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Chow groups and L-derivatives of
automorphic motives for unitary groups

By CHAO L1 and YIFENG LIU

Abstract

In this article, we study the Chow group of the motive associated to a
tempered global L-packet 7 of unitary groups of even rank with respect to a
CM extension, whose global root number is —1. We show that, under some
restrictions on the ramification of =, if the central derivative L'(1/2,7) is
nonvanishing, then the m-nearly isotypic localization of the Chow group
of a certain unitary Shimura variety over its reflex field does not vanish.
This proves part of the Beilinson—Bloch conjecture for Chow groups and
L-functions, which generalizes the Birch and Swinnerton-Dyer conjecture.
Moreover, assuming the modularity of Kudla’s generating functions of spe-
cial cycles, we explicitly construct elements in a certain m-nearly isotypic
subspace of the Chow group by arithmetic theta lifting, and compute their
heights in terms of the central derivative L'(1/2, ) and local doubling zeta
integrals. This confirms the conjectural arithmetic inner product formula
proposed by one of us, which generalizes the Gross—Zagier formula to higher
dimensional motives.
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1. Introduction

In 1986, Gross and Zagier [GZ86] proved a remarkable formula that relates
the Néron—Tate heights of Heegner points on a rational elliptic curve to the
central derivative of the corresponding Rankin—Selberg L-function. A decade
later, Kudla [Kud97] revealed another striking relation between Gillet-Soulé
heights of special cycles on Shimura curves and derivatives of Siegel Eisenstein
series of genus two, suggesting an arithmetic version of theta lifting and the
Siegel-Weil formula; see, for example, [Kud02], [Kud03]. This was later further
developed in his joint work with Rapoport and Yang [KRY06]. For the higher
dimensional case, in a series of papers starting from the late 1990s, Kudla and
Rapoport developed the theory of special cycles on integral models of Shimura
varieties for GSpin groups in lower rank cases and for unitary groups of arbi-
trary ranks [KR11], [KR14]. They also studied special cycles on the relevant
Rapoport—Zink spaces over non-archimedean local fields. In particular, they
formulated a conjecture relating the arithmetic intersection number of spe-
cial cycles on the unitary Rapoport—Zink space to the first derivative of local
Whittaker functions [KR11, Conj. 1.3].

In his thesis work [Liulla], [Liullb], one of us studied special cycles as
elements in the Chow group of the unitary Shimura variety over its reflex field
(rather than in the arithmetic Chow group of a certain integral model) and the
Beilinson—Bloch height of the arithmetic theta lifting (rather than the Gillet—
Soulé height). In particular, in the setting of unitary groups, he proposed
an explicit conjectural formula for the Beilinson—Bloch height in terms of the
central L-derivative and local doubling zeta integrals. Such a formula is com-
pletely parallel to the Rallis inner product formula [Ral84], which computes the
Petersson inner product of the global theta lifting, hence was named arithmetic
inner product formula in [Liulla], and can be regarded as a higher dimensional
generalization of the Gross—Zagier formula.! In the case of U(1,1) over an ar-
bitrary CM extension, such a conjectural formula was completely confirmed in
[Liullb], while the case for U(r,r) with r > 2 is significantly harder. Recently,

!By “generalization of the Gross—Zagier formula,” we simply mean that they are both for-
mulae relating Beilinson—Bloch heights of special cycles and central derivatives of L-functions.
However, from a representation-theoretical point of view, the more accurate generalization
of the Gross—Zagier formula should be the arithmetic Gan—-Gross—Prasad conjecture.
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the Kudla—Rapoport conjecture has been proved by W. Zhang and one of us
in [LZ]; it has become possible to attack the cases for higher rank groups. In
what follows, we will explain our new results on Chow groups of automorphic
motives for unitary groups and the arithmetic inner product formula.

Beilinson—Bloch conjecture. Let E be a number field and X a projective
smooth scheme over F of odd dimension 2r — 1. We have the L-function
L(s,H>"Y(X @ E,Qu(r))) for the middle degree f-adic cohomology of X for
every rational prime ¢, which is conjectured to be meromorphic, independent
of £, and satisfy a functional equation with center s = 0. Let CH"(X)° be the
group of codimension r Chow cycles on X that are homologically trivial (on
X ®@p FE). Then the unrefined Beilinson-Bloch conjecture ([Bei87, Conj. 5.9]
and [Blo84]) predicts that

rank CH" (X)° = ords—o L(s, H" (X @5 E, Qq(r)))

holds for every £, hence in particular, CH"(X)° has finite rank. Note that when
X is an elliptic curve, this recovers the (unrefined) Birch and Swinnerton-Dyer
conjecture.

In fact, this conjecture can also be formulated in terms of Chow mo-
tives. Based on this point of view, we have an equivariant version of the
Beilinson—Bloch conjecture as follows. Suppose that X admits an action of
an algebra T via étale correspondences. Then T acts on both CH"(X)? and
H>~Y(X ®p E,Qu(r)). Let ¢ be a nonzero irreducible finite-dimensional com-
plex representation of T. Then for every ¢ and every embedding Q; — C, we
have the L-function

L(s, Homr (¢, H*" 1 (X ®p E, Qu(r))c))-
Then it is expected that

(1.1)
dim¢ Hom (g, CH™ (X)) = ords—o L(s, Homr (o, H*" Y X ®p E, Qu(r))c))

holds, which can be regarded as the Beilinson-Bloch conjecture for the (con-
jectural Chow) motive Homr (o, h?"~1(X)(r)¢), where h?"~1(X) is the (conjec-
tural Chow) motive of X of degree 2r — 1.

Now we propose a more specific conjecture for unitary Shimura varieties,
guided by the equivariant version of the Beilinson—Bloch conjecture above.

Let E/F be a CM extension of number fields with the complex conjuga-
tion c. We fix an embedding ¢: £ — C and regard E as a subfield of C. Take
an even positive integer n = 2r. We equip W, := E™ with the skew-hermitian
form (with respect to the involution c) given by the matrix (_17" 1’”). Put
G, = U(W,), the unitary group of W,, which is a quasi-split reductive group
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over F. For every non-archimedean place v of F', we denote by K,, C G,(Fy)
the stabilizer of the lattice OF , which is a special maximal subgroup.

We first recall the notation of unitary Shimura varieties. Consider a her-
mitian space V over E of rank n (with respect to the involution c¢) that has
signature (n — 1,1) at the real place of F' induced by ¢ and signature (n,0) at
other real places. Put H := U(V) for its unitary group, which is a reductive
group over F. Note that for all but finitely many places v of F', H, := H®Qp F,
and G, = G, @ F, are isomorphic as reductive groups over F,. We have a
system { X} of Shimura varieties? of dimension n — 1 over E indexed by open
compact subgroups L C H(A%). (See Section 4 for more details.)

Let m be a tempered cuspidal automorphic representation of G,(Ar). By
the endoscopic classification for quasi-split unitary groups, we have the auto-
morphic base change BC(7) of 7, which is an automorphic representation of
GL,(Ag) that is an isobaric sum of mutually non-isomorphic (unitary) cuspi-
dal automorphic representations.

CONJECTURE 1.1. Let 7 be a tempered cuspidal automorphic representa-
tion of G-(Ar), and let V' be a hermitian space over E of rank n that has signa-
ture (n—1, 1) at the real place of F induced by ¢ and signature (n,0) at other real
places. For every irreducible admissible representation 7°° of H(AY) satisfying

(a) 7° =~ m, for all but finitely many non-archimedean places v of F for
which H, ~ G,
(b) Hompyase) (7, lim, Hiz' (X1 /C)) # 0,
the identity

dime Hom g0 (frOO, 1% CH’”(XL)?C) = ord,_1 L(s,ITj(z))

holds. Here, 1l;zec) is the cuspidal factor of BC(m) determined by 7> (see
Lemma 3.15); in particular, ILjzecy = BC(n) if BC(7) is already cuspidal.

In relation with (1.1), we take X to be X, for L such that (7>)* #0, T
to be the Hecke algebra of H(A%) of level L, and g to be (7°°)L. Moreover, in
this case we know that the L-function on the right-hand side of (1.1) coincides
with L(s,IL;(z)) up to a shift by % Thus, Conjecture 1.1 is a special case of
(1.1) after taking limit of L.

In the case when {X} is replaced by classical modular curves, Conjec-
ture 1.1 in fact recovers the (unrefined) Birch and Swinnerton-Dyer conjecture
for rational elliptic curves. See [Gro04, §22] for more details from this point of
view. Conjecture 1.1 was only known in the case of modular/Shimura curves

2When F = Q, we have to replace X, by its canonical smooth toroidal compactification.
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when the analytic rank is at most 1 [GZ86], [Kol90], [Nek07a], [YZZ13], and
partially known in the case of Shimura varieties for U(2) x U(3) when the
analytic rank is exactly 1 [Xuel9].3

Remark 1.2. It should be possible to formulate Conjecture 1.1 using to-
tally positive definite incoherent hermitian spaces (that is, totally positive
definite hermitian spaces over Ap that are not base change from E) and in-
coherent Shimura varieties without fixing an embedding ¢. The notion of in-
coherent spaces was first invented by Kudla (in the quadratic case), which he
called an incoherent collection of quadratic spaces over local fields [Kud97,
Def. 2.1]. Around the similar time, Gross realized that a Shimura curve can be
uniformized at its supersingular points in terms of a collection of quaternion
algebras over the base number field. (See [Gro04] and also [GGP12] for gen-
eralizations.) In their work [YZZ13], Yuan, S. Zhang, and W. Zhang put this
infinite collection of quaternion algebras as a single quaternion algebra over
the adeles as a uniform description of the geometry of Shimura curves and the
representation theory. This viewpoint was later adapted by W. Zhang [Zhal2]
and one of us [Liulla], [Liullb]. In [Zhal9] (which is based on his 2010 talk at
Gross birthday conference), S. Zhang summarizes how one can use the notion
of incoherent quadratic/hermitian spaces to formulate various conjectures that
are arithmetic counterparts of classical period formulae. In particular, there
should exists a compatible system of varieties { X1} over (the abstract field) F
such that for every embedding ¢: E < C, the system {X ®f «(E)} recovers
the usual Shimura varieties defined above Conjecture 1.1; this was explained
in more details in [Gro21]. Based on this observation, one should be able to
formulate Conjecture 1.1 for the system {X} associated to totally positive
definite incoherent hermitian spaces.

Main results. Our main results in this article prove part of Conjecture 1.1

under certain assumptions on E/F and 7. Denote by V%OO) and VI® the set of

archimedean and non-archimedean places of F, respectively. Denote by Vi?l,

Vi;%t, and VZ™ the subsets of V‘}“ of those that are split, inert, and ramified
in E, respectively. For every v € ViP

of F,.

, we denote by ¢, the residue cardinality

Assumption 1.3. Suppose that V}2™ = () and that Vi?l contains all 2-adic
places. In particular, [F' : Q] is even. We consider a cuspidal automorphic
representation 7 of G, (A ) realized on a space V of cusp forms, satisfying the
following:

3Interestingly, the height formula in [Xuel9], which is for the endoscopic case, is obtained
by reducing it to the arithmetic inner product formula for U(1,1).
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(c0)

(1) For every v € V. ’, m, is the holomorphic discrete series representation
of Harish-Chandra parameter {1_7”, 3_7”, e ”T_?’, %‘1}

(2) For every v € Vstl, Ty 18 a principal series.

(3) For every v € V&' m, is either unramified or almost unramified (see
Remark 1.4 below) with respect to K, ,; moreover, if m, is almost un-
ramified, then v is unramified over Q.

(4) For every v € Vil 7, is tempered.

Remark 1.4. We have the following remarks concerning Assumption 1.3:

(1) In (1), by [Sch75, Th. 1.3], the condition for 7, is equivalent to that m,
is a discrete series representation whose restriction to K., contains the
character & . (See Notation 2.3(G5), (G6) for the notation.) Moreover,
one can also describe 7, as the theta lifting of the trivial representation of
the (positive) definite unitary group of rank n; see, for example, [KKO07].

(2) Part (2) will only be used in the proof of Lemma 7.3 in order to quote
a vanishing result from [CS17]. However, in our second article on this
subject [LL21], we have successively removed this assumption by con-
firming the conjecture in Remark 7.4 by proving a stronger vanishing
property.

(3) In (3), the notion of almost unramified representations of G,(F,) at
v € VIt is defined in [Liu21b, Def. 5.3]. Roughly speaking, an irreducible
admissible representation m, of G,(F,) is almost unramified (with re-
spect to K, ) if mlf’” contains a particular character as a module over
ClI;w\Kyu/Ir ], where I, is an Iwahori subgroup contained in K, ,,
and that the Satake parameter of 7, contains the pair {q,, g, '}; it is not
unramified. By [Liu21lb, Th. 1.2], when ¢, is odd, almost unramified
representations are exactly those representations whose local theta lift-
ing to the non-quasi-split unitary group of the same rank 2r has nonzero
invariants under the stabilizer of an almost self-dual lattice.

Suppose that we are in Assumption 1.3. Denote by

e L(s,m) the doubling L-function (see Definition 3.3 for the more precise
definition);

e R, C VSI;PI the (finite) subset for which 7, is ramified;

e S . C Vi}‘%t the (finite) subset for which 7, is almost unramified.

Then we have e(r) = (—1)"F*@+8=l for the global (doubling) root number, so
that the vanishing order of L(s,7) at the center s = % has the same parity
as |Sz| since [F' : Q] is even. The cuspidal automorphic representation
determines a hermitian space V; over Ag of rank n via local theta dichotomy
(such that the local theta lifting of m, to U(V;)(F,) is nontrivial for every
place v of F), unique up to isomorphism, which is totally positive definite and
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satisfies that for every v € V%n, the local Hasse invariant €(V; ®4, F,) =1 if
and only if v € S;; see Proposition 3.6(2).

