exactly one lattice A’ = A + (x) appearing in the sum, and the value is
0O+1=1.

(iii) If x ¢ AY or val(x) < 0, then A + (x) is not integral, and the value is

clearly 0.
The result then follows from Theorem 7.4.1. O
Corollary 7.4.6 The function Inty» 4 is in LIIOC(SZ (L)) (see Notations §2.2)

and extends (uniquely) to a distribution in (V) (and a function in (V) if
L’ is co-anisotropic), which we still denote by the same symbol.

Proof It follows from Corollaries 7.3.2 and 7.4.5 that Int» , is a locally finite

(and finite if L” is co-anisotropic) linear combination of functions in .7 (V)
and hence locally integrable on €2 (L") (and in .7 (V) if L is co-anisotropic).
O
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7.5

Fourier transform: the geometric side; ‘“Loocal modularity”

We compute the Fourier transform of Inty,(4) as a function in .7 (V).

Lemma 7.5.1 Let A € Vert*(V). Then Inty sy € 7 (V) satisfies

Inty(A) = WIntV(A) .

Here yy = —1 is the Weil constant.
Proof By Corollary 7.4.5 and (2.2.0.1), we obtain

Intyay = —Vol(A) g1 +¢q) - Tav+ 3 vol(A) - Ixm
ACAeVert?(V)

=—(+g"H-lav+ Y. g1y
ACA’eVert?(V)

Now we compute its value at u € V according to four cases.

®

(ii)

(iii)

(iv)

If u € A, there are exactly g + 1 type 2 lattices A’ containing A, and
the value is

~(+q¢ H+qg g+ D =g~ 1

Ifu € Ay \ A forsome A, € Vert? (V), i.e., the image of it of u in AY /A
is an isotropic vector. Notice that u € A" if and only if  is orthogonal
to the line given by the image of (A’)Y in AY/A. So there is exactly one
such A’ € Vert2(V), i.e., A’ = A,, and we obtain the value

~(A+q¢ H+qg ' =-1.

Ifu e AV\ Abutu ¢ Ar\ A for any A, € Vert>(V). Then u is
anisotropic in AY/A. Notice that ()" is a non-degenerate quadratic
space of dimension 3, and A’ corresponds to an isotropic line in (). So
there are exactly ¢ + 1 of such A’ € Vert? (V), and we obtain the value

~1+g H+qg g+ =0.

If u ¢ AV, then the value at u is clearly 0.

The result then follows from Theorem 7.4.1. O

Remark 7.5.2 1t follows from Lemma 7.5.1 that Intya) is SL, (O F)-invariant
under the Weil representation. This invariance may be viewed as a “local
modularity”, an analog of the global modularity of arithmetic generating series
of special divisors (such as in [13]).
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Corollary 7.5.3 The following identity in 2(V) (and in ¥ (V) if L is co-
anisotropic) holds,

IntLb,y = WIntLb’j/ .

Proof This follows from Corollary 7.3.2 and Lemma 7.5.1. O

7.6 Fourier transform: the geometric side; “Higher local modularity”

In this subsection we generalize Lemmas 7.4.5 and 7.5.1 on the function
Inty,(a) for vertex lattices A of type 4 to vertex lattices A of arbitrary type
t(A)=2d+2>4(.e.,d>1).Let

d

ch : Ko(V(A))g — P Chl (V(A)g
i=0

be the Chern character from the Grothendieck ring to the Chow ring of V(A),
which is an isomorphism of graded rings. In particular, it induces an isomor-
phism

ch; : Gr' Ko(V(A))g —> Chi(V(A))g.
forO <i <d. Let
cl; : Ch'(V(A))g — H* (V(A), Qo) (i)

be the ¢-adic cycle class map and let
d d d

cl=Peli : P’ VaNg — P H* V(A), Qo).

i=0 i=0 i=0

Then cl intertwines the intersection product on the Chow ring and the cup
product on the cohomology ring, namely the following diagram commutes,

Grl Ko(V(A)g x  Gr/ Kg(V(A)g —— Grit/ Ko(V(A))g

2\L0hi Z\L‘:hi 2l°hi+j

Ch! V(A))g x Ch/(V(A))g ———— ChiH (V(A))g

\Lcli \Lclj \Lcl[ﬂ

HE(V(A), Qo)) x  HYV(A), Q)(j) —= HXFDV(A), Qo) + j).
(7.6.0.1)
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Denote by Tate%i (V(A)) € HE(V(N), Q¢) (@) the subspace of Tate classes,
i.e., the elements fixed by F* for some power s > 1. Then by Theorem 6.3.2,
we have the identity

im(cl;)g, = Tate? (V(A)),

and moreover Tate%i (V(A)) is spanned by the cycle classes of V(A') € V(A),
where A’ D A runs over vertex lattices of type 2(d — i) + 2. Denote by

Ko(V(A)) := Ko(V(A))g/ ker(cl o ch),
Ch' (V(A)) == Chi (V(A))g/ ker cl;. (7.6.0.2)

Then ch and cl induce isomorphisms
d .
ch: Ko(V(A)) — PTh (V(A)),
i=0
d . d .
cl: @ Ch' (V(A)g, — EP Tatej’ (V(A)). (7.6.0.3)

i=0 i=0

By Theorem 6.3.2 (ii) and that the cup product is F-equivariant, the Poincaré
duality induces a perfect pairing

U: Tate? (V(A)) x Tate2"2 (V(A)) — Q. (7.6.0.4)

Definition 7.6.1 For x € V \ {0}, define Kyx)(x) € Ko(V(A)) to be the
image of

V(A) A Z(x) e Kg™M W) > Ko(V(A))

under (7.6.0.2).

Remark 7.6.2 Our main result in this subsection (Theorem 7.6.9) shows that
the function Ky, satisfies the local modularity analogous to Lemma 7.5.1.

L
Since Z(x) is a Cartier divisor on A/, we know that V(A) N Z(x) is
explicitly represented by the two-term complex of line bundles on V(A),

[ON(=Z(xX) vy = Onlya] € F'Ko(V(A)).
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Thus we have the Chern character

L
ch(V(A) N Z(x)) = ch(On(=Z(x))|va)) — ch(Oya))
= exp(c1 (On(—=Z(x))va))) — explc1 (Oyay))

i!

_ i 1 On (=Z@)lvw)’
i=1

Definition 7.6.3 For x € V \ {0}, define

c1va) () = c1(On (= Z(x))|ya)) € Ch(V(A))g,

and
deg

ey (x) 1= c1 (ON (= Z(X))|ya)? € Chd(V(A))g — Q.

Lemma 7.6.4 The function ciy) (resp. cya)) is A-invariant, under the
translation by A. In particular, the function ciyn) (resp. cyn)) extends
uniquely to an A-invariant function on V, or equivalently, a function on V/ A
(still denoted by the same symbol).

Proof The same proof of [37, Lemma 6.4.4] works verbatim. O
Lemma 7.6.5 Let A € Vert**+2(V). Then for any x € A, we have

1
crym () = —quﬂ Z crLvn)(y) € Chl(V(A))Q,
yeWa\{0}
(y,y13=0

where Wp = AV /A is a quadratic space over k of dimension 2d + 2 (see
§4.8).

Proof Since the cycle class map for divisors cly : Chl(V(A))Q —
H*(V(A), Qp)(1) is injective, we know from (7.6.0.3) that
Ch'(V(A))g, — Tate2(V(A)).

It follows from the perfect pairing (7.6.0.4) that to show the desired identity it
suffices to show that for any Deligne—Lusztig curve V(A") € V(A) (t1(A) =
4), the following identity

1
1y (@) - [V(AN] = EYT > v - V(A)] (7.6.5.1)

yeWa\{(0}
(¥,y)=0
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holds in Ch? V(M) 5 Q. By the projection formula,

ey () - VAN = c1yian ), ey ) - [V(A)] = crpan ().

Since 1 (A") = 4, we know from Theorem 7.4.1 that

ey (x) =Intyany(x) = (1 —q),
(1—-¢q),yeAN/A,

cryan () =Intyan(y) =1 1, yeAY/A y ¢ A/A,
0, y & AV/A.

Since A’/ A C W istotally isotropic, the number of nonzero isotropic vectors
y € A'/A equals #(A'/A) — 1 = g¢~! — 1. The number of isotropic vectors
ye AY/A,y ¢ A'/A equals #(A’/A) times the number of nonzero isotropic
vectors in A’ /A’, which evaluates to g4~ - (g% + 1)(g — 1). It follows that

Y v - V)]

yeWa\{0}
,»)=0

=@ =) U—)+q" NP+ g —1)=—1 —g)(1 + ¢,

Hence
1 /
_quﬂ Z Cl,V(A)()’) -[V(A)]
yeWA\{0}
(y,»)=0
= (1 —q) = cryn ) - [VA)],
and the desired identity (7.6.5.1) holds. O

Lemma 7.6.6 Let A € Vert?+2(V). Then

(1—q%), x €A,
cym(x) =cld) - {1, x € AV \ A, val(x) >0,

0, otherwise.

Here c(1) = 1 and c(d) = [1Z] (1 = ¢°).

