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Chow groups and L-derivatives of
automorphic motives for unitary groups

By Chao Li and Yifeng Liu

Abstract

In this article, we study the Chow group of the motive associated to a

tempered global L-packet π of unitary groups of even rank with respect to a

CM extension, whose global root number is −1. We show that, under some

restrictions on the ramification of π, if the central derivative L′(1/2, π) is

nonvanishing, then the π-nearly isotypic localization of the Chow group

of a certain unitary Shimura variety over its reflex field does not vanish.

This proves part of the Beilinson–Bloch conjecture for Chow groups and

L-functions, which generalizes the Birch and Swinnerton-Dyer conjecture.

Moreover, assuming the modularity of Kudla’s generating functions of spe-

cial cycles, we explicitly construct elements in a certain π-nearly isotypic

subspace of the Chow group by arithmetic theta lifting, and compute their

heights in terms of the central derivative L′(1/2, π) and local doubling zeta

integrals. This confirms the conjectural arithmetic inner product formula

proposed by one of us, which generalizes the Gross–Zagier formula to higher

dimensional motives.
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1. Introduction

In 1986, Gross and Zagier [GZ86] proved a remarkable formula that relates

the Néron–Tate heights of Heegner points on a rational elliptic curve to the

central derivative of the corresponding Rankin–Selberg L-function. A decade

later, Kudla [Kud97] revealed another striking relation between Gillet–Soulé

heights of special cycles on Shimura curves and derivatives of Siegel Eisenstein

series of genus two, suggesting an arithmetic version of theta lifting and the

Siegel–Weil formula; see, for example, [Kud02], [Kud03]. This was later further

developed in his joint work with Rapoport and Yang [KRY06]. For the higher

dimensional case, in a series of papers starting from the late 1990s, Kudla and

Rapoport developed the theory of special cycles on integral models of Shimura

varieties for GSpin groups in lower rank cases and for unitary groups of arbi-

trary ranks [KR11], [KR14]. They also studied special cycles on the relevant

Rapoport–Zink spaces over non-archimedean local fields. In particular, they

formulated a conjecture relating the arithmetic intersection number of spe-

cial cycles on the unitary Rapoport–Zink space to the first derivative of local

Whittaker functions [KR11, Conj. 1.3].

In his thesis work [Liu11a], [Liu11b], one of us studied special cycles as

elements in the Chow group of the unitary Shimura variety over its reflex field

(rather than in the arithmetic Chow group of a certain integral model) and the

Beilinson–Bloch height of the arithmetic theta lifting (rather than the Gillet–

Soulé height). In particular, in the setting of unitary groups, he proposed

an explicit conjectural formula for the Beilinson–Bloch height in terms of the

central L-derivative and local doubling zeta integrals. Such a formula is com-

pletely parallel to the Rallis inner product formula [Ral84], which computes the

Petersson inner product of the global theta lifting, hence was named arithmetic

inner product formula in [Liu11a], and can be regarded as a higher dimensional

generalization of the Gross–Zagier formula.1 In the case of U(1, 1) over an ar-

bitrary CM extension, such a conjectural formula was completely confirmed in

[Liu11b], while the case for U(r, r) with r > 2 is significantly harder. Recently,

1By “generalization of the Gross–Zagier formula,” we simply mean that they are both for-

mulae relating Beilinson–Bloch heights of special cycles and central derivatives of L-functions.

However, from a representation-theoretical point of view, the more accurate generalization

of the Gross–Zagier formula should be the arithmetic Gan–Gross–Prasad conjecture.
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the Kudla–Rapoport conjecture has been proved by W. Zhang and one of us

in [LZ]; it has become possible to attack the cases for higher rank groups. In

what follows, we will explain our new results on Chow groups of automorphic

motives for unitary groups and the arithmetic inner product formula.

Beilinson–Bloch conjecture. Let E be a number field and X a projective

smooth scheme over E of odd dimension 2r − 1. We have the L-function

L(s,H2r−1(X ⊗E E,Q`(r))) for the middle degree `-adic cohomology of X for

every rational prime `, which is conjectured to be meromorphic, independent

of `, and satisfy a functional equation with center s = 0. Let CHr(X)0 be the

group of codimension r Chow cycles on X that are homologically trivial (on

X ⊗E E). Then the unrefined Beilinson–Bloch conjecture ([Bĕı87, Conj. 5.9]

and [Blo84]) predicts that

rank CHr(X)0 = ords=0 L(s,H2r−1(X ⊗E E,Q`(r)))

holds for every `, hence in particular, CHr(X)0 has finite rank. Note that when

X is an elliptic curve, this recovers the (unrefined) Birch and Swinnerton-Dyer

conjecture.

In fact, this conjecture can also be formulated in terms of Chow mo-

tives. Based on this point of view, we have an equivariant version of the

Beilinson–Bloch conjecture as follows. Suppose that X admits an action of

an algebra T via étale correspondences. Then T acts on both CHr(X)0 and

H2r−1(X ⊗E E,Q`(r)). Let % be a nonzero irreducible finite-dimensional com-

plex representation of T. Then for every ` and every embedding Q` ↪→ C, we

have the L-function

L(s,HomT(%,H2r−1(X ⊗E E,Q`(r))C)).

Then it is expected that

dimC HomT(%,CHr(X)0
C) = ords=0 L(s,HomT(%,H2r−1(X ⊗E E,Q`(r))C))

(1.1)

holds, which can be regarded as the Beilinson–Bloch conjecture for the (con-

jectural Chow) motive HomT(%, h2r−1(X)(r)C), where h2r−1(X) is the (conjec-

tural Chow) motive of X of degree 2r − 1.

Now we propose a more specific conjecture for unitary Shimura varieties,

guided by the equivariant version of the Beilinson–Bloch conjecture above.

Let E/F be a CM extension of number fields with the complex conjuga-

tion c. We fix an embedding ι : E ↪→ C and regard E as a subfield of C. Take

an even positive integer n = 2r. We equip Wr := En with the skew-hermitian

form (with respect to the involution c) given by the matrix
(

1r
−1r

)
. Put

Gr := U(Wr), the unitary group of Wr, which is a quasi-split reductive group
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over F . For every non-archimedean place v of F , we denote by Kr,v ⊆ Gr(Fv)
the stabilizer of the lattice OnEv , which is a special maximal subgroup.

We first recall the notation of unitary Shimura varieties. Consider a her-

mitian space V over E of rank n (with respect to the involution c) that has

signature (n− 1, 1) at the real place of F induced by ι and signature (n, 0) at

other real places. Put H := U(V ) for its unitary group, which is a reductive

group over F . Note that for all but finitely many places v of F , Hv := H⊗F Fv
and Gr,v := Gr ⊗F Fv are isomorphic as reductive groups over Fv. We have a

system {XL} of Shimura varieties2 of dimension n− 1 over E indexed by open

compact subgroups L ⊆ H(A∞F ). (See Section 4 for more details.)

Let π be a tempered cuspidal automorphic representation of Gr(AF ). By

the endoscopic classification for quasi-split unitary groups, we have the auto-

morphic base change BC(π) of π, which is an automorphic representation of

GLn(AE) that is an isobaric sum of mutually non-isomorphic (unitary) cuspi-

dal automorphic representations.

Conjecture 1.1. Let π be a tempered cuspidal automorphic representa-

tion of Gr(AF ), and let V be a hermitian space over E of rank n that has signa-

ture (n−1, 1) at the real place of F induced by ι and signature (n, 0) at other real

places. For every irreducible admissible representation π̃∞ of H(A∞F ) satisfying

(a) π̃∞v ' πv for all but finitely many non-archimedean places v of F for

which Hv ' Gr,v ,
(b) HomH(A∞F )

Ä
π̃∞, lim−→L

Hn−1
dR (XL/C)

ä
6= 0,

the identity

dimC HomH(A∞F )

Ç
π̃∞, lim−→

L

CHr(XL)0
C

å
= ords= 1

2
L(s,Πj(π̃∞))

holds. Here, Πj(π̃∞) is the cuspidal factor of BC(π) determined by π̃∞ (see

Lemma 3.15); in particular, Πj(π̃∞) = BC(π) if BC(π) is already cuspidal.

In relation with (1.1), we take X to be XL for L such that (π̃∞)L 6= 0, T

to be the Hecke algebra of H(A∞F ) of level L, and % to be (π̃∞)L. Moreover, in

this case we know that the L-function on the right-hand side of (1.1) coincides

with L(s,Πj(π̃∞)) up to a shift by 1
2 . Thus, Conjecture 1.1 is a special case of

(1.1) after taking limit of L.

In the case when {XL} is replaced by classical modular curves, Conjec-

ture 1.1 in fact recovers the (unrefined) Birch and Swinnerton-Dyer conjecture

for rational elliptic curves. See [Gro04, §22] for more details from this point of

view. Conjecture 1.1 was only known in the case of modular/Shimura curves

2When F = Q, we have to replace XL by its canonical smooth toroidal compactification.
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when the analytic rank is at most 1 [GZ86], [Kol90], [Nek07a], [YZZ13], and

partially known in the case of Shimura varieties for U(2) × U(3) when the

analytic rank is exactly 1 [Xue19].3

Remark 1.2. It should be possible to formulate Conjecture 1.1 using to-

tally positive definite incoherent hermitian spaces (that is, totally positive

definite hermitian spaces over AE that are not base change from E) and in-

coherent Shimura varieties without fixing an embedding ι. The notion of in-

coherent spaces was first invented by Kudla (in the quadratic case), which he

called an incoherent collection of quadratic spaces over local fields [Kud97,

Def. 2.1]. Around the similar time, Gross realized that a Shimura curve can be

uniformized at its supersingular points in terms of a collection of quaternion

algebras over the base number field. (See [Gro04] and also [GGP12] for gen-

eralizations.) In their work [YZZ13], Yuan, S. Zhang, and W. Zhang put this

infinite collection of quaternion algebras as a single quaternion algebra over

the adèles as a uniform description of the geometry of Shimura curves and the

representation theory. This viewpoint was later adapted by W. Zhang [Zha12]

and one of us [Liu11a], [Liu11b]. In [Zha19] (which is based on his 2010 talk at

Gross birthday conference), S. Zhang summarizes how one can use the notion

of incoherent quadratic/hermitian spaces to formulate various conjectures that

are arithmetic counterparts of classical period formulae. In particular, there

should exists a compatible system of varieties {XL} over (the abstract field) E

such that for every embedding ι : E ↪→ C, the system {XL ⊗E ι(E)} recovers

the usual Shimura varieties defined above Conjecture 1.1; this was explained

in more details in [Gro21]. Based on this observation, one should be able to

formulate Conjecture 1.1 for the system {XL} associated to totally positive

definite incoherent hermitian spaces.

Main results. Our main results in this article prove part of Conjecture 1.1

under certain assumptions on E/F and π. Denote by V
(∞)
F and Vfin

F the set of

archimedean and non-archimedean places of F , respectively. Denote by V
spl
F ,

Vint
F , and Vram

F the subsets of Vfin
F of those that are split, inert, and ramified

in E, respectively. For every v ∈ Vfin
F , we denote by qv the residue cardinality

of Fv.

Assumption 1.3. Suppose that Vram
F = ∅ and that V

spl
F contains all 2-adic

places. In particular, [F : Q] is even. We consider a cuspidal automorphic

representation π of Gr(AF ) realized on a space Vπ of cusp forms, satisfying the

following:

3Interestingly, the height formula in [Xue19], which is for the endoscopic case, is obtained

by reducing it to the arithmetic inner product formula for U(1, 1).
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(1) For every v ∈ V
(∞)
F , πv is the holomorphic discrete series representation

of Harish-Chandra parameter {1−n
2 , 3−n

2 , . . . , n−3
2 , n−1

2 }.
(2) For every v ∈ V

spl
F , πv is a principal series.

(3) For every v ∈ Vint
F , πv is either unramified or almost unramified (see

Remark 1.4 below) with respect to Kr,v; moreover, if πv is almost un-

ramified, then v is unramified over Q.

(4) For every v ∈ Vfin
F , πv is tempered.

Remark 1.4. We have the following remarks concerning Assumption 1.3:

(1) In (1), by [Sch75, Th. 1.3], the condition for πv is equivalent to that πv
is a discrete series representation whose restriction to Kr,v contains the

character κrr,v. (See Notation 2.3(G5), (G6) for the notation.) Moreover,

one can also describe πv as the theta lifting of the trivial representation of

the (positive) definite unitary group of rank n; see, for example, [KK07].

(2) Part (2) will only be used in the proof of Lemma 7.3 in order to quote

a vanishing result from [CS17]. However, in our second article on this

subject [LL21], we have successively removed this assumption by con-

firming the conjecture in Remark 7.4 by proving a stronger vanishing

property.

(3) In (3), the notion of almost unramified representations of Gr(Fv) at

v ∈ Vint
F is defined in [Liu21b, Def. 5.3]. Roughly speaking, an irreducible

admissible representation πv of Gr(Fv) is almost unramified (with re-

spect to Kr,v) if π
Ir,v
v contains a particular character as a module over

C[Ir,v\Kr,v/Ir,v], where Ir,v is an Iwahori subgroup contained in Kr,v,

and that the Satake parameter of πv contains the pair {qv, q−1
v }; it is not

unramified. By [Liu21b, Th. 1.2], when qv is odd, almost unramified

representations are exactly those representations whose local theta lift-

ing to the non-quasi-split unitary group of the same rank 2r has nonzero

invariants under the stabilizer of an almost self-dual lattice.

Suppose that we are in Assumption 1.3. Denote by

• L(s, π) the doubling L-function (see Definition 3.3 for the more precise

definition);

• Rπ ⊆ V
spl
F the (finite) subset for which πv is ramified;

• Sπ ⊆ Vint
F the (finite) subset for which πv is almost unramified.

Then we have ε(π) = (−1)r[F :Q]+|Sπ | for the global (doubling) root number, so

that the vanishing order of L(s, π) at the center s = 1
2 has the same parity

as |Sπ| since [F : Q] is even. The cuspidal automorphic representation π

determines a hermitian space Vπ over AE of rank n via local theta dichotomy

(such that the local theta lifting of πv to U(Vπ)(Fv) is nontrivial for every

place v of F ), unique up to isomorphism, which is totally positive definite and
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satisfies that for every v ∈ Vfin
F , the local Hasse invariant ε(Vπ ⊗AF Fv) = 1 if

and only if v 6∈ Sπ; see Proposition 3.6(2).

Now suppose that |Sπ| is odd, hence ε(π) = −1, which is equivalent to

that Vπ is not the base change of a hermitian space over E. In this case,

we take V to be the hermitian space of E in the context of Conjecture 1.1,

unique up to isomorphism, satisfying that Vv ' Vπ,v for every v ∈ Vfin
F . Let R

be a finite subset of Vfin
F . We fix a special maximal subgroup LR of H(A∞,RF )

that is the stabilizer of a lattice ΛR in V ⊗F A∞,RF . (See Notation 2.2(H6) for

more details.) For a field L, we denote by TR
L the (abstract) Hecke algebra

L[LR\H(A∞,RF )/LR], which is a commutative L-algebra. When R contains Rπ,

the cuspidal automorphic representation π gives rise to a character

χRπ : TR
Qac → Qac,

where Qac denotes the subfield of C of algebraic numbers; we put mR
π := kerχRπ,

which is a maximal ideal of TR
Qac .

The following is the first main theorem of this article.

Theorem 1.5. Let (π,Vπ) be as in Assumption 1.3 with |Sπ| odd, for

which we assume Hypothesis 6.6. If L′(1
2 , π) 6= 0, that is, ords= 1

2
L(s, π) = 1,

then as long as R satisfies Rπ ⊆ R and |R ∩ Vspl
F | > 2, the nonvanishing

lim−→
LR

(
CHr(XLRLR)0

Qac

)
mR
π
6= 0

holds, where the colimit is taken over all open compact subgroups LR of H(FR).

Remark 1.6. We have the following remarks concerning Theorem 1.5:

(1) For every v ∈ Vfin
F , the local doubling L-function L(s, πv) coincides with

L(s,BC(πv)), where BC(πv) denotes the standard base change of πv to

GLn(Ev). (See Remark 3.4 for more details.) In particular, combining

with the local-global compatibility [KMSW14, Th. 1.7.1], we know that

L(s, π) coincides with the standard L-function of the automorphic base

change of π.

(2) Since |Sπ| is odd, by (1) and Remark 3.16, Conjecture 1.1 predicts the

nonvanishing

lim−→
LR

CHr(XLRLR)0
Qac [mR

π] 6= 0

when ords= 1
2
L(s, π) = 1 (by considering π̃∞ as the theta lifting of π∞),

which further implies the nonvanishing in our statement. However, it

is conjectured that CHr(XLRLR)0
Qac is finite dimensional, which implies

that the two types of nonvanishing are equivalent. Thus, our theorem

provides evidence toward Conjecture 1.1. See Theorem 1.7(2) below for

a stronger result under an extra hypothesis.
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(3) Hypothesis 6.6 describes the Galois representation on the π-nearly iso-

typic subspace of the middle degree `-adic cohomology lim−→L
H2r−1(XL⊗E

E,Q`). See Remark 6.7 for the status of this hypothesis.

(4) In fact, the nonvanishing property we prove is that

lim−→
LR

(
SCHr(XLRLR)0

Qac

)
mR
π
6= 0,

where SCHr(XLRLR)0 denotes the subgroup of CHr(XLRLR)0 generated

by special cycles (recalled in Section 4).

(5) It is clear that the field Qac in the statement of the theorem can be

replaced by an arbitrary subfield over which π∞ (hence χRπ) is defined.

(6) The main reason we assume Vram
F = ∅ is that the local ingredient [LZ]

only deals with places that are inert in E; we hope to remove this as-

sumption in the future.

Our remaining results rely on Hypothesis 4.5 on the modularity of Kudla’s

generating functions of special cycles, hence are conditional at this moment;

see Remark 4.6.

Theorem 1.7. Let (π,Vπ) be as in Assumption 1.3 with |Sπ| odd, for

which we assume Hypothesis 6.6. Assume Hypothesis 4.5 on the modularity of

generating functions of codimension r.

(1) For every

• ϕ1 =⊗vϕ1v ∈Vπ and ϕ2 =⊗vϕ2v ∈Vπ such that for every v ∈ V
(∞)
F ,

ϕ1v and ϕ2v have the lowest weight and satisfy 〈ϕc
1v, ϕ2v〉πv = 1;

• φ∞1 = ⊗vφ∞1v ∈ S (V r ⊗F A∞F ) and φ∞2 = ⊗vφ∞2v ∈ S (V r ⊗F A∞F ),

the identity

〈Θφ∞1
(ϕ1),Θφ∞2

(ϕ2)〉\X,E

=
L′(1

2 , π)

b2r(0)
· C [F :Q]

r ·
∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)

c)

holds. Here,

• Θφ∞i
(ϕi) ∈ lim−→L

CHr(XL)0
C is the arithmetic theta lifting (Defini-

tion 4.8), which is only well defined under Hypothesis 4.5;

• 〈Θφ∞1
(ϕ1),Θφ∞2

(ϕ2)〉\X,E is the normalized height pairing (Defini-

tion 6.11),4 which is constructed based on Beilinson’s notion of

height pairing ;

4Strictly speaking, 〈Θφ∞1 (ϕ1),Θφ∞2 (ϕ2)〉\X,E relies on the choice of a rational prime ` and

is a priori an element in C⊗Q Q`. However, the above identity implicitly says that it belongs

to C and is independent of the choice of `.
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• b2r(0) is defined in Notation 2.1(F4), which equals L(M∨r (1)) where

Mr is the motive associated to Gr by Gross [Gro97] and is, in par-

ticular, a positive real number;

• Cr = (−1)r2−2rπr
2 Γ(1)···Γ(r)

Γ(r+1)···Γ(2r) , which is the exact value of a certain

archimedean doubling zeta integral ; and

• Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)

c) is the normalized local doubling zeta

integral (see Section 3), which equals 1 for all but finitely many v.

(2) In the context of Conjecture 1.1, take π̃∞ to be the theta lifting of π∞

to H(A∞F ). If L′(1
2 , π) 6= 0, that is, ords= 1

2
L(s, π) = 1, then

HomH(A∞F )

Ç
π̃∞, lim−→

L

CHr(XL)0
C

å
6= 0

holds.

Remark 1.8. We have the following remarks concerning Theorem 1.7.

(1) Part (1) verifies the so-called arithmetic inner product formula, a con-

jecture proposed by one of us [Liu11a, Conj. 3.11].

(2) The arithmetic inner product formula in part (1) is perfectly parallel to

the classical Rallis inner product formula. In fact, suppose that |Sπ| is

even, hence Vπ ' V ⊗F AF for a hermitian space V over E. We have the

classical theta lifting θφ∞(ϕ) where we use standard Gaussian functions

at archimedean places. Then the Rallis inner product formula in this

case reads as

〈θφ∞1 (ϕ1), θφ∞2 (ϕ2)〉H =
L(1

2 , π)

b2r(0)
· C [F :Q]

r ·
∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)

c),

in which 〈 , 〉H denotes the Petersson inner product with respect to the

Tamagawa measure on H(AF ).

(3) In part (2), the representation π̃∞ satisfies (a) of Conjecture 1.1. By

Remark 1.6(1) and Remark 3.16, if ords= 1
2
L(s, π) = 1, then π̃∞ satisfies

(b) of Conjecture 1.1 as well, and Πj(π̃∞) is the unique cuspidal factor

of the automorphic base change of π such that ords= 1
2
L(s,Πj(π̃∞)) = 1.

In particular, part (2) provides evidence toward Conjecture 1.1, which

is more direct than Theorem 1.5 (but is conditional on the modularity

of generating functions).

In the case where Rπ = ∅, that is, πv is either unramified or almost unram-

ified for every v ∈ Vfin
F , we have a very explicit height formula for test vectors

that are new everywhere.

Corollary 1.9. Let (π,Vπ) be as in Assumption 1.3 with |Sπ| odd, for

which we assume Hypothesis 6.6. Assume Hypothesis 4.5 on the modularity
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of generating functions of codimension r. In the situation of Theorem 1.7(1),

suppose further that

• Rπ = ∅;
• ϕ1 = ϕ2 = ϕ ∈ V [r]∅

π (see Notation 2.3(G8) for the precise definition of

the one-dimensional space V [r]∅
π of holomorphic new forms ) such that for

every v ∈ VF , 〈ϕc
v, ϕv〉πv = 1; and

• φ∞1 = φ∞2 = φ∞ such that for every v ∈ Vfin
F , φ∞v = 1(Λ∅v)r .

Then the identity

〈Θφ∞(ϕ),Θφ∞(ϕ)〉\X,E = (−1)r ·
L′(1

2 , π)

b2r(0)
· C [F :Q]

r ·
∏
v∈Sπ

qr−1
v (qv + 1)

(q2r−1
v + 1)(q2r

v − 1)

holds.

Remark 1.10. Assuming the conjecture on the injectivity of the étale

Abel–Jacobi map, one can show that the cycle Θφ∞(ϕ) is a primitive cycle of

codimension r. By [Bĕı87, Conj. 5.5], we expect (−1)r〈Θφ∞(ϕ),Θφ∞(ϕ)〉\X,E
> 0 holds, which, in the situation of Corollary 1.9, is equivalent to L′(1

2 , π) > 0.

Strategy and structure. The main strategy for the proofs of our main re-

sults is to adopt Beilinson’s notion of height pairing together with various

sophisticated uses of Hecke operators. In [Bĕı87], Beilinson constructed, under

certain assumptions, a (hermitian) height pairing on CHr(XL)0
C valued in C.

Since those assumptions have not been resolved even today, we are not able to

use the full notion of this height pairing. However, after choosing a sufficiently

large prime `, Beilinson’s construction gives an unconditional height pairing

on a subspace CHr(XL)
〈`〉
C (a priori depending on `) of CHr(XL)0

C valued in

C⊗Q Q`.

The candidates for those nonvanishing elements in Theorem 1.5 are Kudla’s

special cycles ZT (φ∞) (which will be recalled in Section 4), which are in general

elements in CHr(XL)C. We show that there exists an element s ∈ TR
Qac\mR

π such

that s∗ annihilates the quotient space CHr(XL)C/CHr(XL)
〈`〉
C . The existence

of such element allows us to consider the modified cycles s∗ZT (φ∞) without

changing their (non)triviality in the localization of CHr(XL)C at mR
π, moreover

at the same time to talk about their heights.

More precisely, we consider two modified cycles s∗1ZT1(φ∞1 ) and s∗2ZT2(φ∞2 )

as above. When φ∞1 ⊗φ∞2 satisfies a certain regularity condition, the two cycles

have disjoint support, hence their height pairing (in the sense of Beilinson) has

a decomposition into so-called local indices according to places u of E. We

mention especially that if u is non-archimedean, then the local index at u is

defined via a winding number on the `-adic cohomology of XL⊗E Eu, which a

priori has nothing to do with intersection theory. When XL⊗EEu has a smooth
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integral model, it is well known that such a winding number can be computed

as the intersection number of integral extensions of the cycles. However, when

XL⊗EEu does not have smooth reduction, there is no general way to compute

the local index. Nevertheless, we show that, under certain assumptions on the

ramification and on the representation π, the local index between s∗1ZT1(φ∞1 )

and s∗2ZT2(φ∞2 ) can be computed in terms of the intersection number of some

nice extensions of cycles on some nice regular model, after further suitable

translations by elements in TR
Qac\mR

π. Eventually, all these local indices turn out

to be (linear combinations of) Fourier coefficients of derivatives of Eisenstein

series (and values of Eisenstein series for finitely many u).

The final ingredient is the Euler expansion of the doubling integral of cusp

forms in π against those derivatives of Eisenstein series (and Eisenstein series),

which expresses the height pairing in terms of L′(1
2 , π) and local doubling zeta

integrals. (In particular, it belongs to C and is independent of `.) An apparent

technical challenge for this approach is to show that there exist test functions

(φ∞1 , φ
∞
2 ) satisfying the regularity condition and yielding nonvanishing local

doubling zeta integrals; this is solved in Proposition 3.13. The proofs for

Theorem 1.7 and Corollary 1.9 follow from a similar strategy.

In Section 2, we collect setups and notation that are running through the

entire article, organized in several groups so that the readers can easily refer

to them. In Section 3, we recall the doubling method in the theory of theta

lifting and prove all necessary results from the representation-theoretical side.

In Section 4, we recall the notation of unitary Shimura varieties, their special

cycles and generating functions. We introduce the important hypothesis on

the modularity of generating functions, assuming which we define arithmetic

theta lifting. In Section 6, we introduce the notion of Beilinson’s height, in

a restricted but unconditional form, together with the decomposition into lo-

cal indices. In Section 5, we introduce a variant of unitary Shimura variety

that admits moduli interpretation, which will only be used in computing lo-

cal indices at various places. In Sections 7, 8, 9, and 10, we compute local

indices at split, inert with self-dual level, inert with almost self-dual level,

and archimedean places, respectively. Finally, in Section 11, we prove our

main results. There are two appendices: Appendix A contains two lemmas in

Fourier analysis that are only used in the proof of Proposition 3.13, and Ap-

pendix B collects some new observations concerning Beilinson’s local indices

at non-archimedean places.

Notation and conventions.