Now suppose that [S;| is odd, hence ¢(7m) = —1, which is equivalent to
that V; is not the base change of a hermitian space over E. In this case,
we take V' to be the hermitian space of E in the context of Conjecture 1.1,
unique up to isomorphism, satisfying that V, ~ V , for every v € V%n. Let R
be a finite subset of Vi'. We fix a special maximal subgroup L* of H(AJ")
that is the stabilizer of a lattice A? in V ®p AX™. (See Notation 2.2(H6) for
more details.) For a field L, we denote by TF the (abstract) Hecke algebra
L[LM\H (AX™)/L?], which is a commutative L-algebra. When R contains R,
the cuspidal automorphic representation 7 gives rise to a character

& T%ac — Q2

where Q* denotes the subfield of C of algebraic numbers; we put m® = ker y&,
which is a maximal ideal of ']I‘%ac.
The following is the first main theorem of this article.

THEOREM 1.5. Let (m,Vy) be as in Assumption 1.3 with |S;| odd, for
which we assume Hypothesis 6.6. If L/(%,ﬂ’) # 0, that is, ord,_1 L(s,m) = 1,
2

then as long as R satisfies Ry CR and |RN Vi?l| > 2, the nonvanishing
: 0
hﬂ (CHT(XLRLR)QaC)mEF # O
Ly

holds, where the colimit is taken over all open compact subgroups Ly of H(FR).

Remark 1.6. We have the following remarks concerning Theorem 1.5:

(1) For every v € Vf}i,-,n, the local doubling L-function L(s,m,) coincides with
L(s,BC(m,)), where BC(m,) denotes the standard base change of m, to
GL,(Ey). (See Remark 3.4 for more details.) In particular, combining
with the local-global compatibility [KMSW14, Th. 1.7.1], we know that
L(s,m) coincides with the standard L-function of the automorphic base
change of 7.

(2) Since [Sz| is odd, by (1) and Remark 3.16, Conjecture 1.1 predicts the
nonvanishing

ling CH (X 1, 18 )gee [m3] # 0
Ly

when ordsz% L(s,m) =1 (by considering 7°° as the theta lifting of 7°°),
which further implies the nonvanishing in our statement. However, it
is conjectured that CH" (X, LR)%aC is finite dimensional, which implies
that the two types of nonvanishing are equivalent. Thus, our theorem
provides evidence toward Conjecture 1.1. See Theorem 1.7(2) below for
a stronger result under an extra hypothesis.
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(3) Hypothesis 6.6 describes the Galois representation on the m-nearly iso-
typic subspace of the middle degree ¢-adic cohomology hg I H" Y X.®p
E,Qy). See Remark 6.7 for the status of this hypothesis.

(4) In fact, the nonvanishing property we prove is that

ling (SCH" (X ,18) Q) . # 0,
Ly

where SCH"(X,7#)? denotes the subgroup of CH" (X[, 7r)? generated
by special cycles (recalled in Section 4).
(5) It is clear that the field Q* in the statement of the theorem can be
replaced by an arbitrary subfield over which 7 (hence x%) is defined.
(6) The main reason we assume V@™ = () is that the local ingredient [LZ]
only deals with places that are inert in F; we hope to remove this as-
sumption in the future.

Our remaining results rely on Hypothesis 4.5 on the modularity of Kudla’s
generating functions of special cycles, hence are conditional at this moment;
see Remark 4.6.

THEOREM 1.7. Let (m,Vy) be as in Assumption 1.3 with |Sy| odd, for
which we assume Hypothesis 6.6. Assume Hypothesis 4.5 on the modularity of
generating functions of codimension r.

(1) For every
® V1 =®yP1p € Vr and Yo = Xyp2, € Vyr such that for every v € V(OO),
1y and g2, have the lowest weight and satisfy (¢5,, 20)r, = 1;
o O° = @7y € L (V" @F AR) and ¢5° = @,05, € L (V" @p AY),
the identity

(O3 (1), @¢g°(<P2)>bXE

L( oo X0\ C
= —== C[FQ H 371.1“{/” 9011)7()02'07¢11)® (¢2’U) )

bQT( vevin
holds. Here,
® Oy (i) € lim | CH"(X1)Q is the arithmetic theta lifting (Defini-
tion 4.8), which is only well defined under Hypothesis 4.5;
o (@(b?o(gol),@@o(gog))g(ﬂ is the normalized height pairing (Defini-
tion 6.11),* which is constructed based on Beilinson’s notion of
height pairing;

*Strictly speaking, (g (1), Ogso (gag))hXE relies on the choice of a rational prime ¢ and
is a priori an element in C ®q Q¢. However, the above identity implicitly says that it belongs
to C and is independent of the choice of .
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e 09,.(0) is defined in Notation 2.1(F4), which equals L(M,’ (1)) where
M, is the motive associated to G, by Gross [Gro97| and is, in par-
ticular, a positive real number;

o () = (—1)’"2_2’”7772%, which is the exact value of a certain
archimedean doubling zeta integral; and

o 35%% (050, P20, BT @ (939)¢) is the normalized local doubling zeta
integral (see Section 3), which equals 1 for all but finitely many v.

(2) In the context of Conjecture 1.1, take 7 to be the theta lifting of ©°

to H(AY). If L'(3,7) # 0, that is, ordsz% L(s,m) =1, then

Hom g (sz¢) (frw,hgcw(xm%) #0
L
holds.

Remark 1.8. We have the following remarks concerning Theorem 1.7.

(1) Part (1) verifies the so-called arithmetic inner product formula, a con-
jecture proposed by one of us [Liulla, Conj. 3.11].

(2) The arithmetic inner product formula in part (1) is perfectly parallel to
the classical Rallis inner product formula. In fact, suppose that [S;| is
even, hence V; ~ V ®p A for a hermitian space V over E£. We have the
classical theta lifting 40 () where we use standard Gaussian functions
at archimedean places. Then the Rallis inner product formula in this
case reads as

( (o] oo\ C
e )0 oo = 2O T 3 (e 65 (65)),
" veVﬁ“

in which (, )z denotes the Petersson inner product with respect to the
Tamagawa measure on H(Af).

(3) In part (2), the representation 7°° satisfies (a) of Conjecture 1.1. By
Remark 1.6(1) and Remark 3.16, if ords:% L(s,m) =1, then 7°° satisfies
(b) of Conjecture 1.1 as well, and IT;(z) is the unique cuspidal factor
of the automorphic base change of 7 such that ords:% L(s,j(ze0y) = 1.
In particular, part (2) provides evidence toward Conjecture 1.1, which
is more direct than Theorem 1.5 (but is conditional on the modularity
of generating functions).

In the case where R, = (), that is, 7, is either unramified or almost unram-
ified for every v € V , we have a very explicit height formula for test vectors
that are new everywhere.

COROLLARY 1.9. Let (m,Vz) be as in Assumption 1.3 with |Sz| odd, for
which we assume Hypothesis 6.6. Assume Hypothesis 4.5 on the modularity
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of generating functions of codimension r. In the situation of Theorem 1.7(1),
suppose further that
e R, =0
e ] = = E VJ:M (see Notation 2.3(G8) for the precise definition of
the one-dimensional space ,[:]@ of holomorphic new forms) such that for
every v € Vg, (oS, ©p)x, = 1; and
o O7° = ¢p5° = ¢ such that for every v € VI}“, P = Lipoyr-

Then the identity

L'(3,m) NI | ‘(g0 +1)

<@¢°° (90)’ @d)oo (So)g(,E = (_1)T ’ bzr(o) r (qgr—l + 1)(q2r _ 1)

holds.

Remark 1.10. Assuming the conjecture on the injectivity of the étale
Abel-Jacobi map, one can show that the cycle Oy (¢) is a primitive cycle of
codimension 7. By [Bei87, Conj. 5.5], we expect (—1)"(Oge (gp),@d,oo(go)g(’E
> 0 holds, which, in the situation of Corollary 1.9, is equivalent to L’ (%, m) = 0.

Strateqy and structure. The main strategy for the proofs of our main re-
sults is to adopt Beilinson’s notion of height pairing together with various
sophisticated uses of Hecke operators. In [Bei87], Beilinson constructed, under
certain assumptions, a (hermitian) height pairing on CH"(X1)2 valued in C.
Since those assumptions have not been resolved even today, we are not able to
use the full notion of this height pairing. However, after choosing a sufficiently
large prime ¢, Beilinson’s construction gives an unconditional height pairing
on a subspace CHT(XL)g) (a priori depending on ¢) of CH"(X)2 valued in
C (20) Qy.

The candidates for those nonvanishing elements in Theorem 1.5 are Kudla’s
special cycles Z7(¢>°) (which will be recalled in Section 4), which are in general
elements in CH" (X1 )c. We show that there exists an element s € T§.. \m% such

that s* annihilates the quotient space CH" (X)c/ CH" (XL)g>. The existence
of such element allows us to consider the modified cycles s*Zp(¢>°) without
changing their (non)triviality in the localization of CH" (X[)c at mE, moreover
at the same time to talk about their heights.

More precisely, we consider two modified cycles s7Z7, (¢5°) and s5Zr, (¢5°)
as above. When ¢$° ® ¢3° satisfies a certain regularity condition, the two cycles
have disjoint support, hence their height pairing (in the sense of Beilinson) has
a decomposition into so-called local indices according to places u of E. We
mention especially that if u is non-archimedean, then the local index at u is
defined via a winding number on the /-adic cohomology of X; ® g F,, which a
priori has nothing to do with intersection theory. When X ® g F,, has a smooth
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integral model, it is well known that such a winding number can be computed
as the intersection number of integral extensions of the cycles. However, when
X1 ®g E, does not have smooth reduction, there is no general way to compute
the local index. Nevertheless, we show that, under certain assumptions on the
ramification and on the representation 7, the local index between s} Zr, (¢9°)
and s5Z7,(¢5°) can be computed in terms of the intersection number of some
nice extensions of cycles on some nice regular model, after further suitable
translations by elements in Th.. \m2. Eventually, all these local indices turn out
to be (linear combinations of) Fourier coefficients of derivatives of Eisenstein
series (and values of Eisenstein series for finitely many w).

The final ingredient is the Euler expansion of the doubling integral of cusp
forms in 7 against those derivatives of Eisenstein series (and Eisenstein series),
which expresses the height pairing in terms of L’(%, 7) and local doubling zeta
integrals. (In particular, it belongs to C and is independent of £.) An apparent
technical challenge for this approach is to show that there exist test functions
(¢5°, ¢3°) satisfying the regularity condition and yielding nonvanishing local
doubling zeta integrals; this is solved in Proposition 3.13. The proofs for
Theorem 1.7 and Corollary 1.9 follow from a similar strategy.

In Section 2, we collect setups and notation that are running through the
entire article, organized in several groups so that the readers can easily refer
to them. In Section 3, we recall the doubling method in the theory of theta
lifting and prove all necessary results from the representation-theoretical side.
In Section 4, we recall the notation of unitary Shimura varieties, their special
cycles and generating functions. We introduce the important hypothesis on
the modularity of generating functions, assuming which we define arithmetic
theta lifting. In Section 6, we introduce the notion of Beilinson’s height, in
a restricted but unconditional form, together with the decomposition into lo-
cal indices. In Section 5, we introduce a variant of unitary Shimura variety
that admits moduli interpretation, which will only be used in computing lo-
cal indices at various places. In Sections 7, 8, 9, and 10, we compute local
indices at split, inert with self-dual level, inert with almost self-dual level,
and archimedean places, respectively. Finally, in Section 11, we prove our
main results. There are two appendices: Appendix A contains two lemmas in
Fourier analysis that are only used in the proof of Proposition 3.13, and Ap-
pendix B collects some new observations concerning Beilinson’s local indices
at non-archimedean places.

Notation and conventions.
e When we have a function f on a product set A; X --- X A,,, we will

write f(aq,...,an) instead of f((a1,...,an)) for its value at an element
(al,...,am) € Ay X - X A,
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e For a set S, we denote by 1g the characteristic function of S.

e All rings are commutative and unital, and ring homomorphisms preserve
units. However, we use the word algebra in the general sense, which is not
necessarily commutative or unital.

e If a base ring is not specified in the tensor operation ®, then it is Z.

e For an abelian group A and a ring R, we put Ar := A® R as an R-module.

e For an integer m > 0, we denote by 0, and 1,, the null and identity ma-
trices of rank m, respectively. We also denote by w,, the matrix ( 1, Im )

e We denote by c: C — C the complex conjugation. For an element = in a
complex space with a default underlying real structure, we denote by xz°
its complex conjugation.

e For a field K, we denote by K the abstract algebraic closure of K. How-
ever, for aesthetic reason, we will write @p instead of @p and will denote
by F, its residue field. On the other hand, we denote by Q% the algebraic
closure of Q inside C.

e For a number field K, we denote by ¢¥x: K\Axg — C* the standard
additive character, namely, ¥ = 9g o Tr /g in which ¢g: Q\A — C* is
the unique character such that ¥g o (7) = >,

e Throughout the entire article, all parabolic inductions are unitarily nor-
malized.

Acknowledgements. We would like to thank Wei Zhang for helpful dis-
cussion and careful reading of early drafts with many valuable comments and
suggestions for improvement. We also thank Miaofen Chen, Wee Teck Gan,
Benedict Gross, and Shouwu Zhang for helpful comments. Finally, we thank
the anonymous referees for their careful reading and many useful suggestions
and comments. The research of C. L. is partially supported by the NSF grant
DMS-1802269. The research of Y. L. is partially supported by the NSF grant
DMS-1702019, DMS-2000533, and a Sloan Research Fellowship.

2. Running notation

In this section, we collect several groups of more specific notation that
will be used throughout the remaining sections except appendices.

Notation 2.1. Let E/F be a CM extension of number fields, so that c is a
well-defined element in Gal(E/F'). We continue to fix an embedding ¢: E — C.

We denote by u the (archimedean) place of E induced by ¢ and regard E as a
subfield of C via ¢.