Proof We induct on d. The base case d = 1 follows from Theorem 7.4.1.
By the same proof as in Theorem 7.4.1, we know that ¢y 4)(x) = 0 unless
x € AY and val(x) > 0. By the A-invariance of cy(s) in Lemma 7.6.4, to
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show the result it remains to show that

ey (0) = c@d)(1 — g%, ey (x) = c(d) (7.6.6.1)

for any x € Wy \ {0} with (x, x) = 0.
By Lemma 7.6.5, we have

ey (0) = c1.v4)(0) 1 yea) (0)

_ 1
= ey 0! T1rgdt Yo cavm®)
yeWa\{0}
.»)=0

By the projection formula, we have
Ly 0 ey () = Cl,V(A+<y>)(0)d_1,
which by induction equals
cva+on(©) = cd = D1 —g*7h

since (A + (y)) = 2d. The number of nonzero isotropic vectors y € Wy
equals (g9t + 1)(¢? — 1). Hence

v O = @+ D" =1 (—qu“

=1 —gH—g" " ecd—.

e(d — 1) — qd‘l))

On the other hand, for any x € Wy \ {0} with (x, x) = 0, by the projection
formula, we have

v () = ey ) en v () = ey ()
which by induction equals
CVa+an (1) = e(d = (1 —¢"h
since 1 (A + (x)) = 2d. The desired identity (7.6.6.1) then follows as c(d —

DA — g4 = c(@). O
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Lemma 7.6.7 Let A € Vert?t2(V). Then

c(d)
c = — E Inty,pn .
o c'(d) A eVert* (V) o
A'DA

Here (1) = 1 and ¢’ (d) = ch'lzz(l +q' )y when d > 2.
Proof We distinguish three cases.

(1) Forx € A,wehaveIntypy(x) = 1 —g¢ forany A’ in the sum by Theorem
7.4.1. The number of such A’ is the number of (d — 1)-dimensional totally
isotropic subspaces in Wy, which equals S;_1(W,) (in the notation of
Lemma 3.2.2). Since dim, Wp = 2d + 2 and x (W) = —1, the right-
hand-side evaluates to

A W1 — ) = =
) d—1(WA q) = 1_[?:2(1+qi+1)
@+ D@ - D67 - D

: (1 —q) =c@d)(1 —qh,
| )

which equals cya)(x) by Lemma 7.6.6.
(ii) For x € AY \ A with val(x) > 0, we have

(1—-gq), xeAN,
Ity () =1, xe AV A
The number of A’ such that x € A’ is the number of (d — 2)-dimensional
totally isotropic subspaces in W 1 (ry, which equals Sg_2(Wa 4 (x)). The
number of A’ such thatx € A’ \A’ 1s the number of (d — 1)- dlmensmnal
totally isotropic subspaces W € Wy such that x ¢ W but x € W+. In
this case the map W +— W + (x)/(x) gives a surjection onto the set
of (d — 1)-dimensional totally isotropic subspaces in (x)*/(x), whose
fiber has size equal to the number of (d — 1)-dimensional subspaces of
W 4+ (x) not containing (x). Hence the number of such W is equal to
Sa—1(Wat()) - 971 Since dim, Wa(xy = 2d and x (Wa4(x) = —
the right- hand side evaluates to

c(d)
c'(d)

(Sa—2War)(d — @) + Sa—1(Was) - ¢

c(d) ((q + D@ - DS @ -1
[T, (1 4 i+ MM=2gi — 1)

(I—q)
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L@+ D@ - DTS " - 1>qd_1)
M-t -1
= c(d),

which equals cy(a)(x) by Lemma 7.6.6.
(iii) If x ¢ AY or val(x) < 0, then both sides are zero.

O
Corollary 7.6.8 Let A € Vert?*2(V). Then cyy) € -7 (V) satisfies
CV(N) = YV CV(A)-
Proof 1t follows immediately from Lemmas 7.6.8 and 7.5.1. O

Theorem 7.6.9_ (K -theoretic local modularity) Let A € Vert2d+2 (V). For any
linearmapl : Ko(V(A)) — Q, the function oKy a) extends to a (necessarily
unique) function in . (V) and satisfies

I oKy = yvloKyn).

Here, we refer to Definition 7.6.1 for Ky a).

Proof The same proof of [37, Theorem 6.4.9] works using Corollary 7.6.8.
O

Now we return to the function Inty ) defined by (7.4.0.1).

Corollary 7.6.10 (Higher local modularity) Let A € Vert?*2(V). Then
Inty ) extends to a (necessarily unique) function in . (V) and satisfies

Intya) = yv Inty(a) .

Proof The same proof of [37, Corollary 6.4.10] works using Theorem 7.6.9.
O

Remark 7.6.11 Corollary 7.6.10 allows us to give an alternative proof of Corol-
lary 7.5.3 without a priori knowing that only the (n — 1)-th graded piece of the
derived special cycle contributes to Int;» 4 (x) in the decomposition (7.1.2.3),
in particular, without using [59, (B.3)] for a formal scheme.

8 Fourier transform: the analytic side
We continue with the steup of §4, but we also allow F to be any non-

archimedean local field of odd residue characteristic in this subsection. Fix
an Op-lattice L” C V of rank n — 1, and denote by W = (Liv)L c V.
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1

8.1 The partial Fourier transform dDen Dy

Definition 8.1.1 For x € W2, define the partial Fourier transform of
dDenyp 4 by

aDeniby(x) = /Lb dDenpy 4 (y + x)dy.

F

Our main goal is this section is to prove the following recurrence relations

for the partial Fourier transform BDenib -

Proposition 8.1.2 (i) If L is co-anisotropic, then
8Dentb’,7/(x) = 8Dentb’7/(w*1x),

Sfor all x € We°° N Wan,
(ii) If L® is co-isotropic, then

dDenj, ,(x) — dDeny, (@~ 'x)
is a constant for all x € W°° N W2,
Proof By Lemma 3.7.2 (i) and Corollary 3.4.7, we obtain
Dent, (0= [ Y L. sen, LG+ 0dy.
LF ngL/gL/v
L"¢Hor (L")

Here L' runs over O p-lattices of rank n in the non-degenerate quadratic space
LYy + (x)F.

Letm, : V— L?, be the orthogonal projection sending x = x” + x to x”.
We may break the sum according to L' N L; and 7, (L"). Define

Lat(L”, L®) :={L' : L' N L), = L”, =, (L") = L"}.
Then

oDeny, ,(x)= Y > Y mL), sgn,y (L))

L°cL” _ L’CL” L'eLat(L”,L")
L"¢Hor(L") L” /L" cyclic

[, 1wt oy,

F
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Notice that the sum is absolutely convergent which allows us to change the
order of integration and summation.

Fix u’ € L; such that L” = L” + (u”) (i.e., u” isa generator of the cyclic
Op-module L”/L"). For L’ in the sum, we may write L' = L” + (u) for
some u = u” +u’. Write x = Au~ for some A € F*. Theny+x € L’ if and
only if val(A) > 0 and y — Au” € L. It follows that

vol(L"), (ut) = (x),

1 / —1 !/ -1 d =
/b r(+x)—1p(y+o x)dy 0. otherwise.

F

Hence the difference

aDean(x) — 8DenJL‘[,’,y/(w_1x)

= ) vl ) D, m@)sgn, (L)),

LbcL? _ LPCL”  ute(x) generator
L"¢Hor(L") L"/L" cyclic L'=L"+(u"+u't)

Since x € W°°, the integrality of L’ implies that u” is also integral, and
u’ € (L™)V. Hence the two inner sums become

> > m@(L).sgn, (L)
ube(L/b)v/L/b L’:L/b+<ub+x)
val(u”)>0

It remains to show this sum is a constant independent of x € W°° N W?*" and
is zero when L” is co-anisotropic.

Choose an orthogonal basis {ey, ..., e,_1} of L" such that val(ey), ..., val
(e;) > 0,wheret = t(L").Let Lo := (er+1, ..., en—1),aself-dual lattice. Let
Li:={ey,...,e). Then L" = Ly&® L. Letu; be the orthogonal projection
of u” to L. Since x € We°, looking at the fundamental matrix of L’ for the
basis {e1, ..., en—1, u’ + x} we obtain

f(L”)+1, val(u;) > 0, and val((e;, u;)) > Oforalli =1,...,1,
t(Ly = {r(L"), val(uy) = 0, and val((e;, u1)) > Oforalli =1,...,1,
t(L”) =1, val(u;) >0, and val((e;, u;)) =0 forsomei =1, ...,1¢.

(8.1.2.1)

Notice that the three cases in (8.1.2.1) exactly correspond to the three condi-
tions
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uy € (wLy)*/Ly,
ur € (@Ly)°\ (@Ly)*)/Lu,
ur € (LH°\ (@ L{)°)/Ly.

Thus to show the desired constancy we need to show that the weight factor
m(z(L"), sgn,, (L)) depends only on L" and u, but not on x.
We have two cases:

(i) If 1(L") is odd, we compute that m(z(L'), sgn,, (L)) equals

2 J]  a-4*

1<i<(t(L")—2)/2

(1= g'@=1y, uy € (@Ly)*®/Ly,

)
1+esgn,, (Lg"EI=DR20 yy e (wL))°\ (@L))*°)/L1,
L, uy € ((LY)°\ (@L{)°)/Ly.

The only possible dependence on x is when u; € ((@L)° \
(wLIV)"O)/L]. In this case, the rank of the self-dual part Ly & (u;) of L’
has the same parity as n + 1, and

sgn,, (L") = x (Lo © (u1)),

which depends only on L and u; as desired. Moreover, when y (L") # 0
and L’ is co-anisotropic, we have X(Lb) = —¢. In this case let (ul)f be
the orthogonal complement of (u1) r in L1, r, which has even dimension
t(L") — 1. Then x (Lo & (u1)) = x((u1)7)x (L"), and hence

esgn, (L)) = —x((u1)F).

Thus we obtain the desired vanishing result when L” is co-anisotropic by
Proposition 8.2.5 below applied to the lattice L.
(i) If 1(L") is even, we compute that m(¢(L'), sgn, . (L)) equals

2 I a-4»
1<i<(t(L")=2)/2
(1 + & sgn,, (L)g' E12)
(1= g' 2, uy € (@Ly)**/Ly,
1 —q' "2, uy € (@LY)°\ (@L})*)/L1,
1+ esgn,, (LYg'ED21 0wy e (LY)°\ (@ LY)°)/Li.
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When uy € (wL)°°/L1, we have
sgn,, 1 (L") = x(Lo).
When uy € ((LY)°\ (wL{)°)/L1, we have
sgn, (L") = x(Lo)x ({e1, u1)) = x(Lo).