• When we have a function f on a product set A1 × · · · × Am, we will

write f(a1, . . . , am) instead of f((a1, . . . , am)) for its value at an element

(a1, . . . , am) ∈ A1 × · · · × Am.
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• For a set S, we denote by 1S the characteristic function of S.

• All rings are commutative and unital, and ring homomorphisms preserve

units. However, we use the word algebra in the general sense, which is not

necessarily commutative or unital.

• If a base ring is not specified in the tensor operation ⊗, then it is Z.

• For an abelian group A and a ring R, we put AR := A⊗R as an R-module.

• For an integer m > 0, we denote by 0m and 1m the null and identity ma-

trices of rank m, respectively. We also denote by wm the matrix
(

1m
−1m

)
.

• We denote by c : C → C the complex conjugation. For an element x in a

complex space with a default underlying real structure, we denote by xc

its complex conjugation.

• For a field K, we denote by K the abstract algebraic closure of K. How-

ever, for aesthetic reason, we will write Qp instead of Qp and will denote

by Fp its residue field. On the other hand, we denote by Qac the algebraic

closure of Q inside C.

• For a number field K, we denote by ψK : K\AK → C× the standard

additive character, namely, ψK := ψQ ◦TrK/Q in which ψQ : Q\A→ C× is

the unique character such that ψQ,∞(x) = e2πix.

• Throughout the entire article, all parabolic inductions are unitarily nor-

malized.
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cussion and careful reading of early drafts with many valuable comments and

suggestions for improvement. We also thank Miaofen Chen, Wee Teck Gan,
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and comments. The research of C. L. is partially supported by the NSF grant

DMS–1802269. The research of Y. L. is partially supported by the NSF grant

DMS–1702019, DMS–2000533, and a Sloan Research Fellowship.

2. Running notation

In this section, we collect several groups of more specific notation that

will be used throughout the remaining sections except appendices.

Notation 2.1. Let E/F be a CM extension of number fields, so that c is a

well-defined element in Gal(E/F ). We continue to fix an embedding ι : E ↪→ C.

We denote by u the (archimedean) place of E induced by ι and regard E as a

subfield of C via ι.

(F1) We denote by

• VF and Vfin
F the set of all places and non-archimedean places of F ,

respectively;



CHOW GROUPS AND L-DERIVATIVES OF AUTOMORPHIC MOTIVES 829

• V
spl
F , Vint

F , and Vram
F the subsets of Vfin

F of those that are split, inert,

and ramified in E, respectively;

• V
(�)
F the subset of VF of places above � for every place � of Q; and

• V?
E the places of E above V?

F .

Moreover,

• for every place u ∈ VE of E, we denote by u ∈ VF the underlying

place of F ;

• for every v ∈ Vfin
F , we denote by pv the maximal ideal of OFv and

put qv := |OFv/pv|;
• for every v∈VF , we put Ev :=E⊗F Fv and denote by | |Ev : E×v →C×

the normalized norm character.

(F2) Let m > 0 be an integer.

• We denote by Hermm the subscheme of ResE/F Matm,m of m-by-m

matrices b satisfying tbc = b. Put Herm◦m := Hermm ∩ResE/F GLm.

• For every ordered partition m = m1 + · · · + ms with mi a positive

integer, we denote by ∂m1,...,ms : Hermm → Hermm1 × · · · ×Hermms

the morphism that extracts the diagonal blocks with corresponding

ranks.

• In addition we denote by Hermm(F )+ (resp. Herm◦m(F )+) the sub-

set of Hermm(F ) of elements that are totally semi-positive definite

(resp. totally positive definite).

(F3) For every u ∈ V
(∞)
E , we fix an embedding ιu : E ↪→ C inducing u (with

ιu = ι) and identify Eu with C via ιu.

(F4) Let η := ηE/F : A×F → C× be the quadratic character associated to E/F .

For every v ∈ VF and every positive integer m, put

bm,v(s) :=
m∏
i=1

L(2s+ i, ηm−iv ).

Put bm(s) :=
∏
v∈VF bm,v(s).

(F5) For every element T ∈Hermm(AF ), let ψT : Hermm(AF )→C× be given

by the formula ψT (b) := ψF (tr bT ).

(F6) Let R be a commutative F -algebra. A (skew-)hermitian space over

R ⊗F E is a free R ⊗F E-module V of finite rank, equipped with a

(skew-)hermitian form ( , )V with respect to the involution c that is

nondegenerate.

Notation 2.2. Throughout the article, we fix an even positive integer

n = 2r. Let (V, ( , )V ) be a hermitian space over AE of rank n that is to-

tally positive definite.
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(H1) For every commutative AF -algebra R and every integer m > 0, we denote

by

T (x) := ((xi, xj)V )i,j ∈ Hermm(R)

the moment matrix of an element x = (x1, . . . , xm) ∈ V m ⊗AF R.

(H2) For every v ∈ VF , we put Vv := V ⊗AF Fv, which is a hermitian space

over Ev, and define the local Hasse invariant of Vv to be ε(Vv) :=

ηv((−1)rdet Vv) ∈ {±1}, which equals 1 for all but finitely many v. In

what follows, we will abbreviate ε(Vv) as εv. Recall that V is coherent

(resp. incoherent) if
∏
v∈VF εv = 1 (resp.

∏
v∈VF εv = −1).

(H3) Let v be a place of F and m > 0 an integer.

• For T ∈ Hermm(Fv), we put (V m
v )T := {x ∈ V m

v | T (x) = T}, and

(V m
v )reg :=

⋃
T∈Herm◦m(Fv)

(V m
v )T .

• We write S (V m
v ) for the space of (complex valued) Bruhat–Schwartz

functions on V m
v . When v ∈ V

(∞)
F , we have the Gaussian function

φ0
v ∈ S (V m

v ) given by the formula φ0
v(x) = e−2π trT (x).

• We have a Fourier transform map ̂ : S (V m
v ) → S (V m

v ) sending φ

to φ̂ defined by the formula

φ̂(x) :=

∫
Vmv

φ(y)ψE,v

(
m∑
i=1

(xi, yi)V

)
dy,

where dy is the self-dual Haar measure on V m
v with respect to ψE,v.

• In what follows, we will always use this self-dual Haar measure on

V m
v .

(H4) Let m > 0 be an integer. For T ∈ Hermm(F ), we put

Diff(T, V ) := {v ∈ VF | (V m
v )T = ∅},

which is a finite subset of VF \ Vspl
F .

(H5) Take a nonempty finite subset R ⊆ Vfin
F that contains Vram

F . Let S be the

subset of Vfin
F \ R consisting of v such that εv = −1, which is contained

in Vint
F .

(H6) We fix a
∏
v∈Vfin

F \R
OEv -lattice ΛR in V ⊗AF A∞,RF such that for every

v ∈ Vfin
F \ R, ΛR

v is a subgroup of (ΛR
v)
∨ of index q1−εv

v , where

(ΛR
v)
∨ := {x ∈ Vv | ψE,v((x, y)V ) = 1 for every y ∈ ΛR

v}

is the ψE,v-dual lattice of ΛR
v.

(H7) Put H := U(V ), which is a reductive group over AF .
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(H8) Denote by LR ⊆ H(A∞,RF ) the stabilizer of ΛR, which is a special maximal

subgroup.5 We have the (abstract) Hecke algebra away from R

TR := Z[LR\H(A∞,RF )/LR],

which is a ring with the unit 1LR , and denote by SR the subring

lim−→
T⊆Vspl

F \R
|T|<∞

Z[(LR)T\H(FT)/(L
R)T]⊗ 1(LR)T

of TR.

(H9) Suppose that V is incoherent, namely,
∏
v∈VF εv = −1. For every u ∈

VE \ Vspl
E , we fix a u-nearby space uV of V , which is a hermitian space

over E, and an isomorphism uV ⊗F AuF ' V ⊗AF AuF . More precisely,

• if u ∈ V
(∞)
E , then uV is the hermitian space over E, unique up to

isomorphism, that has signature (n− 1, 1) at u and satisfies uV ⊗F
AuF ' V ⊗AF AuF ;

• if u ∈ Vfin
E \ V

spl
E , then uV is the hermitian space over E, unique up

to isomorphism, that satisfies uV ⊗F AuF ' V ⊗AF AuF .

Put uH := U(uV ), which is a reductive group over F . Then uH(AuF ) and

H(AuF ) are identified.

Notation 2.3. Let m>0 be an integer. We equip Wm=E2m and W̄m=E2m

with the skew-hermitian forms given by the matrices wm and −wm, respectively.

(G1) Let Gm be the unitary group of both Wm and W̄m. We write elements

of Wm and W̄m in the row form, on which Gm acts from the right.

(G2) We denote by {e1, . . . , e2m} and {ē1, . . . , ē2m} the natural bases of Wm

and W̄m, respectively.

(G3) Let Pm ⊆ Gm be the parabolic subgroup stabilizing the subspace gener-

ated by {er+1, . . . , e2m}, and let Nm ⊆ Pm be its unipotent radical.

(G4) We have

• a homomorphism m : ResE/F GLm → Pm sending a to

m(a) :=

Ç
a

tac,−1

å
,

which identifies ResE/F GLm as a Levi factor of Pm;

• a homomorphism n : Hermm → Nm sending b to

n(b) :=

Ç
1m b

1m

å
,

which is an isomorphism.

5When r > 2 (resp. r = 1), the set of conjugacy classes of special maximal subgroups of

H(A∞,RF ) is canonically a torsor over µ
⊕VintF \R
2 (resp. µ

⊕VintF \(R∪Sπ)
2 ).



832 CHAO LI and YIFENG LIU

(G5) We define a maximal compact subgroup Km =
∏
v∈VF Km,v of Gm(AF )

in the following way:

• for v ∈ Vfin
F , Km,v is the stabilizer of the lattice O2m

Ev
;

• for v ∈ V
(∞)
F , Km,v is the subgroup of the form

[k1, k2] :=
1

2

Ç
k1 + k2 −ik1 + ik2

ik1 − ik2 k1 + k2

å
,

in which ki ∈ GLm(C) satisfies ki
tkci = 1m for i = 1, 2. Here, we

have identified Gm(Fv) as a subgroup of GL2m(C) via the embedding

ιu with v = u in Notation 2.1(F3).

(G6) For every v ∈ V
(∞)
F , we have a character κm,v : Km,v → C× that sends

[k1, k2] to det k1/det k2.6

(G7) For every v ∈ VF , we define a Haar measure dgv on Gm(Fv) as follows:

• for v∈Vfin
F , dgv is the Haar measure under which Km,v has volume 1;

• for v ∈ V
(∞)
F , dgv is the product of the measure on Km,v of total

volume 1 and the standard hyperbolic measure on Gm(Fv)/Km,v;

see, for example, [EL20, §2.1].

Put dg =
∏
v dgv, which is a Haar measure on Gm(AF ).

(G8) We denote by A(Gm(F )\Gm(AF )) the space of both Z(gm,∞)-finite and

Km,∞-finite automorphic forms on Gm(AF ), where Z(gm,∞) denotes the

center of the complexified universal enveloping algebra of the Lie algebra

gm,∞ of Gm ⊗F F∞. We denote by

• A[r](Gm(F )\Gm(AF )) ⊆ A(Gm(F )\Gm(AF )) the maximal subspace

on which for every v ∈ V
(∞)
F , Km,v acts by the character κrm,v;

• A[r]R(Gm(F )\Gm(AF )) ⊆ A[r](Gm(F )\Gm(AF )) the maximal sub-

space on which

– for every v ∈ Vfin
F \ (R ∪ S), Km,v acts trivially; and

– for every v ∈ S, the standard Iwahori subgroup Im,v acts triv-

ially and C[Im,v\Km,v/Im,v] acts by the character κ−m,v ([Liu21b,

Def. 2.1]);

• Acusp(Gm(F )\Gm(AF )) the subspace of A(Gm(F )\Gm(AF )) of cusp

forms, and by 〈 , 〉Gm the hermitian form on Acusp(Gm(F )\Gm(AF ))

given by the Petersson inner product with respect to the Haar mea-

sure dg.

For a subspace V of A(Gm(F )\Gm(AF )), we denote by

• V [r] the intersection of V and A[r](Gm(F )\Gm(AF ));

• V [r]R the intersection of V and A[r]R(Gm(F )\Gm(AF ));

• Vc the subspace {ϕc | ϕ ∈ V}.

6In fact, neither Km,v nor κm,v depends on the choice of the embedding ιu for v=u ∈ V
(∞)
F .
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Notation 2.4. We review the Weil representation.

(W1) For every v ∈ VF , we have the Weil representation ωm,v of Gm(Fv) ×
H(Fv), with respect to the additive character ψF,v and the trivial split-

ting character, realized on the Schrödinger model S (V m
v ). For the read-

ers’ convenience, we review the formulae:

• for a ∈ GLm(Ev) and φ ∈ S (V m
v ), we have

ωm,v(m(a))φ(x) = |det a|rEv · φ(xa);

• for b ∈ Hermm(Fv) and φ ∈ S (V m
v ), we have

ωm,v(n(b))φ(x) = ψT (x)(b) · φ(x)

(see Notation 2.1(F5) for ψT (x));

• for φ ∈ S (V m
v ), we have

ωm,v (wm)φ(x) = γmVv ,ψF,v · φ̂(x),

where γVv ,ψF,v is certain Weil constant determined by Vv and ψF,v;

• for h ∈ H(Fv) and φ ∈ S (V m
v ), we have

ωm,v(h)φ(x) = φ(h−1x).

We put ωm := ⊗vωm,v as the adèlic version, realized on S (V m).

(W2) For every v of F , we also realize the contragredient representation ω∨m,v
on the space S (V m

v ) as well via the bilinear pairing

〈 , 〉ωm,v : S (V m
v )×S (V m

v )→ C

defined by the formula

〈φ∨, φ〉ωm,v :=

∫
Vmv

φ(x)φ∨(x) dx

for φ, φ∨ ∈ S (V m
v ).

Notation 2.5. For a locally Noetherian scheme X and an integer m > 0,

we denote by Zm(X) the free abelian group generated by irreducible closed

subschemes of codimension m and CHm(X) the quotient by rational equiva-

lence. Suppose that X is smooth over a field K of characteristic zero. Let `

be a rational prime.

(C1) We denote by Zm(X)0 the kernel of the de Rham cycle class map

clX,dR : Zm(X)→ H2m
dR (X/K)(m),

and by CHm(X)0 the image of Zm(X)0 in CHm(X).

(C2) When K is a non-archimedean local field, we denote by Zm(X)〈`〉 the

kernels of the `-adic cycle class map

clX,` : Zm(X)→ H2m(X,Q`(m)).
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(C3) When K is a number field, we define Zm(X)〈`〉 via the Cartesian diagram

Zm(X)〈`〉 //

��

∏
v Zm(XKv)

〈`〉

��
Zm(X) // ∏

v Zm(XKv),

where the product is taken over all non-archimedean places v of K not

above `. We denote by CHm(X)〈`〉 the image of Zm(X)〈`〉 in CHm(X),

which is contained in CHm(X)0 by the comparison theorem between de

Rham and `-adic cohomology.

3. Doubling method and analytic side

In this section, we review the doubling method and prove several state-

ments on the analytic side of our desired height formula.

We have the doubling skew-hermitian space W�
r := Wr ⊕ W̄r (Nota-

tion 2.3(G1)). Let G�r be the unitary group of W�
r , which contains Gr × Gr

canonically. We now take a basis {e�1 , . . . , e�4r} of W�
r by the formula

e�i = ei, e�r+i = −ēi, e�2r+i = er+i, e�3r+i = ēr+i

for 1 6 i 6 r, under which we may identify W�
r with W2r and G�r with G2r.

Put

w�r := w2r, P�r := P2r, N�r := N2r, K�r := K2r, ω�r := ω2r.(3.1)

(See Notations 2.3 and 2.4.) We denote by

δ�r : P�r → ResE/F GL1

the composition of the Levi quotient map P�r = P2r →M2r, the isomorphism

m−1 : M2r → ResE/F GL2r, and the determinant ResE/F GL2r → ResE/F GL1.

Put

wr :=

Ü
1r

1r
−1r 1r

1r 1r

ê
∈ G�r (F ).

Then P�r wr(Gr ×Gr) is Zariski open in G�r .

Let v be a place of F . For s ∈ C, we have the degenerate principal series

of G�r (Fv), which is defined as the normalized induced representation

I�r,v(s) := Ind
G�
r (Fv)

P�
r (Fv)

(| |sEv ◦ δ
�
r,v)

of G�r (Fv). We denote by I�r (s) the restricted tensor product of I�r,v(s) for all

places v of F with respect to unramified sections.
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For every section f ∈ I�r (0), let f (s) ∈ I�r (s) be the standard section

induced by f . Then we have the Eisenstein series E(g, f (s)) for g ∈ G�r (AF ).

We have a G�r (AF )-intertwining map

f• : S (V 2r)→ I�r (0)

sending Φ to fΦ defined by the formula fΦ(g) := ω�r (g)Φ(0). (See (3.1) for

ω�r .) In particular, for Φ ∈ S (V 2r), we have the Eisenstein series

E(s, g,Φ) = E(g, f
(s)
Φ ) :=

∑
γ∈P�

r (F )\G�
r (F )

f
(s)
Φ (γg)

for g ∈ G�r (AF ). It is meromorphic in s and holomorphic on the imaginary

line.

Assumption 3.1. In what follows, we will consider an irreducible automor-

phic subrepresentation (π,Vπ) of Acusp(Gr(F )\Gr(AF )) satisfying that

(1) for every v ∈ V
(∞)
F , πv is the (unique up to isomorphism) discrete series

representation whose restriction to Kr,v contains the character κrr,v;

(2) for every v ∈ Vfin
F \ R, πv is unramified (resp. almost unramified) with

respect to Kr,v if εv = 1 (resp. εv = −1);

(3) for every v ∈ Vfin
F , πv is tempered.

We realize the contragredient representation π∨ on Vcπ via the Petersson inner

product 〈 , 〉Gr (Notation 2.3(G8)). By (1) and (2), we have V [r]R
π 6= {0}, where

V [r]R
π is defined in Notation 2.3(G8).

Remark 3.2. By Proposition 3.6(2) below, we know that when R ⊆ V
spl
F ,

V coincides with the hermitian space over AE of rank n determined by π via

local theta dichotomy.

Definition 3.3. We define the L-function for π as the Euler product L(s, π)
:=
∏
v L(s, πv) over all places of F , in which

(1) For v ∈ Vfin
F , L(s, πv) is the doubling L-function defined in [Yam14,

Th. 5.2].

(2) For v ∈ V
(∞)
F , L(s, πv) is the L-function of the standard base change

BC(πv) of πv. By Assumption 3.1(1), BC(πv) is the principal series

representation of GLn(C) that is the normalized induction of

argn−1� argn−3� · · ·� arg3−n� arg1−n,

where arg : C× → C× is the argument character. In particular, we have

L(s+ 1
2 , πv) =

(
r∏
i=1

2(2π)−(s+i)Γ(s+ i)

)2

.(3.2)
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Remark 3.4. Let v be a place of F .

(1) For v ∈ V
(∞)
F , the doubling L-function is only well defined up to an entire

function without zeros. However, one can show that L(s, πv) satisfies the

requirement for the doubling L-function in [Yam14, Th. 5.2].

(2) For v ∈ V
spl
F , the standard base change BC(πv) is well defined and we

have L(s, πv) = L(s,BC(πv)) by [Yam14, Th. 7.2].

(3) For v ∈ Vint
F \ R, the standard base change BC(πv) is well defined and we

have L(s, πv) = L(s,BC(πv)) by [Liu21b, Rem. 1.4].

In particular, when R ⊆ V
spl
F , we have L(s, π) =

∏
v L(s,BC(πv)).

Let v be a place of F . We denote by 〈 , 〉πv : π∨v ×πv → C the tautological

pairing. For ϕv ∈ πv, ϕ
∨
v ∈ π∨v , and a good section f (s) ∈ I�r,v(s) ([Yam14,

Def. 3.1]), we have the local doubling zeta integral

Z(ϕ∨v ⊗ ϕv, f (s)) :=

∫
Gr(Fv)

〈π∨v (g)ϕ∨v , ϕv〉πv · f (s)(wr(g, 12r)) dg,

and the normalized version

Z\(ϕ∨v ⊗ ϕv, f (s)) :=

Ç
L(s+ 1

2 , πv)

b2r,v(s)

å−1

· Z(ϕ∨v ⊗ ϕv, f (s)),

which is holomorphic in s. In particular, taking s = 0, we obtain a functional

Z\πv ,Vv : π∨v ⊗ πv ⊗S (V 2r
v )→ C

such that

Z\πv ,Vv(ϕ
∨
v , ϕv,Φv) = Z\(ϕ∨v ⊗ ϕv, f

(0)
Φv

) = Z\(ϕ∨v ⊗ ϕv, fΦv).

Remark 3.5. By [Yam14, Lemma 7.2], we know that the integral defining

Z(ϕ∨v ⊗ ϕv, f (0)) is absolutely convergent and that

L(s+ 1
2 , πv)

b2r,v(s)

is finite and invertible at s = 0.

Proposition 3.6. Let (π,Vπ) be as in Assumption 3.1.

(1) For every v ∈ Vfin
F , we have

dimC HomGr(Fv)×Gr(Fv)(I
�
r,v(0), πv � π

∨
v ) = 1.

(2) For every v ∈ (Vfin
F \ R) ∪ Vspl

F , Vv is the unique hermitian space over Ev
of rank 2r, up to isomorphism, such that Z\πv ,Vv 6= 0.

(3) For every v ∈ Vfin
F , HomGr(Fv)(S (V r

v ), πv) is irreducible as a represen-

tation of H(Fv) and is nonzero if v ∈ (Vfin
F \ R) ∪ Vspl

F .
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Proof. To ease notation, we will suppress the place v throughout the

proof. For a hermitian space Ṽ over E of rank 2r, denote by R(0, Ṽ ) ⊆ I�r (0)

the subspace spanned by Siegel–Weil sections from Ṽ and put Θ(π, Ṽ ) :=

HomGr(F )(S (Ṽ r), π). By the seesaw identity, we have

HomGr(F )×Gr(F )(R(0, Ṽ ), π � π∨) ' HomH̃(F )(Θ(π, Ṽ )⊗Θ(π∨, Ṽ ),1),

where H̃ := U(Ṽ ). Since π is tempered, by (the same argument for) [GI16,

Th. 4.1(v)], Θ(π, Ṽ ) is a semisimple representation of H̃(F ). By [GT16,

Th. 1.2], we know that Θ(π, Ṽ ) is either zero or irreducible. By the local theta

dichotomy [GG11, Th. 1.8] (see also [HKS96, Cor. 4.4] and [Har07, Th. 2.1.7]),

there exists exactly one choice Ṽ , up to isomorphism, such that Θ(π, Ṽ ) 6= 0.

Thus, we obtain (1) by [KS97, Ths. 1.2, 1.3].

For (2), there are two cases. If v ∈ V
spl
F , then it follows from (1) and

[KS97, Th. 1.3]. If v ∈ Vint
F \ R, then the uniqueness follows from (1) and

[KS97, Th. 1.2]; the nonvanishing of Z\π,V follows from [Liu21b, Prop. 5.6,

Lemma 6.1].

For (3), the irreducibility of Θ(π, V ) = HomGr(F )(S (V r), π) has already

been proved; the nonvanishing follows from (2). �

Proposition 3.7. Let (π,Vπ) be as in Assumption 3.1 such that L(1
2 , π)

= 0. Take

• ϕ1 = ⊗vϕ1v ∈ V [r]R
π and ϕ2 = ⊗vϕ2v ∈ V [r]R

π such that 〈ϕc
1v, ϕ2v〉πv = 1 for

v ∈ VF \ R,7 and

• Φ = ⊗vΦv ∈ S (V 2r) such that Φv is the Gaussian function (Nota-

tion 2.2(H3)) for v ∈ V
(∞)
F and Φv = 1(ΛR

v)2r for v ∈ Vfin
F \ R.

Then we have∫
Gr(F )\Gr(AF )

∫
Gr(F )\Gr(AF )

ϕ2(g2)ϕc
1(g1)E′(0, (g1, g2),Φ) dg1 dg2

=
L′(1

2 , π)

b2r(0)
· C [F :Q]

r ·
∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v,Φv)

=
L′(1

2 , π)

b2r(0)
· C [F :Q]

r ·
∏
v∈S

(−1)rqr−1
v (qv + 1)

(q2r−1
v + 1)(q2r

v − 1)
·
∏
v∈R

Z\πv ,Vv(ϕ
c
1v, ϕ2v,Φv),

where

Cr := (−1)r2−2rπr
2 Γ(1) · · ·Γ(r)

Γ(r + 1) · · ·Γ(2r)
,

and the measure on Gr(AF ) is the one defined in Notation 2.3(G7).

7Strictly speaking, what we fixed is a decomposition ϕc
1 = ⊗v(ϕc

1)v. We have abused

notation by writing ϕc
1v instead of (ϕc

1)v.
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Proof. By the formula derived in [Liu11a, p. 869], we have∫∫
[Gr(F )\Gr(AF )]2

ϕ2(g2)ϕc
1(g1)E′(0, (g1, g2),Φ) dg1 dg2

=
L′(1

2 , π)

b2r(0)

∏
v

Z\πv ,Vv(ϕ
c
1v, ϕ2v,Φv).

For v ∈ V
(∞)
F , it is clear that Z\πv ,Vv(ϕ

c
1v, ϕ2v,Φv) depends only on r, which we

denote by Cr. Note that for g ∈ Gr(Fv),

f
(0)
Φv

(wr(g, 12r)) = (−1)r〈ωr,v(g)φ0
v, φ

0
v〉ωr,v ,

where φ0
v is the Gaussian function on V r

v and 〈 , 〉ωr,v is the pairing in No-

tation 2.4(W2). In particular, f
(0)
Φv

(wr(12r, 12r)) = (−1)r2−2r2
. By [EL20,

Th. 1.3 , Prop. 3.3.2] (with n = k = 2r, a = b = r, τ1 = · · · = τr = r,

ν1 = · · · = νr = −r, and χrac = 1), we have

Z(0, ϕc
1v ⊗ ϕ2v,Φv) = (−1)r2−2r2 · 2r2−rπr

2 Γ(1) · · ·Γ(r)

Γ(r + 1) · · ·Γ(2r)
.

By (3.2) and the formula

b2r,v(s) =

(
r∏
i=1

π−(s+i)Γ(s+ i)

)2

,

we obtain our formula for Cr.

By [Yam14, Prop. 7.1, (7.2)], we have Z\πv ,Vv(ϕ
c
1v, ϕ2v,Φv) = 1 for v ∈

Vfin
F \ (R ∪ S). By [Liu21b, Prop. 5.6, Lemma 6.1], we have

Z\πv ,Vv(ϕ
c
1v, ϕ2v,Φv) =

(−1)rqr−1
v (qv + 1)

(q2r−1
v + 1)(q2r

v − 1)

for v ∈ S. The proposition is proved. �

Now we study the Eisenstein series E(s, g,Φ) via Whittaker functions.