(F1) We denote by
e Vr and V%n the set of all places and non-archimedean places of F,
respectively;
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o Vi?l, vintand V'™ the subsets of VA of those that are split, inert,
and ramified in F, respectively;
. Vgﬁ) the subset of Vg of places above ¢ for every place ¢ of Q; and
° VJ?LJ the places of E above V?F.
Moreover,
e for every place u € Vg of E, we denote by u € Vg the underlying
place of F;
e for every v € V%n, we denote by p, the maximal ideal of Op, and
put ¢, == |OF, /pol;
e for every vE€Vp, we put E,:= E®pF, and denote by | |g,: B —C*
the normalized norm character.
(F2) Let m > 0 be an integer.
e We denote by Herm,, the subscheme of Resg,r Maty, m of m-by-m
matrices b satisfying ¢ = b. Put Herm?, := Herm,,, N Resp /F GL,.
e For every ordered partition m = mq + --- + ms with m; a positive
integer, we denote by Oy, ... .m, : Herm,, — Herm,,, x --- x Herm,,,
the morphism that extracts the diagonal blocks with corresponding
ranks.
e In addition we denote by Herm,,(F)* (resp. Herm{, (F)") the sub-
set of Herm,,, (F') of elements that are totally semi-positive definite
(resp. totally positive definite).
(F3) For every u € VSEOO), we fix an embedding ¢,,: E < C inducing u (with
tu = t) and identify E, with C via .
(F4) Let n = ng/p: A% — C* be the quadratic character associated to E/F.
For every v € Vi and every positive integer m, put

m

bmw(s) = [[ L(2s +4,m77).
=1

Put by, (s) = [Toevp Omaw(s)-

(F5) For every element T'€ Herm,,,(Ar), let ¢7: Herm,,(Ar) —C* be given
by the formula 7 (b) = ¥ (tr bT).

(F6) Let R be a commutative F-algebra. A (skew-)hermitian space over
R ®p FE is a free R @ F-module V of finite rank, equipped with a
(skew-)hermitian form ( , )y with respect to the involution c that is
nondegenerate.

Notation 2.2. Throughout the article, we fix an even positive integer
n=2r. Let (V,(, )v) be a hermitian space over Ag of rank n that is to-
tally positive definite.
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(H1) For every commutative A p-algebra R and every integer m > 0, we denote
by

T(x) = ((%i,x;)v); ; € Hermp (R)

the moment matrix of an element x = (x1,...,2y,) € V™ ®a, R.

(H2) For every v € Vg, we put V,, := V ®4, F,, which is a hermitian space
over E,, and define the local Hasse invariant of V, to be €(V,) =
ny((—1)"det V,,) € {£1}, which equals 1 for all but finitely many v. In
what follows, we will abbreviate ¢(V;) as €,. Recall that V' is coherent
(resp. incoherent) if [[, ey, €0 = 1 (resp. [[pev, €0 = —1).

(H3) Let v be a place of F' and m > 0 an integer.

e For T € Herm,,(F,), we put (V,")p :=={z € V" | T(z) =T}, and

(va)reg = U Vo)

TeHerms, (Fy)

e We write .7 (V,") for the space of (complex valued) Bruhat—Schwartz
functions on V,*. When v € V%OO), we have the Gaussian function
¢0 € (V™) given by the formula ¢)(z) = e=27tr7(@),

e We have a Fourier transform map ~: .7 (V,") — # (V") sending ¢
to ¢ defined by the formula

v i=1

v

o(z) = | SW)¥p (Z(%?ﬁ)v) dy,

where dy is the self-dual Haar measure on V,* with respect to ¢g .
e In what follows, we will always use this self-dual Haar measure on
vr.

v

(H4) Let m > 0 be an integer. For T € Herm,, (F'), we put
Diff(T,V) == {v € Vg | (V™) = 0},

which is a finite subset of Vg \Vi?l.

(H5) Take a nonempty finite subset R C Vi that contains V}3™. Let S be the
subset of Vi" \ R consisting of v such that e, = —1, which is contained
in Vint

e,

(H6) We fix a [],cytng Ok, -lattice AR in V ®,, AP? such that for every

v € VIn\ R, A is a subgroup of (A})Y of index ¢l =, where

(A} ={z eV, |vE.((z,y)v) =1 for every y € A}}

is the 1 ,-dual lattice of AR.
(H7) Put H := U(V), which is a reductive group over Ap.
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(H8) Denote by L}* C H(A%") the stabilizer of A®, which is a special maximal
subgroup.® We have the (abstract) Hecke algebra away from R

T® = Z[LM\H (AZ™")/LF,
which is a ring with the unit 1;&, and denote by S® the subring
lig  Z[(L*)r\H (Fr)/(L*)1] @ 1(znys

TCVSP\R
|T|<o0
of T*.
(H9) Suppose that V' is incoherent, namely, [], ey, €0 = —1. For every u €

Ve \ VSEPI, we fix a u-nearby space “V of V, which is a hermitian space
over E, and an isomorphism "V ®@p Ay ~ V ®4, A%. More precisely,
o if u € VEEOO), then “V is the hermitian space over E, unique up to
isomorphism, that has signature (n — 1,1) at v and satisfies “V ®p
A% ~V ®ap A%;
o ifue V%n \ V?l, then “V is the hermitian space over F, unique up
to isomorphism, that satisfies “V ®@p A% ~ V @4, A%
Put “H = U("V), which is a reductive group over F. Then “H(A%) and
H(A%) are identified.

Notation 2.3.Let m >0 be an integer. We equip W,,, = E*™ and W,,, = E*™
with the skew-hermitian forms given by the matrices w,, and —w,,, respectively.

(G1) Let Gy, be the unitary group of both W, and W,,. We write elements
of W,, and W,, in the row form, on which G,, acts from the right.
(G2) We denote by {e1,...,e2,} and {é1,...,€2,} the natural bases of W,,
and W,,, respectively.
(G3) Let P,, C Gy, be the parabolic subgroup stabilizing the subspace gener-
ated by {e;41,...,eam}, and let N, C P,, be its unipotent radical.
(G4) We have
e a homomorphism m: Resg,p GL;, — P, sending a to

m(a) = ( ) ,

which identifies Resp,p GLy, as a Levi factor of Pp;
e a homomorphism n: Herm,,, — N,, sending b to

n(b) == (1m f;) ,

which is an isomorphism.

When r > 2 (resp. r = 1), the set of conjugacy classes of special maximal subgroups of

int int
H(AT™) is canonically a torsor over p5 ' F \® (resp. pg'F \(RUS")).
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(G5) We define a maximal compact subgroup K, = [[,ev, Km,o of Gi(AF)
in the following way:
e for v e Vf}n, K, is the stabilizer of the lattice O%T;

e forv e V%OO), K, is the subgroup of the form

[/{: & ] . 1 ki + ko —iky + iko
1,2l 2 \ik1 — iko k1 + ko ’

in which k; € GL,,(C) satisfies k; '%k$ = 1,,, for i = 1,2. Here, we
have identified G,,(F3) as a subgroup of GLg,,(C) via the embedding
Ly, With v = u in Notation 2.1(F3).

(G6) For every v € V%OO), we have a character Kp v Kpp — C* that sends
[k‘l, kz] to det kl/det k2.6

(G7) For every v € Vi, we define a Haar measure dg, on Gy, (F,) as follows:

o forw EV%H, dgy is the Haar measure under which K, , has volume 1;

e for v € V%oo), dg, is the product of the measure on K,,, of total
volume 1 and the standard hyperbolic measure on Gy, (Fy)/Km,v;
see, for example, [EL20, §2.1].

Put dg = [], dgv, which is a Haar measure on G, (Ap).

(G8) We denote by A(Gp,(F)\Gm(AF)) the space of both Z(gm, o )-finite and
K, oo-finite automorphic forms on G, (Ar), where Z(gm, o) denotes the
center of the complexified universal enveloping algebra of the Lie algebra
Om,00 Of Gy @ Fixs. We denote by

o AMNG(F)\Gm(AF)) C A(Gp(F)\Gm(Ar)) the maximal subspace
on which for every v € V%OO), Kinv acts by the character ry, ,;

o ARG, (F)\Gm(Ar)) € AM(G(F)\Gm(AF)) the maximal sub-
space on which

— for every v € VP \ (RUS), K, acts trivially; and

— for every v € 8, the standard Iwahori subgroup I,,, acts triv-
ially and C[l,,,,\ Kim,v/Im,] acts by the character r,, ,, ([Liu21b,
Def. 2.1]);

o Acusp(Gm(F)\Gm(Ar)) the subspace of A(Gp,(F')\Gm(AF)) of cusp
forms, and by ( , )¢, the hermitian form on Acusp (G (F)\Gm (AF))
given by the Petersson inner product with respect to the Haar mea-
sure dg.

For a subspace V of A(Gp,(F)\Gm(AFr)), we denote by

e VI the intersection of V and Al(Gy, (F)\Gp(AFR));

e VIR the intersection of V and ARG, (F)\Gm(AFR));

e V¢ the subspace {¢°|p € V}.

5Tn fact, neither Ky, nor i, depends on the choice of the embedding ¢, for v=u € V%Oo).



CHOW GROUPS AND L-DERIVATIVES OF AUTOMORPHIC MOTIVES 833

Notation 2.4. We review the Weil representation.

(W1) For every v € Vg, we have the Weil representation wiy,, of Gp,(Fy) X
H(F,), with respect to the additive character ¢r, and the trivial split-
ting character, realized on the Schrédinger model .#(V,"). For the read-
ers’ convenience, we review the formulae:

e for a € GL,,(E,) and ¢ € .Z(V,"), we have
wm,o(m(a))p(x) = [det alf, - p(xa);
e for b € Herm,,(F,) and ¢ € .7 (V,*), we have
Wi, (n(0)) () = Pr(a) (b) - H()
(see Notation 2.1(F5) for 7 (,));
e for ¢ € .7(V,"), we have
W (4m) (%) =W, e, O(2),

where Yy, 4., is certain Weil constant determined by V,, and 9 p.;
o for h € H(F,) and ¢ € . (V,*), we have

wmno(h)p(z) = p(h~ ).

We put wy, = ®ywm,» as the adelic version, realized on . (V™).
(W2) For every v of F, we also realize the contragredient representation w
on the space .7 (V,*) as well via the bilinear pairing

< ) >Wm,v: y(va) X y(va) — (C
defined by the formula

(@) D, = (z)¢" () dz

Vm

v

\%
m,v

for ¢, ¢V € S (V™).

Notation 2.5. For a locally Noetherian scheme X and an integer m > 0,
we denote by Z"(X) the free abelian group generated by irreducible closed
subschemes of codimension m and CH™(X) the quotient by rational equiva-
lence. Suppose that X is smooth over a field K of characteristic zero. Let £
be a rational prime.

(C1) We denote by Z™(X)° the kernel of the de Rham cycle class map
clxar: 2™ (X) = H3R (X/K)(m),

and by CH™(X)° the image of Z™(X)? in CH™(X).
(C2) When K is a non-archimedean local field, we denote by Z™(X) the
kernels of the ¢-adic cycle class map

cly o Z™(X) — H™(X,Q¢(m)).
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(C3) When K is a number field, we define Z"(X ) via the Cartesian diagram
ZM(X) —— 1, 2" (Xk,)"
Zm(X) —— T[], 2" (Xx, ).

v

where the product is taken over all non-archimedean places v of K not
above £. We denote by CH™(X){ the image of Z™(X){ in CH™(X),
which is contained in CH™(X)? by the comparison theorem between de
Rham and /¢-adic cohomology.

3. Doubling method and analytic side

In this section, we review the doubling method and prove several state-
ments on the analytic side of our desired height formula.

We have the doubling skew-hermitian space W = W, @ W, (Nota-
tion 2.3(G1)). Let G be the unitary group of W2, which contains G, x G,

canonically. We now take a basis {e[, ..., e[} of W= by the formula
m O - m m -
€ =€ Gy = € Corqy T Crtiy €3p44 T Ertd

for 1 < i < r, under which we may identify W= with Wy, and G with Ga,.
Put

(3.1)  wli=wy, PZ=P,, N2 =Ny, K=K, -

= Wor.

(See Notations 2.3 and 2.4.) We denote by
5+ P — Resp/p GLy

the composition of the Levi quotient map PF = Py, — Mo, the isomorphism
m~t: My, — Resp,/r GLgy, and the determinant Resg/r GL2, — Resg/p GL1.
Put

W, = e GH(F).

Then P2w,. (G, x G,) is Zariski open in G%.
Let v be a place of F. For s € C, we have the degenerate principal series
of GY)(F,), which is defined as the normalized induced representation

Iu(s) = Ind 3z F“ (0 [z, © 0)

of GY(F,). We denote by 1-)(s) the restricted tensor product of IEU(S) for all
places v of F' with respect to unramified sections.
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For every section f € I2(0), let f(*) € I¥(s) be the standard section
induced by f. Then we have the Eisenstein series E(g, f®)) for g € GP(Ap).
We have a GY(Af)-intertwining map

for L (V) = 17(0)

sending ® to fp defined by the formula fg(g) == wP(g9)®(0). (See (3.1) for
wt.) In particular, for ® € .#(V?"), we have the Eisenstein series

E(s.9.®) = E(g.f) = Y. ()

YEPP(FO\GR(F)

for g € GP(Ap). Tt is meromorphic in s and holomorphic on the imaginary
line.

Assumption 3.1. In what follows, we will consider an irreducible automor-
phic subrepresentation (7, V) of Acusp(Gr(F)\Gr(AF)) satisfying that
(1) for every v € V%OO), 7y is the (unique up to isomorphism) discrete series

o
V)

(2) for every v € Vi \ R, 7, is unramified (resp. almost unramified) with
respect to K, if €, =1 (resp. €, = —1);
3) for every v € Vi, 7, is tempered.
F

representation whose restriction to K., contains the character s

We realize the contragredient representation 7" on V¢ via the Petersson inner
product (, )¢, (Notation 2.3(G8)). By (1) and (2), we have VIR # {0}, where

R i defined in Notation 2.3(G8).