Hence the independence on x follows. Moreover, when x (L") # 0 and
L is co-anisotropic, we have X(L';) = —e¢ and so

ex(Lo) = —x(Ly).

Thus we obtain the desired vanishing result when L’ is co-anisotropic by
Proposition 8.2.7 below applied to the lattice L. O

8.2 Weighted counting identities

In this subsection we proved the weighted counting identities needed in the
proof of Proposition 8.1.2.

Definition 8.2.1 Assume thatr > 1. Let L be a quadratic Op-lattice of rank
t and type ¢. Set

pt(L) == #(w@LV)*°/L,
1O(L) == #(wLV)°\ (@ L")*®)/L,
p(L) == #((LY)°\ (@ L")°)/L.

If x(L) =0, for any s € {1} set

uO¥ (L) = #{x € (@LY)° \ (@ L") : x({x)F) = s}/L.
If x(L) # 0, forany s € {£1} set

pOS (L) ==#x € (@LY)°\ @ L") : x((x)F) =s}/L,

where (x)fg is the orthogonal complement of (x)r in LF.

Definition 8.2.2 Assume thatz > 1. Let L and M be quadratic Of-lattices of
rank 7 and type 7 such that L € M C @~ 'L. Set

w'(L, M) := u’(L) — [M : LIu* (M),

where ? € {+, 0, —, {0, +}, {0, =}}.
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Lemma 8.2.3 Assume thatt > 1. Let L and M be quadratic OFf-lattices of
rank t and type t such that L € M C @~ 'L. Then

(L, M)+ (L, M) + = (L, M) = q" ™" (L, M).

Proof Notice that (wLY)° € (MY)° as M € w 'L, to prove the desired
identity it remains to show that the multiplication-by-z map:

(LN M))/L — (@L)*°\ (@M”)**)/L

is surjective with every fiber of size ¢'~!. Take x € @wL" in the target. The
fiber at x is given by the set

(o' (y+x)e(@LY):yeL/wL).
Notice that x € @ LV, the condition & ~!(y + x) € (LV)° is equivalent to
ve(LNwlY)/wL=L/oL, (y+x,y+x)=0 (mod @ ?).

Let {eq, ..., e;} be a standard orthogonal basis of L with (e¢;, ¢;) = €;m%,
€; € Of. Then

wlY = @(w‘aiJrlei).
i

Write

X = Z)»iw_ai+lei ewl”, A €O, y = Z,uie,- eL, u;€O0rF.

] 1

Then

. y) = Z(Miei, uiei) = Z pieim  (mod w?),

ai=1 ai=1

(3. 2) = > _(wiei, i ey = pinieim.
i i

Since x € (w LV)°°, we know that the condition (y+x, y+x) = 0 (mod @ ?)
is equivalent to the equation

w_l(x, x) + Z (,ul»ze,- + 2,u,-)»,-e,-) + Z 2uiriei =0 (mod @).

ai=1 a;>1
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Since x ¢ w M"Y, we know that A; # 0 (mod =) for some i such thata; > 1.
Thus we may choose arbitrary u; € Or /@ OF for any i such that ¢; = 1 and
solve for the equation for u; € O /w Of’s with a; > 1,

Z 2uiriei +b =0 (mod w),

ai>1

where

b=w '(x,x)+ Z (Hiei + 2uinie;) -

ai=1

This is a nontrivial linear equation in ¢ variables over Fy = OFf /@ OF, so the
total number of solutions is exactly ¢’ ~!. This finishes the proof. O

Now the discussion will depend on the parity of the type. First we consider
the case of odd type.

Lemma 8.2.4 Assume that t > 1 is odd. Let L be a quadratic O g-lattice
of rank t and type t. Assume that x (L) # 0. Then there exists a quadratic
Or-lattice M of rank t and type t such that L €' M and

pOF (L, M) = (L, M),
Proof We need to prove that

#{x € (@LV)°\ (@M")° : x((x)F) = +1}/L
=#{x e (@L)°\ (@M")°: x((x)F) = —1}/L.

Let {e1, ..., ¢;} be a standard orthogonal basis of L with (¢;, ¢;) = €;w¥,
€i € O . We distinguish two cases.
(i) If a; > 3, then we may choose M = (ey, ..., e;—1, w‘le,) with funda-
mental invariants (ay, ..., d;—1, a; — 2). In this case
w_LV — @(w'_a""'le,-), w_M\/ — (@(w_—ai'f'lei)) D <w—01+26t>‘
i i<t
We fix an

X0 = Z)»iw'_aﬁ_lei, )Li (S OF,

i<t
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(i)

and consider the sets for s € {1},

$S={x e (@LY)°\ (@M")° : x = x0 + Mv e,
i € OF, x((x)F) = s}/L.

It suffices to show that #5 = #S5~. Notice that x ¢ @ M" if and only if
L+ € O . We compute

(x, x) = (x0, X0) + Are,m 42,
Hence x € §* if and only if

2 —a;+2 X
(x0,x0) + A" € Op,

and
x ((x0, x0) + Al ™ T2) = sy (Lp).
Write
o0 o0
=Y bim', —o e (o, x0) = ) i,
i=0 i=0

the @ -adic expansions with b;,¢; € O /@ O = F,;. Then x € §% is
equivalent the following equations

co = bg,
c1 = 2boby,
c2 = 2boby + b1,

Ca,—3 = bobg,—3 + b1bg,—4 - - - + bg,_3bo,
sx(Lp) = x(cq—2 — (boba,—2 + b1bg,—3 - - - + ba,—2b0)).
It is clear that the number of solutions of by, . .., by, —2 is independent of
s € {£1}, and thus #S* = #S~ as desired.
If a4 = a,—1 = 2, then we may choose M with fundamental invari-

ants (ay, ...,ar—2,a;—1 — 1,a; — 1). We may choose { f1, ..., f:} be an
orthogonal basis of @ M such that

val(fi) = —a; +2, i=1,...,t =2, val(fi_;) = val(f;) = .
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and

oL = (fi,..., fic, o (fic1 + ), oMY = {(fi,..., fi).

We fix an
xo = Z)»ifi, Ai € OF,
i<t

and consider the sets for s € {1},

S i={x e @@LV \(@M")° 1 x = x0+ M (fim1 + fo),
A€ OF, x((x)F) = s}/L.

It suffices to show that #S = #5~. Notice that x ¢ @ M" if and only if
L+ € O . We compute

(x, x) = (x0, X0) + 2x— 1@ (fim1, fio1)
27w "2 (i1, fio1) + (i f)-

Similarly write down the equation for the w-adic expansion of A; required
for x € §%, we see the number of solutions is independent of s € {41} as
desired. O

Proposition 8.2.5 Assume thatt > 1 is odd. Let L be a quadratic O g-lattice
of rank t and type t. Then

(1 —q" HutL) + A —sq" D20 (L)
+(1 + Sq(t_l)/z)MO,—(L) (L) =0

when x (L) =0ands € {1}, or x(L) #0and s = +1.

Proof We induct on val(L). Since L has type ¢, we know that val(L) > . We
have two base cases depending on the parity of val(L). Let {eq, ..., e} be a
standard orthogonal basis of L with (e;, ¢;) = €, %, €; € 0;.

(1) if val(L) = ¢, we know that L is a vertex lattice of type ¢ and x (L) = O.
So LY/L is a nondegenerate I, -quadratic space of odd dimension ¢. By
definition we have (LY)°/L is the set of isotropic vectors in LY /L and
(wLY)°/L = (wLY)°°/L = {0}. Hence

#(LV)°/L =q'7', #(w@LY)°/L =1, #(@L")*°/L=1.
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So
p (L) =q¢"' =1, WL)y=0 utL)=1

satisfies the desired identity for any s € {£1}.
(2) ifval(L) = t+1, we know that L has fundamental invariants (1, ..., 1, 2)
and x(L) #0.Then LY = (& ley, ..., w le,_1, w2¢;). Let

1

xX=Mw e +--- +At_1w_1et_1 +Atw_2et elY, Aj€OrF.

Then x € (LY)° if and only if w2(x,x) =0 (mod w?), namely,

=2
Z)‘?w + A,z_let_lw + Atze, =0 (mod wz),

i=I

or equivalently

(3]

lf
M4+ e1=0 (modw), A =0 (modw).

i=l

It follows that
#(LV)°/L = (""" = )" +5) + Dg.
Here s = x({e1, ..., e;—1)) € {£1}. Similarly let
X=Ae1+ -+ A_16_1 +A,w_le, ewl", A €Or.

Then x € (wlY)® always, and x € (wL"Y)°° if and only if A, = 0
(mod =). Hence

#@wL")° =q, #(@L")*° =1.
So
w(L) = (@2 )@ x g, plLy=g-1, pt(L)=1.

Notice that when x € (wLV)°\(wL")®, we have x({x)5) =
x({e1,...,e—1)) = s, and thus

uOS Ly =q—1, @) =0.
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Hence the we have the desired identity
=1 =3 =1 t—1
(612—S)(q2+s)q+(q—1)<1—sq2)+(1—q )=0.

Now we run induction on val(L). Let M be an O r-lattice of rank ¢ and type
t such that L €' M as in Lemma 8.2.4. Then val(M) < val(L). By induction
hypothesis it remains to prove the similar identity for the difference

(1—g"™ N uwt (L, M)+ (1 —sq" D7) uOF @, m)
(14 5q" V2 0T (L M) + T (L M) =0,

for any s € {£1}. This follows from the two stronger relations in Lemmas
8.2.3 and 8.2.4. O

Next we consider the case of even type.