For every v ∈ VF , T� ∈ Herm◦2r(Fv), and Φv ∈ S (V 2r
v ), we define the local

Whittaker function on G�r (Fv) with parameter s ∈ C as

WT�(s, g,Φv) :=

∫
Herm2r(Fv)

f
(s)
Φv

(w�r n(b)g)ψT�(b)−1 db(3.3)

(see (3.1) for w�r ) by meromorphic continuation, where db is the self-dual mea-

sure on Herm2r(Fv) with respect to ψF,v. By [Liu11a, Lemma 2.8(1)], we know

that WT�(s, g,Φv) is an entire function in the variable s.
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Definition 3.8. By the definition of local Whittaker functions (3.3), for

every v ∈ VF , there exists a unique Haar measure dhv on H(Fv) such that for

every T� ∈ Herm◦2r(Fv) and every Φv ∈ S (V 2r
v ), we have

WT�(0, 14r,Φv) =
γ2r
Vv ,ψF,v

b2r,v(0)

∫
H(Fv)

Φv(h
−1
v x) dhv,

where x is an arbitrary element in (V 2r
v )T� (Notation 2.2(H3)). For every open

compact subgroup Lv of H(Fv), we denote by vol(Lv) the volume of Lv under

the measure dhv.

By [Tan99, Prop. 3.2], for all but finitely many v ∈ Vfin
F , a hyperspecial

maximal subgroup of H(Fv) has volume 1 under dhv. In particular, we may

define the normalized measure

d\h :=
1

b2r(0)

∏
v∈VF

dhv

on H(AF ). In what follows, for an open compact subgroup L of H(A∞F ), we

will denote by vol\(L) the volume of H(F∞)L under the measure d\h.

Remark 3.9. Note that when V is coherent, d\h coincides with the Tam-

agawa measure on H(AF ). Later in Definition 6.11, we will use the volume

vol\(L) to scale the normalized height pairing. In view of Remark 1.8(2), this

is the most “natural” way.

Proposition 3.10. Suppose that V is incoherent.

(1) Take an element u ∈ VE \Vspl
E , and take uΦ = ⊗v uΦv ∈ S (uV 2r⊗F AF ),

where we recall from Notation 2.2(H9) that uV is the u-nearby hermitian

space, such that supp(uΦv) ⊆ (uV 2r
v )reg (Notation 2.2(H3)) for v in a

nonempty subset R′ ⊆ R. Then for every g ∈ P�r (FR′)G
�
r (AR′

F ), we have

E(0, g, uΦ) =
∑

T�∈Herm◦2r(F )

∏
v∈VF

WT�(0, gv,
uΦv).

(2) Take Φ = ⊗vΦv ∈ S (V 2r) such that supp(Φv) ⊆ (V 2r
v )reg for v in a sub-

set R′ ⊆ R of cardinality at least 2. Then for every g ∈ P�r (FR′)G
�
r (AR′

F ),

we have
E′(0, g,Φ) =

∑
w∈VF \Vspl

F

E(g,Φ)w,

where

E(g,Φ)w :=
∑

T�∈Herm◦2r(F )

Diff(T�,V )={w}

W ′T�(0, gw,Φw)
∏

v∈VF \{w}

WT�(0, gv,Φv).

Here, Diff(T�, V ) is defined in Notation 2.2(H4).

Proof. This is proved in [Liu11b, §2B]. �
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Definition 3.11. Suppose that V is incoherent. Take an element u ∈
VE \ Vspl

E and a pair (T1, T2) of elements in Hermr(F ).

(1) For uΦ = ⊗v uΦv ∈ S (uV 2r ⊗F AF ), we put

ET1,T2(g, uΦ) :=
∑

T�∈Herm◦2r(F )

∂r,rT�=(T1,T2)

∏
v∈VF

WT�(0, gv,
uΦv).

(2) For Φ = ⊗vΦv ∈ S (V 2r), we put

ET1,T2(g,Φ)u :=
∑

T�∈Herm◦2r(F )

Diff(T�,V )={u}
∂r,rT�=(T1,T2)

W ′T�(0, gu,Φu)
∏

v∈VF \{u}

WT�(0, gv,Φv).

Here, ∂r,r : Herm2r → Hermr ×Hermr is defined in Notation 2.1(F2).

Remark 3.12. The image of Herm◦2r(F )+ under ∂r,r is contained in the

subset Herm◦r(F )+ ×Herm◦r(F )+.

The following proposition ensures the sufficient supply of test functions

with support in (V 2r
v )reg. As we have mentioned in Section 1, it solves a key

technical challenge for our approach.

Proposition 3.13. Let (π,Vπ) be as in Assumption 3.1. Take v ∈ Vfin
F ,

and suppose that Z\πv ,Vv 6= 0. Then for every ϕv ∈ πv and ϕ∨v ∈ π∨v that are

both nonzero, we can find elements φv, φ
∨
v ∈ S (V r

v ) such that supp(φv⊗φ∨v ) ∈
(V 2r
v )reg and Z\πv ,Vv(ϕ

∨
v , ϕv, φv ⊗ φ∨v ) 6= 0.

Proof. To ease notation, we will suppress the place v throughout the proof.

We identify the F -vector space Herm2r(F ) with its dual Herm2r(F )∨ via the

bilinear form (x, y) 7→ trxy. Take an element Ψ ∈ S (Herm2r(F )). Let “Ψ ∈
S (Herm2r(F )) be the Fourier transform of Ψ with respect to ψ. Let fΨ be

the unique section in I�r (0) such that fΨ(w�r n(b)) = “Ψ(b) and fΨ = 0 outside

P�r (F )w�r N
�
r (F ). Take ϕ ∈ π and ϕ∨ ∈ π∨ that are both nonzero. We claim

that

(∗) There exists an element Ψ ∈ S (Herm◦2r(F )) such that Z(ϕ∨⊗ϕ, fΨ) 6= 0.

Assuming (∗), we continue the proof. Let V ′ be the other hermitian space

over F of rank 2r that is not isomorphic to V if E is a field, or the zero

space if E = F × F . Let Herm◦2r(F )V and Herm◦2r(F )V ′ be the subset of

Herm◦2r(F ) that is contained in the image of the moment maps from V 2r and

V ′2r, respectively. Then Herm◦2r(F )V ∪ Herm◦2r(F )V ′ is a disjoint open cover

of Herm◦2r(F ). Choose Ψ as in the claim, and put ΨV := Ψ · 1Herm◦2r(F )V

and ΨV ′ := Ψ · 1Herm◦2r(F )V ′
. We may choose elements ΦV ∈ S (V 2r

reg) and

ΦV ′ ∈ S (V ′2rreg ) such that ΨV and ΨV ′ are the pushforward of ΦV and ΦV ′ along
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the moment map V 2r
reg → Herm◦2r(F )V and V ′2rreg → Herm◦2r(F )V ′ , respectively.

It is easy to see that fΦV = fΨV and fΦV ′ = fΨV ′ . In particular, we have

Z(ϕ∨ ⊗ ϕ, fΨ) = Z(ϕ∨ ⊗ ϕ, fΨV ) + Z(ϕ∨ ⊗ ϕ, fΨV ′ )

= Z(ϕ∨ ⊗ ϕ, fΦV ) + Z(ϕ∨ ⊗ ϕ, fΦV ′ ).

By Proposition 3.6 and Remark 3.5, we have Z(ϕ∨ ⊗ ϕ, fΦV ′ ) = 0 if Z\π,V 6= 0.

Thus, we have Z(ϕ∨⊗ϕ, fΦV ) 6= 0, hence Z\π,V (ϕ∨⊗ϕ,ΦV ) 6= 0. The theorem

follows as ΦV can be written as a finite sum of elements of the form φ ⊗ φ∨
satisfying supp(φ⊗ φ∨) ⊆ supp(ΦV ) ⊆ V 2r

reg.

It remains to show (∗). We identify ResE/F Matr,r ×Hermr ×Hermr with

Herm2r via the assignment

(a, u, v) 7→
Ç
u tac

a v

å
.

Define a polynomial function ∆ on Herm2r sending (a, u, v) to NmE/F det a.

Let Ω be the complement of the Zariski closed subset of Herm2r defined by the

ideal (∆). We define a morphism ι : Ω→ Gr such that

ι(a, u, v) =

Ç
1r v

0 1r

åÇ
−a 0

0 − tac,−1

å
wr

Ç
1r u

0 1r

å
,

which is an isomorphism onto the Zariski open subset PrwrNr of Gr. By a

direct computation, we have a unique morphism p : Ω→ P�r such that

wrι(a, u, v) = p(a, u, v) · w�r · n
Ç
u tac

a v

å
,(3.4)

which satisfies

NmE/F δ
�
r (p(a, u, v)) = NmE/F det a = ∆(a, u, v).(3.5)

Define a locally constant function ξϕ∨,ϕ on Gr(F ) by ξϕ∨,ϕ(g) := 〈π∨(g)ϕ∨, ϕ〉π.

Then by (3.4) and (3.5), we have

Z(ϕ∨ ⊗ ϕ, fΨ)

=

∫
Gr(F )

ξϕ∨,ϕ(g)fΨ(wr(g, 12r)) dg

=

∫
Pr(F )wrNr(F )

ξϕ∨,ϕ(ι(a, u, v))|∆(a, u, v)|rF“Ψ(a, u, v) · dι(a, u, v).

We define a locally constant function ξ[ϕ∨,ϕ on Ω(F ) by

ξ[ϕ∨,ϕ(a, u, v) = |∆(a, u, v)|−rF ξϕ∨,ϕ(ι(a, u, v)).

Note that there exists a unique Haar measure da du dv on Herm2r(F ) such

that

dι(a, u, v) = |∆(a, u, v)|−2r
F da du dv.
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Thus, we have

Z(ϕ∨ ⊗ ϕ, fΨ) =

∫
Ω(F )

ξ[ϕ∨,ϕ(a, u, v)“Ψ(a, u, v) da du dv.(3.6)

As both ϕ∨ and ϕ are nonzero, ξ[ϕ∨,ϕ is nonzero, which is also locally integrable

on Herm2r(F ) by Remark 3.5. The remaining discussion bifurcates.

When E is a field, we have ξϕ∨,ϕ ∈ L2+ε(Gr(F )) for every ε > 0, which is

equivalent to ∫
Ω(F )

|ξ[ϕ∨,ϕ(a, u, v)|2+ε|∆(a, u, v)|rεF da du dv <∞.

Applying Lemma A.1 to X = Herm2r(F ), we obtain an element Ψ ∈ S (V 2r
reg)

such that ∫
Ω(F )

ξ[ϕ∨,ϕ(a, u, v)“Ψ(a, u, v) da du dv 6= 0,

which implies Z(ϕ∨ ⊗ ϕ, fΨ) 6= 0 by (3.6). Thus, (∗) is proved.

When E = F × F , we have ξϕ∨,ϕ ∈ L2+ε(Zr(F )\Gr(F )) for every ε > 0,

where Zr denotes the center of Gr, which is equivalent to∫
F×\Ω(F )

|ξ[ϕ∨,ϕ(a, u, v)|2+ε|∆(a, u, v)|rεF da du dv <∞.

Here, the action of F× on Herm2r(F ) is given as follows: After identifying

Matr,r(E) with Matr,r(F ) ×Matr,r(F ) via the two factors of F under which

we write a = (a1, a2), α ∈ F× sends ((a1, a2), u, v) to ((αa1, α
−1a2), u, v). Ap-

plying Lemma A.2 to X = Herm2r(F ) with X1 = Matr,r(F ), X2 = Matr,r(F ),

and X3 = Hermr(F ) ⊕ Hermr(F ), we obtain an element Ψ ∈ S (V 2r
reg) such

that ∫
Ω(F )

ξ[ϕ∨,ϕ(a, u, v)“Ψ(a, u, v) da du dv 6= 0,

which implies Z(ϕ∨ ⊗ ϕ, fΨ) 6= 0 by (3.6). Thus, (∗) is proved. �

To end this section, we recall some constructions concerning the tempered

global L-packet given by π, which will be used in Sections 6 and 9.

Notation 3.14. Let (π,Vπ) be as in Assumption 3.1.

(1) Let Π be the automorphic base change of π, that is, the isobaric automor-

phic representation of GLn(AE) such that Πv is the standard base change

of πv for all but finitely many v ∈ Vfin
F for which πv is unramified.8 By the

local-global compatibility [KMSW14, Th. 1.7.1], for every v ∈ V
(∞)
F , Πv

8The existence of Π follows from [Shi] or more generally [KMSW14], while the uniqueness

of Π up to isomorphism is ensured by the strong multiplicity one theorem.



CHOW GROUPS AND L-DERIVATIVES OF AUTOMORPHIC MOTIVES 843

is the normalized induction of argn−1� argn−3� · · · � arg3−n� arg1−n

as in Definition 3.3.

(2) Put I := {n−1, n−3, . . . , 3−n, 1−n}. For each character χ : µI2 → C×,

we define the signature of χ to be the pair (p, q) with p+q = n such that

χ takes value 1 on p µ2-generators and −1 on q µ2-generators. For such a

character χ of signature (p, q), we have a discrete series representation πχ

of U(p, q). When (p, q) = (n− 1, 1), we denote by πχ∞ the representation

of uH(F∞) that is the inflation of πχ along the quotient map uH(F∞)→
uH(R) ' U(n− 1, 1).

(3) We may write Π = Π1 � · · · � Πs, in which Πj is a conjugate-selfdual

cuspidal automorphic representation of GLnj (AE), with n1+· · ·+ns = n.

Then there is a unique partition I = I1 t · · · t Is such that Πj,w is the

normalized induction of �i∈Ij argi for 1 6 j 6 s.
(4) Let ` be a rational prime with an arbitrarily given isomorphism Q` ' C.

For every 1 6 j 6 s, we have a (semisimple) Galois representation

ρΠj : Gal(Qac/E)→ GLnj (Q`)

attached to Πj as described in [Car12, Th. 1.1].

Here, we recall from Notation 2.1 that we have regarded E as a subfield of C
via ι.

Lemma 3.15. For every irreducible admissible representation π̃∞ of H(A∞F )

such that Πv is the standard base change of π̃∞v for all but finitely many v ∈ Vfin
F

for which π̃∞v is unramified, exactly one of the following two cases happens :

(a) There does not exist a character χ : µI2 → C× of signature (n−1, 1) such

that πχ∞ ⊗ π̃∞ is a cuspidal automorphic representation of uH(AF ).

(b) There is a unique integer 1 6 j(π̃∞) 6 s, such that for every χ : µI2 → C×
of signature (n−1, 1), πχ∞⊗π̃∞ is a cuspidal automorphic representation

of uH(AF ) if and only if the unique µ2-generator of µI2 on which χ takes

value −1 is indexed by an element in Ij(π̃∞).

Moreover, we have

dimC HomH(A∞F )

Ç
π̃∞, lim−→

L

Hn−1
dR (XL/C)

å
=

®
0 if π̃∞ fits in (a),

nj(π̃∞) > 0 if π̃∞ fits in (b),

where {XL} is the unitary Shimura variety recalled in Section 4 below.

Proof. The first part of the lemma is a consequence of Arthur’s multiplicity

formula for tempered global L-packets [KMSW14, Th. 1.7.1].

The second part of the lemma follows from Matsushima’s formula and

Arthur’s multiplicity formula [KMSW14, Th. 1.7.1]. In particular, the number

of characters χ : µI2 → C× of signature (n−1, 1) such that πχ∞⊗π̃∞ is a cuspidal

automorphic representation of uH(AF ) equals nj(π̃∞). Here, we also use the
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well-known fact that the (g,K)-cohomology of a (cohomological) discrete series

representation is one dimensional in the middle degree and vanishes in all other

degrees; see, for example, [BW00, II. Th. 5.4]. �

Remark 3.16. Assume that π̃∞ := HomGr(A∞F )(S (V r ⊗F A∞F ), π∞) is

nonzero, which is then an irreducible admissible representation of H(A∞F )

by Proposition 3.6(3). By [GI16, Th. 4.1(ii)], the global root number ε(Π)

equals −1. Moreover, using Arthur’s multiplicity formula [KMSW14, Th. 1.7.1]

and Conjecture (P1)n in [GI16, §4.4] (which is proved in that article), we see

that π̃∞ fits in the situation (b) of Lemma 3.15 if and only if there is ex-

actly one element j ∈ {1, . . . , s} such that ε(Πj) = −1; in this case we must

have j = j(π̃∞). When ords= 1
2
L(s,Π) = 1, there is exactly one element

j ∈ {1, . . . , s} such that ε(Πj) = −1 as L(s,Π) =
∏s
j=1 L(s,Πj), so π̃∞ fits in

the situation (b) of Lemma 3.15 automatically.

4. Special cycles and generating functions

In this section, we review the construction of Kudla’s special cycles and

generating functions. We also introduce the hypothesis on the modularity of

generating functions and derive some of its consequences. From now to the

end of Section 11, we assume V incoherent.9

Recall that we have fixed a u-nearby space uV and an isomorphism uV ⊗F
Au
F ' V ⊗AF Au

F from Notation 2.2(H9). For every open compact subgroup

L ⊆ H(A∞F ), we have the Shimura variety XL associated to ResF/Q
uH of the

level L, which is a smooth quasi-projective scheme over E (which is regarded

as a subfield of C via ι) of dimension n − 1. We remind the readers of its

complex uniformization

(XL ⊗E C)an ' uH(F )\ uD×H(AF )/L,(4.1)

where uD denotes the complex manifold of negative lines in uV ⊗E C and the

Deligne homomorphism is the one adopted in [LTX+19, §3.2]. In what follows,

for a place u ∈ VE , we put XL,u := XL ⊗E Eu as a scheme over Eu.

Now we recall the construction of Kudla’s special cycles and their gener-

ating functions. Take an integer 1 6 m 6 n− 1.

Definition 4.1. For every element x ∈ V m ⊗AF A∞F , we have the special

cycle Z(x)L ∈ CHm(XL)Q defined as follows:

• For T (x) 6∈ Hermm(F )+, we set Z(x)L = 0.

9At the end, we will take V = Vπ as in Section 1. We have changed the use of V from

Section 1 since in the proofs of the main results, we need to consider all nearby spaces of Vπ.

In particular, V in Section 1 is now uV .
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• For T (x) ∈ Herm◦m(F )+, we may find elements x′ ∈ uV m and h ∈ H(A∞F )

such that hx = x′ holds in V m ⊗AF A∞F . The components of x′ span a to-

tally positive definite hermitian subspace Vx′ of uV of rank m. Put Hx′ :=

U(V ⊥x′ ), which is naturally a subgroup of uH, and let {Xx′
M}M⊆Hx′ (A∞F ) be

the associated system of Shimura varieties. Define Z(x)L to be the image

cycle of the composite morphism

Xx′

hLh−1∩Hx′ (A∞F )
→ XhLh−1

·h−→ XL.

It is straightforward to check that Z(x)L does not depend on the choice of

x′ and h. Moreover, Z(x)L is a well-defined element in Zm(XL).

• For T (x) ∈ Hermm(F )+ in general, we have an element Z(x)L∈CHm(XL)Q
(not well defined in Zm(XL)Q). We refer the readers to [Liu11a, §3A] for

more details as it is not important to us in this article.

For every φ∞ ∈ S (V m ⊗AF A∞F )L and T ∈ Hermm(F ), we put

ZT (φ∞)L :=
∑

x∈L\Vm⊗AF A∞F
T (x)=T

φ∞(x)Z(x)L.

Since the above summation is finite, ZT (φ∞)L is a well-defined element in

CHm(XL)C.

Remark 4.2. For T ∈ Herm◦m(F )+, ZT (φ∞)L is even a well-defined ele-

ment in Zm(XL)C.

Finally, for every g ∈ Gm(AF ), Kudla’s generating function is defined to be

Zφ∞(g)L :=
∑

T∈Hermm(F )+

ωm,∞(g∞)φ0
∞(T ) · ZT (ω∞m (g∞)φ∞)L

as a formal sum valued in CHm(XL)C, where

ωm,∞(g∞)φ0
∞(T ) :=

∏
v∈V(∞)

F

ωm,v(gv)φ
0
v(T ).

Here, we note that for v ∈ V
(∞)
F , the function ωm,v(gv)φ

0
v factors through the

moment map V m
v → Hermm(Fv) (see Notation 2.2(H1)), hence ωm,v(gv)φ

0
v(T )

makes sense.

Lemma 4.3. In Definition 4.1, we have

ωm,∞(n(b)m(a))φ0
∞(T ) · ZT (ωm(n(b)m(a))φ∞)L = φ0

∞(tacTa) · ZtacTa(φ
∞)L

for every a ∈ GLm(E) and every b ∈ Hermm(F ).

Proof. This is proved in (the proof of) [Liu11a, Th. 3.5]. �

Lemma 4.4. In Definition 4.1, we have t∗ZT (φ∞)L = ZT (tφ∞)L for every

t ∈ TR
C.
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Proof. By linearity, we may assume t = 1LhL for some h ∈ H(A∞,RF ).

Then it follows easily from Definition 4.1 that

t∗Z(x)L =
∑

h′∈h−1Lh∩L\L

Z(hh′x)L

for every x ∈ V m ⊗AF A∞F . Thus,

t∗ZT (φ∞)L =
∑

x∈L\Vm⊗AF A∞F
T (x)=T

φ∞(x)t∗Z(x)L

=
∑

x∈L\Vm⊗AF A∞F
T (x)=T

φ∞(x)
∑

h′∈h−1Lh∩L\L

Z(hh′x)L

=
∑

x∈L\Vm⊗AF A∞F
T (x)=T

Ñ ∑
h′∈h−1Lh∩L\L

φ∞(h′−1h−1x)

é
Z(x)L

=
∑

x∈L\Vm⊗AF A∞F
T (x)=T

(tφ∞)(x)Z(x)L = ZT (tφ∞)L.

The lemma follows. �

Hypothesis 4.5 (Modularity of generating functions of codimension m).

For every open compact subgroup L ⊆ H(A∞F ), every φ∞ ∈ S (V m⊗AF A∞F )L,

and every complex linear map l : CHm(XL)C → C, the assignment

g 7→ l(Zφ∞(g)L)

is absolutely convergent and gives an element in A[r](Gm(F )\Gm(AF )). In

other words, the function Zφ∞(−)L defines an element in

HomC(CHm(XL)∨C,A[r](Gm(F )\Gm(AF ))).

Remark 4.6. Hypothesis 4.5 is believed to hold. In fact, in the case of

symplectic groups over Q, the analogous statement was first conjectured by

Kudla [Kud04] and has been confirmed in [BWR15] based on previous works

[Zha09], [YZZ09]. In our situation, Hypothesis 4.5 is proved in [Liu11a, Th. 3.5]

for m = 1; for m > 2, we know that l(Zφ∞(g)L) is formally modular by [Liu11a,

Th. 3.5].

Note that the natural inclusion

A[r](Gm(F )\Gm(AF ))⊗C CHm(XL)C

⊆ HomC(CHm(XL)∨C,A[r](Gm(F )\Gm(AF )))
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might be strict a priori, since we do not know whether CHm(XL)C is finite

dimensional. However, we have the following result.

Proposition 4.7. Assume Hypothesis 4.5 on the modularity of generat-

ing functions of codimension m.

(1) For every open compact subgroup L⊆H(A∞F ) and every Schwartz func-

tion φ∞ ∈ S (V m⊗AF A∞F )L, Zφ∞(−)L belongs to A[r](Gm(F )\Gm(AF ))

⊗C CHm(XL)C.

(2) The map

S (V m ⊗AF A∞F )L → A[r](Gm(F )\Gm(AF ))⊗C CHm(XL)C

sending φ∞ to Zφ∞(−)L is Gm(A∞F ) × TR
C-equivariant, where Gm(A∞F )

acts on the source via the Weil representation and on the target via the

right translation on the first factor, and TR
C acts on the source via the

Weil representation and on the target via the Hecke correspondences.

Proof. For (1), fix an open compact subgroup K ⊆ Gm(A∞F ) that fixes

φ∞, and a set of representatives {g(1), . . . , g(s)} of the finite double coset

Gm(F )\Gm(A∞F )/K. For every 1 6 i 6 s, the restriction of Zφ∞(−)L to

Gm(F∞)× {g(i)} is given by the hermitian q-expansion

f (i)(q) :=
∑

T∈Hermm(F )+

ZT (φ∞(i))L · qT ,

where φ∞(i) := ω∞m (g(i))φ∞. By Hypothesis 4.5, for every l ∈ CHm(XL)∨C, the

q-expansion

l(f (i))(q) :=
∑

T∈Hermm(F )+

l(ZT (φ∞(i))L) · qT

belongs toM[r]
m (Γ(i)), the space of holomorphic hermitian Siegel modular form

of Gm of weight (κrm,w)
w∈V(∞)

F

(Notation 2.3(G6)) and level Γ(i) := Gm(F ) ∩
g(i)K(g(i))−1. LetM(i) be the subspace of CHm(XL)C spanned by ZT (φ∞(i))L
for all T ∈ Hermm(F )+. We claim that

dimCM(i) 6 dimCM[r]
m (Γ(i)) <∞.(4.2)

Take arbitrary elements l1, . . . , ld of CHm(XL)∨C with d > dimCM
[r]
m (Γ(i)).

Then there exist c1, . . . , cd ∈ C not all zero, such that
∑d

j=1 cjlj(f
(i))(q) = 0;

in other words,

d∑
j=1

cjlj(ZT (φ∞(i))L) = 0 ∀T ∈ Hermm(F )+.

Thus, we have
∑d

j=1 cjlj |M(i) = 0, which implies (4.2). However, (4.2) implies

that the subspace of CHm(XL)C generated by ZT (ω∞m (g∞)φ∞)L for all T ∈
Hermm(F )+ and g∞ ∈ Gm(A∞F ) is finite dimensional. Thus, (1) follows.
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Part (2) is follows from Lemma 4.4 and the construction.

The proposition follows. �

Definition 4.8. Let (π,Vπ) be as in Assumption 3.1. Assume Hypothe-

sis 4.5 on the modularity of generating functions of codimension r. For ev-

ery ϕ ∈ V [r]
π , every open compact subgroup L ⊆ H(A∞F ), and every φ∞ ∈

S (V r ⊗AF A∞F )L, we put

Θφ∞(ϕ)L :=

∫
Gr(F )\Gr(AF )

ϕc(g)Zφ∞(g)L dg,

which is an element in CHr(XL)C by Proposition 4.7. It is clear that the image

of Θφ∞(ϕ)L in
CHr(X)C := lim−→

L

CHr(XL)C

depends only on ϕ and φ∞, which we denote by Θφ∞(ϕ). Finally, we define the

arithmetic theta lifting of (π,Vπ) to V (with respect to ι) to be the complex

subspace Θ(π, V ) of CHr(X)C spanned by Θφ∞(ϕ) for all ϕ ∈ V [r]
π and φ∞ ∈

S (V r ⊗AF A∞F ).

5. Auxiliary Shimura variety

In this section, we introduce an auxiliary Shimura variety that will only

be used in the computation of local indices IT1,T2(φ∞1 , φ
∞
2 , s1, s2, g1, g2)L,u to

be introduced in the next section. We continue the discussion from Section 4.