Remark 3.2. By Proposition 3.6(2) below, we know that when R C Vi?l,
V' coincides with the hermitian space over Ap of rank n determined by 7 via
local theta dichotomy.

Definition 3.3. We define the L-function for 7 as the Euler product L(s, )
= [, L(s, ™) over all places of F', in which

(1) For v € V" L(s,7,) is the doubling L-function defined in [Yam14,
Th. 5.2].

(2) For v € V(Foo), L(s,m,) is the L-function of the standard base change
BC(m,) of m,. By Assumption 3.1(1), BC(m,) is the principal series
representation of GL,,(C) that is the normalized induction of

arg” ' Narg" * K. . Karg® " Narg! ™",
where arg: C* — C* is the argument character. In particular, we have

r 2
(3.2) L(s+ 3,m) = (H 2(2m) "I (s 4 i)) .

i=1
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Remark 3.4. Let v be a place of F.

(1) Forwv € V%OO), the doubling L-function is only well defined up to an entire
function without zeros. However, one can show that L(s, m,) satisfies the
requirement for the doubling L-function in [Yam14, Th. 5.2].

(2) For v € Vi?l, the standard base change BC(m,) is well defined and we
have L(s,m,) = L(s,BC(m,)) by [Yam14, Th. 7.2].

(3) For v € ViB*\ R, the standard base change BC(,) is well defined and we
have L(s,m,) = L(s,BC(m,)) by [Liu2lb, Rem. 1.4].

In particular, when R C V?l, we have L(s, ) =[], L(s, BC(m,)).

Let v be a place of F. We denote by (, )x,: 7, xm — C the tautological
pairing. For ¢, € 7, ¢/ € 7Y, and a good section f(*) € I7,(s) ([Yam14,

v

Def. 3.1]), we have the local doubling zeta integral
Z(py ® pu, f) :Z/G ( (™ 99y s Pu)ms - [ (Wi(g, 12r)) dg,

and the normalized version

L(s+ %, )
b?r,v(s)

which is holomorphic in s. In particular, taking s = 0, we obtain a functional

-1
Z8pY @ @u, ) ::( ) - Z(pY @ oy, f),

BE%VU Y@M L(VE) - C
such that

3 (0,00, @) = Z5(0) @ o, fy)) = 230 @ @0, fa,).

Remark 3.5. By [Yaml4, Lemma 7.2], we know that the integral defining
Z(oY @ @y, f0) is absolutely convergent and that

L(s+ %, TTy)
bor,u(8)
is finite and invertible at s = 0.

PROPOSITION 3.6. Let (m,Vz) be as in Assumption 3.1.

(1) For every v € Vi, we have

dim(c HomGr(Fv)XGT(Fv)(IEU(O)vTrv X 7['1\]/) =1.

(2) For every v € (Vi \ R) U Vi?l, V., is the unique hermitian space over E,
of rank 2r, up to isomorphism, such that SErU,VU #0.

(3) For every v € Vir, Homg, (7,) (-7 (Vy), ™) is irreducible as a represen-
tation of H(F,) and is nonzero if v € (Vi \ R) U Vi?l.
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Proof. To ease notation, we will suppress the place v throughout the
proof. For a hermitian space V over E of rank 2r, denote by R(0,V) C ID(O)
the subspace spanned by Siegel-Weil sections from V and put O(m, V) =
Homg, () (.#(V"), ). By the seesaw identity, we have

Homg, (7)xa, (7) (R(O, f/), TR’ ~ Homg(F)(@(w, f/) ®6(rY, V), 1),

where H = U(V). Since 7 is tempered, by (the same argument for) [GI16,
Th. 4.1(v)], ©(m,V) is a semisimple representation of H(F). By [GT16,
Th. 1.2], we know that ©(m, V) is either zero or irreducible. By the local theta
dichotomy [GG11, Th. 1.8] (see also [HKS96, Cor. 4.4] and [Har07, Th. 2.1.7]),
there exists exactly one choice V up to isomorphism, such that O(, ) # 0.
Thus, we obtain (1) by [KS97, Ths. 1.2, 1.3].

For (2), there are two cases. If v € Vi’fl, then it follows from (1) and
[KS97, Th. 1.3]. If v € VI8 \ R, then the uniqueness follows from (1) and
[KS97, Th. 1.2]; the nonvanishing of SErV follows from [Liu2lb, Prop. 5.6,
Lemma 6.1]. 7

For (3), the irreducibility of ©(m, V) = Homg, () ((V"), 7) has already
been proved; the nonvanishing follows from (2). O

PROPOSITION 3.7. Let (m,V;) be as in Assumption 3.1 such that L(%,)
= 0. Take
[r]R

® 1 = Qup1v € Vi
v €Vr\R, and

e d = ®,0, € L (V?) such that ®, is the Gaussian function (Nota-
tion 2.2(H3)) for v e V%OO) and ®, = Lipry2r forv € vin\ R,

Then we have

/ / ©2(92)¢5(91)E'(0, (91, 92), ) dg1 dga
Gr(F)\Gr(AF) (F)\Gr(AF)

[r]R

and Y2 = ®v(7021) S V’]T Such that <(70§'U7 (702'0>7Tv =1 for

L/

_ (g O T 35 4 (650s 9200 )
bQT( ) vevﬁ“
L'(z7m) _p. (—1)ay '(gw +1)

= 7’ : CT[.FQ] v Y 3 90 v7902’l)7®’l))7
627«(0) ;}l;g( 2r— 1+1)( B g Tw,Vp 1

where
r@)---I(r)

 (_1\To—2r r2
Cri= (=1)727 T(r+1)---0(2r)

and the measure on G,(Ar) is the one defined in Notation 2.3(GT7).

"Strictly speaking, what we fixed is a decomposition ©§ = ®,(¢$),. We have abused
notation by writing ¢f,, instead of (¢1)s.
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Proof. By the formula derived in [Liulla, p. 869], we have

/ / 02(92)25 (1) E'(0, (g1, 92), ®) dgy dgs
[Gr(F)\Gr(AF)]?

H 37r1, Vo Spl'w P2u, (I)U)
b2r

For v € V%OO), it is clear that 3Erv v, (#$4s P20, Py) depends only on r, which we
denote by C,. Note that for g € G,(Fy),

D (wi(g,12)) = (~1)" (wr(9)6% P

where ¢) is the Gaussian function on V" and ( , ), is the pairing in No-
tation 2.4(W2). In particular, f(gl)(wr(lgr,lgr)) = (-1)"272*. By [EL?20,
Th. 1.3 , Prop. 3.32] (withn =k =2r,a=b=r,7n = =7 =1,
vy =---=v, = —r, and xh. = 1), we have

. I(1)---T(r)
T(r+1)---D(2r)

Z(Oa QO;U ® 9021;, q)v) — (i1>7'2—2r2 . 2T2—T7TT

By (3.2) and the formula

r 2
bgrv (HTI’ 8+Z S+i)> s

we obtain our formula for Ci.
By [Yaml4, Prop. 7.1, (7.2)], we have BEFU v, (050 P20, ®y) = 1 for v €
vin\ (RUS). By [Liu21b, Prop. 5.6, Lemma 6.1], we have

(—=1)"q¢y " (qu + 1)
(@ "+ 1) (¢ - 1)

for v € S. The proposition is proved. ([

BETU,VU (Qoi:uv P20, (p'u) =

Now we study the Eisenstein series E(s, g, ®) via Whittaker functions.
For every v € Vg, TH € Herm3,.(F,), and ®, € .#(V.;?"), we define the local
Whittaker function on GY'(F,) with parameter s € C as

(3.3) Wya (s, g, ®y) = /H - £ @ (b)g)oro (b) " db

(see (3.1) for w})) by meromorphic continuation, where db is the self-dual mea-
sure on Hermy, (F;,) with respect to ¢r,. By [Liulla, Lemma 2.8(1)], we know
that Wya(s, g, ®,) is an entire function in the variable s.
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Definition 3.8. By the definition of local Whittaker functions (3.3), for
every v € Vp, there exists a unique Haar measure dh, on H(F;) such that for
every TV € Herm$,.(F,) and every ®, € .7 (V;2"), we have

2r
y
W0 (0, Ly, @) = b:w@) /H(F)@v(h;lx) dh,,

where x is an arbitrary element in (V,2");o (Notation 2.2(H3)). For every open
compact subgroup L, of H(F),), we denote by vol(L,) the volume of L, under
the measure dh,.

By [Tan99, Prop. 3.2], for all but finitely many v € Vi? a hyperspecial
maximal subgroup of H(F,) has volume 1 under dh,. In particular, we may
define the normalized measure

dih = dh,
b2r(0) UE}[F
on H(Ap). In what follows, for an open compact subgroup L of H(A%), we
will denote by vol®(L) the volume of H(Fs)L under the measure d?h.

Remark 3.9. Note that when V is coherent, d?h coincides with the Tam-
agawa measure on H(Ap). Later in Definition 6.11, we will use the volume
vol?(L) to scale the normalized height pairing. In view of Remark 1.8(2), this
is the most “natural” way.

ProprosiTION 3.10. Suppose that V' is incoherent.

(1) Take an element u € Vg \VE', and take "® = ®,"“®, € (V¥ @p Ar),
where we recall from Notation 2.2(H9) that “V is the u-nearby hermitian
space, such that supp(“®,) C (“V2)eg (Notation 2.2(H3)) for v in a
nonempty subset R C R. Then for every g € P2 (Fp)GY(AY), we have

E(0,9,"®) = Z H WTD(O7gv>u(I)U)'
TUeHerm§, (F) vEVF

(2) Take ® = ®,®, € .7 (V?) such that supp(®,) C (V2" )reg for v in a sub-
set R C R of cardinality at least 2. Then for every g € PTD(FR/)GE(AI}I),

we have
E0,9,®)= > &g, ),
weVp\VE!
where
Qf(g’q))w = Z 7/1D (Oagwaq)w) H WTD (O7gva<1>v)'
THUecHerm$,.(F) veVp\{w}

Diff(TU,V)={w}
Here, Diff(TV, V) is defined in Notation 2.2(H4).

Proof. This is proved in [Liullb, §2B]. O
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Definition 3.11. Suppose that V is incoherent. Take an element u €
Ve \ V2 and a pair (71, Ts) of elements in Herm, (F).

(1) For "® = ®, "“®, € L ("“V*" @p Ap), we put

ET17T2 (g’ uq)) = Z H WTD (07 9o, uq)v)'
THeHerm$, (F) VEVF
Or »TH=(T1,Ts)

(2) For ® = ®,®, € #(V?"), we put

€T17T2(gv (I))u = Z }D <O7g£7 (I)E) H WTD (Oagva (I)v)'
THeHerm$, (F) veVE\{u}
Diff (TU,V)={u}
Oy TE=(Ty,T?)

Here, 0,,: Hermy, — Herm, x Herm, is defined in Notation 2.1(F2).

Remark 3.12. The image of Herm$, (F)" under 9., is contained in the
subset Herm{ (F)* x Herm?(F)™.

The following proposition ensures the sufficient supply of test functions
with support in (V2"

" Jreg- As we have mentioned in Section 1, it solves a key

technical challenge for our approach.

PROPOSITION 3.13. Let (mw,V;) be as in Assumption 3.1. Take v € Vf}“,

and suppose that BErv v, # 0. Then for every ¢, € T, and ¢, € , that are
both nonzero, we can find elements ¢, ¢, € (V') such that supp(¢p, @ ¢y ) €

(VUQT)reg and BEI'U,VU (801\;/7 vy Py @ (éX) # 0.

Proof. To ease notation, we will suppress the place v throughout the proof.
We identify the F-vector space Hermy, (F) with its dual Hermy, (F')" via the
bilinear form (z,y) — tray. Take an element ¥ € . (Hermg,(F)). Let S
. (Hermy, (F)) be the Fourier transform of ¥ with respect to 9. Let fg be
the unique section in I7(0) such that fy(w-'n(b)) = a(b) and fy = 0 outside
PE(F)w'NP(F). Take ¢ € m and ¢¥ € 7V that are both nonzero. We claim
that

(x) There exists an element ¥ € . (Herm$,.(F')) such that Z(p" @ ¢, fy) # 0.

Assuming (*), we continue the proof. Let V' be the other hermitian space
over F' of rank 2r that is not isomorphic to V if F is a field, or the zero
space if £ = F x F. Let Herms,(F)y and Herm3,.(F)y be the subset of
Herm3, (F) that is contained in the image of the moment maps from V2" and
V' respectively. Then Herms$,(F)y U Herm3, (F)y- is a disjoint open cover
of Hermj, (F). Choose W as in the claim, and put Yy = V- Iyemg (5)y
and Wyr = V- Igeyg (r),,- We may choose elements @y € S (V2r) and

reg

®y € .7 (V/2) such that Uy and Wy~ are the pushforward of ®y and @y along

reg
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the moment map erg — Herms, (F')y and vr;?g — Herms, (F')yr, respectively.

It is easy to see that fo,, = fv, and fo , = fv,,. In particular, we have
Z(e' @, fo) = Z(¢' @ ¢, fu,) + Z(¢" @, fu,,)
=Z(¢" @ ¢, fa,) + Z(¢" @ ¢, fa,,)-
By Proposition 3.6 and Remark 3.5, we have Z(¢" ® ¢, fo,,) = 0 if Si,v £ 0.

Thus, we have Z(¢" ® ¢, fo, ) # 0, hence SE“V(QOV ® p, Py ) # 0. The theorem
follows as @y, can be written as a finite sum of elements of the form ¢ ® ¢
satisfying supp(¢ @ ¢") C supp(®y) C V2.