Lemma 8.2.6 Assume thatt > 1 is even. Let L be a quadratic OFf-lattice of
rank t and type t. Then there exists a quadratic Of-lattice M of rank t and
type t such that L €' M and

wH(L, M)+ 1O (L, M) = q -t (L, M).
Proof We need to prove that

q - #(@L")*\ (@M")*)/L =#(@L")°\ (@M")°)/L.

Let {eyq, ..., e;} be a standard orthogonal basis of L with (¢;, ¢;) = €;m%,
€; € O . We distinguish two cases.

(i) If @; > 3, then we may choose M = (e, e2, ..., w_le,) (with funda-
mental invariants (ay, ..., d;—1, a; — 2). Notice that
o1 =@ ow = (@) o o
i i<t
We fix an

X0 = Z)»iw'_aﬁ_lei, )Li (S OF,

i<t
and consider the sets

S°:={x e (@L)°\(@M")°: x = xo + 1o U Hle,
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(i)

€ OF)/L.
§°:={x € (@LY)°\ (@wM")°°: x = xo + v “Hle,,
)\.[ € OF}/L

It suffices to show that ¢ - #5°° = #S5°. Notice that x ¢ @ M " if and only
if 1, € O . We compute

(x, x) = (x0, x0) + )\tzetwfa’ﬂ.

Hence x € S° if and only if

@2 (x0, x0) + A& =0 (mod w®?), A € OF,
and x € S°° if and only if

@2 (x0, x0) + A&, =0 (mod w“ ™), A € OF.

Write A, = by + bjw + by + - - - to be the w-adic expansion of A;.
Then x € $°° if and only if x € S° together with an additional equation

bobg,—2 = c,

for ¢ € I, determined by (xo, bo, ..., bg,—3), which has exactly one
solution b, € IF,. Hence g - #5°° = #§° as desired.

If a4 = a,—1 = 2, then we may choose M with fundamental invari-
ants (a, ...,ar—2,a;—1 — 1,a; — 1). We may choose {f1, ..., f;} be an
orthogonal basis of zr M such that

val(fi) = —a; +2, i=1,...,t =2, val(fi—1) =val(f;) = 1.
and

oL = (fi,..., fict, & (fic1 + ), oMY = {(fi,..., fi).

We fix an

X0 = Z)\.iﬁ, Ai € Of,

i<t
and consider the sets
S°:={x e (@LY)°\ (wM")°:
x=x0+ M@ (fic1+ f). A € OF}/L.
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§°:={x € (@LY)°\ (M) :

x =x0+ k@ (fio1 + fi). M € OF)/L.
It suffices to show that ¢ - #5°° = #S5°. Notice that x ¢ @ M " if and only
if 1, € O. Similarly write down the equation for the  -adic expansion

of XA; required for x € S§° (resp. S°°), we see that g - #5°° = #§° as
desired.

O

Proposition 8.2.7 Assume thatt > 1 is even. Let L be a quadratic O g-lattice
of rank t and type t. Then

(1= s5¢"*) (A +5¢"* Hp* (@) + (1 +5¢" " Hu@) + (L) =0
when x (L) =0ands € {£1}, or x(L) = s € {£1}.

Proof We induct on val(L). Since L has type ¢, we know that val(L) > . We
have two base cases depending on the parity of val(L). Let {e], ..., e;} be a
standard orthogonal basis of L with (e;, ¢;) = €, %, €; € 0;.

(1) if val(L) = t, we know that L is a vertex lattice of type ¢ and y (L) # O.
So LY /L is a nondegenerate F,-quadratic space of even dimension 7. By
definition we have (LY)°/L is the set of isotropic vectors in LY /L and
(wLY)°/L = (wL")*°/L = {0}. Lets = sgn(L"/L). Then

#(LV)/L = (@' —5)(@"* ) +1,
#wL")°/L=1, #wL")*°/L=1.

So
L) =@ ="+, 1@)=0, pta)=1
satisfies the desired identity for s = x (L).
(2) if val(L) = t+1, we know that L has fundamental invariants (1, ..., 1, 2)
and x (L) =0.Then LY = (w ey, ..., wle;_1, e/). Let
X = Mw_lel + - +At_1w_let_1 +)\tw_2et elY, A €Or.
Then x € (LY)° if and only if w2(x,x) =0 (mod w?), namely,
-2
Z)\izw + A%,le,_lw + Atze, =0 (mod wz),
i=1
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or equivalently

t—2
Z)‘iz "‘)‘12—1671 =0 (mod @), A =0 (mod @).
i=1

It follows that
#LV)°/L=q""" - q=q""".
Similarly let
x=Ael 4+ -+ r_1e-1+ M e, ewlY, A€ OF.

Then x € (wlL")® always, and x € (wL"Y)°° if and only if A, = 0
(mod =@ ). Hence

#@wL")° =q, #(@L")*° =1.
So
w(L)y=q" —q, p’L)y=q-1, pH(L) =1L
Hence the we have the desired identity
(1 =sq")A+s¢"*H+ U +5¢""Ng-D+@ "' —q) =0

for any s € {%1}.

Now we run induction on val(L). Let M be an Op-lattice of rank ¢ and
type ¢ such that L €' M C as in Lemma 8.2.6. Then val(M) < val(L). By
induction hypothesis it remains to prove the similar identity for the difference

(1+s¢"H A —sq"* Yt (L, M)
+(1 —sq¢"* Y@, M)+ u= (L, M) =0

for any s € {%1}. This follows from the two stronger relations in Lemmas
8.2.3 and 8.2.6. O

9 Invariant distributions and the proof of the main theorem
9.1 Invariant distributions on isotropic 2-dimensional quadratic spaces

In this section, we consider a general non-degenerate 2-dimensional quadratic
space W over a non-archimedean local field F with odd residue characteristic.
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The general linear group GL(W)(F) naturally acts on . (W) and Z2(W) (see
Notations §2.2) via

(h)(x) = o(h~'x), (hT)(p) = T(h™ '),
h € GLIW)(F), ¢ € (W), T € 2(W).

Definition 9.1.1 Let £ > 0. Let (W), be the space of distributions T €
2(W) such that

(i) T is O(W)(F)-invariant.
(ii) T is O -invariant.
(iii) supp(T) € W=,
(iv) supp(T) C We.

We will need the following lemma (cf. the analogous identity for GL; in
[4, (4.26)]), which should be well-known but we include a proof for the sake
of completeness.

Lemma 9.1.2 Denote by

B C SL, the Borel subgroup of upper triangular matrices.

e A C SL the torus of diagonal matrices.

e N C SLj (resp. N_ C SL) the subgroup of upper (resp. lower) triangular
unipotent matrices.

Ko(@®) :={(¢8) : c € @k OF} € SL2(OF) for k > 0.

Then we have, for k > 1,

Ko(@®) = N_(@"0F)A(OF)N(OF).

Proof Clearly the right-hand-side is contained Ko(z*). Let (25) € Ko(w ).
Since k > 1, we know that a € O:. Then the identity

(fa)= (D) 6 6 )

shows that (‘Z Z) is an element of the right-hand-side. O

Proposition 9.1.3 Assume that W is isotropic (equivalently, x (W) = +1).

1) W) has dimension 2k for k > 1.
(i1) Define functions

Po(x) =D Ly (x) =

i>0

val(x) +1, x € W°,
0, otherwise,
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1, x e W="1
— 1 - — ’ )
$1(x) w1 (%) {0, otherwise,
1, xeW="andw'(x,x) e (0})?*, .
P2i—2(x) = . 0O 2y,
0, otherwise,
1, xeW="and w'(x,x 07)?,
oi1(x) = . R EODS 2y,
0, otherwise,

Then (W) has a basis given by the distributions represented by
G0, b1, ..., po—1 € L (W™) fork > 1 and ¢y for k = 0.

loc

Proof (i) We use the Weil representation w of SLy (F') on . (W) (associated
to our fixed unramified additive character ¥ : F — C*). Recall that w
is defined by

w(“ a_l) b () = lalp(ax),

1b 1
a)( 1) ¢(x) =y <§b (x, X)> ¢ (x),

0 (_1 1) D) = P).

wherea € F*,b € F.Let T € 2(W). By the definition of w, we have
o Tis 0;—invariant if and only if 7T is invariant under A(OF) C SLo(F),
e supp(7) € W= if and only if T is invariant under N (*OF).

e supp(7) € We if and only if T is invariant under N_(Op).

Since k > 1, by Lemma 9.1.2 we obtain

DW= Z(W)OWIF)x Ko@)’ 9.13.1)

the space of O(W)(F) x Ko(@®)!-invariants of 2(W), where (—)'
denotes the transpose.

On the other hand, consider the degenerate principal series /(1) :=
Indgﬁv()m(l),which consists of locally constant functions f : SLy(F) —

C such that

F((5.00)8) =lalr. (§,4)eBE), geSLap),
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and on which SLy(F) acts via right translation. We have an SL,(F)-
equivariant map (the Siegel-Weil section)

S W) = I(1), ¢ w(g)¢(0).

By [30, Proposition 1.1], this maps factors through the space . (W) oy (r)

of O(W) (F)-coinvariants, and induces an isomorphism . (W)ow)(r) =
1 (1) (as W is the unique 2-dimensional quadratic space with y (W) =
+1). Taking contragredients it follows that there is isomorphism as
SL,(F)-representations between the space (W)OW(E) of O(W)(F)-
invariant distributions and the contragredient representation / (1)¥. Using
1)V = 117" = I(1), we know that

P(W)OWE) = (1) (9.1.3.2)

as SLy (F)-representations. Combining (9.1.3.1) and (9.1.3.2), we obtain

DW), = 1(1)Ko@""

The result then follows from the fact that dim [/ (I)KO(wk)t
dim / (I)KO(wk) = 2k by the theory of newforms for SL,(F') [35, Propo-
sition 3.2.4].