Notation 5.1. We denote by T0 the torus over Q such that for every com-

mutative Q-algebra R, we have T0(R) = {a ∈ E ⊗Q R |NmE/F a ∈ R×}.
We choose a CM type Φ of E containing ι and denote by E′ the subfield

of C generated by E and the reflex field of Φ. We also choose a skew hermitian

space W over E of rank 1, whose group of rational similitude is canonically

T0. For a (sufficiently small) open compact subgroup L0 of T0(A∞), we have

the PEL type moduli scheme Y of CM abelian varieties with CM type Φ and

level L0, which is a smooth projective scheme over E′ of dimension 0; see, for

example, [Kot92]. In what follows, when we invoke this construction, the data

Φ, W , and L0 will be fixed, hence will not be carried into the notation E′

and Y . For every open compact subgroup L ⊆ H(A∞F ), we put

X ′L := XL ⊗E Y
as a scheme over E′.

Unlike XL, the scheme X ′L has a moduli interpretation as first observed

in [RSZ20].

Lemma 5.2. The E′-scheme X ′L represents the functor that assigns to

every locally Noetherian scheme S over E′ the set of equivalence classes of

sextuples (A0, λ0, η0;A, λ, η) where
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• (A0, λ0, η0) is an element in Y (S);

• (A, λ) is a unitary OE-abelian scheme of signature type nΦ − ι + ιc over

S (see [LTX+19, Defs. 3.4.2, 3.4.3]);

• η is an L-level structure, that is, for a chosen geometric point s on every

connected component of S, a π1(S, s)-invariant L-orbit of isomorphisms

η : V ⊗AF A∞F → Homλ0,λ
E⊗QA∞(H1(A0s,A∞),H1(As,A∞))

of hermitian spaces over E⊗QA∞ = E⊗F A∞F . (See [LTX+19, Construc-

tion 3.4.4] for the hermitian form on the target of η.)

Two sextuples (A0, λ0, η0;A, λ, η) and (A′0, λ
′
0, η
′
0;A′, λ′, η′) are equivalent if

there are OF -linear quasi-isogenies ϕ0 : A0 → A′0 and ϕ : A→ A′ such that

• ϕ0 carries η0 to η′0;

• there exists c ∈ Q× such that ϕ∨0 ◦ λ′0 ◦ ϕ0 = cλ0 and ϕ∨ ◦ λ′ ◦ ϕ = cλ;

• the L-orbit of maps v 7→ ϕ∗ ◦ η(v) ◦ (ϕ0∗)
−1 for v ∈ V ⊗AF A∞F coincides

with η′.

Proof. This is shown in [RSZ20, §3.2]. See also [LTX+19, §4.1]. �

Definition 5.3. For every x ∈ V r ⊗AF A∞F with T (x) ∈ Herm◦r(F )+, we

define a moduli functor Z ′(x)L over E′ as follows: for every locally Noetherian

scheme S over E′, Z ′(x)L(S) is the set of equivalence classes of septuples

(A0, λ0, η0;A, λ, η; x̃) where

• (A0, λ0, η0;A, λ, η) belongs to X ′L(S);

• x̃ is an element in HomOE (Ar0, A)Q satisfying x̃∗ ∈ η(Lx).

By Lemma 5.4(1) below, the image of Z ′(x)L defines an element in Zr(X ′L),

which we denote by Z(x)′L.

Lemma 5.4. For every x ∈ V r⊗AF A∞F with T (x) ∈ Herm◦r(F )+, we have

(1) the forgetful morphism Z ′(x)L → X ′L is finite and unramified ;

(2) the restriction of the algebraic cycle Z(x)L to X ′L coincides with Z(x)′L,

as elements in Zr(X ′L).

Proof. In the proof below, we will frequently use notation from Defini-

tion 4.1. Take x′ ∈ uV r and h ∈ H(A∞F ) such that hx = x′ holds in

V m ⊗AF A∞F . For both statements, it suffices to show that there is an iso-

morphism Z ′(x)L
∼−→ Xx′

hLh−1∩Hx′ (A∞F )
⊗E Y such that the following diagram

commutes:

Z ′(x)L
∼ //

""

Xx′

hLh−1∩Hx′ (A∞F )
⊗E Y

·hww
X ′L.

(5.1)
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Let S be a locally Noetherian scheme over E′. We will construct a functorial

bijection between Z ′(x)L(S) and (Xx′

hLh−1∩Hx′ (A∞F )
⊗E Y )(S).

Take an element (A0, λ0, η0;A, λ, η; x̃) ∈ Z ′(x)L(S). We may find an OE-

abelian scheme A1 of signature type rΦ− ι + ιc over S, and an element x̃1 ∈
HomOE (A1, A)Q, such that x̃1⊕ x̃ is an isomorphism in HomOE (A1×Ar0, A)Q,

and that the composition x̃∨ ◦ λ ◦ x̃1 ∈ HomOE (A1, (A
r
0)∨)Q equals zero. Put

λ1 := x̃∨1 ◦ λ ◦ x̃1. As x̃∗ ∈ η(Lx), we may replace h by an element in hL

such that the restriction of η ◦ h−1 to V ⊥x′ ⊗Q A∞, which we denote by η1,

is contained in the submodule Homλ0,λ1

E⊗QA∞(H1(A0s,A∞),H1(A1s,A∞)). Thus,

we obtain an element

(A0, λ0, η0;A1, λ1, η1) ∈ (Xx′

hLh−1∩Hx′ (A∞F )
⊗E Y )(S).

By construction, it maps to (A0, λ0, η0;A, λ, η) ∈ X ′L(S) in (5.1).

For the reverse direction, take an element

(A0, λ0, η0;A1, λ1, η1) ∈ (Xx′

hLh−1∩Hx′ (A∞F )
⊗E Y )(S).

Put A2 := Ar0, and let λ2 be the polarization such that we have an isomorphism

η2 : Vx′
∼−→ Homλ0,λ2

OE
(A0, A2)Q

of hermitian spaces over E. Put A := A1 × A2, λ := λ1 × λ2, and η := (η1 ⊕
η2⊗QA∞)◦h. Then (A0, λ0, η0;A, λ, η) is the image of (A0, λ0, η0;A1, λ1, η1) in

X ′L(S) in (5.1). Let x̃ be the isomorphism in HomOE (Ar0, A2)Q that corresponds

to η2(x′), which we regard as an element in HomOE (Ar0, A)Q. Then we obtain

an element (A0, λ0, η0;A, λ, η; x̃) ∈ Z ′(x)L(S) lying above (A0, λ0, η0;A, λ, η).

It is straightforward to check that the above two assignments are inverse

to each other. The lemma follows. �

The following lemma will only be used in Section 10.

Lemma 5.5. For every u ∈ V
(∞)
E , there exists an isomorphism

{XL ⊗E,ιu C} ' {uXL ⊗ιu(E) C}

of systems of complex schemes under which Z(x)L ⊗E,ιu C coincides with
uZ(x)L ⊗ιu(E) C for every x ∈ V r ⊗AF A∞F with T (x) ∈ Herm◦r(F )+. Here,
uXL and uZ(x)L are defined similarly as XL and Z(x)L with ι replaced by ιu,

hence are schemes and cycles over ιu(E).

Proof. We choose an isomorphism σ : C ∼−→ C satisfying ιu = σ ◦ ι.
Choose an element (A0, λ0, η0) ∈ Y (C). Then by Lemma 5.2, XL ⊗E C

has the following moduli interpretation: For every locally Noetherian complex

scheme S, (XL⊗EC)(S) is the set of equivalence classes of triples (A, λ, η) as in

Lemma 5.2. In particular, (A, λ) is a unitary OE-abelian scheme of signature

type nΦ − ι + ιc over S. Since XL ⊗E C does not depend on the choice of
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Φ, such moduli interpretation holds as long as Φ contains ι. In particular, we

may take Φ such that it contains both ιu and ι. Then we have such moduli

interpretation for both Φ and σ−1Φ. Using both moduli interpretations, we

obtain an isomorphism {XL⊗E,ιu C} ' {uXL⊗ιu(E) C} of systems of complex

schemes. By Lemma 5.4, it follows easily that under such an isomorphism,

Z(x)L ⊗E,ιu C coincides with uZ(x)L ⊗ιu(E) C for every x ∈ V r ⊗AF A∞F with

T (x) ∈ Herm◦r(F )+. The lemma is proved. �

Notation 5.6. In Sections 7, 8, and 9, we will consider a place u ∈ Vfin
E \

Vram
E . Let p be the underlying rational prime of u. We will fix an isomorphism

C ∼−→ Qp under which ι induces the place u. In particular, we may identify Φ

as a subset of Hom(E,Qp).

We further require that Φ in Notation 5.1 is admissible in the following

sense: if Φv ⊆ Φ denotes the subset inducing the place v for every v ∈ V
(p)
F ,

then it satisfies

(1) when v ∈ V
(p)
F ∩ V

spl
F , Φv induces the same place of E above v, which we

denote by vc and by ve its conjugate;

(2) when v ∈ V
(p)
F ∩ Vint

F , Φv is the pullback of a CM type of the maximal

subfield of Ev unramified over Qp.

To release the burden of notation, we denote by K the subfield of Qp generated

by Eu and the reflex field of Φ, by k its residue field, and by K̆ the completion

of the maximal unramified extension of K in Qp with the residue field Fp. It

is clear that admissible CM type always exists, and that when V
(p)
F ∩ Vram

F = ∅,
the field K is unramified over Eu.

We also choose a (sufficiently small) open compact subgroup L0 of T0(A∞)

such that L0,p is maximal compact. We denote by Y the integral model of Y

over OK such that for every S ∈ Sch′/OK , Y(S) is the set of equivalence classes

of triples (A0, λ0, η
p
0) where

• (A0, λ0) is a unitary OE-abelian scheme over S of signature type Φ such

that λ0 is a p-principal polarization;

• ηp0 is an Lp0-level structure. (See [LTX+19, Def. 4.1.2] for more details.)

By [How12, Prop. 3.1.2], Y is finite and étale over OK .

6. Height pairing and geometric side

In this section, we introduce the notion of a height pairing after Beilinson

and initiate the study of the geometric side of our desired height formula. We

continue the discussion from Section 4. From this moment, we will further

assume F 6= Q, which implies that XL is projective.
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We apply Beilinson’s construction of the height pairing in [Bĕı87, §4] to

obtain a map

〈 , 〉`XL,E : CHr(XL)
〈`〉
C × CHr(XL)

〈`〉
C → C⊗Q Q`

(see Notation 2.5(C3) for the notation) that is complex linear in the first vari-

able, and conjugate symmetric. Here, ` is a rational prime such that XL,u has

smooth projective reduction for every u ∈ V
(`)
E . For a pair (c1, c2) of elements

in Zr(XL)
〈`〉
C × Zr(XL)

〈`〉
C with disjoint supports, we have

(6.1) 〈c1, c2〉`XL,E =
∑

u∈V(∞)
E

2〈c1, c2〉XL,u,Eu +
∑
u∈Vfin

E

log qu · 〈c1, c2〉`XL,u,Eu ,

in which

• qu is the residue cardinality of Eu for u ∈ Vfin
E ;

• 〈c1, c2〉`XL,u,Eu ∈ C⊗QQ` is the non-archimedean local index (B.1) recalled

in Appendix B for u ∈ Vfin
E (see Remark B.11 when u is above `), which

equals zero for all but finitely many u;

• 〈c1, c2〉XL,u,Eu ∈ C is the archimedean local index for u ∈ V
(∞)
E , which will

be recalled when we compute it in Section 10.

Definition 6.1. We say that a rational prime ` is R-good if ` is unramified

in E and satisfies V
(`)
F ⊆ Vfin

F \ (R ∪ S).

Definition 6.2. For every open compact subgroup LR of H(FR) and every

subfield L of C, we define

(1) (SRL)0
LR

to be the ideal of SRL (Notation 2.2(H8)) of elements that annihi-

late ⊕
i 6=2r−1

Hi
dR(XLRLR/E)⊗Q L;

(2) for every rational prime `, (SRL)
〈`〉
LR

to be the ideal of SRL of elements that

annihilate ⊕
u∈Vfin

E \V
(`)
E

H2r(XLRLR,u,Q`(r))⊗Q L.

Here, LR is defined in Notation 2.2(H8).

Definition 6.3. Consider a nonempty subset R′ ⊆ R, an R-good rational

prime `, and an open compact subgroup L of H(A∞F ) of the form LRL
R, where

LR is defined in Notation 2.2(H8). An (R, R′, `, L)-admissible sextuple is a sex-

tuple (φ∞1 , φ
∞
2 , s1, s2, g1, g2) in which

• for i = 1, 2, φ∞i = ⊗vφ∞iv ∈ S (V r ⊗AF A∞F )L in which φ∞iv = 1(ΛR
v)r for

v ∈ Vfin
F \ R, satisfying that supp(φ∞1v ⊗ (φ∞2v)

c) ⊆ (V 2r
v )reg for v ∈ R′;

• for i = 1, 2, si is a product of two elements in (SRQac)
〈`〉
LR

;
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• for i = 1, 2, gi is an element in Gr(AR′
F ).

For an (R, R′, `, L)-admissible sextuple (φ∞1 , φ
∞
2 , s1, s2, g1, g2) and every pair

(T1, T2) of elements in Herm◦r(F )+, we define

(1) The global index IT1,T2(φ∞1 , φ
∞
2 , s1, s2, g1, g2)`L to be〈

ωr,∞(g1∞)φ0
∞(T1) · s∗1ZT1(ω∞r (g∞1 )φ∞1 )L,

ωr,∞(g2∞)φ0
∞(T2) · s∗2ZT2(ω∞r (g∞2 )φ∞2 )L

〉`
XL,E

as an element in C⊗QQ`. We note that for i = 1, 2, s∗iZTi(ω
∞
r (g∞i )φ∞i )L

belongs to CHr(XL)
〈`〉
C by Definition 6.2(2);

(2) For every u ∈ Vfin
E , the local index IT1,T2(φ∞1 , φ

∞
2 , s1, s2, g1, g2)`L,u to be〈

ωr,∞(g1∞)φ0
∞(T1) · s∗1ZT1(ω∞r (g∞1 )φ∞1 )L,

ωr,∞(g2∞)φ0
∞(T2) · s∗2ZT2(ω∞r (g∞2 )φ∞2 )L

〉`
XL,u,Eu

as an element in C ⊗Q Q`, in view of Remark 4.2 and Lemma 6.4(2)

below.

(3) For every u ∈ V
(∞)
E , the local index IT1,T2(φ∞1 , φ

∞
2 , s1, s2, g1, g2)L,u to be〈

ωr,∞(g1∞)φ0
∞(T1) · s∗1ZT1(ω∞r (g∞1 )φ∞1 )L,

ωr,∞(g2∞)φ0
∞(T2) · s∗2ZT2(ω∞r (g∞2 )φ∞2 )L

〉
XL,u,Eu

as an element in C, in view of Remark 4.2 and Lemma 6.4(2) below.

Lemma 6.4. Let R, R′, `, and L be as in Definition 6.3. Let (T1, T2) be a

pair of elements in Herm◦r(F )+.

(1) For x1, x2 ∈ V ⊗AF A∞F satisfying T (x1) = T1, T (x2) = T2, and such that

(Lvx1v, Lvx2v) ⊆ (V 2r
v )reg for some v ∈ R′, the algebraic cycles Z(x1)L

and Z(x2)L in Zr(XL)C have disjoint supports.

(2) For every (R, R′, `, L)-admissible sextuple (φ∞1 , φ
∞
2 , s1, s2, g1, g2), the al-

gebraic cycles s∗1ZT1(ω∞r (g∞1 )φ∞1 )L and s∗2ZT2(ω∞r (g∞2 )φ∞2 )L in Zr(XL)C
have disjoint supports.

Proof. It is clear that (2) follows from (1).

For (1), it suffices to check that they are disjoint under complex uni-

formization (4.1). By definition, for i = 1, 2, the support of Z(xi)L consists of

points (zi, h
′
ihi) in the double coset (4.1), where hixi = x′i with x′i ∈ uV r, zi is

perpendicular to Vx′i , and h′i acts trivially on Vx′i . Suppose that the supports

of Z(x1)L and Z(x2)L are not disjoint. Then we may find γ ∈ uH(F ) such

that z1 = γz2 and h′1h1L = γh′2h2L. In particular, Vx′1 ∩ γVx′2 6= {0}, which

implies that the subspace of uV 2r generated by (x′1, γx
′
2) is a proper subspace.

Thus, (h1x1, γh2x2) 6∈ (V 2r
v )reg for every v ∈ R′. On the other hand, we have
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(h1x1, γh2x2) = (h′1h1x1, γh
′
2h2x2), which implies that (Lvx1v, Lvx2v) is not

contained in (V 2r
v )reg, which is a contradiction. Thus, (1) follows. �

The following definition will be used in the future.

Definition 6.5. Let p be a rational prime. We say that an element φ∞ ∈
S (V m ⊗AF A∞F ) for some integer m > 1 is p-basic if it is of the form φ∞ =

⊗vφ∞v in which φ∞v = 1(ΛR
v)m for every v ∈ V

(p)
F \ (R ∪ Vspl

F ).

Recall from Notation 3.14(1) that Π is the automorphic base change of π.

Hypothesis 6.6. Let ` be a rational prime with an arbitrarily given iso-

morphism Q` ' C. For every irreducible admissible representation π̃∞ of

H(A∞F ) such that Πv is the standard base change of π̃∞v for all but finitely

many v ∈ Vfin
F for which π̃∞v is unramified, if we are in the situation (b) of

Lemma 3.15, then the semisimplification of the representation

ρ[π∞] := HomH(A∞F )

Ç
π̃∞, lim−→

L

H2r−1(XL ⊗E Qac,Q`)

å
of Gal(Qac/E) is isomorphic to ρcΠj(π̃∞)

, where ρΠj is introduced in Nota-

tion 3.14(4).

Remark 6.7. Concerning Hypothesis 6.6, we have

(1) when n = 2, it has been confirmed in [Liu21a, Th. D.6];

(2) when Π is cuspidal (that is, s = 1 in Notation 3.14(3)), it will be con-

firmed in [KSZ] (under the help of [Mok15, KMSW14]);

(3) in general, it will follow from [KSZ] as long as the full endoscopic clas-

sification for unitary groups is obtained.

Definition 6.8. Let (π,Vπ) be as in Assumption 3.1. We define a character

χRπ : TR
Qac → Qac

as follow. Let HR
Wr

be the restricted tensor product of commutative complex

algebras H±Wr,v
if εv = ±1 over v ∈ Vfin

F \ R, where H±Wr,v
is defined in [Liu21b,

Def. 2.5] for v ∈ Vint
F and is simply the spherical Hecke algebra for v ∈ V

spl
F .

Using the construction in [Liu21b, Def. 2.8], we have a canonical surjective

homomorphism θR : HR
Wr
→ TR

C of complex commutative algebras. Since πv is

unramified (resp. almost unramified) when εv = 1 (resp. εv = −1) by Assump-

tion 3.1(2), the algebra HR
Wr

acts on V [r]R
π by a character χRπ,Wr

: HR
Wr
→ C,

which factors through θR by [Liu21b, Def. 5.3, Th. 1.1(1)]. Since π is coho-

mological by Assumption 3.1(1), hence has algebraic Satake parameters, there

exists a unique character χRπ : TR
Qac → Qac such that χRπ,Wr

= (χRπ ⊗Qac C) ◦ θR.
We put mR

π := kerχRπ, which is a maximal ideal of TR
Qac .
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Proposition 6.9. Let (π,Vπ) be as in Assumption 3.1. For every open

compact subgroup LR of H(FR), we have

(1) (SRQac)0
LR
\mR

π is nonempty ;

(2) under Hypothesis 6.6, (SRQac)
〈`〉
LR
\mR

π is nonempty.

Proof. For (1), by Matsushima’s formula, we know that the localization

of the SRC-module Hi
dR(XLRLR/E)⊗QC at mR

π is isomorphic to the direct sum of

Hi(π̃∞) ⊗ π̃∞ for all cuspidal automorphic representations π̃ of uH(AF ) such

that the standard base change of π̃v is isomorphic to Πv for all but finitely many

v ∈ V
spl
F , where Hi(π̃∞) denotes the (g,K)-cohomology of π̃∞. By [Ram18,

Th. A], we know that Π must be the automorphic base change of π̃. By

[KMSW14, Th. 1.7.1], we know that π̃∞ is tempered, hence Hi(π̃∞) vanishes

for i 6= 2r − 1. Therefore, (1) follows as Hi
dR(XLRLR/E) is of finite dimension.

For (2), note that for all but finitely many u ∈ Vfin
E \ V

(`)
E , the natural map

H2r(XLRLR,u,Q`(r))→ H2r(XLRLR,u ⊗Eu Eu,Q`(r))

is injective by the Hochschild–Serre spectral sequence and the Weil conjecture.

As an SRQac-module, we have

H2r(XLRLR,u ⊗Eu Eu,Q`(r))⊗Q (E ⊗Q Qac) ' H2r
dR(XLRLR/E)⊗Q (Q` ⊗Q Qac).

By (1), we know that there exist elements in SRQac \mR
π that annihilate

H2r(XLRLR,u,Q`(r))

for all but finitely many u ∈ Vfin
E \ V

(`)
E . Thus, it remains to show that for

every given u ∈ Vfin
E \ V

(`)
E and every embedding Qac ↪→ Q`, the localization of

H2r(XLRLR,u,Q`(r)) at mR
π vanishes. By (1) and the Hochschild–Serre spectral

sequence, it suffices to show that

H1(Eu,H
2r−1(XLRLR ⊗E Qac,Q`(r))mR

π
) = 0.

By Hypothesis 6.6, it suffices to show that H1(Eu, ρ
c
Πj

(r)) = 0 for every j. As

shown in the proof of [Car12, Th. 7.4], the associated Weil–Deligne represen-

tation of ρΠj (r) at u is pure (of weight not zero), which implies H1(Eu, ρ
c
Πj

(r))

= 0 by [Nek07b, Prop. 4.2.2(1)].

The proposition is proved. �

Until the end of this section, let (π,Vπ) be as in Assumption 3.1, and assume

Hypothesis 4.5 on the modularity of generating functions of codimension r.

Proposition 6.10. In the situation of Definition 4.8 (and suppose that

F 6= Q), suppose that L has the form LRL
R, where LR is defined in Nota-

tion 2.2(H 8). For arbitrary elements ϕ ∈ V [r]R
π and φ∞ ∈ S (V r ⊗AF A∞F )L,

we have
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(1) s∗Θφ∞(ϕ)L = χRπ(s)c ·Θφ∞(ϕ)L for every s ∈ SRQac ;

(2) Θφ∞(ϕ)L ∈ CHr(XL)0
C;

(3) under Hypothesis 6.6, Θφ∞(ϕ)L ∈ CHr(XL)
〈`〉
C for every R-good rational

prime `.

Proof. For (1), by Lemma 4.4, we have

s∗Θφ∞(ϕ)L = Θsφ∞(ϕ)L =

∫
Gr(F )\Gr(AF )

ϕc(g)Zsφ∞(g)L dg,

which, by [Liu11a, Prop. A.5] for split places (see also [Ral82, p. 511]), equals∫
Gr(F )\Gr(AF )

(π∨(s)ϕc)(g)Zφ∞(g)L dg,

which equals∫
Gr(F )\Gr(AF )

(χRπ(s)c · ϕc)(g)Zφ∞(g)L dg = χRπ(s)c ·Θφ∞(ϕ)L.

Part (2) is a consequence of (1) and Proposition 6.9(1).

Part (3) is a consequence of (1) and Proposition 6.9(2). �

We now define the normalized height pairing between the cycles Θφ∞(ϕ)

in Definition 4.8, under Hypothesis 6.6.

Definition 6.11. Under Hypothesis 6.6, for arbitrary elements ϕ1, ϕ2 ∈ V [r]
π

and φ∞1 , φ
∞
2 ∈ S (V r ⊗AF A∞F ), we define the normalized height pairing

〈Θφ∞1
(ϕ1),Θφ∞2

(ϕ2)〉\X,E ∈ C⊗Q Q`

to be the unique element10 such that for every L = LRL
R as in Proposition 6.10

(with R possibly enlarged) satisfying ϕ1, ϕ2 ∈ V [r]R
π , φ∞1 , φ

∞
2 ∈ S (V r⊗AFA∞F )L,

and that ` is R-good, we have

〈Θφ∞1
(ϕ1),Θφ∞2

(ϕ2)〉\X,E = vol\(L) · 〈Θφ∞1
(ϕ1)L,Θφ∞2

(ϕ2)L〉`XL,E ,

where vol\(L) is introduced in Definition 3.8,11 and 〈Θφ∞1
(ϕ1)L,Θφ∞2

(ϕ2)L〉`XL,E
is well defined by Proposition 6.10(3). Note that by the projection formula,

the right-hand side of the above formula is independent of L.

10The readers may notice that we have dropped ` in the notation 〈Θφ∞1 (ϕ1),Θφ∞2 (ϕ2)〉\X,E .

This is because for those normalized height pairings we are able to compute in this article,

the value will turn out to be in C and is independent of the choice of `.
11In fact, it is a good exercise to show that the total degree of the Hodge line bundle on

XL is equal to 2 vol\(L)−1.
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7. Local indices at split places

In this section, we compute local indices at all but finitely many places

in V
spl
E . Our goal is to prove the following proposition.

Proposition 7.1. Let R, R′, `, and L be as in Definition 6.3 such that the

cardinality of R′ is at least 2. Let (π,Vπ) be as in Assumption 3.1, for which

we assume Hypothesis 6.6. For every u ∈ V
spl
E such that

(a) the representation πu is a (tempered) principal series,

(b) V
(p)
F ∩ R ⊆ V

spl
F where p is the underlying rational prime of u,

there exist elements su1 , s
u
2 ∈ SRQac \mR

π such that

IT1,T2(φ∞1 , φ
∞
2 , s

u
1s1, s

u
2s2, g1, g2)`L,u = 0

for every (R, R′, `, L)-admissible sextuple (φ∞1 , φ
∞
2 , s1, s2, g1, g2) and every pair

(T1, T2) in Herm◦r(F )+. Moreover, we may take su1 = su2 = 1 if u 6∈ R.

Since u splits in E, we may fix an isomorphism H ⊗AF Fu ' GLn,Fu such

that Lu is contained in GLn(OFu) and, moreover, equal if u 6∈ R. For every

integer m > 0, denote by Lu,m ⊆ GLn(OFu) the principal congruence subgroup

of level m.

From now to the end of this section, we assume V
(p)
F ∩ R ⊆ V

spl
F . We invoke

Notation 5.1 together with Notation 5.6, which is possible since V
(p)
F ∩Vram

F = ∅.
To ease notation, we put Xm := X ′Lu,mLu ⊗E′ K for m > 0. The isomorphism

C ∼−→ Qp in Notation 5.6 identifies Hom(E,C) with Hom(E,Qp). For every

v ∈ V
(p)
F ∩V

spl
F \{u}, let {vc, ve} be the two places of E above v from Notation 5.6.

Identify H ⊗AF Fv with GL(V ⊗AF Eve).

Let S be a locally Noetherian scheme over OK and (A, λ) a unitary OE-

abelian scheme of signature type nΦ − ιw + ιcw over S. Then the p-divisible

group A[p∞] admits a decomposition A[p∞] =
∏
v∈V(p)

F

A[v∞].