It remains to show (*). We identify Resg,p Mat,.,, xHerm, x Herm, with

Hermsy, via the assignment
u ‘a®
(a,u,v) — .
a v

Define a polynomial function A on Hermg, sending (a,u,v) to Nmg,p det a.
Let 2 be the complement of the Zariski closed subset of Herms, defined by the
ideal (A). We define a morphism ¢: £ — G, such that

W, u,v) = 1, v —a 0 u 1, wu
N0 1, 0 -t 1)""\o 1,)’

which is an isomorphism onto the Zariski open subset P,.w,.N, of G,. By a
direct computation, we have a unique morphism p: Q — PZ such that

t,c
(34) WT[’<a7 U, ’U) = p(a7 U, ’U) ’ WE "n (Z ¢ > )
which satisfies
(3.5) NmE/F(STD(p(a,u,v)) = Nmpg/pdeta = A(a,u,v).

Define a locally constant function £,v , on G, (F) by £,v ,(g9) = (7 (9)¢", ) x-
Then by (3.4) and (3.5), we have

Z(QOV ®307f\11)

= / §ov o (9) fu (Wi (g, 12,)) dg
G (F)

:/ Eov p(t(a, u,v))|A(a,u,v)|%fI/\(a,u,v)‘ de(a, u,v).
P.(F)w-Ny(F)
We define a locally constant function f&vﬁo on Q(F) by

{fov’@(a,u,v) = |A(a, u,v)| "€y o (t(a, u,v)).
Note that there exists a unique Haar measure dadudv on Hermy,(F') such
that
du(a, u,v) = |A(a, u,v)| 5> da du do.
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Thus, we have
(3.6) Z(p" @, fu) = / fz,vw(a,u,v)@(a,u,v) da du dv.
Q(F)

As both ¢V and ¢ are nonzero, ffov’ p is nonzero, which is also locally integrable
on Hermy, (F') by Remark 3.5. The remaining discussion bifurcates.

When E is a field, we have {,v , € L*™¢(G,(F)) for every € > 0, which is
equivalent to

/ \dLV S0(a,u,1))|2+5|A(a,u,v) % dadudv < .
Q(F) '

Applying Lemma A.1 to X = Hermy,(F), we obtain an element ¥ € .&(V;2;)
such that

/ §Eov ola,u, v)@(a, u,v)dadudv # 0,
QF) T

which implies Z(¢" ® ¢, fy) # 0 by (3.6). Thus, (*) is proved.
When E = F x F, we have &,v , € L*™(Z,.(F)\G,(F)) for every £ > 0,
where Z, denotes the center of GG, which is equivalent to

/ ]é"(bpv o(a, u, )| A(a, u, v)|5 da dudv < co.
FX\Q(F) ’

Here, the action of F* on Hermy,(F') is given as follows: After identifying
Mat, ,(E) with Mat, ,(F) x Mat,,(F') via the two factors of F' under which
we write a = (a1, a2), « € F* sends ((a1,a2),u,v) to ((aar,a taz),u,v). Ap-
plying Lemma A.2 to X = Hermy, (F') with X; = Mat, ,(F'), X2 = Mat, . (F),
and X3 = Herm,(F) @& Herm,(F), we obtain an element ¥ € .#(V;2;) such
that

/ «Sfov ola,u, v)a(a, u,v)dadudv # 0,
F) T
which implies Z(p" ® ¢, fy) # 0 by (3.6). Thus, (*) is proved. O

To end this section, we recall some constructions concerning the tempered
global L-packet given by 7, which will be used in Sections 6 and 9.

Notation 3.14. Let (m,V;) be as in Assumption 3.1.

(1) Let II be the automorphic base change of 7, that is, the isobaric automor-
phic representation of GL,,(Ag) such that I1, is the standard base change
of 7, for all but finitely many v € Vi}n for which m, is unramified.® By the
local-global compatibility [KMSW14, Th. 1.7.1], for every v € VEVOO), 11,

8The existence of II follows from [Shi] or more generally [KMSW14], while the uniqueness
of IT up to isomorphism is ensured by the strong multiplicity one theorem.
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is the normalized induction of arg” ' Karg" 3 X. .. X arg> " Karg! ™"
as in Definition 3.3.

(2) Put 3:= {n—1,n—-3,...,3—n,1—n}. For each character x: uj — C*,
we define the signature of x to be the pair (p, ¢) with p+¢ = n such that
x takes value 1 on p po-generators and —1 on g uo-generators. For such a
character x of signature (p, ¢), we have a discrete series representation 7
of U(p, q). When (p,q) = (n—1,1), we denote by 7%, the representation
of “"H (F) that is the inflation of 7X along the quotient map “"H(F) —
Y"H(R)~U(n—1,1).

(3) We may write Il = II; B - - - B Il,, in which II; is a conjugate-selfdual
cuspidal automorphic representation of GLy,, (Ag), with nyj+- - -+ns = n.
Then there is a unique partition J = J; U --- L J; such that 1I,,, is the
normalized induction of M;es, arg’ for 1 < j < s.

(4) Let £ be a rational prime with an arbitrarily given isomorphism Q ~ C.
For every 1 < j < s, we have a (semisimple) Galois representation

pr; - Gal(Q™/E) — GLy,; (Qe)
attached to II; as described in [Carl2, Th. 1.1].

Here, we recall from Notation 2.1 that we have regarded E as a subfield of C
via ¢.

LEMMA 3.15. For every irreducible admissible representation 7> of H(AY)
such that 11, is the standard base change of w5° for all but finitely many v € Vf}n
for which 73° is unramified, exactly one of the following two cases happens:

(a) There does not exist a character x: pu3 — C* of signature (n—1,1) such
that 7% ® ©° is a cuspidal automorphic representation of “H(Af).

(b) There is a unique integer 1 < j(7>°) < s, such that for every x: 3 — C*
of signature (n—1,1), 7% @7 is a cuspidal automorphic representation
of “"H(AF) if and only if the unique pz-generator of j13 on which x takes
value —1 1s indexed by an element in J;zo).

Moreover, we have

if T fits in (a),
dime H ooy | 7, lim Hj ' (X1/C) | =
mc HOm gy p00) (77 %ﬂ ar (Xz/ )) {nj(ﬁoo) >0 if 7 fits in (b),

where { X1} is the unitary Shimura variety recalled in Section 4 below.

Proof. The first part of the lemma is a consequence of Arthur’s multiplicity
formula for tempered global L-packets [KMSW14, Th. 1.7.1].

The second part of the lemma follows from Matsushima’s formula and
Arthur’s multiplicity formula [KMSW14, Th. 1.7.1]. In particular, the number
of characters x: 3 — C* of signature (n—1, 1) such that 7% ®7 is a cuspidal
automorphic representation of "H(Ap) equals nj(ze). Here, we also use the
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well-known fact that the (g, K)-cohomology of a (cohomological) discrete series
representation is one dimensional in the middle degree and vanishes in all other
degrees; see, for example, [BW0O, II. Th. 5.4]. O

Remark 3.16. Assume that 7°° := Homg, (ae0) (L (V" @ AF), 7) is
nonzero, which is then an irreducible admissible representation of H(A%)
by Proposition 3.6(3). By [GI16, Th. 4.1(ii)], the global root number &(II)
equals —1. Moreover, using Arthur’s multiplicity formula [KMSW14, Th. 1.7.1]
and Conjecture (P1), in [GI16, §4.4] (which is proved in that article), we see
that 7°° fits in the situation (b) of Lemma 3.15 if and only if there is ex-
actly one element j € {1,...,s} such that e(Il;) = —1; in this case we must
have j = j(7°°). When Ords:% L(s,II) = 1, there is exactly one element
J €{l,...,s} such that e(Il;) = —1 as L(s,IT) = []_; L(s,II;), so @ fits in
the situation (b) of Lemma 3.15 automatically.

4. Special cycles and generating functions

In this section, we review the construction of Kudla’s special cycles and
generating functions. We also introduce the hypothesis on the modularity of
generating functions and derive some of its consequences. From now to the
end of Section 11, we assume V incoherent.”

Recall that we have fixed a u-nearby space "V and an isomorphism “V Qg
A% ~ V ®u, A% from Notation 2.2(H9). For every open compact subgroup
L C H(A%), we have the Shimura variety X, associated to Resp/qg"H of the
level L, which is a smooth quasi-projective scheme over E (which is regarded
as a subfield of C via ¢) of dimension n — 1. We remind the readers of its
complex uniformization

(4.1) (X1 ®p C)*™ ~ “H(F)\ "D x H(Af)/L,

where "® denotes the complex manifold of negative lines in "V ®g C and the
Deligne homomorphism is the one adopted in [LTX 19, §3.2]. In what follows,
for a place u € Vg, we put Xp, = X1 ®g E, as a scheme over F,.

Now we recall the construction of Kudla’s special cycles and their gener-
ating functions. Take an integer 1 < m < n — 1.

Definition 4.1. For every element v € V'™ ®,,. A%, we have the special
cycle Z(z)r, € CH™(X|)q defined as follows:

e For T'(z) € Herm,,,(F)*, we set Z(z)r = 0.

9At the end, we will take V = V; as in Section 1. We have changed the use of V from
Section 1 since in the proofs of the main results, we need to consider all nearby spaces of V.
In particular, V' in Section 1 is now “V.
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e For T'(z) € Herm;,(F)", we may find elements 2/ € "V™ and h € H(AY)
such that hz = 2’ holds in V™ ®,, A¥. The components of 2’ span a to-
tally positive definite hermitian subspace Vs of "V of rank m. Put H* =
U(V}), which is naturally a subgroup of “H, and let {X%,} MCH" (ase) De
the associated system of Shimura varieties. Define Z(z)z, to be the image
cycle of the composite morphism

z’ -h
XthflﬂHT/(A%o) — Xth—l — XL.

It is straightforward to check that Z(x) does not depend on the choice of
a2’ and h. Moreover, Z(z)y is a well-defined element in Z™(X).

e For T'(z) € Herm,,(F)" in general, we have an element Z(x), € CH™ (X1 )g
(not well defined in Z™ (X )g). We refer the readers to [Liulla, §3A] for
more details as it is not important to us in this article.

For every ¢ € .7(V™ @, AX)L and T € Herm,,(F), we put
Zr(9%)L = > ¢ (x)Z(z)L-

rEL\V"®@u AR
T(z)=T

Since the above summation is finite, Z7(¢>)r, is a well-defined element in
CH™(XL)c.

Remark 4.2. For T € Herm{, (F)", Z1(¢>)L is even a well-defined ele-
ment in Z™(X)c.

Finally, for every g € G,,,(Afp), Kudla’s generating function is defined to be
Zye=(g)L = Z Wm,w(gw)¢go(T) Zr(wi (7))L
TeHerm,, (F)*
as a formal sum valued in CH™ (X[ )¢, where
melgoc) (D) =TT wmalgn) 62D,
UEV%OO)

Here, we note that for v € Vg,oo), the function wmm(gv)qﬁg factors through the
moment map V™ — Herm,, (F,) (see Notation 2.2(H1)), hence wy, (g,)90(T)
makes sense.

LEMMA 4.3. In Definition 4.1, we have
Wi, (1(0)M()) 83 (T) - Z1(win (n(b)11(a))¢™) 1 = $o(‘a°Ta) - Zigera (™)L
for every a € GL,(E) and every b € Herm,, (F').
Proof. This is proved in (the proof of) [Liulla, Th. 3.5]. O

LEMMA 4.4. In Definition 4.1, we have t* Zp(¢™°), = Zp (™) for every
t € Tf.
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Proof. By linearity, we may assume t = 1,7 for some h € H (A?’R).
Then it follows easily from Definition 4.1 that

t*Z(x), = > Z(h ),
h'eh—'LhNI\L

for every z € V™ ®,,. A%. Thus,

t*Zr(¢™)L = > ¢ (x)t" Z(x)L
z€L\V™ @4 AR
T(z)=T
= Y @ Y Zha)
J:EL\VW(X)AFA%O heh—1LhNL\L
T(z)=T

= Z Z o<W h7lz) | Z(x)g

JJEL\VW(X)AFA%O heh—1LhNL\L
T(z)=T

= Y (@)@ 2 = Zr(te™)s.
TEL\V™ @ L AT
T(z)=T

The lemma follows. ([

HyPOTHESIS 4.5 (Modularity of generating functions of codimension m).
For every open compact subgroup L C H(AY), every ¢ € L (V™ @4, AR,
and every complex linear map l: CH™(Xp)c — C, the assignment

9= U(Zy=(9)L)
is absolutely convergent and gives an element in AUV (Gp(F)\Gm(AFr)). In
other words, the function Zg~(—)r defines an element in
Home (CH™ (X 1), A (G (F)\Gm(AR))).

Remark 4.6. Hypothesis 4.5 is believed to hold. In fact, in the case of
symplectic groups over QQ, the analogous statement was first conjectured by
Kudla [Kud04] and has been confirmed in [BWR15] based on previous works
[Zha09], [YZZ09]. In our situation, Hypothesis 4.5 is proved in [Liulla, Th. 3.5]
for m = 1; for m > 2, we know that [(Z4~(g)r) is formally modular by [Liulla,
Th. 3.5].

Note that the natural inclusion

AN G (F)\Gm(AF)) ®@c CH™(X )¢
C Home (CH™ (X )¢, A™(Gon (F)O\G o (AF)))
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might be strict a priori, since we do not know whether CH™ (X )¢ is finite
dimensional. However, we have the following result.

PROPOSITION 4.7. Assume Hypothesis 4.5 on the modularity of generat-
ing functions of codimension m.

(1) For every open compact subgroup LC H(AY) and every Schwartz func-
tion ¢>° € L (Vm@u, AR, Zgoo (=), belongs to ATN(G (F)\G(AF))
KR CH™ (XL)(C-

(2) The map

F (V™ @4, ARV = ATNG (F)\G(AF)) @c CH™(X)c

sending ¢ to Zyeo (=)L is Gp(AYF) x Th-equivariant, where G, (AY)
acts on the source via the Weil representation and on the target via the
right translation on the first factor, and T% acts on the source via the
Weil representation and on the target via the Hecke correspondences.