(ii) Since ¢;’s are clearly linearly independent, by part (i) it remains to show
that ¢; € (W), fori =0,...,2k — 1 when k > 1 and ¢pg € Z(W)y.
The properties Definition 9.1.1 (i—iii) are clearly satisfied by definition, so
it remains to check Definition 9.1.1 (iv), i.e., supp(qAb,-) C We. To compute
supp(qAS,-), we realize ¢; as an O(W)(F')-orbital integral on W. Recall that
for any ¢ € . (W), its O(W)(F)-orbital integral is defined by

Orb(x, ¢) := / o(h~'x)dh,
O(W)(F)

and denote by (/)E)(x, @) its Fourier transform (in the first variable x).
Then by definition we have an identity in Z(W),

Orb(x, ¢) = Orb(x, §). (9.1.3.3)

Since W is isotropic, we may choose a basis {e1, e2} of W such that its
fundamental matrix is (9} ). Define compact open subsets of W,

Qo = Opey x Opey = (e, e3),

Q= w_10;61 x Orpen,
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Q2= o (051 x (07)er, i 22,

Qi1 =@ 'e(0))’er x (0])er, i 22,

where € € O \ (0;)2. Define ¢; = 1g, € (W) fori > 0. Then it is
easy to see that we have

¢i(x) = Orb(x, ¢;),

(possibly up to a nonzero scalar, which we ignore). Hence by (9.1.3.3)
we obtain

i (x) = Orb(x, @)

It remains to show that supp(Orb(x, ¢;)) € W°.
First consider ¢g and ¢;. Notice that

Yo = 1(61762)’ Y1 = 1(81762) - l(wflel,ez)'

Since (e1, e2)Y = (e, e2) and (w ey, e2)Y = (e1, wen), by (2.2.0.1)
we have

90 =Lee0)s 91 = Liey.er) = * Vi) men)-

Hence supp(¢;) C (ey, e3) fori = 0, 1. The O(W) (F)-orbits of elements
in (eq, e3) are contained in W°, hence supp(Orb(x, ¢;)) € W° fori =
0, 1 as desired.

Now consider i > 2. Notice that ¢; 5 (resp. ¢o;—1) is a linear combina-
tion of functions ¢ = 1 of compact open subsets 2 € W of form

Q= " (a+@0F)e; x (b+wmOF)es

—i+1

= (@ ey, wey) + (w ae; + bey),

where a, b € 0;. It remains to show that supp(Orb(x, ¢)) € W°. We
compute

P(x) = / e(MNY ((x, y)dy
\W
= fw l(w_i+161,we2)(y)1//((x, v+ @ ae + bey))dy

— Y((r. ey + bea)) [w Ly —it1y, ey W ((r, )y

= Y ((x, w 'ae; + bey)) 'T(w*f“el,wez)(x)'
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1 1

Hence by (2.2.0.1) we have supp(¢) (e, wey) = (w ey,
w’_leg). The O(W)(F)-orbits of elements in (w‘lel, w’_lez) are con-
tained in W° (as i > 2), hence supp(Orb(x, ¢)) € W° as desired.

O

Corollary 9.14 Let k > 0 and T € P(W)k. Then T is represented by a

function ¢ € LIIOC(V\W‘n ) such that ¢(x) — ¢(w ~'x) is a constant for all

x € Wee n wan,

Proof This follows from Proposition 9.1.3 as each basis distribution ¢; of
2P (W), clearly satisfies the claimed property. O

9.2 The partial Fourier transform Intt,, ”
Now we come back to the setup of §4. Fix an Op-lattice L’ c Vofrankn —1
and denote by W = (L)L C V.

Definition 9.2.1 For x € W', define the partial Fourier transform of Int»
by

Intiw/(x) = /Lb Intys 4 (y + x)dy.

F

By Corollary 7.4.6, we have Int, e L/

.y € Lige(W™) (and Int;, |, € /(W) if L’
is co-anisotropic).

Lemma 9.2.2 Int-

Ly € D W)y for some k > 0.

Proof We show that all items (i—iv) in Definition 9.1.1 are satisfied for IntJLj, ¥

(i) To show that Intb, v is O(W)(F)-invariant, it suffices to show that the

function Int;» 4 (y + x) on W is O(W)(F)-invariant for any y € L;.
If x’ lies in the O(W)-orbit of x, then the two quadratic O g-lattices L'+
(y + x) and L + (y 4+ x') are isometric. By Remark 4.11.5 we have
Int;»(y+x) = Int;»(y+x"). By Theorem 7.2.2 and (7.1.3.2), we also have
Int;» ,(y+x) =1Inty, ,(y-+x").Hencelnt;s ,(y+x) =1Int;s 5 (y+
x).

(ii) For any € € O, by the change of variable y + €y and |¢| = 1 we
obtain

IntJL‘[,’,V(ex) = /L” IntJL‘[,’,V(y +ex)dy = /Lb IntJL‘b’,y/(ey + ex)dy,

F F
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which equals Intiw/(x) as L" + (ey +ex) = L+ (y +x) fore € 0.

So Intib »
(iii) If Int;, (v 4 x) # 0, then L” + (y + x) is integral. Hence y € (L")"
and the integrality of y 4 x implies that there exists k > 0 such that
val(x) > —k when y runs over (L") /L". So Inti y +x) is supported

is O -invariant.

b’«y(
on W forall y e Lt}, and hence supp(Intiw/) c W=k,
(iv) By definition, for x € W?", we have

—

Intf, ,(x) = Intzs o (x),

where”denotes the Fourier transform on W (resp. V) on the left-hand-side
(resp. right-hand-side). Combining with Corollary 7.5.3 we know that

Imiw(x) = yvInt; 4 (x).

. . o . J_
Since Int;» 5 (x) is zerounless x is integral, we know that supp(Int Lb,‘//) C
W€ as desired. O

Now we can prove the following recurrence relations for the partial Fourier

transform Intib ,» (analogous to those for 8Denib ,» in Proposition 8.1.2).

Proposition 9.2.3 (i) If L" is co-anisotropic, then IntJL‘b’, v (x) is a constant
forall x € W°.

i) If L is co-isotropic, then IntJL-w/(x) — Inti,’/y(w_lx) is a constant for
all x € We° N wan,

Proof (i) By Lemma 9.2.2, we know that supp(Int™, 4) € We. Since W
is anisotropic, we know that W° € W is an integral OF-lattice. Hence
Intib , 1s invariant under translation by the dual lattice (W°)V, in partic-
ular, invariant under translation by W° C (W®)V. It follows that Intt,

is a constant for all x € W°.
(ii) It follows immediately from Lemma 9.2.2 and Corollary 9.1.4. O

e

9.3 The proof of main Theorem 4.15.1

Lemma 9.3.1 Let L” € V be an Op-lattice of rankn — 1. Let x € Q(L).
Assume that L° is integral. Let (ay, ..., ay—1) be the fundamental invariants
of L".
() Ifx ¢ L®@W=%-1 then there exists L € V an Op-lattice of rank n — 1
and x' € V such that L” + (x') = L" + (x) and val(L") < val(L").
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) If x € L’ @ W=t-1 gnd L> C V is co-isotropic, then there exists a
co-anisotropic Op-lattice L € V of rank n — 1 and x' € V such that
L"” 4+ (x) = L + (x) and val(L"”) = val(L").

Proof. Let {ey, ..., e,—1} be a standard orthogonal basis of L.

(1) Since x ¢ L’ @ W=%-1_we have two cases: If x> € L", then val(x 1) <
an—1. Taking L = (e, ..., ep—n, x*) and x’ = e,_; works. If x* ¢ L",
write X = Are] + -+ - 4+ An_1€n—1, then val(X;) < O for some 1 < i <
n — 1. The fundamental matrix of L” 4+ (x) for the basis {eq, ..., e,—1, x}
has the form

(e1,e1) (e1, x)
T = :
(en—1, en—1) (en—1, X)
(x,er) -+ (x,ep—1)  (x,x)
Let (aj, ..., a,) be the fundamental invariants of L+ (x). By the theory of

Smith normal forms, we know thata} +- - -+a, _, is equal to the minimum
among the valuations of the determinants of all (n — 1) x (n — 1)-minors
of T. The set of such minors is bijective to the set of (i, j)-th entry:
removing i-th row and j-th column to get such a minor. The valuation of
the determinant of the (n, i)-th minor is

val((ej, x)) —a; + (a1 + - - -+ an—1).

Since val(A;) < 0, it follows that val((e;, x)) < a;, and hence ai + -4

a,_, <ai+---+ayp_1.Let{e], ..., e,} be astandard orthogonal basis
of L” + (x). Then taking L” = (¢}, ..., e, ) and x’ = e], works.

(ii) Since x” € L”, replacing x by x- we may assume that x € W=%-1_ Let
A= (x—x)l) Then val(X) = 0. We have two cases: If A € (0;)2, then

— (en—1.en—

we may find 4 € O} such that 1 + 21 € O \ (0Of)* Lete, | =
e,—1 + pux. Then

(€,_1.€,_1)  (en—1.en—1) + pu*(x, x)

=1+u*re 05\ (0))%

(en—l’ en—l) N (en—l’en—l)
Let L” = (e1,...,en—2, €, ;). Then
(e _i.e )
x(L”) = x (#) X (L) = x (14 p?n) = —x(L").
(en—lv en—l)
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Then L” is co-isotropic implies that L” is co-anisotropic (see Definition
3.8.1). Taking L” and x" = x then works.

If A e Op\ (0;)2, then similarly taking L” = (e, ..., e,—2, x) and
x" = e,_1 works, as

(x, x)

(en—1,€n—1)

x(L") = ( ) X(L") = x(Mx (L") = —x(L").