For every integer m > 0, we define a moduli functor Xm over OK as follows:

For every locally Noetherian scheme S over OK , Xm(S) is the set of equivalence

classes of tuples (A0, λ0, η
p
0 ;A, λ, ηp, {ηv}v∈V(p)

F ∩V
spl
F \{u}

, ηu,m), where

• (A0, λ0, η
p
0) is an element in Y(S);

• (A, λ) is a unitary OE-abelian scheme of signature type nΦ− ιw + ιcw over

S, such that

– for every v ∈ V
(p)
F , λ[v∞] is an isogeny (rather than a quasi-isogeny)

whose kernel has order q1−εv
v ;
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– Lie(A[uc,∞]) is of rank 1 on which the action of OE is given by the

embedding ιcw;12

• ηp is an Lp-level structure, analogous to the one in Lemma 5.2;

• for every v ∈ V
(p)
F ∩V

spl
F \{u}, ηv is an Lv-level structure, that is, an Lv-orbit

of Eve-linear isomorphisms

ηv : V ⊗AF Eve
∼−→ HomOEve

(A0[v∞e ], A[v∞e ])⊗OEve Eve
of Eve-sheaves over S;

• ηu,m : (p−mu /OFu)n → HomOFu
(A0[uc,∞][pmu ], A[uc,∞][pmu ]) is a Drinfeld

level-m structure; see [RSZ20, §4.3] for more details.

By [RSZ20, Th. 4.5], for every m > 0, Xm is a regular scheme, flat (smooth,

if m = 0) and projective over OK , and it admits a canonical isomorphism

Xm ⊗OK K ' Xm of schemes over K.13 Note that for every integer m > 0,

SR∪V
(p)
F naturally gives a ring of étale correspondences of Xm.

We first prove the follow lemma, which addresses the easy part of Propo-

sition 7.1 as a warm-up.

Lemma 7.2. Let the situation be as in Proposition 7.1. Suppose that

u 6∈ R. Then we have

IT1,T2(φ∞1 , φ
∞
2 , s1, s2, g1, g2)`L,u = 0

for every (R, R′, `, L)-admissible sextuple (φ∞1 , φ
∞
2 , s1, s2, g1, g2) and every pair

(T1, T2) in Herm◦r(F )+.

Proof. It suffices to show that for every x1, x2 ∈ V r ⊗AF A∞F satisfying

T (x1), T (x2) ∈ Herm◦r(F )+ and (Lvx1v, Lvx2v) ⊆ (V 2r
v )reg for some v ∈ R′, we

have

〈Z(x1)L, Z(x2)L〉`XL,u,Eu = 0.

Since u 6∈ R, by Lemmas B.3 and 5.4, it suffices to show that

〈Z(x1)′L, Z(x2)′L〉`X0,K = 0.(7.1)

We use the integral model X0 just constructed above, which is smooth

and projective over OK of relative dimension n− 1. For i = 1, 2, let Z(xi)
′
L be

the Zariski closure of Z(xi)
′
L in X0. We claim that Z(x1)′L and Z(x2)′L have

empty intersection. By Proposition B.10, we obtain (7.1).

12Since Φ is admissible (Notation 5.6), the Eisenstein condition at v 6= u is implied by the

Kottwitz condition, and at u it is implied by the Kottwitz condition and that Lie(A[uc,∞])

is of rank 1 on which the action of OE is given by the embedding ιcw.
13Here, we have to use the fact that K is unramified over Eu to conclude that Xm is

regular when m > 0.
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For the claim, we assume the converse. Then we can find a point

(A0, λ0, η
p
0 ;A, λ, ηp, {ηv}v∈V(p)

F ∩V
spl
F \{u}

) ∈ X0(Fp)

that is in the supports of both Z(x1)′L and Z(x2)′L. In particular, for i = 1, 2,

we can find an element x̃i ∈ HomOE (Ar0, A)Q satisfying x̃i,∗ ∈ ηp(Lpxpi ). As

(Lvx1v, Lvx2v) ⊆ (V 2r
v )reg for some v ∈ R′, we know that A is quasi-isogenous

to A2r
0 , which is impossible by [RSZ20, Lemma 8.7]. It follows that the supports

of Z(x1)′L and Z(x2)′L have nonempty intersection, which is a contradiction to

Lemma 6.4(1). Thus, the claim and hence the lemma are proved. �

To study the general case, we need the following vanishing result.

Lemma 7.3. Let the situation be as in Proposition 7.1 with p 6= `. Then

for every integer m > 0, we have(
H2r(Xm,Q`(r))⊗Q Qac

)
m

= 0,

where m := mR
π ∩ SR∪V

(p)
F

Qac .

Proof. For every integer m > 0, put Ym := Xm ⊗OK k, Ym,0 := Y red
m , and

for 0 6 j 6 n − 1, denote by Ym,j the Zariski closed subset of Ym on which

the formal part of A[uc,∞] has height at least j + 1. By the similar argument

of [HT01, Cor. III.4.4], we know that Y ◦m,j := Ym,j \ Ym,j+1 is smooth over

k of pure dimension n − 1 − j.14 Applying Corollary B.15(2) to S = SR∪V
(p)
F ,

L = Qac, and m = mR
π ∩ SR∪V

(p)
F

Qac , it suffices to show that for every m > 0,

(1) (H2r(Xm,Q`(r))⊗Q Qac)m = 0; and

(2) (Hi(Y ◦m,j ⊗k Fp,Q`)⊗Q Qac)m = 0 for every i 6 2r − 2(j + 1) and every

0 6 j 6 n− 1.

Part (1) has already been proved in Proposition 6.9(2) (as we have assumed

Hypothesis 6.6).

Part (2) follows from the following stronger statement:

(3) For an arbitrary embedding Qac ↪→ Q`, Hi(Y ◦m,j ⊗k Fp,Q`)m = 0 for

every m > 0 unless j = 0 and i = 2r − 1.

The argument for (3) is similar to the proof of [CS17, Th. 6.3.1]. For m > 0

and 0 6 j 6 n − 1, let Im,j be the Igusa variety (of the first kind) so that

Y ◦m,j is the disjoint union of finitely many Im,j ; see [HT01, §IV.1]. For each j,

we obtain a projective system {Im,j |m > 0} with finite étale transition mor-

phisms. If Hi(Y ◦m,j ⊗k Fp,Q`)m = 0 for all m > 0, i, and j, then we are done.

Otherwise, let j be the maximal integer such that Hi(Y ◦m,j ⊗k Fp,Q`)m 6= 0

14In the notation of [HT01, §III.4], our Y ◦m,j is parallel to X
(n−1−j)
Up,m .
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for some m and i. Then lim−→m
Hi(Im,j ⊗k Fp,Q`)m 6= 0. Now we would like

to apply [CS17, Cor. 6.1.4], where in our case, the set B(G,µ−1) is identi-

fied with {0, . . . , n − 1} under which d = n − j = 2r − 1 − j, and Igj is the

perfection of I j
Mant := lim←−m I j

Mant,m [CS17, Prop. 4.3.8] in which I j
Mant,m

is a finite Galois cover of Im,j .
15 Then we have Hi(Igj ⊗k Fp,Q`)m 6= 0,

which, by [CS17, Cor. 6.1.4]16 (for the coefficients Q`), implies that i can

only be 2r − 1 − j. In particular, combining with the Poincaré duality, we

have [Hc(I
j
Mant ⊗k Fp,Q`)]m 6= 0 (where we adopted the notation from [CS17,

Th. 5.5.7]). By the local-global compatibility at split places ([Shi, Th. 1.1] or

more generally [KMSW14, Th. 1.7.1]), we have Πu ' πu, where we recall that

Π is the automorphic base change of π in Notation 3.14(1). In particular, Πu

is a tempered principal series by (a). Then by [CS17, Th. 5.5.7] (together with

the modification in the proof of [LTX+19, Th. D.1.3]) and the very strong

multiplicity one property [Ram18, Th. A], we must have j = 0 and hence

i = 2r − 1. Thus, (3) follows.

The lemma is proved. �

Remark 7.4. In fact, we conjecture that Lemma 7.3 remains true without

condition (a) in Proposition 7.1. If this is confirmed, then we may remove

condition (2) in Assumption 1.3.

Proof of Proposition 7.1. The last part of the proposition has been con-

firmed in Lemma 7.2. We prove the first part. We may assume p 6= ` since

otherwise it has been covered in Lemma 7.2. Fix an integer m > 0 such that

Lu contains Lu,m.

It suffices to show that there exists s ∈ SR∪V
(p)
F \ mR

π such that for every

x1, x2 ∈ V r⊗AF A∞F satisfying T (x1), T (x2)∈Herm◦r(F )+ and (Lvx1v, Lvx2v)⊆
(V 2r
v )reg for some v∈R′\{u} (which is nonempty as we assume |R′|>2), we have

〈s∗Z(x1)L, s
∗Z(x2)L〉`XL,u,Eu = 0.

By Lemmas B.3 and 5.4, it suffices to have

〈s∗Z(x1)′L, s
∗Z(x2)′L〉`Xm,K = 0.(7.2)

To compute the local index on Xm, we use the model Xm constructed above.

Take s ∈ SR∪V
(p)
F

Qac that is an `-tempered Qac-étale correspondence of Xm, which

exists by Lemma 7.3 and Corollary B.15(1). Then by Proposition B.13, we

15The Galois cover comes from the fact that in the definition of I j
Mant,m, there is also a

level structure on the formal part of A[uc,∞].
16Strictly speaking, the authors assumed that the level at p is hyperspecial maximal. In

our case, we only require that Lu is hyperspecial. However, by our special signature condition,

the argument of [CS17] works in our case verbatim.
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have
〈s∗Z(x1)′L, s

∗Z(x2)′L〉`Xm,K = [s∗Z(x1)′L].[s∗Z(x2)′L],

where Z(xi)
′
L is the Zariski closure of Z(xi)

′
L in Xm for i = 1, 2. By the sim-

ilar argument used in the proof of Lemma 7.2, s∗Z(x1)′L and s∗Z(x2)′L have

disjoint supports, which implies s∗Z(x1)′L.s
∗Z(x2)′L = 0. Thus (7.2) and hence

the proposition hold with su1 = su2 = s. �

8. Local indices at inert places: unramified case

In this section, we compute local indices at places in Vint
E that are not

above R ∪ S. Our goal is to prove the following proposition.

Proposition 8.1. Let R, R′, `, and L be as in Definition 6.3. Take an

element u ∈ Vint
E such that u 6∈ S and whose underlying rational prime p is odd

and satisfies V
(p)
F ∩ R ⊆ V

spl
F . Then we have

log qu · vol\(L) · IT1,T2(φ∞1 , φ
∞
2 , s1, s2, g1, g2)`L,u

= ET1,T2((g1, g2),Φ0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))u

for every (R, R′, `, L)-admissible sextuple (φ∞1 , φ
∞
2 , s1, s2, g1, g2) and every pair

(T1, T2) in Herm◦r(F )+, where the right-hand side is defined in Definition 3.11

with the Gaussian function Φ0
∞ ∈ S (V 2r ⊗AF F∞) (Notation 2.2(H3)), and

vol\(L) is defined in Definition 3.8.

To prove Proposition 8.1, we may rescale the hermitian form on V and

hence assume that ψF,v is unramified and that ΛR
v is either a self-dual or an

almost self-dual lattice of Vv for every v ∈ V
(p)
F \ V

spl
F .

Lemma 8.2. Let the situation be as in Proposition 8.1. If the weaker ver-

sion of Proposition 8.1 where we only consider (R, R′, `, L)-admissible sextuples

(φ∞1 , φ
∞
2 , s1, s2, g1, g2) in which g1v = g2v = 12r for every v ∈ V

(∞)
F ∪ V(p)

F holds,

then the original Proposition 8.1 holds.

Proof. Take an arbitrary (R, R′, `, L)-admissible sextuple (φ∞1 , φ
∞
2 , s1, s2,

g1, g2). For i = 1, 2, we may find elements ai ∈ GLr(E) and bi ∈ Hermr(F )

such that m(ai)
−1n(bi)

−1giv ∈ Kr,v for every v ∈ V
(p)
F \ R′. For i = 1, 2, put

T̃i := taciTiai, φ̃∞i :=
∏
v∈R′

ωr,v(m(ai)
−1n(bi)

−1)φ∞i ,

and let g̃i be the away-from-(R′ ∪ V(∞)
F ∪ V(p)

F )-component of m(ai)
−1n(bi)

−1gi.

Then (φ̃∞1 , φ̃
∞
2 , s1, s2, g̃1, g̃2) is an (R, R′, `, L)-admissible sextuple.

By Lemma 4.3, we have

IT1,T2(φ∞1 , φ
∞
2 , s1, s2, g1, g2)`L,u = C · IT̃1,T̃2

(φ̃∞1 , φ̃
∞
2 , s1, s2, g̃1, g̃2)`L,u
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in which

C =

Ç
ωr,∞(m(a1)−1n(b1)−1g1∞)φ0

∞(T̃1)

φ0
∞(T̃1)

å
·
Ç
ωr,∞(m(a2)−1n(b2)−1g2∞)φ0

∞(T̃2)

φ0
∞(T̃2)

åc

.

On the other hand, from Definition 3.11, we have

ET1,T2((g1, g2),Φ0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))u

= C · ET̃1,T̃2
((g̃1, g̃2),Φ0

∞ ⊗ (s1φ̃
∞
1 ⊗ (s2φ̃

∞
2 )c))u

with the same C. The lemma follows. �

In order to deal with spherical Hecke operators, we consider the projective

system of Shimura varieties {XL̃} indexed by open compact subgroups L̃ ⊆ L
satisfying L̃v = Lv for v ∈ V

(p)
F \ V

spl
F .

We invoke Notation 5.1 together with Notation 5.6, which is possible since

V
(p)
F ∩Vram

F = ∅. There is a projective system {XL̃} of smooth projective schemes

over OK (see [LZ, §11.2]) with

XL̃ ⊗OK K = X ′
L̃
⊗E′ K =

(
XL̃ ⊗E Y

)
⊗E′ K,

and finite étale transition morphisms. In particular, SR is naturally a ring of

étale correspondences of XL.

Lemma 8.3. If s is a product of two elements in (SRQac)
〈`〉
LR

, then it gives

an `-tempered Qac-étale correspondence of XL (Definition B.12).

Proof. We have a short exact sequence

H2r
XL⊗OK k

(XL,Q`(r))→ H2r(XL,Q`(r))→ H2r(X ′L,Q`(r)),(8.1)

in which we have

H2r
XL⊗OK k

(XL,Q`(r)) ' H2r−2(XL ⊗OK k,Q`(r − 1))

by the absolute purity theorem [Fuj02], since XL is smooth over OK . By the

Hochschild–Serre spectral sequence and the Weil conjecture, the natural maps

H2r(X ′L,Q`(r))→ H2r(X ′L ⊗K Qp,Q`(r))

H2r−2(XL ⊗OK k,Q`(r − 1))→ H2r−2(XL ⊗OK Fp,Q`(r − 1))

are both injective.

By definition, every element in (SRQac)
〈`〉
LR

annihilates H2r(X ′L⊗KQp,Q`(r))

⊗QQac. By the Poincaré duality and the smooth proper base change theorem,

every element in (SRQac)
〈`〉
LR

also annihilates H2r−2(XL⊗OK Fp,Q`(r−1))⊗QQac.

In particular, s annihilates H2r(XL,Q`(r))⊗Q Qac as each factor annihilates a

graded piece in the two-step filtration of H2r(XL,Q`(r)) given by (8.1). The

lemma is proved. �
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We first recall the uniformization of {XL̃} along the supersingular locus

from [LZ, §13.1]. Fix a complete maximal unramified extension K̆ of K. Recall

that we have fixed a u-nearby space uV and an isomorphism uV ⊗FAuF ' V ⊗AF
AuF from Notation 2.2(H9). We have a compatible system of isomorphisms

X∧
L̃
'
Ä
uH(F )\N ×H(A∞,uF )/L̃u

ä
×Spf OK Y

∧(8.2)

of formal schemes over OK̆ for every L̃ ⊆ L considered as before. Here, X∧
L̃

denotes the completion of XL̃ ⊗OK OK̆ along its supersingular locus, N is the

relative unitary Rapoport–Zink space over Spf OK̆ as considered in [LZ, §2.1],

and Y∧ denotes the completion of Y along its special fiber.

We then recall the notion of integral special cycles. Take an integer m > 1

and an element φ∞ ∈ S (V m ⊗AF A∞F )L that is p-basic (Definition 6.5).

For every element T ∈ Herm◦m(F )+, there are following constructions.

• We have a cycle ZT (φ∞)L ∈ Zm(XL)C (Definition 4.1). When φ∞ is the

characteristic function of some open compact subset of V m ⊗AF A∞F , we

have a morphism

Z ′T (φ∞)L → X ′L

defined as the disjoint union of finite and unramified morphisms Z ′(x)L →
X ′L (Definition 5.3) for x ∈ L\ supp(φ∞), whose induced cycle coincides

with the restriction of ZT (φ∞)L to X ′L (Lemma 5.4). By moduli interpre-

tation, the morphism Z ′T (φ∞)L → X ′L extends naturally to a finite and

unramified morphism

ZT (φ∞)L → XL
([LZ, §13.3]).

• For φ∞ = φ∞1 ⊗· · ·⊗φ∞r , where each φ∞j ∈ S (V ⊗AF A∞F )L is p-basic and

is the characteristic function of some open compact subset of V ⊗AF A∞F ,

we denote by KZT (φ∞)L the component of

OZt1 (φ∞1 )L

L
⊗OXL

· · ·
L
⊗OXL

OZtr (φ∞r )L

supported on ZT (φ∞)L,17 regarded as an element in KZ0 (XL)C (see Appen-

dix B for the notion of the K-group), where (t1, . . . , tr) is the diagonal of

T and Z denotes the image of ZT (φ∞)L in XL. In general, we may always

write φ∞ as a finite complex linear combination (possibly after shrinking

L away from V
(p)
F \ V

spl
F ) of those as above, and we define KZT (φ∞)L by

linearity. By [GS87, Prop. 5.5], KZT (φ∞)L belongs to FrKZ0 (XL)C, and

hence is an extension of ZT (φ∞)′L (Definition B.9).

17Here, we note that ZT (φ∞)L is an open and closed subscheme of Zt1(φ∞)L×XL · · ·×XL
Ztr (φ∞)L.
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• We denote by ZT (φ∞)∧L the restriction of ZT (φ∞)L to X∧L . Then we have

the following description:

ZT (φ∞)∧L =
∑

x∈uH(F )\ uVm
T (x)=T

∑
h∈Hx(F )\H(A∞,uF )/Lu

φ∞,u(h−1x)

· (N (x), h)L ×Spf OK Y
∧,

(8.3)

where N (x) is the special cycle of N indexed by x ([KR11, Def. 3.2] or [LZ,

§2.3]), (N (x), h)L denotes the corresponding double coset in the expression

(8.2), and Hx is the subgroup of uH of elements that fix every component

of x.

In what follows, for x= (x1, . . . , xm) ∈ uV m with T (x) ∈ Herm◦m(Fu), we

put
KN (x) := [N (x1)] ∪ · · · ∪ [N (xm)]

as an element in K
N (x)
0 (N ). See [Zha21, App. B] for the analogue of Gillet–

Soulé K-groups for formal schemes; we denote similarly by [ ] the associated

element in the K-group.

Proof of Proposition 8.1. By Lemma B.3 and Definition 3.11, it suffices

to show that for every pair of p-basic elements φ∞1 , φ
∞
2 ∈ S (V m ⊗AF A∞F )L

satisfying that supp(φ∞1v ⊗ (φ∞2v)
c) ⊆ (V 2r

v )reg for v ∈ R′, and every pair of

elements s1, s2 each of which is a product of two elements in (SRQac)
〈`〉
LR

, we have

vol\(L)

deg(Y/K)
Φ0
∞(T1, T2)〈s∗1ZT1(φ∞1 )′L, s

∗
2ZT2(φ∞2 )′L〉X′L,K

=
∑

T�∈Herm◦2r(F )+

Diff(T�,V )={u}
∂r,rT�=(T1,T2)

1

log qu
W ′T�(0, 14r,1(ΛR

u)2r)

·
∏
v 6=u

WT�(0, 14r, (Φ
0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))v).

(8.4)

Now using vol\(Lu) = 1 and
∏
v∈VF \{u} γ

2r
Vv ,ψF,v

= 1, (8.4) is equivalent to

vol(H(F∞)Lu)

deg(Y/K)
Φ0
∞(T1, T2)〈s∗1ZT1(φ∞1 )′L, s

∗
2ZT2(φ∞2 )′L〉X′L,K

=
∑

T�∈Herm◦2r(F )+

Diff(T�,V )={u}
∂r,rT�=(T1,T2)

b2r,u(0)

log qu
W ′T�(0, 14r,1(ΛR

u)2r)

·
∏
v 6=u

b2r,v(0)

γ2r
Vv ,ψF,v

WT�(0, 14r, (Φ
0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))v).

(8.5)
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By Proposition B.13 and Lemma 8.3, we have

〈s∗1ZT1(φ∞1 )′L, s
∗
2ZT2(φ∞2 )′L〉X′L,K =

Ä
s∗1

KZT1(φ∞1 )L
ä
.
Ä
s∗2

KZT2(φ∞2 )L
ä

= χ
Ä
π∗
Ä
s∗1

KZT1(φ∞1 )L ∪ s∗2
KZT2((φ∞2 )c)L

ää
,

where π : XL → SpecOK denotes the structure morphism. As supp(φ∞1v ⊗
(φ∞2v)

c) ⊆ (V 2r
v )reg for v ∈ R′, the support of s∗1

KZT1(φ∞1 )L ∪ s∗2
KZT2((φ∞2 )c)L

is contained in the supersingular locus of XL. Moreover, since s∗1 and s∗2 preserve

the supersingular locus, we have

χ
Ä
π∗
Ä
s∗1

KZT1(φ∞1 )L ∪ s∗2
KZT2((φ∞2 )c)L

ää
= χ
Ä
π∧∗
Ä
s∗1

KZT1(φ∞1 )∧L ∪ s∗2
KZT2((φ∞2 )c)∧L

ää
,

where π∧ : X∧L → Spf OK̆ denotes the structure morphism. To summarize, the

left-hand side of (8.5) equals

vol(H(F∞)Lu)

deg(Y/K)
Φ0
∞(T1, T2) · χ

Ä
π∧∗
Ä
s∗1

KZT1(φ∞1 )∧L ∪ s∗2
KZT2((φ∞2 )c)∧L

ää
.

(8.6)

From (8.3), it is straightforward to see that

s∗i
KZTi(φ∞i )∧L

=
∑

xi∈uH(F )\ uV r
T (xi)=Ti

∑
hi∈Hxi (F )\H(A∞,uF )/Lu

(siφ
∞,u
i )(h−1

i xi) · (KN (xi), hi)L ×Spf OK Y
∧

for i = 1, 2. It follows that

s∗1
KZT1(φ∞1 )∧L ∪ s∗2

KZT2((φ∞2 )c)∧L =
∑

T�∈Herm◦2r(F )+

∂r,rT�=(T1,T2)

∑
x∈uH(F )\ uV 2r

T (x)=T�

·
∑

h∈H(A∞,uF )/Lu

(s1φ
∞,u
1 ⊗ (s2φ

∞,u
2 )c)(h−1x) · (KN (x), h)L ×Spf OK Y

∧.

Now by [LZ, Th. 3.4.1, Rem. 3.4.2], we have

χ
Ä
π∧∗

KN (x)
ä

=
b2r,u(0)

log qu
W ′T�(0, 14r,1(ΛR

u)2r)

if T (x) = T�. Thus, we have

(8.6) = vol(H(F∞)Lu) ·Φ0
∞(T1, T2) ·

∑
T�∈Herm◦2r(F )+

∂r,rT�=(T1,T2)

∑
x∈uH(F )\ uV 2r

T (x)=T�

∑
h∈H(A∞,uF )/Lu

(s1φ
∞,u
1 ⊗ (s2φ

∞,u
2 )c)(h−1x) ·

Å
b2r,u(0)

log qu
W ′T�(0, 14r,1(ΛR

u)2r)

ã
.
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By Definition 3.8, we have

vol(H(Fv)) · Φ0
v(T1, T2) =

b2r,v(0)

γ2r
Vv ,ψF,v

WT�(0, 14r, (Φ
0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))v)

for v ∈ V
(∞)
F . By Definition 3.8, for (unique) x ∈ uH(F )\ uV 2r with T (x) = T�,

we have

vol(Lv)
∑

hv∈H(Fv)/Lv

(s1φ
∞,u
1 ⊗ (s2φ

∞,u
2 )c)v(h

−1
v x)

=
b2r,v(0)

γ2r
Vv ,ψF,v

WT�(0, 14r, (Φ
0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))v)

for v ∈ Vfin
F \ {u}.

Therefore, we obtain (8.5) and hence (8.4). The proposition is proved. �

9. Local indices at inert places: almost unramified case

In this section, we compute local indices at places in Vint
E above S. Our

goal is to prove the following proposition.

Proposition 9.1. Let R, R′, `, and L be as in Definition 6.3. Let (π,Vπ)

be as in Assumption 3.1, for which we assume Hypothesis 6.6. Take an ele-

ment u ∈ Vint
E such that u ∈ S and whose underlying rational prime p is odd,

unramified in E, and satisfies V
(p)
F ∩ R ⊆ V

spl
F . Recall that we have fixed a

u-nearby space uV and an isomorphism uV ⊗F AuF ' V ⊗AF AuF from Nota-

tion 2.2(H 9). We also fix a ψE,u-self-dual lattice Λ?u of uVu. Then there exist

elements su1 , s
u
2 ∈ SRQac \mR

π such that

log qu · vol\(L) · IT1,T2(φ∞1 , φ
∞
2 , s

u
1s1, s

u
2s2, g1, g2)`L,u

= ET1,T2((g1, g2),Φ0
∞ ⊗ (su1s1φ

∞
1 ⊗ (su2s2φ

∞
2 )c))u

− log qu
qru − 1

ET1,T2((g1, g2),Φ0
∞ ⊗ (su1s1φ

∞,u
1 ⊗ (su2s2φ

∞,u
2 )c)⊗ 1(Λ?u)2r)

for every (R, R′, `, L)-admissible sextuple (φ∞1 , φ
∞
2 , s1, s2, g1, g2) and every pair

(T1, T2) in Herm◦r(F )+, where the right-hand side is defined in Definition 3.11

with the Gaussian function Φ0
∞ ∈ S (V 2r ⊗AF F∞) (Notation 2.2(H3)), and

vol\(L) is defined in Definition 3.8.

To prove Proposition 9.1, we may rescale the hermitian form on V , hence

assume that ψF,v is unramified and that ΛR
v is either a self-dual or an almost

self-dual lattice of Vv for every v ∈ V
(p)
F \V

spl
F , and moreover that Λ?u is a self-dual

lattice of uVu.
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In order to deal with spherical Hecke operators, we consider the projective

system of Shimura varieties {XL̃} indexed by open compact subgroups L̃ ⊆ L
satisfying L̃v = Lv for v ∈ V

(p)
F \ V

spl
F .

We invoke Notation 5.1 together with Notation 5.6, which is possible since

V
(p)
F ∩ Vram

F = ∅. There is a projective system {XL̃} of strictly semistable

projective schemes over OK (see [LZ, §11.3])18 with

XL̃ ⊗OK K = X ′
L̃
⊗E′ K =

(
XL̃ ⊗E Y

)
⊗E′ K

and finite étale transition morphisms. In particular, SR is naturally a ring of

étale correspondences of XL.