Proof. For (1), fix an open compact subgroup K C G,,(A%) that fixes
¢, and a set of representatives {g(l),...,g(s)} of the finite double coset
Gn(F)\Gm(AF)/K. For every 1 < i < s, the restriction of Zy~(—)r to
Gm(Fs) x {gW} is given by the hermitian g-expansion

FPq) = > Ze(0™W)L -4,
TeHermy, (F)*
where ¢ == b (¢(1))¢>°. By Hypothesis 4.5, for every [ € CH™(Xp){, the
g-expansion

(N = > UZr(¢™D))-¢"

TeHermy, (F)*
belongs to i (@), the space of holomorphic hermitian Siegel modular form
of Gy of weight (k7,,4,), gt (Notation 2.3(G6)) and level ré = G, (F)n
welp
gD K (g@)~1. Let M® be the subspace of CH™(X[,)c spanned by Zp(¢>®)f,
for all T € Herm,, (F)*. We claim that
(4.2) dime M@ < dime MIITO) < o0

Take arbitrary elements 1,...,l; of CH™(Xp){ with d > dim¢ M@(F(i)).
Then there exist ¢1,...,cq € C not all zero, such that Z?:l cjlj(f(i))(q) =0;
in other words,

d
> ¢l (Zr(¢™P)) =0 VT € Herm,,(F)".
j=1
Thus, we have Z?:I ¢jli| pm = 0, which implies (4.2). However, (4.2) implies
that the subspace of CH™ (X )¢ generated by Zr(wiP(g>)¢p™>)r for all T' €
Herm,, (F)" and ¢ € G,,,(A%) is finite dimensional. Thus, (1) follows.



848 CHAO LI and YIFENG LIU

Part (2) is follows from Lemma 4.4 and the construction.
The proposition follows. ([l

Definition 4.8. Let (m,V;) be as in Assumption 3.1. Assume Hypothe-
sis 4.5 on the modularity of generating functions of codimension r. For ev-

ery ¢ € VT[FT], every open compact subgroup L C H(AY), and every ¢> €
L (V" @p, AX)L, we put
(%MWM:j/ ©°(9)Zg~(9)L dg,
Gr(F)\Gr(AF)

which is an element in CH"(X,)c by Proposition 4.7. It is clear that the image
of @¢00 (SD)L in
CH"(X)c = lim CH"(X1)c
L

depends only on ¢ and ¢>°, which we denote by © 4~ (¢). Finally, we define the
arithmetic theta lifting of (m,Vy) to V (with respect to ¢) to be the complex
subspace O(m, V') of CH"(X)c spanned by ©4e(p) for all ¢ € VI and P> €
L (V" @a, AY).

5. Auxiliary Shimura variety

In this section, we introduce an auxiliary Shimura variety that will only
be used in the computation of local indices Ir, 1, (¢°, $5°, 51,52, 91,92)Lu tO
be introduced in the next section. We continue the discussion from Section 4.

Notation 5.1. We denote by T the torus over QQ such that for every com-
mutative Q-algebra R, we have To(R) = {a € F ®q R|Nmpg,pa € R*}.

We choose a CM type ® of E containing ¢ and denote by E’ the subfield
of C generated by E and the reflex field of ®. We also choose a skew hermitian
space W over E of rank 1, whose group of rational similitude is canonically
Ty. For a (sufficiently small) open compact subgroup Ly of To(A>), we have
the PEL type moduli scheme Y of CM abelian varieties with CM type ® and
level Ly, which is a smooth projective scheme over E’ of dimension 0; see, for
example, [Kot92]. In what follows, when we invoke this construction, the data
®, W, and Ly will be fixed, hence will not be carried into the notation E’
and Y. For every open compact subgroup L C H(A$), we put

X}/ =X, QrY
as a scheme over E'.
Unlike X7, the scheme X} has a moduli interpretation as first observed

in [RSZ20].

LEMMA 5.2. The E’'-scheme X| represents the functor that assigns to
every locally Noetherian scheme S over E' the set of equivalence classes of
sextuples (Ao, Ao, no; A, A, 1) where



CHOW GROUPS AND L-DERIVATIVES OF AUTOMORPHIC MOTIVES 849

e (Ao, No,m0) is an element in Y (S);

o (A, N) is a unitary Og-abelian scheme of signature type n® — ¢ + 1 over
S (see [LTXT19, Defs. 3.4.2, 3.4.3]);

e 1) is an L-level structure, that is, for a chosen geometric point s on every
connected component of S, a 71(S, s)-invariant L-orbit of isomorphisms

n: V @a, AF — Homp oo (Hi(Aos, A%), Hi(4,, A™))

of hermitian spaces over E@gA™® = E®@p A%, (See [LTX 19, Construc-
tion 3.4.4] for the hermitian form on the target of n.)
Two sextuples (Ao, Ao, no; A, N\, n) and (AL, Ngsnh; A, Nn') are equivalent if
there are Op-linear quasi-isogenies po: Ay — Aj and p: A — A" such that
e o carries My to np;
e there exists c € Q% such that o o Ny o @o = cho and ¢¥ o X o ¢ = c);
e the L-orbit of maps v — @, o n(v) o (pos) "L for v € V @a, A¥ coincides
with n'.
Proof. This is shown in [RSZ20, §3.2]. See also [LTX 19, §4.1]. O

Definition 5.3. For every x € V" ®a, AY with T(z) € Herm}(F)", we
define a moduli functor Z’(x);, over E’ as follows: for every locally Noetherian
scheme S over E’, Z'(x)r(S) is the set of equivalence classes of septuples
(A07 )‘07 No; A7 )\7 m; ‘%) where

e (Ao, Ao, m0; A, A, 1) belongs to X/ (S);

e 7 is an element in Homgp,, (A}, A)q satisfying z, € n(Lz).
By Lemma 5.4(1) below, the image of Z'(x)r, defines an element in Z"(X7}),
which we denote by Z(x)’.

LEMMA 5.4. For every x € V" @4, A¥ with T'(x) € Herm?(F)", we have
(1) the forgetful morphism Z'(x)r, — X is finite and unramified;
(2) the restriction of the algebraic cycle Z(x)r, to X} coincides with Z(x)",
as elements in Z"(X7}).

Proof. In the proof below, we will frequently use notation from Defini-
tion 4.1. Take ' € "W" and h € H(A¥) such that hx = 2’ holds in
V™ ®@a, A%. For both statements, it suffices to show that there is an iso-
morphism Z’(z);, — ngf/thlme’(AoFO) ®g Y such that the following diagram

~

commutes:
(5.1) Z'(z)1, X e ey @8 Y

N A

X



850 CHAO LI and YIFENG LIU

Let S be a locally Noetherian scheme over E'. We will construct a functorial
bijection between Z'(z)(S) and (XZIthme/(A%o) ®p Y)(S).

Take an element (Ao, Ao, n0; A, \,n;Z) € Z'(x)(S). We may find an Op-
abelian scheme A; of signature type r® — ¢ + ¢ over S, and an element Z; €
Homp, (A1, A)g, such that Z; & Z is an isomorphism in Homg,, (41 x Af, A)qg,
and that the composition ¥ o A o Z; € Homo,, (41, (45)")g equals zero. Put
A = Y o Ao . As I, € n(Lz), we may replace h by an element in hL
such that the restriction of n o h™! to Vj ®qg A, which we denote by 71,
is contained in the submodule Hom%oégAw (Hy(Aps, A®), Hy (A1, A)). Thus,
we obtain an element

(AOa)‘OanO;Ala)\lanl) € (X}zL;h—lme’(A%O) ®FE Y)(S)

By construction, it maps to (Ao, Ao, 7m0; 4, \,n) € X (S) in (5.1).
For the reverse direction, take an element

(AOa )‘Oa To; Ala )‘h 771) € (XZthlme’(A%o) QF Y)(S)
Put Ay = Ajf, and let Ay be the polarization such that we have an isomorphism
My Vi = I’IOIH)O\O};)\2 (Ao, AQ)Q

of hermitian spaces over E. Put A := A x Ay, A == A\ X Ao, and n == (11 &
N2 ®gA>)oh. Then (Ao, Ao, n0; A, A, 1) is the image of (Ao, Ao, 70; A1, A1,71) in
X7 (S)in (5.1). Let & be the isomorphism in Homo, (A, A2)g that corresponds
to m2(z), which we regard as an element in Homg,, (Af), A)g. Then we obtain
an element (Ag, Ao, n0; A, A\, m; &) € Z'(2)1(S) lying above (Ag, Ao, n0; A, A, ).
It is straightforward to check that the above two assignments are inverse
to each other. The lemma follows. (]

The following lemma will only be used in Section 10.

LEMMA 5.5. For every u € VSEOO), there exists an isomorphism

{Xr ®Ep,., C ~{"X1 ®,,(r) C}

of systems of complex schemes under which Z(x);, ®g,, C coincides with
“Z(x)L ®,,(p) C for every x € V" @, AY with T(x) € Hermy(F)*. Here,
“Xp and “Z(x)r are defined similarly as X1, and Z(x)r with ¢ replaced by vy,
hence are schemes and cycles over 1, (E).

Proof. We choose an isomorphism o: C = C satisfying ¢, = o o ¢.

Choose an element (Ag, A\g,10) € Y(C). Then by Lemma 5.2, X; ®p C
has the following moduli interpretation: For every locally Noetherian complex
scheme S, (X1 ®gC)(S) is the set of equivalence classes of triples (A, A, 7n) as in
Lemma 5.2. In particular, (A, \) is a unitary Og-abelian scheme of signature
type n® — ¢ + ¢ over S. Since X ®g C does not depend on the choice of
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®, such moduli interpretation holds as long as ® contains ¢. In particular, we
may take ® such that it contains both ¢, and ¢. Then we have such moduli
interpretation for both ® and ¢~'®. Using both moduli interpretations, we
obtain an isomorphism {X; ®g,,, C} ~ {*X ®,, (g) C} of systems of complex
schemes. By Lemma 5.4, it follows easily that under such an isomorphism,
Z(x)r ®p,., C coincides with “Z(x); ®,,(g) C for every x € V" @4, A¥F with
T(z) € Herm?(F)*. The lemma is proved. O

Notation 5.6. In Sections 7, 8, and 9, we will consider a place u € V%n \
V™. Let p be the underlying rational prime of u. We will fix an isomorphism
C = Q, under which ¢ induces the place u. In particular, we may identify ®
as a subset of Hom(E, Q).

We further require that ® in Notation 5.1 is admissible in the followi(n)g

P

sense: if ®, C ® denotes the subset inducing the place v for every v € Vi’,
then it satisfies

(1) when v € ng) N Vi?l, ®, induces the same place of E above v, which we
denote by v, and by v its conjugate;

(2) when v € Vg}) N Vilflt, ®,, is the pullback of a CM type of the maximal
subfield of F, unramified over Q.

To release the burden of notation, we denote by K the subfield of Q, generated
by E, and the reflex field of ®, by k its residue field, and by K the completion
of the maximal unramified extension of K in @p with the residue field Fp. It
is clear that admissible CM type always exists, and that when Vg) AVE™ =0,
the field K is unramified over E,,.

We also choose a (sufficiently small) open compact subgroup Lg of To(A)
such that Lg, is maximal compact. We denote by ) the integral model of YV’
over Ok such that for every S € Sch’/OK, Y(S) is the set of equivalence classes
of triples (Ao, Ao, 7f;) where

e (Ap, o) is a unitary Opg-abelian scheme over S of signature type ® such
that \g is a p-principal polarization;
e 78 is an Lf-level structure. (See [LTX 19, Def. 4.1.2] for more details.)

By [How12, Prop. 3.1.2], ) is finite and étale over Of-.

6. Height pairing and geometric side

In this section, we introduce the notion of a height pairing after Beilinson
and initiate the study of the geometric side of our desired height formula. We
continue the discussion from Section 4. From this moment, we will further
assume F' # Q, which implies that X, is projective.
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We apply Beilinson’s construction of the height pairing in [Bei87, §4] to
obtain a map

(), CH(X)E x cH (X)) = C g Q

(see Notation 2.5(C3) for the notation) that is complex linear in the first vari-
able, and conjugate symmetric. Here, /¢ is a rational prime such that Xy, , has
smooth projective reduction for every u € V%). For a pair (¢1,c2) of elements

in Z’"(XL)((CZ> X ZT(XL)g> with disjoint supports, we have
6.1) (e, 5= D, 2ene)xg,mt+ Y 10gqu- (e, ), | p
uev's? uevhy
in which
e ¢, is the residue cardinality of E, for u € V%“;
o (c1, C2>€(L,H,Eu € C®qQy is the non-archimedean local index (B.1) recalled

in Appendix B for u € Vi (see Remark B.11 when u is above ¢), which
equals zero for all but finitely many wu;

e (c1,c9) Xpu By € C is the archimedean local index for u € VEEOO), which will
be recalled when we compute it in Section 10.

Definition 6.1. We say that a rational prime ¢ is R-good if ¢ is unramified
in E and satisfies ng) Ccvin\ (RUS).

Definition 6.2. For every open compact subgroup Ly of H(Fg) and every
subfield I of C, we define

(1) (S%)OLR to be the ideal of S} (Notation 2.2(HS8)) of elements that annihi-

late
P Hir(Xp.e/E) @g L
i#2r—1
(2) for every rational prime ¢, (Sﬁ)ﬁ to be the ideal of S} of elements that
annihilate

P B (Xprrw Q) ®g L.
uevir\v{

Here, L® is defined in Notation 2.2(HS).