O

Theorem 9.3.2 Let L° C V be an Op-lattice of rank n — 1. Then as functions
on Q(L"),

Int;» = dDen;» (9.3.2.1)
Proof When L' is not integral both sides are zero, so we may assume that
L’ is integral. Let (ay, ..., a,—1) be the fundamental invariants of L". When
a1 = 0 by the cancellation laws (4.14.0.4) and (3.4.8.1) we may reduce to the

case for smaller n, hence by induction on n we may assume that a; > 1 and
thus a,_; > 1. Now we induct on val(L"). There are two cases:

(i) Assume that L” is co-anisotropic. By Lemma 9.3.1 (i), when x ¢ L'
W=4n—1_there exists L”” € Vofrankn—1andx’ € Vsuchthatval(L"?) <
val(L") and

Int;»(x) = Int;»(x"), 9Den;s(x) = dDeny»(x").

By the induction hypothesis we know that when x ¢ L’ @ W=%-1 the
equality

IntLb (X) = 8DenL) (.x)
holds. Hence the difference function has support
supp(Int;» —dDen;») C L’ @ W=t

Since both Int; » and dDen;, are invariant under translation by L, by the
support condition we know that

Int;, —9Den;» = 1,, @ ¢+

for some function ¢ on W with supp(¢pL) € W=%-1_ It remains
to show that ¢ = 0. Using Theorem 7.2.2 and performing the partial
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Fourier transform, we have
supp(Inty, , —dDeny, ) = supp(¢) € W=,

Since a,—1 > 1, we know that Intib v —8DenJL-b . vanishes on W=""1U

Y
W=0. Hence by Proposition 9.2.3 (i) and Proposition 8.1.2 (i) we know
that Intib > —aDentb , vanishes identically, and hence ¢t = 0 as
desired.

(ii) Assume that L” is co-isotropic. By Lemma 9.3.1 (i) and the induction
hypothesis, we similarly know that

supp(Int;» —dDen;») C L’ @ W=%-1,

Moreover by Lemma 9.3.1 (ii) and the already proved co-anisotropic case,
we know that

supp(Int;» —dDen;») C L” @ W=@-1+1,

Hence Int;, —dDen;, = 1;, ® ¢+ for some function ¢ on Wan
with supp(q&l) c W=z4-1+l Since a,_; + 1 > 2, we know that

Intib v —8Denij , vanishes on W==1 UW=0UW=!. Hence by Propo-
sition 9.2.3 (i) and Proposition 8.1.2 (i) we know that Intib » —8Deni, >
vanishes identically, and hence ¢~ = 0 as desired. O

Our main Theorem 4.15.1 now follows immediately from Theorem 9.3.2
by decomposing L = L° 4 (x) for some non-degenerate Op-lattice L” € V
of rank n — 1 and x € Q(L") (for example L’ ={(ef,...,en—1)and x = ¢,
for a standard orthogonal basis {e1, ..., e,} of L).

Part 2. Semi-global arithmetic Siegel-Weil formula

In this part we apply our main Theorem 4.15.1 to prove an identity between
the intersection number of special cycles on the integral canonical model of
GSpin Shimura varieties at a good place and the derivative of Fourier coeffi-
cients of Siegel-Eisenstein series (also known as the semi-global arithmetic
Siegel-Weil formula). This is achieved by relating the special cycles on GSpin
Shimura varieties to those on GSpin Rapoport-Zink spaces via the p-adic
uniformization, and by relating the Fourier coefficients to local representation
densities. This deduction is more or less standard (see [5,23,51]), and we will
formulate and prove the results for GSpin Shimura varieties with general tame
level structures.
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10 Notations on quadratic spaces

In this part we switch to global notations. Denote by F' a totally real number
field and A = Ap its ring of adeles (starting from §12.4, we restrict to the
case F' = Q). Denote by V a quadratic space over A of rank m =n+1>3
with symmetric bilinear form (, ). For a place v of F, write V, =V ®p F),
a quadratic space over the local field F,. We say V is totally positive definite
if V,, has signature (n, 0) for all places v|oo of F. We define

det(V) := (det(Vy))y € A% /(A™)2,
disc(V) := (disc(Vy))y € A% /(A™)2,
e(V) := ]_[g(vv) € {£1).

v

Define a quadratic character v : A* — {%1} such that for any (a,), € A%,

xv((ay)y) = ] @, disc(V,))r,.

If disc(V) € F* mod (A*)?2, then by the product formula yv factors through
AX/F* — {£1}. In this case, we say V is coherent if €¢(V) = +1 and
incoherent if €¢(V) = —1. Notice that if V is coherent then there exists a
global quadratic space V over F of rank m such that V >~ V @ A. If V is
incoherent, then such global quadratic space V does not exist, but for any place
vo of F, there exists a nearby global quadratic space V (associated to vg) such
that xyv = xv, and €(V,) = €(V,) for all v # vy.

11 Incoherent Eisenstein series
11.1 Siegel Eisenstein series
Let W be the standard symplectic space over F of dimension 2n. Let P =

MN < Sp(W) be the standard Siegel parabolic subgroup, so that under the
standard basis of W,

M(F) = {m(a) — (g tao_l) ‘ac GL,,(F)},

N(F) = {n(b) = (1(;1 1b> :b e Symn(F)}.
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Let Mp(W,) be the metaplectic extension of Sp(W)(A),
1= C' = Mp(Wa) — Sp(W)(4) — 1,

where C! = {z € C* : |z| = 1}. There is an isomorphism Mp(Ws) —
Sp(W)(A) x C! with the multiplication on the latter is given by the global
Rao cycle, which allows us to write an element of Mp(Wy) as (g, t) where g €
Sp(W)(A) and ¢ € C!. Recall that the metaplectic extension has a canonical
splitting over Sp(W)(F) and N (A), hence we may view Sp(W)(F) and N (A)
as subgroups of Mp(Wpy) [30, p. 549].

Write

Sp(W)(A), n odd,

Gn(A) = {Mp(WA), n even,

for short. Let P,(A) = M, (A)N,(A) be the standard Siegel parabolic sub-
group of G,(A), i.e., P,(A) (resp. M, (A)) is P(A) (resp. M(A)) if n is odd
and is the pullback of P(A) (resp. M (A)) along the metaplectic extension if
n is even; and N, (A) = N(A). In particular,

{m(a) : a € GL,(A)}, n odd,
{(m(a),t) :a € GL,(A),t € C'}, neven,

Na(A) = {n(b) : b € Sym, (A)).

M, (A) = {

When n is even, by abusing notation we write m(a) € M, (A) for the element
(m(a), 1) € M,(A).

Fix a quadratic character x : A*/F* — C*. Fix the additive character
¥ =vyYgotrpq : A/F — C*, where yg : Ag/Q — C* is the standard
addicitve character such that ¥/g oo (x) = e2TiX We may view y as a character
on M, (A) by

x(m(a)) = x(deta), n odd,
x(m(a),t) = x(deta) - y(deta, 1//)_l -t, neven.

and extend it to P, (A) trivially on N, (A). Here y (x, v) is the Weil index, an
8-th root of unity [30, p. 548]. Define the degenerate principal series to be the
unnormalized smooth induction

G, (A +(n+1)/2
Iy(s, x):=Ind 3" G- |- [T s e

For a standard section ®(—,s) € I,(s, x) (i.e., its restriction to the stan-
dard maximal compact subgroup of G, (A) is independent of s), define the
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associated Siegel Eisenstein series

E(g,s, ®):= Z Dd(yg,s), geGud),
yeP(F)\Sp(W)(F)

which converges for Re(s) > 0 and admits meromorphic continuation to
s € C. Notice that E(g, s, ®) depends on the choice of .

11.2 Fourier coefficients and derivatives

We have a Fourier expansion

E@gs,®) = Y  Er(gs ®),
TeSym, (F)
where
Er(g. s, ®) = / Em(b)g. 5. &)Y (— w(ATh)) dn(b),
Nu(F)\Ny (D)

and the Haar measure dn(b) is normalized to be self-dual with respect to .
When T is nonsingular, for factorizable ® = ®,®, we have a factorization
of the Fourier coefficient into a product

Er(g,s, ®) =[] Wru(gu, s, ),
v
where the local (generalized) Whittaker function is defined by

Wr (o 5, D) = / o (wy n(b)g. )Y (— tr(LTh)) dn(b).

Nu(Fy)
(01,
o (0%)

and has analytic continuation to s € C. Thus we have a decomposition of the
derivative of a nonsingular Fourier coefficient at s = s,

E7(g.50. @) = Y Ef (8. 5. D). (11.2.0.1)
v

where

E/T,v(g’ s, d) = W%’v(gv, s, D) - l_[ Wr v (gvs s, Py). (11.2.0.2)
v'#v
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11.3 Incoherent Eisenstein series

Let V be a quadratic space over A of rank m = n+ 1 with yy = x.Let (V")
be the space of Schwartz functions on V”. The fixed choice of x and v gives
a Weil representation @ = wy y of G,(A) x O(V) on .7 (V"). Explicitly, for
pe. (V") andx € V",

w(m(a))p(x) = x(m(a))l detal?/zfp(x -a) m(a) € My (A),
on(b)p(x) = Y (ir 3T (X)b)p(x), n(b) € Nu(A),
W) = vif - Px), we=(5,4).
wh)ex) = eh~" - x), h e O(V),
o(l,HeXx) =1 ¢(x), t € Cl,if n even.

Here T'(x) = ((x;, Xj))1<i, j<n 1s the fundamental matrix of x, the constant

y =y et V, y) "y () "e(V)

is the Weil constant (cf. [30, p. 642]), and ¢ is the Fourier transform of ¢ using
the self-dual Haar measure on V" with respect to .
For ¢ € . (V"), define a function

Dy (9):=w(g)p0), ge G,(A).