Lemma 9.2. Let the situation be as in Proposition 9.1. Then there exists

an element in SRQac\mR
π that gives an `-tempered Qac-étale correspondence of XL

(Definition B.12).

Proof. The proof relies on Arthur’s multiplicity formula for tempered

global L-packets [KMSW14, Th. 1.7.1], which we first recall, using the language

for unitary groups adopted in [GGP12, §25]. Recall that Π = Π1 � · · · � Πs

from Notation 3.14(3), which is the automorphic base change of π as in As-

sumption 3.1. Put AΠ := µ
{1,...,s}
2 . For every place v ∈ VF ,

• Πv determines a conjugate-symplectic representation Mv of WD(Ev) of

dimension n;

• there is a finite abelian 2-group AMv attached to Mv;

• every character χv : AMv → C× gives a pair (V χv , πχv) in the Langlands–

Vogan packet of Mv, unique up to isomorphism, in which V χv is a hermit-

ian space over Fv of rank n and πχv is an irreducible admissible represen-

tation of U(V χv)(Fv);

• we have a homomorphism αv : AΠ → AMv .

Denote by α : AΠ →
∏
v∈VF AMv the product of αv for v ∈ VF . We say that a

collection χ = {χv | v ∈ VF } of characters in which all but finitely many are

trivial is coherent (resp. incoherent) if the character
∏
v∈VF χv ◦ α : AΠ → C×

is trivial (resp. nontrivial). Then Arthur’s multiplicity formula states that

(a) If χ is incoherent, then either ⊗vV χv is incoherent or it is coherent but

⊗vπχv does not appear in the discrete spectrum. If χ is coherent, then

there exists a hermitian space V χ over E, unique up to isomorphism, such

that V χ
v ' V χv for every v ∈ VF ; the representation ⊗vπχv appears in the

discrete spectrum of U(V χ) with multiplicity one. Moreover, every discrete

18This is the place where we need the assumption that u is unramified over Q (and that

K is unramified over Eu).
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automorphic representation of U(Ṽ )(AF ) for some hermitian space Ṽ over

E of rank n with Π its automorphic base change is obtained from this way.

Now we take a special look at the places w and u.

(b) We may canonically identify AMw with µI2 from Notation 3.14(2). Then

the homomorphism αw : µ
{1,...,s}
2 → µI2 is the one induced by the map

I→ {1, . . . , s} given by the partition I = I1 t · · · t Is.

(c) By (a), Πu is the standard base change of πu. By [LTX+19, Lemma C.2.3],

we have Mu = M2
u + Mn−2

u , where M2
u corresponds to the Steinberg rep-

resentation of GL2(Eu) and Mn−2
u corresponds to a tempered unramified

principal series of GLn−2(Eu), which implies AMu = AM2
u
× AMn−2

u
in

which AM2
u

= µ2.

(d) Without lost of generality, we may assume that Π1u is ramified. Then the

composition of αu with the projection AMu → AM2
u

= µ2 coincides with

the projection µ
{1,...,s}
2 → µ2 to the first factor.

Next, we recall some facts from [LTX+19, §§5.1, 5.2, 5.4, 5.5]19 about the

reduction of the scheme XL̃. Denote by L?u ⊆ uH(Fu) the stabilizer of Λ?
u,

which is a hyperspecial maximal subgroup. We have a decomposition

XL̃ ⊗OK Fp = Y ◦
L̃

⋃
Y •
L̃

that is compatible with changing L̃, in which

• Y ◦
L̃

is a P2r−1-fibration over

uH(F )\ uH(A∞F )/L̃uL?u × (Y ⊗OK Fp);

• Y •
L̃

is proper and smooth over Fp of dimension 2r − 1;

• the intersection Y †
L̃

:= Y ◦
L̃
∩ Y •

L̃
is a relative Fermat hypersurface in Y ◦

L̃
.

By Corollary B.15 and Proposition 6.9(2), it suffices to show that for an arbi-

trary embedding Qac ↪→ Q`, we have

(1) Hi(Y ◦L ,Q`)m = 0 for i 6 2r − 2,

(2) Hi(Y •L ,Q`)m = 0 for i 6 2r − 2,

(3) Hi(Y †L ,Q`)m = 0 for i 6 2r − 3,

where m := mR
π ∩ SRQac . Note that we have used the Gysin exact sequence and

the absolute purity theorem [Fuj02] to switch the cohomology from open strata

to closed strata.

19Strictly speaking, [LTX+19] has more conditions on the place u and the level at p.

However, for those facts we will use in this proof, it is straightforward to remove those extra

conditions.
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q > 2r + 1 0 // Hq(Y •L ,Q`)m // 0

q = 2r H2r−2(Y †L ,Q`(−1))m
d−1,2r
1,m // H2r(Y •L ,Q`)m // 0

q = 2r − 1 0 // H2r−1(Y •L ,Q`)m // 0

q = 2r − 2 0 // H2r−2(Y •L ,Q`)m
d0,2r−2
1,m // H2r−2(Y †L ,Q`)m

q 6 2r − 3 0 // Hq(Y •L ,Q`)m // 0

Ep,q1 p = −1 p = 0 p = 1

Table 1.

For (1), we have Hi(Y ◦L ,Q`) = 0 when i is odd. When i is even, Hi(Y ◦L ,Q`)m
is a direct sum of Lu×L?u-invariants of π′ for finitely many cuspidal automor-

phic representation π′ of uH(AF ) satisfying that π′∞ is trivial and that π′v ' πv
for all but finitely many v ∈ V

spl
F . For every such π′, let Π′ be its automor-

phic base change, which is isobaric automorphic representation of GLn(AE)

[KMSW14, Th. 1.7.1]. Since Π′u ' Πu for all but finitely many u ∈ V
spl
E , we

must have Π′ ' Π by [Ram18, Th. A]. Therefore, we have

Hi(Y ◦L ,Q`)m '
⊕

χ={χv}
χ◦α=1
V χ'uV

(Ä
⊗v∈Vfin

F \{u}
πχv
äLu
⊗ (πχu)L

?
u

)⊕ deg(Y/K)

.

However, since Πu is ramified, we have (πχu)L
?
u = 0 for every χu. Thus, (1)

follows.

For (3), by the Lefschetz hyperplane theorem and the Poincaré duality,

we have Hi(Y †L ,Q`)m = 0 if i 6= 2r − 2 by (1). Thus, (3) follows.

For (2), we consider the weight spectral sequence Ep,q abutting to the

cohomology Hp+q(XL̃ ⊗OK Qp,Q`), after localization at m. We write down

the first page Ep,q1,m as in Table 1. By Proposition 6.9(1), we have Hi(XL̃ ⊗OK
Qp,Q`)m = 0 for i 6= 2r− 1, which implies that Hq(Y •L ,Q`)m = 0 for q 6 2r− 3

and that d0,2r−2
1,m is injective. The spectral sequence then degenerates at the

second page and we have im( d0,2r−2
1,m ) = ker(E1,2r−2

1,m → E1,2r−2
∞,m ). Thus, it
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remains to show that the canonical quotient map E1,2r−2
1,m → E1,2r−2

∞,m is an

isomorphism. Consider an arbitrary collection χ∞,u = {χv | v ∈ Vfin
F \ {u}}

in which all but finitely many are trivial and such that V χv ' Vv for every

v ∈ Vfin
F \ {u}. Put πχ

∞,u
:= ⊗v∈Vfin

F \{u}
πχv . By a similar argument for (1), it

suffices to show the following statement:

(4) The canonical quotient map E1,2r−2
1 [πχ

∞,u
] → E1,2r−2

∞ [πχ
∞,u

] is an iso-

morphism.

Now we show (4). Without lost of generality, we may replace K by a finite

unramified extension in Qp such that Y is a finite disjoint union of SpecK.

Define the character χ+
u (resp. χ−u ) to be the inflation of the trivial (resp.

nontrivial) character of AM2
u

= µ2 along the quotient homomorphism AMu →
AM2

u
. Then we have V χ+

u ' uVu and V χ−u ' uVu. If E1,2r−2
1 [πχ

∞,u
] = 0, then

we are done. Otherwise, we have H2r−2(Y †L ,Q`)[π
χ∞,u ] 6= 0. By (the proof of)

[LTX+19, Prop. 5.5.4], πχ
∞,u

can be complemented to a cuspidal automorphic

representation π′ of uH(AF ) such that π′∞ is trivial and that π′u is almost

unramified with respect to the hyperspecial subgroup L?u. In other words, the

collection {χv = 1 | v ∈ V
(∞)
F } ∪ χ∞,u ∪ {χ+

u } is coherent, and we have

E1,2r−2
1 [πχ

∞,u
] = H2r−2(Y †L ,Q`)[π

χ∞,u ] '
(Ä
⊗v∈Vfin

F \{u}
πχv
äLu)⊕ deg(Y/K)

.

(9.1)

On the other hand, since the representation πχ
−
u is the only member in the

Langlands–Vogan packet of Mu realized on uVu that has nonzero invariants

under LR
u, we have an isomorphism

H2r−1(XL̃ ⊗OK Qp,Q`)[π
χ∞,u ] '

Ä
ρ[π̃∞]|Gal(Qp/K)

ä
⊗
(Ä
⊗v∈Vfin

F \{u}
πχv
äLu)⊕ deg(Y/K)

of representations of Gal(Qp/K), where π̃∞ = πχ
∞,u ⊗ πχ

−
u . By (a)–(d)

above, it is easy to see that, in the notation of Lemma 3.15(b), we must have

j(π̃∞) = 1, hence that the semisimplification of ρ[π̃∞] is isomorphic to ρcΠ1

by Hypothesis 6.6. Thus, ρ[π̃∞]|Gal(Qp/K) has nontrivial monodromy, which

implies that the dimension of E1,2r−2
∞ [πχ

∞,u
] is at least the dimension of(Ä

⊗v∈Vfin
F \{u}

πχv
äLu)⊕ deg(Y/K)

.

Therefore, (4) follows from (9.1). The lemma is proved. �

Proof of Proposition 9.1. The proof of Proposition 9.1 is parallel to that

of Proposition 8.1. Take elements su1 , s
u
2 ∈ SRQac \ mR

π that give `-tempered

Qac-étale correspondences of XL, which is possible by Lemma 9.2.
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By Lemma B.3 and Definition 3.11, it suffices to show that for every pair

of p-basic elements φ∞1 , φ
∞
2 ∈ S (V m ⊗AF A∞F )L satisfying that supp(φ∞1v ⊗

(φ∞2v)
c) ⊆ (V 2r

v )reg for v ∈ R′, and every pair of elements s1, s2 ∈ (SRQac)
〈`〉
LR

that

give `-tempered Qac-étale correspondences of XL, we have

(9.2)
vol\(L)

deg(Y/K)
Φ0
∞(T1, T2)〈s∗1ZT1(φ∞1 )′L, s

∗
2ZT2(φ∞2 )′L〉X′L,K

=
∑

T�∈Herm◦2r(F )+

Diff(T�,V )={u}
∂r,rT�=(T1,T2)

1

log qu

Å
W ′T�(0, 14r,1(ΛR

u)2r)−
log qu
qru − 1

WT�(0, 14r,1(Λ?u)2r)

ã
×
∏
v 6=u

WT�(0, 14r, (Φ
0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))v).

As vol(Lu) = (qu + 1)(q2r
u − 1)−1, (9.2) is equivalent to

vol(H(F∞)Lu)

deg(Y/K)
Φ0
∞(T1, T2)〈s∗1ZT1(φ∞1 )′L, s

∗
2ZT2(φ∞2 )′L〉X′L,K

=
∑

T�∈Herm◦2r(F )+

Diff(T�,V )={u}
∂r,rT�=(T1,T2)

×
b2r,u(0)

log qu

Ç
q2r
u − 1

qu + 1
W ′T�(0, 14r,1(ΛR

u)2r)−
log qu
qu + 1

WT�(0, 14r,1(Λ?u)2r)

å
×
∏
v 6=u

b2r,v(0)

γ2r
Vv ,ψF,v

WT�(0, 14r, (Φ
0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))v),

(9.3)

parallel to (8.5).

The proof of (9.3) is same to that of (8.5) except that now we have

χ
Ä
π∧∗

KN (x)
ä

=
b2r,u(0)

log qu

Ç
q2r
u − 1

qu + 1
W ′T�(0, 14r,1(ΛR

u)2r)−
log qu
qu + 1

WT�(0, 14r,1(Λ?u)2r)

å
if T (x) = T�, by [LZ, Th. 10.5.1, Rem. 10.5.4]. The proposition is proved. �

10. Local indices at archimedean places

In this section, we compute local indices at places in V
(∞)
E .

Proposition 10.1. Let R, R′, `, and L be as in Definition 6.3. Let (π,Vπ)

be as in Assumption 3.1. Take an element u ∈ V
(∞)
E . Consider an (R, R′, `, L)-

admissible sextuple (φ∞1 , φ
∞
2 , s1, s2, g1, g2) and an element ϕ1 ∈ V [r]R

π . Let K1 ⊆
Gr(A∞F ) be an open compact subgroup that fixes both φ∞1 and ϕ1, and let F1 ⊆
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Gr(F∞) be a Siegel fundamental domain for the congruence subgroup Gr(F )∩
g∞1 K1(g∞1 )−1. Then for every T2 ∈ Herm◦r(F )+, we have

vol\(L) ·
∫
F1

ϕc(τ1g1)
∑

T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ
∞
2 , s1, s2, τ1g1, g2)L,u dτ1

=
1

2

∫
F1

ϕc(τ1g1)
∑

T1∈Herm◦r(F )+

ET1,T2((τ1g1, g2),Φ0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))u dτ1,

(10.1)

in which both sides are absolutely convergent. Here, the term ET1,T2 is de-

fined in Definition 3.11 with the Gaussian function Φ0
∞ ∈ S (V 2r ⊗AF F∞)

(Notation 2.2(H3)), and vol\(L) is defined in Definition 3.8.

Remark 10.2. The relation between IT1,T2 and ET1,T2 for each individual

pair (T1, T2) in the style of Proposition 8.1 is much more complicated, which

involves the so-called holomorphic projection. (See [Liu11b, §6A] for the case

where r = 1.) The main technical innovation in the archimedean computation

in this article is that we do not need to compare IT1,T2 and ET1,T2 in order to

obtain the main theorems; it suffices for us to compare both sides after taking

summation and convolution for any of the two variables as in Proposition 10.1,

which does not require holomorphic projection.

As we have promised in Section 6, we start by recalling the definition of

the archimedean local index in the decomposition (6.1).

Let X be a smooth projective complex scheme of pure dimension n − 1.

For an element Z ∈ Zr(X)C, recall that a Green current for Z is an (r−1, r−1)-

current gZ on X(C) that is smooth away from the support of Z and satisfies

ddcgZ + δZ = [ωZ ]

for a unique smooth (r, r)-form ωZ on X(C), which we call the tail form of gZ .

If Z ∈ Zr(X)0
C, then we say that a Green current gZ for Z is harmonic if

ωZ = 0, and we use g♥Z to indicate a harmonic Green current. For two elements

Z1, Z2 ∈ Zr(X)0
C with disjoint supports, we define

(10.2) 〈Z1, Z2〉X,C :=
1

2

∫
X(C)

g♥Z1
∧ δZc

2
,

which is independent of the choice of harmonic Green current g♥Z1
.

By Lemma 5.5, we may assume u = u without lost of generality in the

proof of Proposition 10.1. Now we apply the above discussion to the complex

scheme XL ⊗E C. For i = 1, 2,

• we denote by g♥Ti(φ
∞
i , si, g

∞
i )L a harmonic Green current for the algebraic

cycle s∗iZTi(ω
∞
r (g∞i )φ∞i )L on XL ⊗E C;
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• for every element gi ∈ Gr(AF ) with finite part g∞i , there is a particular

Green current for s∗iZTi(ω
∞
r (g∞i )φ∞i )L on XL ⊗E C, known as the Kudla–

Milson Green current (see the proof of [Liu11a, Th. 4.20]), denoted by

gKM
Ti

(φ∞i , si, gi)L, with the tail form ωKM
Ti

(φ∞i , si, gi)L.

Proof of Proposition 10.1. As we have pointed out, it suffices to prove the

proposition for u = u. By (10.2), we have

IT1,T2(φ∞1 , φ
∞
2 , s1, s2, g1, g2)L,u

=
1

2
CT1,T2(g1∞, g2∞)

∫
XL(C)

g♥T1
(φ∞1 , s1, g

∞
1 )L ∧ δ(s∗2ZT2

(ω∞r (g∞2 )φ∞2 )L)c ,
(10.3)

where

CT1,T2(g1∞, g2∞) := ωr,∞(g1∞)φ0
∞(T1) · (ωr,∞(g2∞)φ0

∞(T2))c.

We need a variant of (10.3). Put

IT1,T2(φ∞1 , φ
∞
2 , s1, s2, g1, g2)KM

L,u

:=
1

2
CT1,T2(g1∞, g2∞)

Ç∫
XL(C)

gKM
T1

(φ∞1 , s1, g1)L ∧ δ(s∗2ZT2
(ω∞r (g∞2 )φ∞2 )L)c

+

∫
XL(C)

ωKM
T1

(φ∞1 , s1, g1)L ∧ gKM
T2

(φ∞2 , s2, g2)cL

å
.

(10.4)

By [Liu11a, Th. 4.20]20, we have

vol\(L) · IT1,T2(φ∞1 , φ
∞
2 , s1, s2, g1, g2)KM

L,u

=
1

2
ET1,T2((g1, g2),Φ0

∞ ⊗ (s1φ
∞
1 ⊗ (s2φ

∞
2 )c))u.

(10.5)

We first check the absolute convergence of the two sides of (10.1). It is

clear that the assignment

τ1 7→
∑

T1∈Herm◦r(F )+

∣∣ET1,T2((τ1g1, g2),Φ0
∞ ⊗ (s1φ

∞
1 ⊗ s2φ

∞
2 ))u

∣∣
is slowly increasing on F1, which implies that the right-hand side of (10.1) is

absolutely convergent since ϕ is a cusp form.

20There is a sign error in [Liu11a, Th. 4.20]: the correct sign should be
∏
v γ

2n
Vv , which

is 1, rather than
∏
v γVv , which is −1. (The root of this sign error is that in the formula

for ωχ(wr) on [Liu11a, p. 858], the constant γV should really be γrV .) This result was later

reproved in [GS19, Cor. 5.12] by a different method.
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For the left-hand side, by (10.5), it suffices to show that the expression∑
T1∈Herm◦r(F )+

∣∣∣IT1,T2(φ∞1 , φ
∞
2 , s1, s2, τ1g1, g2)KM

L,u

−IT1,T2(φ∞1 , φ
∞
2 , s1, s2, τ1g1, g2)L,u|

is absolutely convergent and is slowly increasing on τ1. For short, put

η := −g♥T2
(φ∞2 , s2, g

∞
2 )cL,

which is an (r − 1, r − 1)-current on XL(C) satisfying

ddcη = δ(s∗2ZT2
(ω∞r (g∞2 )φ∞2 )L)c .(10.6)

Then for every T1 ∈ Herm◦r(F )+,

JT1
(τ1)

:= IT1,T2(φ∞1 , φ
∞
2 , s1, s2, τ1g1, g2)KM

L,u − IT1,T2(φ∞1 , φ
∞
2 , s1, s2, τ1g1, g2)L,u

= CT1,T2
(τ1g1∞, g2∞)

∫
XL(C)

Ä
gKM
T1

(φ∞1 , s1, τ1g1)L − g♥T1
(φ∞1 , s1, τ1g1)L

ä
∧ ddcη

+ CT1,T2
(τ1g1∞, g2∞)

∫
XL(C)

ωKM
T1

(φ∞1 , s1, τ1g1)L ∧ gKM
T2

(φ∞2 , s2, g2)cL

= CT1,T2(τ1g1∞, g2∞)

∫
XL(C)

ddc
Ä
gKM
T1

(φ∞1 , s1, τ1g1)L − g♥T1
(φ∞1 , s1, τ1g1)L

ä
∧ η

+ CT1,T2
(τ1g1∞, g2∞)

∫
XL(C)

ωKM
T1

(φ∞1 , s1, τ1g1)L ∧ gKM
T2

(φ∞2 , s2, g2)cL

= CT1,T2(τ1g1∞, g2∞)

∫
XL(C)

ωKM
T1

(φ∞1 , s1, τ1g1)L ∧
(
η + gKM

T2
(φ∞2 , s2, g2)cL

)
.

By the claim (∗) below and the fact that η + gKM
T2

(φ∞2 , s2, g2)cL is a smooth

form on XL(C), we know that
∑

T1∈Herm◦r(F )+ |JT1(τ1)| is convergent and is

slowly increasing in τ1 ∈ F1, which implies that the left-hand side of (10.1) is

absolutely convergent as we have pointed out.

We claim that

(∗) The summation∑
T1∈Herm◦r(F )+

CT1,T2(τ1g1∞, g2∞) · ωKM
T1

(φ∞1 , s1, τ1g1)L

is convergent in the space of smooth (r, r)-form on XL(C) with respect to

the C∞-topology, and is locally uniformly slowly increasing in τ1 ∈ F1.

Note that since XL(C) is a finite disjoint union compact quotients of

the real Lie group uH(R), the C∞-topology on XL(C), which is a Fréchet

topology, can defined by a natural family of semi-norms given by the upper

bound of |Df | on a compact neighbourhood of the identity in uH(R), where
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D runs through invariant differential operators on uH(R). Take such a semi-

norm ‖ ‖. By the construction of the Kudla–Millson form ([Mil85, §III.1] or

[KM86, §3]), it suffices to consider semi-norms ‖ ‖ satisfying that there exists

φ∞ ∈ S (uV r ⊗F F∞) such that∥∥∥ωr,∞(τ1g1∞)φ0
∞(T1) · ωKM

T1
(φ∞1 , s1, τ1g1)L

∥∥∥
= sup

h∈uH(F )\ uH(AF )

{∣∣θφ∞⊗s1φ∞1 ,T1(τ1g1, h)
∣∣}

for every τ1 ∈ F1 and every T1 ∈ Herm◦r(F )+, where θφ∞⊗s1φ∞1 ,T1 denotes

the T1-component of the classical theta function of φ∞ ⊗ s1φ
∞
1 . Now since

uH(F )\ uH(AF ) is compact, and the assignment

τ1 7→
∑

T1∈Herm◦r(F )+

∣∣θφ∞⊗s1φ∞1 ,T1(τ1g1, h)
∣∣

is slowly increasing on F1, locally uniformly in h, the claim follows.

Now we continue to prove (10.1). By (10.5), it suffices to show that

(10.7)

∫
F1

ϕc(τ1g1)
∑

T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ
∞
2 , s1, s2, τ1g1, g2)KM

L,u dτ1

=

∫
F1

ϕc(τ1g1)
∑

T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ
∞
2 , s1, s2, τ1g1, g2)L,u dτ1,

in which we have already known that both sides are absolutely convergent.

Take an element T1 ∈ Herm◦r(F )+. We put

ϕg♥T1
:=

∫
F1

ϕc(τ1g1)CT1,T2(τ1g1∞, g2∞)g♥T1
(φ∞1 , s1, g

∞
1 )L dτ1,

which is a harmonic Green current for

ϕZT1
:=

Ç∫
F1

ϕc(τ1g1)CT1,T2(τ1g1∞, g2∞) dτ1

å
· s∗1ZT1(ω∞r (g∞1 )φ∞1 )L.

We also put

ϕgKM
T1

:=

∫
F1

ϕc(τ1g1)CT1,T2(τ1g1∞, g2∞)gKM
T1

(φ∞1 , s1, τ1g1)L dτ1,

which is a Green current for ϕZT1 , whose tail form is

ϕωKM
T1

:=

∫
F1

ϕc(τ1g1)CT1,T2(τ1g1∞, g2∞)ωKM
T1

(φ∞1 , s1, τ1g1)L dτ1.
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Then by (10.3), (10.4), and (10.6), we have

ϕJT1
:=

∫
F1

ϕc(τ1g1)IT1,T2(φ∞1 , φ
∞
2 , s1, s2, τ1g1, g2)KM

L,u dτ1

−
∫
F1

ϕc(τ1g1)IT1,T2(φ∞1 , φ
∞
2 , s1, s2, τ1g1, g2)L,u dτ1

=

∫
XL(C)

(ϕgKM
T1
− ϕg♥T1

) ∧ ddcη +

∫
XL(C)

ϕωKM
T1
∧ gKM

T2
(φ∞2 , s2, g2)cL

=

∫
XL(C)

ddc(ϕgKM
T1
− ϕg♥T1

) ∧ η +

∫
XL(C)

ϕωKM
T1
∧ gKM

T2
(φ∞2 , s2, g2)cL

=

∫
XL(C)

ϕωKM
T1
∧
Ä
η + gKM

T2
(φ∞2 , s2, g2)cL

ä
.

Therefore, the difference between the two sides of (10.7) equals

∑
T1∈Herm◦r(F )+

ϕJT1 =

∫
XL(C)

Ñ ∑
T1∈Herm◦r(F )+

ϕωKM
T1

é
∧
Ä
η + gKM

T2
(φ∞2 , s2, g2)cL

ä
.

(10.8)

Here, to validate the exchange of summation and integration, it suffices to

show that the summation
∑

T1∈Herm◦r(F )+
ϕωKM

T1
is convergent in the space of

smooth (r, r)-form on XL(C) with respect to the C∞-topology, since XL(C) is

compact. However, this follows from the claim (∗).
We then continue by computing the right-hand side of (10.8). Since

supp(φ∞1v) ⊆ (V r
v )reg for some v ∈ R′, we have∑

T1∈Herm◦r(F )+

ϕωKM
T1

=
∑

T1∈Hermr(F )+

ϕωKM
T1

,

where ϕωKM
T1

for T1 ∈ Hermr(F )+ \Herm◦r(F )+ is defined similarly. However,∑
T1∈Hermr(F )+

ϕωKM
T1

= (ωr,∞(g2∞)φ0
∞(T2))c ·

∫
F1

ϕc(τ1g1)ωKM(τ1g1) dτ1,

where ωKM(g1) is the Kudla–Milson form for the generating function Zs1φ∞1
(g1)L.

By [Mil85, Th. III.2.1], we know that∫
F1

ϕc(τ1g1)ωKM(τ1g1) dτ1 =

∫
Γ1\Gr(F∞)

ϕc(g′1g1)ωKM(g′1g1) dg′1(10.9)

is a harmonic (r, r)-form on XL(C). Since Zs1φ∞1
(g1)L is cohomologically triv-

ial, the cohomology class of (10.9) is also trivial, which implies that (10.9)

vanishes. Therefore, we obtain (10.7). The proposition is proved. �
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11. Proof of main results

In this section, we prove our main results in Section 1. Thus, we put

ourselves in Assumption 1.3. In particular, we have Vram
F = ∅, V(2)

F ⊆ V
spl
F .