Definition 6.3. Consider a nonempty subset R C R, an R-good rational
prime ¢, and an open compact subgroup L of H(A$) of the form Lg L*, where
L* is defined in Notation 2.2(H8). An (R,R’, ¥, L)-admissible sextuple is a sex-
tuple (¢7°, $3°, 1,52, g1, g2) in which

o fori =1,2, ¢° = ®,¢5 € (V" ®ap AF)" in which ¢35 = L(pr)r for

v € VIR \ R, satisfying that supp(65S ® (¢52)¢) C (V.2 )yeg for v € RY;

e for 1 = 1,2, s; is a product of two elements in (Saac)ﬁ;
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e for i = 1,2, g; is an element in GT(A%’).
For an (R, R/, ¢, L)-admissible sextuple (¢3°, ¢5°,s1, 82, g1, g2) and every pair
(T, T) of elements in Herm{ (F)*, we define

(1) The global index Ir, 1,(67°, $5°, 51,52, g1, 92)}, to be

(wr.00(g100) 8% (T1) - 5121, (w7 (95°)95°) 1,
r,o0(9200) 0% (1) - 8521, (Wi (95°)05°)1 ) ., o

as an element in C®g Q. We note that for i = 1,2, s} Z7 (w®(95°)0°) 1
belongs to CHT(XL)W by Definition 6.2(2);
(2) For every u € V%n, the local index I7, 7, (¢7°, $5°, 51, 82, gl,gg)g,u to be

(roo(9100) 8% (T1) - 81 21, (w32 (97°)67°) 1,
o oo9200) 0% (T2) - 5371, (5 ()60, .

as an element in C ®g Qy, in view of Remark 4.2 and Lemma 6.4(2)
below.

(3) For every u € VSEOO), the local index Ir, 7, (¢7°, $5°,81,52, 91, 92)L.u to be

(r0(G100) 8% (T1) -85 21, (w5 (97°) 7)1
o oo(9200) 0% (12) 5371, (5 (66301 x, s,

as an element in C, in view of Remark 4.2 and Lemma 6.4(2) below.

LEMMA 6.4. Let R, R, ¢, and L be as in Definition 6.3. Let (T1,T%) be a

pair of elements in Herm{ (F)*.

(1) Forzy,xo € V®a,AY satisfying T'(x1) = T, T(x2) = To, and such that
(Lyx1y, Lyzay) C (V,UQT)reg for some v € R/, the algebraic cycles Z(x1)L
and Z(x2)r in Z"(Xp)c have disjoint supports.

(2) For every (R,R', ¢, L)-admissible sextuple (¢5°, $3°, 81,82, 91, 92), the al-
gebraic cycles s1Zr, (w°(97°)97°) 1 and s3 21, (wi°(95°)¢3°) L in 2" (XL)c

have disjoint supports.

Proof. 1t is clear that (2) follows from (1).

For (1), it suffices to check that they are disjoint under complex uni-
formization (4.1). By definition, for i = 1,2, the support of Z(x;) consists of
points (z;, h;h;) in the double coset (4.1), where h;jz; = x} with z, € "V, z; is
perpendicular to V., : and h} acts trivially on Vi Suppose that the supports
of Z(x1)r, and Z(:L'Q)L are not disjoint. Then we may find v € "H(F') such
that 21 = y22 and hjhiL = yhyhoL. In particular, V,; NV, # {0}, which
implies that the subspace of V%" generated by (z],~x}) is a proper subspace.
Thus, (hiz1,vhoxe) & (Vfr)reg for every v € R". On the other hand, we have
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(hix1,vhaxzo) = (Rihiz1,vhbhexa), which implies that (Lyz1y, Lyxay) is not

contained in (V,2")yeq, which is a contradiction. Thus, (1) follows. O

The following definition will be used in the future.

Definition 6.5. Let p be a rational prime. We say that an element ¢ €
L (V™ @4, AY) for some integer m > 1 is p-basic if it is of the form ¢ =
®@p¢° in which ¢3° = 1(prym for every v € Vg) \ (RU Vi?l).

Recall from Notation 3.14(1) that II is the automorphic base change of 7.

HYPOTHESIS 6.6. Let £ be a rational prime with an arbitrarily given iso-
morphism Qp ~ C. For every irreducible admissible representation ©° of
H(AY) such that I, is the standard base change of 75° for all but finitely
many v € V%n for which T° is unramified, if we are in the situation (b) of
Lemma 3.15, then the semisimplification of the representation

p[r™] == Homp (s) (7?007 hQHQTA(XL ®F Qae,Qe))
L

of Gal(Q*/E) is isomorphic to pf—lﬂ_m), where pri; is introduced in Nota-
tion 3.14(4). '

Remark 6.7. Concerning Hypothesis 6.6, we have

(1) when n = 2, it has been confirmed in [Liu2la, Th. D.6];

(2) when II is cuspidal (that is, s = 1 in Notation 3.14(3)), it will be con-
firmed in [KSZ] (under the help of [Mok15, KMSW14]);

(3) in general, it will follow from [KSZ] as long as the full endoscopic clas-
sification for unitary groups is obtained.

Definition 6.8. Let (m,V;) be as in Assumption 3.1. We define a character
X;RT: T%ac — Q&C

as follow. Let /H%Vr be the restricted tensor product of commutative complex
algebras Hﬁ/m if €, = £1 over v € Vi? \ R, where ’Hffvm is defined in [Liu21b,

Def. 2.5] for v € ViB® and is simply the spherical Hecke algebra for v € Vi?l.

Using the construction in [Liu2lb, Def. 2.8], we have a canonical surjective
homomorphism 6%: ’H%VT — T& of complex commutative algebras. Since 7, is
unramified (resp. almost unramified) when €, = 1 (resp. €, = —1) by Assump-
tion 3.1(2), the algebra My, acts on YIrR by a character %y, : Hyy, — C,
which factors through 6* by [Liu21b, Def. 5.3, Th. 1.1(1)]. Since 7 is coho-
mological by Assumption 3.1(1), hence has algebraic Satake parameters, there
exists a unique character x% : T — Q* such that x} y, = (X7 ®gac C) 0 6%,
We put mf = ker x%, which is a maximal ideal of Tfa..
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PROPOSITION 6.9. Let (m,Vy) be as in Assumption 3.1. For every open
compact subgroup Ly of H(FR), we have
(1) (Shee)}, \ m% is nonempty;
(2) under Hypothesis 6.6, (Saac)g}i \ m? is nonempty.

Proof. For (1), by Matsushima’s formula, we know that the localization
of the SE-module H', (X, 1x/F) ®g C at m® is isomorphic to the direct sum of
H(7s) ® #> for all cuspidal automorphic representations 7 of “H(Ar) such
that the standard base change of 7, is isomorphic to I1, for all but finitely many
v € V;E’l, where H'(7) denotes the (g, K)-cohomology of 7. By [Raml8,
Th. A], we know that IT must be the automorphic base change of 7. By
[KMSW14, Th. 1.7.1], we know that 7, is tempered, hence H*(7,) vanishes
for i # 2r — 1. Therefore, (1) follows as Hig (X,zx/F) is of finite dimension.

For (2), note that for all but finitely many u € Vir\ Vg), the natural map
B2 (X 180 Qe(7)) = B2 (X180 @, B, Qo(r))

is injective by the Hochschild—Serre spectral sequence and the Weil conjecture.
As an Sf.c-module, we have

HY (X L0 0 O, Bu, Qu(r)) ®q (B ®g Q™) ~ HiR (X 0/ E) ©g (Q ©g Q).

By (1), we know that there exist elements in S&ac \ m& that annihilate

H* (X, 180, Qe(7))

for all but finitely many u € V%n \ V%). Thus, it remains to show that for
every given u € Vf]i;n \ V%) and every embedding Q* < Qy, the localization of
H?" (X1, 8.4, Qu(r)) at m? vanishes. By (1) and the Hochschild-Serre spectral

sequence, it suffices to show that
Hl(Eu7 H27’71<XLRLR ®E Qac)@g(r))mf;) = 0.

By Hypothesis 6.6, it suffices to show that H!(E,, pf-[j(r)) =0 for every j. As
shown in the proof of [Carl2, Th. 7.4], the associated Weil-Deligne represen-
tation of prr, (1) at u is pure (of weight not zero), which implies H(E,,, P, (r))
= 0 by [Nek07b, Prop. 4.2.2(1)].

The proposition is proved. O

Until the end of this section, let (7,V;) be as in Assumption 3.1, and assume
Hypothesis 4.5 on the modularity of generating functions of codimension r.

PROPOSITION 6.10. In the situation of Definition 4.8 (and suppose that
F # Q), suppose that L has the form LyxL*, where L* is defined in Nota-
tion 2.2(H8). For arbitrary elements ¢ € VIR and ¢ € L (V" @a, AX)E,
we have
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(1) 8@y (@)L = X5 (8)° - Ogoe (@)L for every s € Sfac;
(2) Og=(p)r € CH (XL)Y;
under Hypothesis 6.6, ()L € L or every R-good rationa
3) under Hypothesis 6.6, O, CH" (X)) f d z
prime £.

Proof. For (1), by Lemma 4.4, we have

§ Oy ()1, = O (9)1, = / 2°(9) Zogs (9)1, g,
Gr(F)\Gr(AF)

which, by [Liulla, Prop. A.5] for split places (see also [Ral82, p. 511]), equals

/ (" (89°)(9) Zeo=(9)1.do,
Gr(F)\Gr(AF)

which equals

/ (G 6)(0)Zo (0)1.dg = E6)° - O )1
Gr(F)\Gr(AF)

Part (2) is a consequence of (1) and Proposition 6.9(1).

Part (3) is a consequence of (1) and Proposition 6.9(2). O

We now define the normalized height pairing between the cycles ©ge ()
in Definition 4.8, under Hypothesis 6.6.

Definition 6.11. Under Hypothesis 6.6, for arbitrary elements @1, s € Vlrr]

and ¢7°, ¢3¢ € (V" @4, AY), we define the normalized height pairing

(©ps (1), @¢g°(@2)>g<’E € C®qQr

to be the unique element'” such that for every L = Ly L* as in Proposition 6.10
(with R possibly enlarged) satisfying o1, p2 € VT[rT]R, 3, ¢ € S (V' @, AL,
and that ¢ is R-good, we have

(O (101), Ouse (92))x 5 = VOI(L) - (Ogee (1)1, Ogse (02) 1), v

. . . oy 11 e
where vol(L) is introduced in Definition 3.8, and (Ogee (1)L, Opse (P2) L)%,
is well defined by Proposition 6.10(3). Note that by the projection formula,
the right-hand side of the above formula is independent of L.

'9The readers may notice that we have dropped £ in the notation (©ge (¢1), Oz (‘P2)>g(,E-
This is because for those normalized height pairings we are able to compute in this article,
the value will turn out to be in C and is independent of the choice of /.

11n fact, it is a good exercise to show that the total degree of the Hodge line bundle on
X1 is equal to 2vol® (L)~
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7. Local indices at split places

In this section, we compute local indices at all but finitely many places

in ngl. Our goal is to prove the following proposition.

PROPOSITION 7.1. LetR, R/, ¢, and L be as in Definition 6.3 such that the
cardinality of R is at least 2. Let (7, Vy) be as in Assumption 3.1, for which
we assume Hypothesis 6.6. For every u € VSEpl such that

(a) the representation m, is a (tempered) principal series,
(b) V%f) NRC Vi?l where p is the underlying rational prime of u,

there exist elements sy, sy € Sfa. \ my such that

l
ITl,TQ ((ZS(IDO’ ¢gov S%Sl, S12LSQ7 g1, g?)L,u =0

for every (R,R', ¢, L)-admissible sextuple ($3°, $5°, 81,82, 91,92) and every pair
(Ty,Ty) in Herm?(F)™. Moreover, we may take s} =s% =1 if u & R.

Since u splits in F, we may fix an isomorphism H ®,, F, ~ GL, F, such
that L, is contained in GL,(OF,) and, moreover, equal if u ¢ R. For every
integer m > 0, denote by Ly, € GL,(OF,) the principal congruence subgroup
of level m.

From now to the end of this section, we assume ng) NR C Vi?l. We invoke

Notation 5.1 together with Notation 5.6, which is possible since Vﬁf) AVRE™ = 0.
To ease notation, we put X,, .= X /Lu pu @p K for m > 0. The isomorphism

C = Q, in Notation 5.6 identifies Hom(E,C) with Hom(E,Q,). For every
v E ng)ﬂ\li?l\{y}, let {v, ve } be the two places of E above v from Notation 5.6.
Identify H ®4,, F, with GL(V ®4, E,.).

Let S be a locally Noetherian scheme over Ok and (A, \) a unitary Op-
abelian scheme of signature type n® — ¢, + ¢, over S. Then the p-divisible
group A[p*] admits a decomposition A[p>] = Hvevﬁé’) Alv™].

For every integer m > 0, we define a moduli functor X,,, over Ok as follows:
For every locally Noetherian scheme S over Oy, X, (.5) is the set of equivalence

classes of tuples (Ao, Ao, 7h; A, A, nP, {nw} , where

,Uev(FI?) F‘IVSI,PI\{QP Uu,m)
o (Ap, Xo,nh) is an element in Y(S);
e (A, ) is a unitary Og-abelian scheme of signature type n® — ¢, + (5, over
S, such that
— for every v € Vg}), Av™°] is an isogeny (rather than a quasi-isogeny)

whose kernel has order gl =¢;
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— Lie(A[u®*?]) is of rank 1 on which the action of Op is given by the
embedding (¢ ;2
e 7P is an LP-level structure, analogous to the one in Lemma 5.2;
e forevery v € ng) ﬂVi?l\{y}, 7y is an Ly-level structure, that is, an L,-orbit

of E,, -linear isomorphisms
Mo V @ap By, S Homoy, (Aooi®], AR)) @0y, B,

of E, -sheaves over S
® Num: (p;m/OFH)" — moFu (Ao[u°7w][pg],A[uc’w][pg]) is a Drinfeld
level-m structure; see [RSZ20, §4.3] for more details.