Then ®, € I,(0, x). Let ®,(—,s) € I,(s, x) be the associated standard
section, known as the standard Siegel-Weil section associated to ¢. For ¢ €
(V") we write

E(g,S,(p):=E(g,S, q)(p)7 ET(g’SaQD)::ET(g’SaCD(p),
E;"vy(g’ S’ (p).:E;"vv(gv Sa ¢([J)v

and similarly for Wr ,(gv, s, ¢,). When V is incoherent, the central value

E(g, 0, ¢) automatically vanishes. In this case, we write the central derivatives
as

dEis(g, ¢):=E’(g,0,¢), 0Eisr(g,¢):=E}(g,0,9),
8EiST,v(ga (P):=E}’v(g, 0, gl))

Remark 11.3.1 Let T € Sym,(F) be nonsingular. There exists a unique
quadratic space V over A of rank m = n + 1 with xy = x representing
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T, which satisfies that for any place v

€e(Vy) = e(Ty)(det Ty, detV,, - det Ty) F, (11.3.1.1)
in view of Lemma 3.7.1 (iii) (cf. [30, Proposition 1.3]). More generally, we
define Diff (7', V) to be the set of places v for which (11.3.1.1) does not hold.
By [30, Proposition 1.4], we know that Wr ,(gy,0,¢,) # O only if v ¢

Diff (7, V). Hence by (11.2.0.2) we know that dEist ,(g, ¢) # 0O only if
Diff (T, V) = {v}.

11.4 Classical incoherent Eisenstein series

Assume that V is totally positive definite and incoherent. The hermitian sym-
metric domain for Sp(W) is the Siegel upper half space

H, ={z=x+1iy: x e Sym,(Fx), Yy € Sym,(Foo)>0},

where Foo = F ®q R. Define the classical incoherent Eisenstein series to be

E@Z, 5, 9):=Xoo(m(@) ' det(@)|;"* - E(gz, s, 9),
gzi=n(X)m(a) € G,(A),

where a € GL,,(Fs) such that y = a’a. We write the central derivatives as

dEis(z, ¢):=E'(2,0,¢), 98Eisr(z, 9):=E7(Z,0, ¢),
aEiST,U(Z’ (p)::E;',v(Zv 0’ (/))'

Then we have a Fourier expansion

dEis(z, ) = Z dEisT (Z, ). (11.4.0.1)
TeSym,, (F)

For an open compact subgroup K € GSpin(V)(A r), we will choose
P =@k ® poo € S (V")
such that px € & (V’}) is K-invariant and ¢« is the Gaussian function

—mtr T(X):: 1_[ e 7 tr T(xu)‘

v|oo

Yoo(X) = e
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For our fixed choice of Gaussian ¢, we write

E(z,s,9x) = E(Z, 5, 9k ® ¢0), OEis(Z, px) = 0Eis(Z, 9k ® ¢o0)

and so on for short.

12 Special cycles on GSpin Shimura varieties
12.1 GSpin Shimura varieties

Let F be a totally real number field. Let V be a totally positive definite inco-
herent quadratic space over A of rank m = n + 1 > 3. A choice of an infinite
place vg|oo of F gives rise to a global nearby quadratic space V (associated
to vg) such that its signatures at infinite places v|oco are given by

Define G = Resp;g GSpin(V).

For an oriented negative 2-plane Z = (e, e2) C Vy, such that the R-basis

{e1, €2} has fundamental matrix (7' ), define an R-algebra homomorphism

into the even part of the Clifford algebra of V.
C— C+(Vv0), a+ bi — a+ bejes.

Its restriction to C* lands in GSpin(Vy,)(R) € C*(V,,)™ and gives a homo-
morphism

hz : C* — GSpin(Vy,)(R) >~ GSpin(m — 2, 2)(R).
Define a cocharacter

he : C — G(R) = [ GSpin(V,)(R) =~ GSpin(m — 2,2)(R)

v|oo

x [T GSpin(m, 0)(R).
VFEV

whose v-component is given by

hz(z), v =y,

(hc (@) = {1’ v £ vp.
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Let D be its G(R)-conjugacy class, which is isomorphic to the hermitian
symmetric domain of oriented negative 2-planes in V,,, and has two connected
components. The action of G(R) on D factors through the natural quotient
map G(R) — SO(V,,)(R).

We obtain a Shimura datum (G, D), which is of Hodge type when F' = Q
and of abelian type in general. Let K € G (A y) be an open compact subgroup.
Denote by Shxy = Shg (G, D) the canonical model of the Shimura variety
with complex uniformization

Shg (C) = GQ\[D x G(Ay)/K].
The canonical model Shg is a smooth Deligne-Mumford stack (and a smooth
quasi-projective variety when K is neat) over the reflex field 7 C C (via the

embedding induced by the chosen infinite place vg), which is proper when V
is anisotropic (e.g., when F # Q).

12.2 Special cycles Z(T, ¢g)

Letl <r <m—2.Letx = [xq,...,x-] € V" be an r-tuple of vectors in
V. Assume that the fundamental matrix 7'(x) = ((x;, x;));,; € Sym,(F)xo
(totally positive definite). So (x1, ..., x,-) is a totally positive definite subspace

of V, and we denote by Vx its orthogonal complement in V. Then Vx has
signatures

(m—r—2,2), v=uy,

Ve ) =
Sgn( X’v) (m -, O)a v # vo-

Let Gx = Resp;g GSpin(Vx) and Dy be the hermitian symmetric domain
of oriented negative 2-planes in Vy ,,,. Then we have a natural embedding of
Shimura data

(GX9 DX) — (Gs D)

Let g € G(Ay). Define the special cycle Z(x, g) g on Shg (G, D) to be the
image of the composition

Shyk¢-1nGy(a)(Gx» Ds) = Shyg,-1(G. D) = Sh (G, D).
It admits complex uniformization
Z(x, )k (C) =~ Gx(Q\[Dx x Gx(Af)gK/K].
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Let px € . (V",) be a K-invariant Schwartz function. Let 7" € Sym,.(F)~o.
Define the (weighted) special cycle Z(T, ¢k ) on Shg (G, D) to be

Z(T, pk) = ) > oK (27'%) - Z(x, &)k
xeGQ\V" geGx(Ap)\G(Ay)/K
Tx)=T

€ 7' (Shx (G, D))c.

12.3 Semi-global integral models M = Mg at hyperspecial levels

Let p be aprime. Let v be a place of F above p. Wetake K = [
G(Q,) x G(A’;). Assume that

vlp KyxKP C

(H1) for each v|p, the group K, is a hyperspecial subgroup of GSpin(V,)(F)
(e.g., the stabilizer of a self-dual lattice A, € V).
(H2) K? C G(A?) is an open compact subgroup.

Then by Kisin [20] (p > 2) and Kim—Madapusi—Pera [22] (p = 2), there exists
a smooth integral canonical model Mg of Shg over the localization OF (y).
We remark that by the work of Lovering [34], these semi-global integral models
over OF () glue to an integral canonical model over the ring of S-integers of
F, for any S containing all finite places v where K, is not hyperspecial.

We often fix the level K as above and write M = Mg for short.

12.4 The quadratic lattice of special endomorphisms V (Ag)

From now on we assume that F' = Q (thus v = p, F, = Q,, Of () = Z(p))
and p > 2. Assume that K, is the stabilizer of of a self-dual lattice A, C V.
The Shimura datum (G, D) is of Hodge type, and there exists an embedding
of Shimura datum

(G, D) — (G =GSp(C(V)), H)

into a symplectic Shimura datum [39 §3. 5] Let K - G(Q p) be the stabilizer
the lattice C (A p) S C(Vp). Let KP - G(A 1) be an open compact subgroup
such that K” = K? N G(Ay). Then we obtain a finite unramified morphism
of Shimura varieties known as the Kuga—Satake morphism

Shx (G, D) — Shg(G, H).
The Siegel modular variety Sh g(é, ‘H) has a smooth integral model M over

OF,(v)_via moduli interpretation of principally polarized abelian varieties
with KP-level structures [39, §3.9]. Kisin’s integral canonical model M of
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Shk (G, D) over Op (v) is the normalization of the Zariski closure of Shg in
M [39, Theorem 4.4] (moreover the normalization is redundant in view of the
recent work of Xu [58]). .

Denote by (A, A, ) the pullback of the universal object on M to M. Here

(1) (A, A) is a principally polarized abelian variety (the Kuga—Satake abelian
variety), _
(i) n? is a KP-level structure, i.e., an K”-orbit of A?-linear isomorphisms

of lisse Al}—sheaves
0 s Hi(A, Ay — C(V) @F A%
For an M-scheme S, we denote by
V(As) € End(As) ® OF,(p)

the space of special endomorphisms as defined in [39, Definition 5.11].

By [39, Lemma 5.12], V(Ags) is equipped with a positive definite OF (p)-
quadratic form such that f o f = (f, f) -id. Let r > 1. Given an
r-tuple x = [x1,...,x:] € V(Ag)", define its fundamental matrix to be

T (x):=((xi, xj))i,j € Sym,(OF (p))-

12.5 Semi-global special cycles Z(T, ¢g)

Letr > 1. We say a Schwartz function

ok = Q) k.o € L (V)

vfoo

is p-admissible if it is K-invariant and ¢k , = 1(,). Given such a p-
admissible Schwartz function ¢x and a nonsingular 7 € Sym,.(F), define
the semi-global special cycle Z(T, ¢g) over M as follows.

First consider a special p-admissible Schwartz function of the form

ok = (p) € (V). ¢i=1g,. i=1_..r (12501

where @; C V is a K-invariant open compact subset such that ; , = A .
Notice that the prime-to-p part Q;p ) can be viewed as a subset

QP VP =V @ AL S End(C(V) ®F AD).