Let (π,Vπ) be as in Assumption 1.3 with |Sπ| odd, for which we assume

Hypothesis 6.6. Take

• a totally positive definite hermitian space V over AE of rank 2r as in

Notation 2.2 satisfying that ε(Vv) = −1 if and only if v ∈ Sπ (so that V is

incoherent and V = Vπ as in Section 1);21

• S = Sπ (so that every underlying rational prime of S is unramified in E);

• R a finite subset of V
spl
F containing Rπ and of cardinality at least 2, and

R′ = R;

• an R-good rational prime ` (Definition 6.1);

• for i=1, 2, a nonzero element ϕi=⊗vϕiv ∈ V [r]R
π satisfying that 〈ϕc

1v, ϕ2v〉πv
= 1 for v ∈ VF \ R;

• for i = 1, 2, an element φ∞i = ⊗vφ∞iv ∈ S (V r ⊗AF A∞F ) satisfying

– φ∞iv = 1(ΛR
v)r for v ∈ Vfin

F \ R;

– supp(φ∞1v ⊗ (φ∞2v)
c) ⊆ (V 2r

v )reg for v ∈ R;

• an open compact subgroup L of H(A∞F ) of the form LRL
R, where LR is

defined in Notation 2.2(H8), that fixes both φ∞1 and φ∞2 ;

• an open compact subgroup K ⊆ Gr(A∞F ) that fixes ϕ1, ϕ2, φ
∞
1 , φ

∞
2 ;

• a set of representatives {g(1), . . . , g(s)} of the double coset

Gr(F )\Gr(A∞F )/K

satisfying g(j) ∈ Gr(A∞,RF ) for 1 6 j 6 s, together with a Siegel fun-

damental domain F(j) ⊆ Gr(F∞) for the congruence subgroup Gr(F ) ∩
g(j)K(g(j))−1 for each 1 6 j 6 s;

• for i = 1, 2, si a product of two elements in (SRQac)
〈`〉
LR

satisfying χRπ(si) = 1

(which is possible by Proposition 6.9(2));

• for i = 1, 2, an element sui ∈ (SRQac)
〈`〉
LR

for every u ∈ V
spl
E ∪ SE , where SE

denotes the subset of Vint
E above S, as in Propositions 7.1 and 9.1, satisfying

χRπ(sui ) = 1 and that sui = 1 for all but finitely many u.

In what follows, we put

s̃i := si ·
∏

u∈Vspl
E ∪SE

sui

for i = 1, 2.

Lemma 11.1. Let the situation be as above.

21We have changed the use of V from Section 1 since in the proofs below, we need to

consider all nearby spaces of Vπ. In particular, V in Section 1 is now uV .
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(1) For every T2 ∈ Herm◦r(F )+ and every t ∈ TR
Qac , the identity

vol\(L)
s∑
j=1

∫
F(j)

ϕc
1(τ (j)g(j))

·
∑

T1∈Herm◦r(F )+

IT1,T2(tφ∞1 , φ
∞
2 , s̃1, s̃2, τ

(j)g(j), g2)`L dτ (j)

= χRπ(t)c
∫
Gr(F )\Gr(AF )

ϕc
1(g1)E′(0, (g1, g2),Φ0

∞ ⊗ Φ∞)−,T2 dg1

− χRπ(t)c
∑
u∈SE

log qu
qru − 1

·
∫
Gr(F )\Gr(AF )

ϕc
1(g1)E(0, (g1, g2),Φ0

∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r)−,T2 dg1

holds for every g2 ∈ Gr(AR
F ), where Φ∞ := s̃1φ

∞
1 ⊗ (s̃2φ

∞
2 )c, Λ?u is the

lattice in Proposition 9.1, and E(s, (g1, g2),Φ)−,T2 denotes the T2-Siegel

Fourier coefficient of the Eisenstein series E(s, (g1, g2),Φ) with respect

to the second variable g2.

(2) The identity

vol\(L)
s∑

j2=1

s∑
j1=1

∫
F(j2)

∫
F(j1)

ϕ2(τ (j2)g(j2))ϕc
1(τ (j1)g(j1))

∑
T2∈Herm◦r(F )+

·
∑

T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ
∞
2 , s̃1, s̃2, τ

(j1)g(j1), τ (j2)g(j2))`L dτ (j1) dτ (j2)

=
L′(1

2 , π)

b2r(0)
· C [F :Q]

r ·
∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)

c)

holds.

Proof. For (1), pick an element h ∈ HR
Wr

such that θR(h) = t as in Defini-

tion 6.8. Then there exist finitely many pairs (ck, hk) ∈ C×Gr(A∞,RF ) such that

hφ∞1 =
∑

k ckω
∞
r (hk)φ

∞
1 and hϕ1 =

∑
k ckπ(hk)ϕ1. By [Liu21b, Th. 1.1] for

inert places and [Liu11a, Prop. A.5] for split places (see also [Ral82, p. 511]),

we have

tφ∞1 = hφ∞1 =
∑
k

ckω
∞
r (hk)φ

∞
1 .

Thus, we have

IT1,T2(tφ∞1 , φ
∞
2 , s̃1, s̃2, τ

(j)g(j), g2)`L

=
∑
k

ckIT1,T2(tφ∞1 , φ
∞
2 , s̃1, s̃2, τ

(j)g(j)hk, g2)`L.
(11.1)
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By Lemma 6.4, we have

IT1,T2(φ∞1 , φ
∞
2 , s̃1, s̃2, τ

(j)g(j)hk, g2)`L

=
∑

u∈V(∞)
E

2IT1,T2(φ∞1 , φ
∞
2 , s̃1, s̃2, τ

(j)g(j)hk, g2)L,u

+
∑
u∈Vfin

E

log qu · IT1,T2(φ∞1 , φ
∞
2 , s̃1, s̃2, τ

(j)g(j)hk, g2)`L,u.

(11.2)

Combining (11.1), (11.2), and Propositions 7.1, 8.1, 9.1, and 10.1, we have

vol\(L)
s∑
j=1

∫
F(j)

ϕc
1(τ (j)g(j))

·
∑

T1∈Herm◦r(F )+

IT1,T2(tφ∞1 , φ
∞
2 , s̃1, s̃2, τ

(j)g(j), g2)`L dτ (j)

=
∑
k

s∑
j=1

ck

∫
F(j)

ϕc
1(τ (j)g(j))

·
∑

T1∈Herm◦r(F )+

ES
T1,T2

((τ (j)g(j)hk, g2),Φ0
∞ ⊗ Φ∞),

(11.3)

where we put

ES
T1,T2

((g1, g2),Φ0
∞ ⊗ Φ∞)

:=
∑

u∈VE\Vspl
E

ET1,T2((g1, g2),Φ0
∞ ⊗ Φ∞)u

−
∑
u∈SE

log qu
qru − 1

ET1,T2((g1, g2),Φ0
∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r).

By Proposition 3.10 and Remark 3.12, we have

∑
T1∈Herm◦r(F )+

ES
T1,T2

((τ (j)g(j)hk, g2),Φ0
∞ ⊗ Φ∞)

= E′(0, (τ (j)g(j)hk, g2),Φ0
∞ ⊗ Φ∞)−,T2

−
∑
u∈SE

log qu
qru − 1

E(0, (τ (j)g(j)hk, g2),Φ0
∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r)−,T2
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for every 1 6 j 6 s and every k. It follows that

(11.3) =
∑
k

ck

∫
Gr(F )\Gr(AF )

ϕc
1(g1)E′(0, (g1hk, g2),Φ0

∞ ⊗ Φ∞)−,T2 dg1

−
∑
u∈SE

log qu
qru − 1

∑
k

ck∫
Gr(F )\Gr(AF )

ϕc
1(g1)E(0, (g1hk, g2),Φ0

∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r)−,T2 dg1

=

∫
Gr(F )\Gr(AF )

(hϕc
1)(g1)E′(0, (g1, g2),Φ0

∞ ⊗ Φ∞)−,T2 dg1 −
∑
u∈SE

log qu
qru − 1

·
∫
Gr(F )\Gr(AF )

(hϕc
1)(g1)E(0, (g1, g2),Φ0

∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r)−,T2 dg1.

Part (1) follows as hϕc
1 = χRπ(t)c · ϕc

1.

For (2), we apply (1) to t = 1 and g2 = τ (j2)g(j2) for 1 6 j2 6 s, and hence

obtain

vol\(L)
s∑

j2=1

s∑
j1=1

∫
F(j2)

∫
F(j1)

ϕ2(τ (j2)g(j2))ϕc
1(τ (j1)g(j1))

∑
T2∈Herm◦r(F )+

∑
T1∈Herm◦r(F )+

· IT1,T2(φ∞1 , φ
∞
2 , s̃1, s̃2, τ

(j1)g(j1), τ (j2)g(j2))`Lrdτ
(j1) dτ (j2)

=

∫∫
[Gr(F )\Gr(AF )]2

ϕ2(g2)ϕc
1(g1)E′(0, (g1, g2),Φ0

∞ ⊗ Φ∞) dg1 dg2

−
∑
u∈SE

log qu
qru − 1

∫∫
[Gr(F )\Gr(AF )]2

· ϕ2(g2)ϕc
1(g1)E(0, (g1, g2),Φ0

∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r) dg1 dg2.

(11.4)

By the classical Rallis inner product formula (see, e.g., [Liu11a, (2)–(6)]) and

Proposition 3.6(2), we have∫
Gr(F )\Gr(AF )

∫
Gr(F )\Gr(AF )

· ϕ2(g2)ϕc
1(g1)E(0, (g1, g2),Φ0

∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r) dg1 dg2 = 0

for every u ∈ SE . Together with χRπ(s̃1) = χRπ(s̃2) = 1, we have

(11.4) =

∫
Gr(F )\Gr(AF )

∫
Gr(F )\Gr(AF )

· ϕ2(g2)ϕc
1(g1)E′(0, (g1, g2),Φ0

∞ ⊗ (φ∞1 ⊗ (φ∞2 )c)) dg1 dg2.

(11.5)
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By Proposition 3.7, we have

(11.5) =
L′(1

2 , π)

b2r(0)
· C [F :Q]

r ·
∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)

c).

Part (2) is proved. �

Proof of Theorem 1.5. First, it suffices to prove the theorem for R satisfy-

ing Rπ ⊆ R ⊆ Vfin
F and |R| > 2. Take an element w ∈ V

(∞)
F , and put ourselves

in the setup of Section 4. We prove that the localization of the TR
C-module

CHr(XL)0
C at mR

π, is nonvanishing.

Assume the converse. Then for every element T2 ∈ Herm◦r(F )+, we can

find tT2 ∈ TR
Qac satisfying χRπ(tT2) = 1 and t∗T2

ZT2(ω∞r (g(j))φ∞2 )L = 0 for every

1 6 j 6 s. Let t̂T2 be the adjoint of tT2 . Then we have

〈s̃∗1ZT1(ω∞r (g∞1 )(t̂T2φ
∞
1 ))L, s̃

∗
2ZT2(ω∞r (g(j))φ∞2 )L〉`XL,E

= 〈t̂∗T2
s̃∗1ZT1(ω∞r (g∞1 )φ∞1 )L, s̃

∗
2ZT2(ω∞r (g(j))φ∞2 )L〉`XL,E

= 〈s̃∗1ZT1(ω∞r (g∞1 )φ∞1 )L, t
∗
T2

s̃∗2ZT2(ω∞r (g(j))φ∞2 )L〉`XL,E = 0

for every T1 ∈ Herm◦r(F )+, g∞1 ∈ Gr(A
∞,R
F ), and 1 6 j 6 s. In particular, we

have

IT1,T2(t̂T2φ
∞
1 , φ

∞
2 , s̃1, s̃2, τ

(j)g(j), g2)`L = 0

for every g2 ∈ Gr(AR
F ) with g∞2 ∈ {g(1), . . . , g(s)}. It follows that

vol\(L)
s∑
j=1

∫
F(j)

ϕc
1(τ (j)g(j))

·
∑

T1∈Herm◦r(F )+

IT1,T2(t̂T2φ
∞
1 , φ

∞
2 , s̃1, s̃2, τ

(j)g(j), g2)`L dτ (j) = 0

for every g2 ∈ Gr(AR
F ) with g∞2 ∈ {g(1), . . . , g(s)} and every T2 ∈ Herm◦r(F )+.

Now applying Lemma 11.1(1) twice with t = t̂T2 and t = 1, respectively, we

obtain

vol\(L)
s∑
j=1

∫
F(j)

ϕc
1(τ (j)g(j))

·
∑

T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ
∞
2 , s̃1, s̃2, τ

(j)g(j), g2)`L dτ (j) = 0

for every g2 ∈ Gr(AR
F ) with g∞2 ∈ {g(1), . . . , g(s)} and every T2 ∈ Herm◦r(F )+.

By Lemma 11.1(2), we obtain

L′(1
2 , π)

b2r(0)
· C [F :Q]

r ·
∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)

c) = 0;
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that is, ∏
v∈S

(−1)rqr−1
v (qv + 1)

(q2r−1
v + 1)(q2r

v − 1)
·
∏
v∈R

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)

c) = 0.

Now by Proposition 3.13, we may choose ϕ1, ϕ2, φ
∞
1 , φ

∞
2 such that for every

v ∈ R,
Z\πv ,Vv(ϕ

c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)

c) 6= 0.

As L′(1
2 , π) 6= 0, we obtain a contradiction. The theorem is proved. �

Proof of Theorem 1.7 and Corollary 1.9. By Definition 6.11 and Proposi-

tion 6.10(1), we have

〈Θφ∞1
(ϕ1),Θφ∞2

(ϕ2)〉\X,E

= vol\(L)
s∑

j2=1

s∑
j1=1

∫
F(j2)

∫
F(j1)

ϕ2(τ (j2)g(j2))ϕc
1(τ (j1)g(j1))

∑
T2∈Herm◦r(F )+

·
∑

T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ
∞
2 , s̃1, s̃2, τ

(j1)g(j1), τ (j2)g(j2))`L dτ (j1) dτ (j2).

By Lemma 11.1(2) and Proposition 3.7, we obtain

〈Θφ∞1
(ϕ1),Θφ∞2

(ϕ2)〉\X,E =
L′(1

2 , π)

b2r(0)
· C [F :Q]

r

·
∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)

c).
(11.6)

By Proposition 3.13, we may choose ϕ1, ϕ2, φ
∞
1 , φ

∞
2 such that∏

v∈Vfin
F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)

c) 6= 0.

Now we claim that (11.6) holds for arbitrary vectors ϕ1, ϕ2, φ
∞
1 , φ

∞
2 (not

necessarily those in the beginning of this section) as in the statement of Theo-

rem 1.7(1). This is a consequence of Proposition 3.6(1) as both sides of (11.6)

give elements in the space⊗
v∈Vfin

F

HomGr(Fv)×Gr(Fv)(I
�
r,v(0), πv � π

∨
v ),

which is of dimension one. Thus, Theorem 1.7(1) follows.

By Proposition 6.10(2), the assignment (ϕ, φ∞) 7→ Θφ∞(ϕ) gives an ele-

ment in

HomH(A∞F )

Ç
HomGr(A∞F )(S (V r ⊗AF A∞F ), π∞), lim−→

L

CHr(XL)0
C

å
,

in which HomGr(A∞F )(S (V r ⊗AF A∞F ), π∞) is simply the theta lifting of π∞

to H(A∞F ) by Proposition 3.6(3). Thus, Theorem 1.7(2) is a consequence of

(11.6) and the fact that
∏
v∈Vfin

F
Z\πv ,Vv is nontrivial.
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Finally, Corollary 1.9 is a consequence of (11.6) and Proposition 3.7 (where

one may take R = ∅). �

Appendix A. Two lemmas in Fourier analysis

In this appendix, we prove two lemmas in Fourier analysis that are only

used in the proof of Proposition 3.13. Both the lemmas and their proofs are

variants of [AN04, Th. 1] (in the non-archimedean setting).

Let F be a non-archimedean local field (of arbitrary characteristic). De-

note the maximal ideal of OF by pF , and put q := |OF /pF |. We fix a nontrivial

additive character ψ : F → C× that is used to define the Fourier transform.

Lemma A.1. Consider a finite-dimensional F -vector space X , a nonzero

homogeneous polynomial ∆ on X , and a real number r > 0. Let f be a nonzero

locally constant function on an open subset Ω ⊆ X on which ∆ is nonvanishing.

Suppose that f is locally integrable on X and satisfies that for every ε > 0, we

have ∫
Ω

|f(x)|2+ε|∆(x)|rεF dx <∞.

Then the support of the Fourier transform of f , as a distribution on X∨, cannot

be contained in an analytic hypersurface.

Proof. Let n > 1 be the dimension of X. Without lost of generality, we

may identify both X and X∨ with Fn, take dx to be the measure that gives

OF volume 1, and assume that ψF has conductor OF . For every integer N , we

put Bn
N := (pNF )n, which is an open compact subset of Fn.

Let u be the Fourier transform of f . For every integer N > 0, put χN :=

qNn1BnN ∈ S (Fn), and put uN := u ∗ χN , which is a locally constant function

on Fn. Take two real numbers 0 6 δ < 1 and ε > 0 to be determined later. Let

p > 2 satisfy 1
2−δ + 1

p = 1. Since the Fourier transform is a bounded operator

from L2−δ(Fn) to Lp(Fn), we have

‖uN‖2−δp 6 Cδ

∫
Fn
|f(x)|2−δ|”χN (x)|2−δ dx

= Cδ

∫
Fn
|f(x)|2−δ|1Bn−N (x)|2−δ dx

= Cδ

∫
Bn−N

|f(x)|2−δ dx

for some constant Cδ > 0 depending only on δ. By Hölder’s inequality, we

have

‖uN‖2−δp 6Cδ

Ç∫
Bn−N

|∆(x)|
−r (2−δ)ε

δ+ε

F dx

å δ+ε
2+ε
Ç∫

Bn−N

|f(x)|2+ε|∆(x)|rεF dx

å 2−δ
2+ε

.
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Let d be the degree of ∆. There exists a real number 0 < ρ∆ < n/d depending

only on ∆ such that as long as r (2−δ)ε
δ+ε < ρ∆, the function |∆(x)|

−r (2−δ)ε
δ+ε

F is

locally integrable. In this case, there exists a constant Cδ,ε > 0 such that∫
Bn−N

|∆(x)|
−r (2−δ)ε

δ+ε

F dx = Cδ,ε · qN
Ä
n−dr (2−δ)ε

δ+ε

ä
.

By the integrability condition on f , there is a new constant C ′δ,ε > 0 depending

only on δ and ε such that

‖uN‖2−δp 6 C ′δ,ε · q
N
Ä
n−dr (2−δ)ε

δ+ε

ä
δ+ε
2+ε(A.1)

holds for every N > 0.

Now suppose that the support of u is contained in an analytic hyper-

surface U . For N > 0, put UN := U + Bn
N ⊆ Fn as a tubular neighbourhood

of U , which contains the support of uN . Then for every g ∈ S (Fn), we have

lim
N→∞

qN
∫
UN

g(x) dx =

∫
U

g(y) dy.(A.2)

Then by Hölder’s inequality, (A.1), and (A.2), we have

|〈u, g〉|2−δ = lim
N→∞

|〈uN , g〉|2−δ

6 lim
N→∞

‖uN‖2−δp ·
∫
UN

|g(x)|2−δ dx

6 C ′δ,ε · lim
N→∞

qN
ÄÄ
n−dr (2−δ)ε

δ+ε

ä
δ+ε
2+ε
−1
ä
· qN

∫
UN

|g(x)|2−δ dx

= C ′δ,ε ·
∫
U

|g(y)|2−δ dy · lim
N→∞

qN
ÄÄ
n−dr (2−δ)ε

δ+ε

ä
δ+ε
2+ε
−1
ä
.

Choose suitable δ, ε such that

r
(2− δ)ε
δ + ε

< ρ∆, n− dr (2− δ)ε
δ + ε

<
2 + ε

δ + ε
.

Then the above limit is zero; that is, 〈u, g〉 = 0 for every g ∈ S (Fn). Thus,

we have u = 0. The lemma is proved. �

Lemma A.2. Consider a finite-dimensional F -vector space X , a nonzero

homogeneous polynomial ∆ on X , and a real number r > 0. Denote by Ω ⊆ X
the nonvanishing locus of ∆. Let f be a nonzero locally constant function on Ω

that is locally integrable on X , satisfying the following condition : there exists

a decomposition X = X1 ⊕X2 ⊕X3 with dimF X1 = dimF X2 > 0 such that

(1) Ω is disjoint from X1 ⊕X3 ∪X2 ⊕X3;

(2) |∆(αx1, α
−1x2, x3)|F = |∆(x1, x2, x3)|F for every α ∈ F× and xi ∈ Xi;

(3) |f(αx1, α
−1x2, x3)| = |f(x1, x2, x3)| for every α ∈ F× and xi ∈ Xi;
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(4) for every ε > 0, we have
∫
F×\Ω |f(x)|2+ε|∆(x)|rεF dx < ∞, where the

action of α ∈ F× on Ω is given by α · (x1, x2, x3) = (αx1, α
−1x2, x3).

Then the support of the Fourier transform of f , as a distribution on X∨, cannot

be contained in an analytic hypersurface.

Proof. Let n > 1 be the dimension of X. Without lost of generality, we

may identify the decomposition X = X1 ⊕ X2 ⊕ X3 with Fn = Fm ⊕ Fm ⊕
Fn−2m, identify X∨ with Fn, take dx to be the measure that gives OF volume

1, and assume that ψF has conductor OF . For integers N and l > 0, we put

Bl
N := (pNF )l and AlN := Bl

N \Bl
N+1, which are open compact subsets of F l. It

is clear that the natural map $Z×(Am0 ×Fm×Fn−2m)→Fn given by the action

in (4) is injective, and by (1) that Ω is contained in $Z · (Am0 ×Fm×Fn−2m).

Let u be the Fourier transform of f . For integers N > 0, put χN :=

qNn1BnN ∈ S (Fn), and put uN := u ∗ χN , which is a locally constant function

on Fn. Take three real numbers 0 6 δ < γ < 1 and ε > 0 to be determined

later. Let p > 2 satisfy 1
2−γ + 1

p = 1. Since the Fourier transform is a bounded

operator from L2−γ(Fn) to Lp(Fn), we have

‖uN‖2−γp 6 Cγ

∫
Fn
|f(x)|2−γ |”χN (x)|2−γ dx

= Cγ

∫
Fn
|f(x)|2−γ |1Bn−N (x)|2−γ dx

= Cγ

∫
Bn−N

|f(x)|2−γ dx

for some constant Cγ > 0 depending only on γ. By (3) and Hölder’s inequality,
we have∫

Bn−N

|f(x)|2−γ dx

=
∞∑

i=−2N
(i+ 2N + 1)

∫
Am0 ×Ami ×B

n−2m
−N

|f(x)|2−γ dx

6
∞∑

i=−2N
(i+ 2N + 1)

Ç∫
Am0 ×Ami ×B

n−2m
−N

dx

å γ−δ
2−δ
Ç∫

Am0 ×Ami ×B
n−2m
−N

|f(x)|2−δ dx

å 2−γ
2−δ

6
∞∑

i=−2N
(i+ 2N + 1)(q−imqN(n−2m))

γ−δ
2−δ

Ç∫
Am0 ×Ami ×B

n−2m
−N

|f(x)|2−δ dx

å 2−γ
2−δ

= Cγ,δ · qNn
γ−δ
2−δ

Ç∫
Am0 ×Ami ×B

n−2m
−N

|f(x)|2−δ dx

å 2−γ
2−δ
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for some constant Cγ,δ > 0. Together, we obtain

‖uN‖2−δp 6 C ′γ,δ · q
Nn γ−δ

2−γ ·
∫
Am0 ×Ami ×B

n−2m
−N

|f(x)|2−δ dx(A.3)

for a new constant C ′γ,δ > 0 depending only on γ and δ. By Hölder’s inequality,
we have∫

Am0 ×Ami ×B
n−2m
−N

|f(x)|2−δ dx

6

Ç∫
Am0 ×Ami ×B

n−2m
−N

|∆(x)|−r
(2−δ)ε
δ+ε

F dx

åδ+ε
2+ε
Ç∫

Am0 ×Ami ×B
n−2m
−N

|f(x)|2+ε|∆(x)|rεF dx

å2−δ
2+ε

6

Ç∫
Bn−2N

|∆(x)|−r
(2−δ)ε
δ+ε

F dx

åδ+ε
2+ε
Ç∫

Am0 ×Ami ×B
n−2m
−N

|f(x)|2+ε|∆(x)|rεF dx

å 2−δ
2+ε

.

Let d be the degree of ∆. There exists a real number 0 < ρ∆ < n/d depending

only on ∆ such that as long as r (2−δ)ε
δ+ε < ρ∆, the function |∆(x)|

−r (2−δ)ε
δ+ε

F is

locally integrable. In this case, there exists a constant Cδ,ε > 0 such that∫
Bn−2N

|∆(x)|
−r (2−δ)ε

δ+ε

F dx = Cδ,ε · q2N
Ä
n−dr (2−δ)ε

δ+ε

ä
.

On the other hand, by (4), we haveÇ∫
Am0 ×Ami ×B

n−2m
−N

|f(x)|2+ε|∆(x)|rεF dx

å 2−δ
2+ε

6 C ′δ,ε

for a constant C ′δ,ε > 0. Thus, continuing (A.3), we have a constant Cγ,δ,ε > 0

depending only on γ, δ, ε such that

‖uN‖2−δp 6 Cγ,δ,ε · qN
Ä
n γ−δ

2−γ+2
Ä
n−dr (2−δ)ε

δ+ε

ä
δ+ε
2+ε

ä
(A.4)

holds for all N > 0.

Now suppose that the support of u is contained in an analytic hyper-

surface U . For N > 0, put UN := U + Bn
N ⊆ Fn as a tubular neighbourhood

of U , which contains the support of uN . Then for every g ∈ S (Fn), we have

lim
N→∞

qN
∫
UN

g(x) dx =

∫
U

g(y) dy.(A.5)



CHOW GROUPS AND L-DERIVATIVES OF AUTOMORPHIC MOTIVES 887

Then by Hölder’s inequality, (A.4), and (A.5), we have

|〈u, g〉|2−δ = lim
N→∞

|〈uN , g〉|2−δ

6 lim
N→∞

‖uN‖2−δp ·
Ç∫

UN

|g(x)|2−γ dx

å 2−δ
2−γ

6 Cγ,δ,ε · lim
N→∞

q
N
Ä
n γ−δ

2−γ+2
Ä
n−dr (2−δ)ε

δ+ε

ä
δ+ε
2+ε
− 2−δ

2−γ

ä
·
Ç
qN
∫
UN

|g(x)|2−γ dx

å 2−δ
2−γ

= Cγ,δ,ε ·
Å∫

U

|g(y)|2−γ dy

ã 2−δ
2−γ

· lim
N→∞

q
N
Ä
n γ−δ

2−γ+2
Ä
n−dr (2−δ)ε

δ+ε

ä
δ+ε
2+ε
− 2−δ

2−γ

ä
.

Choose suitable γ, δ, ε such that

r
(2− δ)ε
δ + ε

< ρ∆, n
γ − δ
2− γ

+ 2

Å
n− dr (2− δ)ε

δ + ε

ã
δ + ε

2 + ε
<

2− δ
2− γ

.

Then the above limit is zero; that is, 〈u, g〉 = 0 for every g ∈ S (Fn). Thus,

we have u = 0. The lemma is proved. �

Appendix B. Remarks on Beilinson’s non-archimedean local indices

In this appendix, we review Beilinson’s notion of non-archimedean local in-

dices between algebraic cycles [Bĕı87] and make some complementary remarks.

Let K be a non-archimedean local field, with the ring of integers OK and

the residue field k. Take a rational prime ` that is invertible on k. Let X be a

smooth projective scheme over K of pure dimension n − 1. For every integer

d > 0, we have the cycle class map

clX,` : Zd(X)→ H2d(X,Q`(d)),

whose kernel we denote by Zd(X)〈`〉.

Remark B.1. A priori, Zd(X)〈`〉 depends on the rational prime `. However,

if K is of characteristic zero and we assume the monodromy-weight conjecture

for X, then one can replace clX,` by the geometric cycle class map, hence

Zd(X)〈`〉 does not depend on `.

For a Zariski closed subset Z of X, we denote by ZdZ(X) the subgroup of

Zd(X) consisting of cycles whose support is contained in Z.
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Definition B.2. For every pair of integers d1, d2 > 0 satisfying d1 +d2 = n,

we define the subgroups

Zd1,d2(X) :=
∑
Z1,Z2

Zd1
Z1

(X)C × Zd2
Z2

(X)C ⊆ Zd1(X)C × Zd2(X)C,

Zd1,d2(X)〈`〉 :=
∑
Z1,Z2

(Zd1
Z1

(X)C ∩ Zd1(X)
〈`〉
C )× (Zd2

Z2
(X)C ∩ Zd2(X)

〈`〉
C )

⊆ Zd1(X)C × Zd2(X)C,

where the sum is taken over all pairs (Z1, Z2) of disjoint Zariski closed subsets

of X. It is clear that Zd1,d2(X)〈`〉 is stable under switching the two factors.

Take a pair of integers d1, d2 > 0 satisfying d1 + d2 = n. In [Bĕı87, §2],

Beilinson defined a map

〈 , 〉`X,K : Zd1,d2(X)〈`〉 → C⊗Q Q`(B.1)

called local index, satisfying the following properties:

• its restriction to every subspace

(Zd1
Z1

(X)C ∩ Zd1(X)
〈`〉
C )× (Zd2

Z2
(X)C ∩ Zd2(X)

〈`〉
C )

is complex linear in the first variable;

• 〈 , 〉`X,K is conjugate symmetric.

We briefly recall the definition. Take a pair (c1, c2) ∈ Zd1,d2(X)〈`〉. By

linearity, we may assume c1 ∈ Zd1
Z1

(X) and c2 ∈ Zd2
Z2

(X) with Z1 ∩Z2 = ∅. For

i = 1, 2, put Ui := X \ Zi. Then we have the refined cycle class clZiX,`(ci) ∈
H2di
Zi

(X,Q`(di)), which goes to 0 under the natural map H2di
Zi

(X,Q`(di)) →
H2di(X,Q`(di)). Thus, we can choose a class γi ∈ H2di−1(Ui,Q`(di)) that goes

to clZiX,`(ci) under the coboundary map H2di−1(Ui,Q`(di)) → H2di
Zi

(X,Q`(di)).

Then we define 〈c1, c2〉`X,K to be the image of γ1∪γ2 under the composite map

H2n−2(U1 ∩ U2,Q`(n))→ H2n−1(X,Q`(n))
TrX−−→ H1(SpecK,Q`(1)) = Q`,

in which the first map is the coboundary in the Mayer–Vietoris exact sequence

for the covering X = U1 ∪ U2. It is easy to check that 〈c1, c2〉`X,K does not

depend on the choices of γ1, γ2, and that 〈c1, c2〉`X,K = 〈c2, c1〉`X,K .

Lemma B.3. Take a pair (c1, c2) ∈ Zd1,d2(X)〈`〉.

(1) Let K ′ be a finite extension of K . Put X ′ := X ⊗K K ′ regarded as a

scheme over K ′. Then we have (c′1, c
′
2) ∈ Zd1,d2(X ′)〈`〉 and 〈c′1, c′2〉`X′,K′ =

〈c1, c2〉`X,K , where c′i is the restriction of ci on X ′ for i = 1, 2.

(2) Let u : X ′ → X be a finite étale morphism. Then we have (c′1, c
′
2) ∈

Zd1,d2(X ′)〈`〉 and 〈c′1, c′2〉`X′,K = deg u · 〈c1, c2〉`X,K , where c′i is the re-

striction of ci on X ′ for i = 1, 2.
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Proof. In both statements, it is clear that (c′1, c
′
2) ∈ Zd1,d2(X ′)〈`〉.

Part (1) follows from the commutative diagram

H2n−2(U1 ∩ U2,Q`(n)) //

��

H2n−1(X,Q`(n))
TrX //

��

H1(SpecK,Q`(1))

��

Q`

H2n−2(U ′1 ∩ U ′2,Q`(n)) // H2n−1(X ′,Q`(n))
TrX′// H1(SpecK ′,Q`(1)) Q`,

in which U ′i is the restriction of Ui on X ′ and the construction of the local

index.

Part (2) follows from the commutative diagram

H2n−2(U1 ∩ U2,Q`(n)) //

u∗

��

H2n−1(X,Q`(n))
TrX //

u∗

��

H1(SpecK,Q`(1))

deg u·id
��

H2n−2(U ′1 ∩ U ′2,Q`(n)) // H2n−1(X ′,Q`(n))
TrX′ // H1(SpecK,Q`(1)),

in which U ′i is the restriction of Ui on X ′ and the construction of the local

index. �

In what follows, π : X → SpecOK is a projective morphism such that

X ⊗OK K = X. We put Y := X ⊗OK k.

Lemma B.4. Consider elements c1 ∈ Zd1
Z1

(X) and c2 ∈ Zd2
Z2

(X) with Z1 ∩
Z2 = ∅. For every β1 ∈ H2d1

Y ∪Z1
(X ,Q`(d1)) whose image in H2d1

Z1
(X,Q`(d1))

coincides with clZ1
X,`(c1) and whose image in H2d1(X ,Q`(d1)) vanishes, and for

every β2 ∈ H
2d2−2(n−1)
Y ∪Z2

(X , π!Q`(d2 − n+ 1)) whose image in

H
2d2−2(n−1)
Z2

(X,π!Q`(d2 − n+ 1)) = H2d2
Z2

(X,Q`(d2))

coincides with clZ2
X,`(c2), the image of β1 ∪ β2 ∈ H2

Y (X , π!Q`(1)) under the

trace map H2
Y (X , π!Q`(1)) → H2

Spec k(SpecOK ,Q`(1)) = Q` coincides with

〈c1, c2〉`X,K .

This is claimed in [Bĕı87, Lemma-definition 2.1.1] without proof. For

completeness, we include a proof here (though it is straightforward).

Proof. Before the proof, let us make a remark on cup products. Let S be

a Noetherian scheme on which ` is invertible. Given F,G,H ∈ Db(S,Q`), the

bounded derived category of `-adic sheaves on S, together with a map

κ : F
L
⊗G→ H,

we have a cup product map

∪κ : Hi(S, F )×Hj(S,G)→ Hi+j(S,H)
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for integers i and j, which is the composition of the cup product for (hy-

per)cohomology

Hi(S, F )×Hj(S,G)→ Hi+j(S, F
L
⊗G)

and the induced map Hi+j(S, κ) : Hi+j(S, F
L
⊗G)→ Hi+j(S,H). In particular,

if we have maps f : F → F ′ and h : H → H ′ rendering the diagram

F
L
⊗G κ //

f⊗id

��

H

h

��
F ′

L
⊗G κ′ // H ′

commutative (in Db(S,Q`)), then the induced diagram

Hi(S, F )×Hj(S,G)
∪κ //

Hi(S,f)×id
��

Hi+j(S,H)

Hi+j(S,h)
��

Hi(S, F ′)×Hj(S,G)
∪κ′ // Hi+j(S,H ′)

commutes.

Put Ui := X \ Zi for i = 1, 2 as before. For i = 1, 2, choose a class

γi ∈ H2di−1(Ui,Q`(di)) that goes to clZiX,`(ci) under the coboundary map

H2di−1(Ui,Q`(di))→ H2di
Zi

(X,Q`(di)).

Denote by 〈γ1, c2〉, the image of

γ1 ∪ clZ2
X,`(c2) ∈ H2n−1

Z2
(U1,Q`(n)) = H2n−1

Z2
(X,Q`(n))

under the composite map

H2n−1
Z2

(X,Q`(n))→ H2n−1(X,Q`(n))
TrX−−→ H1(SpecK,Q`(1)) = Q`.

We break the proof into two steps:

(1) 〈γ1, c2〉 = 〈c1, c2〉`X,K ;

(2) the image of β1 ∪ β2 ∈ H2
Y (X , π!Q`(1)) under the trace map

H2
Y (X , π!Q`(1))→ Q`

coincides with 〈γ1, c2〉.
For (1), it is easy to see that the coboundary map H2n−2(U1∩U2,Q`(n))→

H2n−1(X,Q`(n)) in the Mayer–Vietoris exact sequence is the composition of

the coboundary map δ : H2n−2(U1 ∩ U2,Q`(n)) → H2n−1
Z2

(U1,Q`(n)) in the

Gysin sequence and the natural map H2n−1
Z2

(U1,Q`(n)) = H2n−1
Z2

(X,Q`(n)) →
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H2n−1(X,Q`(n)). Thus, it suffices to show that the following diagram com-

mutes:

H2d1−1(U1,Q`(d1))×H2d2−1(U2,Q`(d2)) //

id×δ
��

H2n−2(U1 ∩ U2,Q`(n))

δ
��

H2d1−1(U1,Q`(d1))×H2d2
Z2

(X,Q`(d2)) // H2n−1
Z2

(U1,Q`(n)).

(B.2)

Denote morphisms ιi : Ui → X and i : Zi → X for i = 1, 2, and ι : U1∩U2 → X.

Then in view of the remark on the cup products, the first row of (B.2) is in-

duced by the natural map

ι1∗ι
∗
1Q`(d1)

L
⊗ ι2∗ι∗2Q`(d2)→ ι∗ι

∗Q`(n),

and the second row of (B.2) is induced by the map

ι1∗ι
∗
1Q`(d1)

L
⊗ 2!

!
2Q`(d2)→ 2!

!
2ι
∗
1Q`(n),

which is the cone (of columns) of the natural commutative diagram

ι1∗ι
∗
1Q`(d1)

L
⊗Q`(d2) //

��

ι1∗ι
∗
1Q`(n)

��
ι1∗ι
∗
1Q`(d1)

L
⊗ ι2∗ι∗2Q`(d2) // ι∗ι

∗Q`(n)

in Db(X,Q`). It follows that (B.2) commutes. In particular, 〈c1, c2〉`X,K does

not depend on the choices of γ1 and γ2, which justifies the notation.

For (2), we may assume that β1 is the coboundary of γ1. We have the

commutative diagram

H1(X,π!Q`(1))
TrX //

��

H1(SpecK,Q`(1))

��
H2
Y (X , π!Q`(1))

TrX // H2
Spec k(SpecOK ,Q`(1))

for the trace maps. Thus, as H1(X,π!Q`(1)) ' H2n−1(X,Q`(n)), it remains to

show that the diagram

H2d1−1(U1,Q`(d1))×H
2d2−2(n−1)
Y ∪Z2

(X , π!Q`(d2 − n+ 1)) //

δ×id
��

H1
Z2

(U1, π
!Q`(1))

δ

��
H2d1
Y ∪Z1

(X ,Q`(d1))×H
2d2−2(n−1)
Y ∪Z2

(X , π!Q`(d2 − n+ 1)) // H2
Y (X , π!Q`(1))

commutes. The argument is similar to (1), which we leave to the readers.

The lemma is proved. �
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Remark B.5. In Lemma B.4, when X is regular, the natural map

π!Q`[2− 2n](1− n)→ Q`

is an isomorphism, which is a consequence of the absolute purity theorem

[Fuj02].

Now we provide a refined method to compute (B.1) in the presence of a

regular model of X. Until the end of this section, X will be regular.

We first review some constructions from [GS87]. For every Zariski closed

subset Z of X , we have the K-group KZ0 (X ) of complexes with support in Z
defined in [GS87, §1.1], equipped with the codimension filtration

· · · ⊃ Fd−1KZ0 (X ) ⊃ FdKZ0 (X ) ⊃ Fd+1KZ0 (X ) ⊃ · · · .

We have

• the pushforward map π∗ : KY
0 (X )→ KSpec k

0 (SpecOK) = K0(Spec k);

• for Z ′ ⊆ Z, a natural linear map KZ
′

0 (X ) → KZ0 (X ), which preserves the

codimension filtration;

• a cup-product map ∪ : KZ1
0 (X )×KZ2

0 (X )→ KZ1∩Z2
0 (X );

• a natural linear map

[ ] :
⊕
d′>d

Zd
′
Z (X )→ FdKZ0 (X )(B.3)

sending a closed subscheme Z ′ of X contained in Z to the class of the

structure sheaf OZ′ .

See [GS87, §§1, 5] for more details.

Note that since X is regular, KZ0 (X ) coincides with Quillen’s K-theory

with support. (See the proof of [GS87, Th. 8.2].) Then by [Gil81, Def. 2.34(ii)]

in which we take the base scheme S to be SpecOK and Γ to be the `-adic

cohomology theory, we obtain the d-th Chern class map

clZX ,` : FdKZ0 (X )→ H2d
Z (X ,Q`(d))

for every integer d > 0.

For the generic fiber X, we have K-groups KZ
0 (X) for Zariski closed subsets

Z of X with similar properties as well. The following lemma is probably known,

but we cannot find an exact reference.

Lemma B.6. For every c ∈ ZdZ(X), the element clZX,`([c]) ∈ H2d
Z (X,Q`(d))

coincides with the refined cycle class clZX,`(c) of c.

Proof. We may assume Z irreducible and c = Z. Let Z ′ be the smooth lo-

cus of Z over K and put X ′ := X\(Z\Z ′). As a consequence of the semi-purity

theorem [Fuj02, §8], the restriction map H2d
Z (X,Q`(d))→ H2d

Z′(X
′,Q`(d)) is an
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isomorphism. Thus, we may assume Z smooth over K as well. Then the

lemma follows from [Gil81, Th. 3.1] (with S = SpecK and k = q = 0). �

Definition B.7. Let Z1 and Z2 be two Zariski closed subsets Z of X sat-

isfying Z1 ∩ Z2 ⊆ Y . We define a pairing

KZ1
0 (X )C ×KZ2

0 (X )C → C
(C1, C2) 7→ C1.C2

that is complex linear in the first variable, conjugate complex linear in the

second variable, and such that for Ci ∈ KZi0 (X ) with i = 1, 2, we have

C1.C2 := χ (π∗(C1 ∪ C2)) ,

where χ denotes the Euler characteristic function on K0(Spec k). Note that as

Z1 ∩ Z2 ⊆ Y , C1 ∪ C2 can be regarded as element in KY
0 (X )C.

Lemma B.8. Let Z1 and Z2 be two Zariski closed subsets of X satisfying

Z1∩Z2 ⊆ Y . For Ci ∈ FdiKZi0 (X ) with i = 1, 2, C1.C2 coincides with the image

of clZ1
X ,`(C1) ∪ clZ2

X ,`(C2) ∈ H2n
Z1∩Z2

(X ,Q`(n)) under the natural composite map

H2n
Z1∩Z2

(X ,Q`(n))→ H2n
Y (X ,Q`(n))

π∗−→ H2
Spec k(SpecOK ,Q`(1)) = H0(Spec k,Q`) = Q`.

Proof. By [GS87, Prop. 5.5], we have C1 ∪ C2 ∈ FnKZ1∩Z2
0 (X )Q. By (the

same proof of) [Gil81, Prop. 2.35], clZ1
X ,`(C1)∪clZ2

X ,`(C2) and clZ1∩Z2
X ,` (C1∪C2) have

the same image in H2n
Z1∩Z2

(X ,Q`(n)).22 Since the map Zn(X )Q → FnKY
0 (X )Q

is surjective, the diagram

FnKY
0 (X )Q

clYX ,` //

π∗
��

H2n
Y (X ,Q`(n))

π∗

��
F1KSpec k

0 (SpecOK)Q
clSpec k

SpecOK,` // H2
Spec k(SpecOK ,Q`(1))

22Although [Gil81, Prop. 2.35] only implies the statement when Z1 = Z2, its proof works

more generally. In fact, in the proof of [Gil81, Prop. 2.35], if Ci is represented by a map

[αi] : S 0
Zi → ΩBQPX , then the product C1 ∪ C2 is represented by the composite map

S 0
Z1∩Z2

= S 0
Z1
∧S 0

Z2
→ ΩBQPX ∧ ΩBQPX

µ−→ ΩBQPX ;

the remaining argument is same.
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commutes. Thus, the proposition follows since the diagram

F1KSpec k
0 (SpecOK)Q

clSpec k
SpecOK,` //

=

��

H2
Spec k(SpecOK ,Q`(1))

=

��
K0(Spec k)Q

clSpec k,` //

χ

��

H0(Spec k,Q`)

=

��
Q // Q`

commutes. �

Definition B.9. For an element c ∈ Zd(X)C, we say that an element

C ∈ FdK
Y ∪supp(c)
0 (X )C is an extension of c if C|X ∈ FdK0(X)C coincides with

[c] under the map (B.3), and that C is an `-flat extension if the image of

cl
Y ∪supp(c)
X ,` (C) in H2d(X ,Q`(d))⊗Q C vanishes.

Proposition B.10. Consider a pair (c1, c2) ∈ Zd1,d2(X)〈`〉 satisfying

supp(ci) ∩ supp(c2) = ∅. If Z1 and Z2 are two Zariski closed subsets of X
satisfying Z1 ∩Z2 ⊆ Y , and Ci ∈ FdiKZi0 (X )C is an extension of ci for i = 1, 2

in which at least one is `-flat, then we have

〈c1, c2〉`X,K = C1.C2.

In particular, when π is smooth, we can take Ci to be the one given by the

Zariski closure of ci in X via (B.3), hence 〈c1, c2〉`X,K belongs to C and is

independent of `.

Proof. By Lemma B.6, for i = 1, 2, the image in the cycle class of clZiX ,`(Ci)
in H2di

Zi∩X(X,Q`(di))⊗QC coincides with clZi∩XX,` (ci). Without lost of generality,

we assume that C1 is `-flat. Then the lemma follows from Lemma B.8, and

Lemma B.4 with βi := clZiX ,`(Ci) for i = 1, 2 (together with Remark B.5). �

Remark B.11. Suppose X admits smooth projective reduction over OK .

Then the source of (B.1) is independent of `. Moreover, by Proposition B.10,

the map (B.1) takes value in C and is independent of `. Thus, in this case,

(B.1) makes sense for an arbitrary rational prime ` of which it is independent.

In the remaining discussion, we only consider the case where n = 2r for

some integer r > 1, and d1 = d2 = r. We say that a correspondence

t : X p←− X ′ q−→ X

of X is étale if both p and q are finite étale. In what follows, we take a subfield

L of C.
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Definition B.12. We say that an L-étale correspondence t, that is, an

L-linear combination of étale correspondences, of X is `-tempered if t∗ annihi-

lates H2r(X ,Q`(r))⊗Q L.

Proposition B.13. Let t be an `-tempered L-étale correspondence of X .

Then for every pair (c1, c2)∈Zr(X)C×Zr(X)C satisfying supp(t∗c1)∩supp(t∗c2)

= ∅, we have (t∗c1, t
∗c2) ∈ Zr,r(X)〈`〉 and

〈t∗c1, t
∗c2〉`X,K = t∗C1.t

∗C2,

where Ci ∈ FrK
Y ∪supp(ci)
0 (X )C is an arbitrary extension of ci in X for i = 1, 2.

In particular, we have 〈t∗c1, t
∗c2〉`X,K ∈ C.

Proof. For i = 1, 2, put Zi := supp(ci), Z
t
i := supp(t∗ci), and

βi := clY ∪ZiX ,` (Ci) ∈ H2r
Y ∪Zi(X ,Q`(r))⊗Q C.

Note that we have the commutative diagram

H2r
Y ∪Zi(X ,Q`(r))⊗Q L //

t∗ ��

H2r(X ,Q`(r))⊗Q L
t∗

��
H2r
Y ∪Zti

(X ,Q`(r))⊗Q L // H2r(X ,Q`(r))⊗Q L

induced by t. Since t is `-tempered, the image of t∗βi in H2r(X ,Q`(r)) ⊗Q C
vanishes. Now for i = 1, 2, since t∗βi = cl

Y ∪Zti
X ,` (t∗Ci), we know that t∗Ci is an

`-flat extension of t∗ci. In particular, we have (t∗c1, t
∗c2) ∈ Zr,r(X)〈`〉. Finally,

the formula for 〈t∗c1, t
∗c2〉`X,K follows from Proposition B.10. �

Now we provide a criterion for an L-étale correspondence to be `-tempered.

Proposition B.14. Put Y0 := Y red, the induced reduced subscheme of Y .

Suppose that we have a finite stratification Y0 ⊃ Y1 ⊃ · · · of Zariski closed

subsets such that Y ◦j := Yj \Yj+1 is regular and has pure codimension nj > 1 in

X for j > 0. If t is an L-étale correspondence of X stabilizing the stratification

Y0 ⊃ Y1 ⊃ · · · and such that

(1) t∗ annihilates H2r(X,Q`(r))⊗Q L;

(2) t∗ annihilates Hi(Y ◦j ⊗k Fp,Q`)⊗Q L for every integer i 6 2r − 2nj and

every j,

then some positive power of t annihilates H2r(X ,Q`(r))⊗Q L.

Proof. It suffices to prove that (tm)∗ annihilates H2r
Y (X ,Q`(r)) ⊗Q L for

some integer m > 1, since then tm+1 is `-tempered.

We prove by decreasing induction on j that (tmj )∗ annihilates the space

H2r
Yj

(X ,Q`(r))⊗Q L for some integer mj > 1. We have

H2r
Yj+1

(X ,Q`(r))⊗Q L→ H2r
Yj (X ,Q`(r))⊗Q L→ H2r

Y ◦j
(X \ Yj+1,Q`(r))⊗Q L.
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As Y ◦j is a regular closed subscheme of the regular scheme X \ Yj+1, by the

absolute purity theorem [Fuj02], we have

H2r
Y ◦j

(X \ Yj+1,Q`(r)) ' H2r−2nj (Y ◦j ,Q`(r − nj)).

By condition (2) and the Hochschild–Serre spectral sequence, we know that

(t2)∗ annihilates H2r−2nj (Y ◦j ,Q`(r − nj)) ⊗Q L. Thus, we may take mj =

mj+1 + 2. In particular, (tm0)∗ annihilates H2r
Y0

(X ,Q`(r))⊗Q L, which is same

as H2r
Y (X ,Q`(r))⊗Q L. �

Corollary B.15. Let X and L be as above. Let S be a ring of étale

correspondences of X , and m a maximal ideal of SL.

(1) If (H2d(X ,Q`(d)) ⊗Q L)m = 0, then there exists an `-tempered element

in SL \m.

(2) Suppose that we have a finite stratification Y0 ⊃ Y1 ⊃ · · · of Zariski

closed subsets that is stabilized by the action of S, such that Y ◦j := Yj \
Yj+1 is regular and has pure codimension nj > 1 in X for j > 0. If

• (H2r(X,Q`(r))⊗Q L)m = 0 and

• (Hi(Y ◦j ⊗k Fp,Q`) ⊗Q L)m = 0 for every integer i 6 2r − 2nj and

every j,

then (H2d(X ,Q`(d))⊗Q L)m = 0.

Proof. For (1), since H2r(X ,Q`(r)) is of finite dimension over Q`, it follows

that H2r(X ,Q`(r)) ⊗Q L is a finitely generated SL-module. Then (1) follows

from Definition B.12.

For (2), since both H2r(X,Q`(r)) and
⊕

i<2r−1

⊕
j Hi(Y ◦j ⊗k Fp,Q`) are

of finite dimension over Q`, it follows that both H2r(X,Q`(r)) ⊗Q L and⊕
i<2r−1

⊕
j Hi(Y ◦j ⊗k Fp,Q`) ⊗Q L are finitely generated SL-modules. Then

there exists t ∈ SL \ m satisfying the two conditions in Proposition B.14. By

the same proposition, some power of t annihilates H2d(X ,Q`(d)) ⊗Q L, which

implies (H2d(X ,Q`(d))⊗Q L)m = 0. Thus, (2) follows. �
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[Bĕı87] A. Bĕılinson, Height pairing between algebraic cycles, in Current

Trends in Arithmetical Algebraic Geometry (Arcata, Calif., 1985), Con-

temp. Math. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 1–

24. MR 0902590. Zbl 0624.14005. https://doi.org/10.1090/conm/067/

902590.

http://www.ams.org/mathscinet-getitem?mr=2066426
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1083.42005
https://doi.org/10.1007/s00041-004-0986-4
http://www.ams.org/mathscinet-getitem?mr=0902590
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0624.14005
https://doi.org/10.1090/conm/067/902590
https://doi.org/10.1090/conm/067/902590


CHOW GROUPS AND L-DERIVATIVES OF AUTOMORPHIC MOTIVES 897

[Blo84] S. Bloch, Algebraic cycles and values of L-functions, J. Reine Angew.

Math. 350 (1984), 94–108. MR 0743535. Zbl 0527.14008. https://doi.

org/10.1515/crll.1984.350.94.

[BW00] A. Borel and N. Wallach, Continuous Cohomology, Discrete Sub-

groups, and Representations of Reductive Groups, second ed., Math. Surv.

Monogr. 67, Amer. Math. Soc., Providence, RI, 2000. MR 1721403.

Zbl 0980.22015. https://doi.org/10.1090/surv/067.

[BWR15] J. H. Bruinier and M. Westerholt-Raum, Kudla’s modularity con-

jecture and formal Fourier-Jacobi series, Forum Math. Pi 3 (2015), e7,

30. MR 3406827. Zbl 1376.11032. https://doi.org/10.1017/fmp.2015.6.

[Car12] A. Caraiani, Local-global compatibility and the action of monodromy on

nearby cycles, Duke Math. J. 161 no. 12 (2012), 2311–2413. MR 2972460.

Zbl 1405.22028. https://doi.org/10.1215/00127094-1723706.

[CS17] A. Caraiani and P. Scholze, On the generic part of the cohomology of

compact unitary Shimura varieties, Ann. of Math. (2) 186 no. 3 (2017),

649–766. MR 3702677. Zbl 1401.11108. https://doi.org/10.4007/annals.

2017.186.3.1.

[EL20] E. Eischen and Z. Liu, Archimedean zeta integrals for unitary groups,

2020. arXiv 2006.04302.

[Fuj02] K. Fujiwara, A proof of the absolute purity conjecture (after Gabber),

in Algebraic Geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math.

36, Math. Soc. Japan, Tokyo, 2002, pp. 153–183. MR 1971516. Zbl 1059.

14026. https://doi.org/10.2969/aspm/03610153.

[GGP12] W. T. Gan, B. H. Gross, and D. Prasad, Symplectic local root

numbers, central critical L values, and restriction problems in the rep-

resentation theory of classical groups, in Sur les Conjectures de Gross et
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