For an M-scheme S, define Z(T, pg)(S) to be the set of r-tuples x =
[x1,...,x] € V(As)" such that
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O Tx =T,
(i) n” ox*o(?)' € QP fori = 1,...,r. Here x} € End(HL(A, AR))
is induced by x;.

The functor § +— Z(T, ¢g)(S) is represented by a (possibly empty)
Deligne-Mumford stack which is finite and unramified over M (cf. [23, Propo-
sition 1.3], [24, Proposition 2.5], [39, Proposition 6.13]), and thus defines a
cycle Z(T, px) € Z*(M). By definition Z(T, ¢k ) is nonempty only when
T € Sym,(OF,(p))>0. Notice that the generic fiber Z(T, ¢k ) of the special
cycle Z(T, ¢g) is nonempty only when 1 < r < m — 2 (cf. [46, Proposi-
tion 3.6]), in which case it agrees with the special cycle Z(T, ¢k ) defined in
§122. Whenr = m — 1 = nand T € Sym,(OF (p))-0, the generic fiber
Z(T, pk)r is empty, and Z(T, pk) is supported in the supersingular locus
M of the special fiber M, (cf. [46, Proposition 3.7]).

For a general p-admissible Schwartz function g € . (V?) (which can
be written as a C-linear combination of special p-admissible functions, after
possibly shrinking K), we obtain a cycle Z(T, k) € Z*(M)c by extending
C-linearly.

12.6 p-Adic uniformization of the supersingular locus of M

Let M be the completion of the base change Mo, along the supersin-
gular locus /\/l?jv Then by [15, Theorem 7.2.4] (see also [19]), we have an
isomorphism of formal stacks over Spf O £, (the p-adic uniformization)

® : G'(Q\[RZg, xG(AD)/KP] > M. (12.6.0.1)

Here G’ = GSpin(V’) for the nearby quadratic space V' of V associated to the
place v, and RZ¢, is the GSpin Rapoport-Zink space defined in §4.1. Notice
that G’p is the inner form of G, defined in §4.4 and thus G’ (Q) naturally acts
on RZ¢, via the embedding G'(Q) — G;,(F »); and G'(Q) naturally acts on

G(A’;) via the embedding G'(Q) — G/(Aii) ~ G(Af,).

12.7 p-adic uniformization of §SS(T y OK)

Letr > 1, T € Sym,(OF,p))>0 and g € y(V}) be p-admissible. First

consider that ¢y is of the special form (12.5.0.1). Denote by §SS(T, ¢k ) the
completion of the base change Z(T', ¢k)o, along its supersingular locus

Z¥(T, k) = Z(T, gk ) X m,, My, , viewed as an element of K{)(W). For
a general p-admissible ¢x, we obtain an element gss(T, QK) € K(/)(./T/lR)C
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by extending C-linearly. For x € V", we may view x as a subset of V,,, which
gives the local special cycles Z(x) on RZg » defined as in §4.6.

Proposition 12.7.1 Assume that F = Q and p > 2. Assume that gg €
Y(V?) is p-admissible (§12.5). Then for any T € Sym,(OF (p))>0, the p-
adic uniformization isomorphism ® in (12.6.0.1) induces the following identity
in Ko(M%)c,

BT = Y > kg0 0EM, ).

xeG'(Q)\V” gGG;(@)\G’(A?)/K”
T(x)=T

(12.7.1.1)

Proof By the C-linearality, it suffices to treat the case of special Schwartz
functions g = 1q as in (12.5.0.1), in which case the assertion amounts to an
isomorphism of formal stacks induced by the morphism ©®,

2reo=c@\ || | Ewe] 02712

xeV” ¢eG'(AD)/KP
T(X):Tg (1 P/
g 'xeQ

Choose a point yy € M (i) giving rise to the local unramified Shimura—Hodge
data of §4.1 by [15, Proposition 7.2.3]. Then yg corresponds to a supersingular
abelian variety Ag over k together with the level structure né’ H élt (Ao, Al;) =
C(V) ®F A?. Its p-divisible group X = Ao[p°°] gives rise to the framing
object of the Rapoport—Zink space RZ¢ ,. By [15, Remark 7.2.5], the space of
special quasi-endomorphisms V (Ag) ® Q is isomorphic to V.

The isomorphism ® is explicitly described as follows (see the proof of
[15, Theorem 3.2.1] and [42, §6.14]). We fix a lift X of X over OFU and

let Ag be the corresponding lift of Ag. Let R € ANilpOF . Let (z,8) €

RZg,(R) x G(A?) /KP. Then z corresponds to a p-divisible group/X\ over

R with a quasi-isogeny px : X ®o; R — X.Lety = O(z, g) € M(R).

Then y corresponds to an abelian scheme A over R such that

(i) there is a quasi-isogeny p4 : Ag ®o0; R — Ainducing px on p-divisible
groups, which identifies V' ~ V(Ap) ® Q with V(A) ® Q by x —
pPAOXO ,0;1.

(i) the level structure on A is given by n” = g~ 1(n} 0 p%) : Hélt(A, A’}) =
C(V)Q®r A?.

Letx € V' such that T (x) = T It then follows from (i) and (ii) that
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(1) z € Z(x)(R) if and only if x € V(A);
(i) g~ 'x € Qifand only if n? o x* o (?)~! € QP),

Then by the definition of Zss (T, gk ), weknow that ® induces the isomorphism
in (12.7.1.2) after dividing the action of G'(Q). O

12.8 Arithmetic intersection number Int7 ,(¢x)

Assume T € Sym, (F)-o. Let 11, ..., t, be the diagonal entries of 7. Let
pxg € S (V ) be a special Schwartz functlon asin (12.5.0.1). Define

Intr, »(¢x):=x(Z(T, 9k), Oz (1.0 @~ -+ ®" Oz(1.4,) - log p,
(12.8.0.1)

where Oz, o) denotes the structure sheaf of the semi-global special divisor
Z(ti, ¢i), ®L denotes the derived tensor product of coherent sheaves on M,
and y denotes the Euler—Poincaré characteristic (an alternating sum of lengths
of OF,)-modules). We extend the definition of Intr ,(¢x) to a general p-
admissible g € . (V’}) by extending C-linearly.

12.9 Arithmetic Siegel-Weil formula: the semi-global identity

Now we are ready to prove our main semi-global application to the arithmetic
Siegel-Weil formula. Recall thatm =n + 1 > 3.

Theorem 12.9.1 Assume that F = Q and p > 2. Assume that og € . (V )
is p-admissible (§12.5). Then for any T € Sym,,(F)~o,

Intr,,(¢x)g” = ck - IEist, (2, pk),

where cx = ( l)n is a nonzero constant independent of T and ¢, and vol(K)
is the volume K under a suitable Haar measure on G (A r).

Proof If T ¢ Sym, (OF (p)), thenInty ,(¢k) vanishes (as Z(T, ¢k ) is empty
by definition) and so does dEist ,(z, o) by (11.2.0.2) and (3.4.9.2). So we
may assume that 7 € Sym,,(OF (p))>0. Since Z(T, ¢k ) is supported on the
supersingular locus, by (12.7.1.1) we know that

Intr ,(px) = Y > ok (87'%)

Xe? (@)\V’” 8€GL(Q\G'(AD)/KP
x)=

A RZg,, Z(rp) @ -~ @ Z(xy)) - log p.
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Let N = Z(O) be the connected GSpin Rapoport—Zink space in §4.5. Then
we have an 1s0morphlsm [15, §7.2.6]

G'(Q\IRZg, xG(A)/KP] = G'(Qo\IN x G(A})/KP],

where G'(Q)o € G'(Q) consists of elements whose spinor norm is a p-unit.
Hence

Intz ,(pk) = Y > ok (87'%)

XGC; (Q)O\V”’ 8€GL(Qo\G'(A)/KP
x)=

AN, Z) @ - @Y Z(x,)) - log p.
By Theorem 4.15.1 and Remark 3.4.9, we have
XV, Z) @ -+ ®" Z(xa)) - log p = ¢ - Wy, (1,0, ¢k )

for an explicit constant ¢, independent of 7" and ¢k .

Since G’(Q) acts on V' via its quotient G'(Q) — SO(V')(Q), under
which G’(Q)o surjects onto SO(V')(Q), we know that G'(Q)\V" =
SO(VY(@Q)\V'™. Thus

IntT,p(‘/)K) = Cp : W;"’p(ls Oa (/)K,p)

> > ok (87'X).

xeSO(VHY\V" geGy(Qo\G'(A})/KP
T(x)=T

Since T 1is nonsingular, we know that there exists a unique orbit in
SO(VY(@)\V™ with T(x) = T. Since V; is 1-dimensional, we know that
G, is the center Z' >~ G, € G'. Since G'/Z’ >~ SO(V’) and the function ¢g
is invariant under the action of G, (Q) and Z’ (Ap-) it follows that there exists

a Haar measure dg on G’ (A ) independent of T and ¢k such that

1 _
Intr.p(gx) = cp - Wrp (1.0 ¢xc.p) - o s0(v')<A”>¢K(g e
f

By [30, Proposition 1.2], we have

/ L ek dg =" [T Wro(1,0.0x.).
SO(vV/)(ah) Vs
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for a nonzero constant ¢”** independent of T and ¢k . Thus we have

p,o0

CpC
Intr ,(pk) = —2—— Wi ,(1.0,0k p) - [[ Wro(1.0.9k.0).

vol(K P) A

Since T > 0, by [5, Proposition 4.3 (ii)] we have g7 = coo - W7.00(Z, 0, ¢00),
where ¢, is a nonzero constant independent of 7. The result then follows
from the factorization (11.2.0.2) after scaling the Haar measure by ¢, cooc? .
Notice that the normalization factor (—1)" comes from the Weil constant y{, =
(—1)" as V is incoherent (so that vol(K) > 0). O
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