By [RSZ20, Th. 4.5], for every m > 0, X, is a regular scheme, flat (smooth,
if m = 0) and projective over Ok, and it admits a canonical isomorphism
Xm ®0, K ~ X, of schemes over K .13 Note that for every integer m > 0,

(p) . . .
SRR naturally gives a ring of étale correspondences of X,

We first prove the follow lemma, which addresses the easy part of Propo-
sition 7.1 as a warm-up.

LEMMA 7.2. Let the situation be as in Proposition 7.1. Suppose that
u € R. Then we have

¢
Iy 1, (977, 037, 81,52,91,92) 1, = 0

for every (R,R', ¢, L)-admissible sextuple ($3°, $5°, 81,82, 91,92) and every pair
(Ty,T) in Herm{ (F)*.

Proof. It suffices to show that for every z1,22 € V" ®a, A% satisfying
T(x1),T(z2) € Herm?(F) T and (LyZ1y, LyT2y) C (V2" )reg for some v € R, we
have

(Z(e)1 Z(@)1)s, . = O
Since u € R, by Lemmas B.3 and 5.4, it suffices to show that

(7.1) (Z(21)L, Z(22)1) k0. = 0.

We use the integral model Xy just constructed above, which is smooth
and projective over Ok of relative dimension n— 1. For i = 1,2, let Z(x;)), be
the Zariski closure of Z(z;)} in Xy. We claim that Z(z1)} and Z(z2)} have
empty intersection. By Proposition B.10, we obtain (7.1).

12Since ® is admissible (Notation 5.6), the Eisenstein condition at v # w is implied by the
Kottwitz condition, and at u it is implied by the Kottwitz condition and that Lie(A[u®°])
is of rank 1 on which the action of Of is given by the embedding tg,.

3Here, we have to use the fact that K is unramified over E, to conclude that X, is
regular when m > 0.
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For the claim, we assume the converse. Then we can find a point
. D il
(A07 )‘07 npa A7 )‘a U {TIU }vev%’)nv?l\{g}) € X (Fp)

that is in the supports of both Z(x1)} and Z(x3)’ . In particular, for i = 1,2,
we can find an element 2; € Homo, (A}, A)g satisfying Z; . € nP(LPz). As
(Lyx1y, Lyway) C (V;?T)reg for some v € R/, we know that A is quasi-isogenous
to A2, which is impossible by [RSZ20, Lemma 8.7]. It follows that the supports
of Z(z1)} and Z(z2)} have nonempty intersection, which is a contradiction to

Lemma 6.4(1). Thus, the claim and hence the lemma are proved. O
To study the general case, we need the following vanishing result.

LEMMA 7.3. Let the situation be as in Proposition 7.1 with p # £. Then
for every integer m > 0, we have

(H" (X, Qe(r)) ®g Q*),, =0,

(p)

where m = m& N SS:ZF
Proof. For every integer m > 0, put Y, == X, oy k, Yo = Yrrned, and

for 0 < j < n — 1, denote by Y, ; the Zariski closed subset of Y;,, on which
the formal part of A[u®°] has height at least j + 1. By the similar argument
of [HT01, Cor. IIL.4.4], we know that Y,? ; == Yi,; \ Vi j41 is smooth over
k of pure dimension n — 1 — j.* Applying Corollary B.15(2) to S = SRUV;E),

(p)
L =Q%, and m=minN Sg:gF , it suffices to show that for every m > 0,

(1) (H(Xm, Qe(r)) ®g Q*)m = 0; and
(2) (H'(Y,; @k Fp, Q) ®q Q*)m = 0 for every i < 2r — 2(j + 1) and every
0<ijs<n—1.
Part (1) has already been proved in Proposition 6.9(2) (as we have assumed
Hypothesis 6.6).
Part (2) follows from the following stronger statement:
(3) For an arbitrary embedding Q* < Q, H%Y;m @k Fp,Q¢)m = 0 for
every m > 0 unless j =0 and ¢ = 2r — 1.
The argument for (3) is similar to the proof of [CS17, Th. 6.3.1]. For m > 0
and 0 < j < n—1, let I, ; be the Igusa variety (of the first kind) so that
Y, ; is the disjoint union of finitely many Iy, j; see [HTO01, §IV.1]. For each j,
we obtain a projective system {I, ; | m > 0} with finite étale transition mor-
phisms. If Hi(Yr‘,’m Rk E;,@g)m =0 for all m > 0, i, and j, then we are done.
Otherwise, let 7 be the maximal integer such that Hi(Y,%J Rk Fp, Qt)m # 0

1“In the notation of [HT01, §IIL4], our Y3 ; is parallel to Xy o 7.
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for some m and ¢. Then hﬂm Hi(Imvj Qp Fp,@g)m # 0. Now we would like
to apply [CS17, Cor. 6.1.4], where in our case, the set B(G,u~!) is identi-
fied with {0,...,n — 1} under which d = n —j = 2r — 1 — j, and Ig’ is the
perfection of Jf}lam = @m f&amm [CS17, Prop. 4.3.8] in which j&ant’m
is a finite Galois cover of I, ;.'> Then we have H(Ig? @, Fp,Qo)m # O,
which, by [CS17, Cor. 6.1.4]'6 (for the coefficients Q;), implies that i can
only be 2r —1 — j. In particular, combining with the Poincaré duality, we
have [He( 0 ©k Fp, Q¢)]m # 0 (where we adopted the notation from [CS17,
Th. 5.5.7]). By the local-global compatibility at split places ([Shi, Th. 1.1] or
more generally [KMSW14, Th. 1.7.1]), we have II,, ~ m,, where we recall that
IT is the automorphic base change of 7 in Notation 3.14(1). In particular, II,,
is a tempered principal series by (a). Then by [CS17, Th. 5.5.7] (together with
the modification in the proof of [LTX"19, Th. D.1.3]) and the very strong
multiplicity one property [Ram18, Th. A}, we must have j = 0 and hence
i =2r — 1. Thus, (3) follows.

The lemma is proved. |

Remark 7.4. In fact, we conjecture that Lemma 7.3 remains true without
condition (a) in Proposition 7.1. If this is confirmed, then we may remove
condition (2) in Assumption 1.3.

Proof of Proposition 7.1. The last part of the proposition has been con-
firmed in Lemma 7.2. We prove the first part. We may assume p # ¢ since
otherwise it has been covered in Lemma 7.2. Fix an integer m > 0 such that
L, contains Ly m,.

It suffices to show that there exists s € S*V¢ \ m? such that for every
z1,22 € V' @4, AR satisfying T'(z1), T (z2) € Herm?(F) " and (Ly@1y, Lyxay) C
(V2" )peg for some v €R'\ {u} (which is nonempty as we assume [R’| >2), we have

(s"Z(21)L, S*Z($2)L>AZXL,U7EH =0.

By Lemmas B.3 and 5.4, it suffices to have
(7.2) (" Z(21)p,5°Z(22) 1), i = 0.

To compute the local index on X,,, we use the model X}, constructed above.
(p)
Take s € S%L:ZF that is an /-tempered Q%°-étale correspondence of X,,,, which

exists by Lemma 7.3 and Corollary B.15(1). Then by Proposition B.13, we

15The Galois cover comes from the fact that in the definition of % there is also a

Mant,m?
level structure on the formal part of Afu
16Strictly speaking, the authors assumed that the level at p is hyperspecial maximal. In

c,oo]

our case, we only require that L, is hyperspecial. However, by our special signature condition,
the argument of [CS17] works in our case verbatim.
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have

(" Z(21)1, 5 Z(22) 1), i =[5 Z(21) ). [" 2 (22) ],
where Z(x;)} is the Zariski closure of Z(x;)} in &), for i = 1,2. By the sim-
ilar argument used in the proof of Lemma 7.2, s*Z(z1)} and s*Z(z2)} have
disjoint supports, which implies s*Z(z1)’ .s*Z(x2)} = 0. Thus (7.2) and hence
the proposition hold with s} = s§ =s. d

8. Local indices at inert places: unramified case

In this section, we compute local indices at places in Viﬁt that are not
above RUS. Our goal is to prove the following proposition.

PROPOSITION 8.1. Let R, R', £, and L be as in Definition 6.3. Take an
element u € Viﬁt such that uw & S and whose underlying rational prime p is odd
and satisfies VE}D) NRC Vil’l. Then we have

lOg Qu - VOIH(L) : ITLTQ (¢(f0’ QSgov 51,52, 91, QZ)QH
= QEThTz((glag?)a (I)go ® (31077 @ (5205°)°) )u
for every (R,R', ¢, L)-admissible sextuple (¢5°, p3°, 81,82, 91,92) and every pair
(Ty, T3) in Herm$(F)™, where the right-hand side is defined in Definition 3.11

with the Gaussian function ® € (V?" ®a, Fs) (Notation 2.2(H3)), and
vol*(L) is defined in Definition 3.8.

To prove Proposition 8.1, we may rescale the hermitian form on V and
hence assume that g, is unramified and that A? is either a self-dual or an

almost self-dual lattice of V,, for every v € ng) \Vi?l.

LEMMA 8.2. Let the situation be as in Proposition 8.1. If the weaker ver-
sion of Proposition 8.1 where we only consider (R,R’, ¢, L)-admissible sextuples

(95°, 9, 81,82, 91, g2) in which g1, = g2, = Loy for every v € V%OO) UV%?) holds,
then the original Proposition 8.1 holds.

Proof. Take an arbitrary (R,R’,¢, L)-admissible sextuple (¢$°, $3°,s1, s2,
g1,92). For i = 1,2, we may find elements a; € GL,(F) and b; € Herm,(F')
such that m(a;)"1n(b;) g € K., for every v € V%) \R'. Fori=1,2, put

T = 'afTai, 6 = [] wnolmla) n(b) )6,
vER/

and let g; be the away-from-(R' U V%oo) U ng))—component of m(a;) " n(b;) " Lg;.
Then (¢5°, $5°, 81,82, G1,g2) is an (R,R’, ¢, L)-admissible sextuple.
By Lemma 4.3, we have

l 7 7 ~ o~ \/
Ity 1 (077, 957, 81,82, 91, 92) 1w = C - Iy 7, (077, 057, 51,92, 91, G2)
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in which

o (Wr,oo(m(al)_1n(b1~)_1gloo)¢go(fl))
¢%(11)
' (wr,oo(m(a2)_1”(b2)_192m)¢go(Tz))c

¢%(T») '

On the other hand, from Definition 3.11, we have
€1, (91, 92), P ® (5167° @ (5205°)°))u
— € 1, ((31,52) O @ (5165 ® (52659)%))

with the same C. The lemma follows. O

In order to deal with spherical Hecke operators, we consider the projective
system of Shimura varieties {X; } indexed by open compact subgroups LCL
satisfying L, = L, for v € ng) \VSFpl.

We invoke Notation 5.1 together with Notation 5.6, which is possible since
Vg)ﬂVrF“‘m = (). There is a projective system {X; } of smooth projective schemes
over Ok (see [LZ, §11.2]) with

ij ®o K = X/E Rp K = (Xf/ RF Y) Rp K,
and finite étale transition morphisms. In particular, S* is naturally a ring of
étale correspondences of X7,.

LEMMA 8.3. If s is a product of two elements in (SE ac)gg, then it gives
an (-tempered Q?“-étale correspondence of X1, (Definition B.12).

Proof. We have a short exact sequence
(8.0)  HY o, (¥, Qulr) — B (A, Qu(r)) > B (X5, Qulr),
in which we have
HY, g0, 6(X1, Qu(r) = B 72X @0, b, Qu(r — 1))

by the absolute purity theorem [Fuj02], since X7, is smooth over Og. By the
Hochschild—Serre spectral sequence and the Weil conjecture, the natural maps

H? (X7, Qe(r)) = B (X7, @K Qp, Qu(r))
H* ~2(XL, @0y k, Qu(r — 1)) = H (X1, @0y Fp, Qo(r — 1))
are both injective.

By definition, every element in (S%ac)gz annihilates H?" (X} @ Qp, Qo(r))
®q Q. By the Poincaré duality and the smooth proper base change theorem,
every element in (Séac)gz also annihilates H* ~2(X1, ®0, Fp, Qu(r — 1)) ®g Q.
In particular, s annihilates H?" (X7, Q(r)) ®g Q®° as each factor annihilates a

graded piece in the two-step filtration of H2" (XL, Q(r)) given by (8.1). The
lemma is proved. [l
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We first recall the uniformization of {X;} along the supersingular locus
from [LZ, §13.1]. Fix a complete maximal unramified extension K of K. Recall
that we have fixed a u-nearby space “V and an isomorphism “V®@pA% ~ V®, .
A% from Notation 2.2(H9). We have a compatible system of isomorphisms

(8.2) X o~ (“H(F)\N x H(AF) /L") xsprog V"

of formal schemes over O for every L C L considered as before. Here, X £
denotes the completion of X; ®o, O, along its supersingular locus, A is the
relative unitary Rapoport-Zink space over Spf O, as considered in [LZ, §2.1],
and Y denotes the completion of ) along its special fiber.

We then recall the notion of integral special cycles. Take an integer m > 1
and an element ¢ € .7 (V™ ®,,, AX)L that is p-basic (Definition 6.5).

For every element T' € Herm?, (F))™", there are following constructions.

e We have a cycle Zp(¢™)r, € Z™(XL)c (Definition 4.1). When ¢> is the
characteristic function of some open compact subset of V™ ®4, A%, we
have a morphism

Zr(6™)L = X7,

defined as the disjoint union of finite and unramified morphisms Z’(x);, —
X} (Definition 5.3) for x € L\ supp(¢>), whose induced cycle coincides
with the restriction of Z7(¢™)r, to X} (Lemma 5.4). By moduli interpre-
tation, the morphism Z7.(¢>°); — X extends naturally to a finite and
unramified morphism

ZT(QZ)OO)L — XL

([LZ, §13.3)).

e For ¢ = ¢7°® - ® ¢y, where each ¢5° € S (V ®a, AS)L is p-basic and
is the characteristic function of some open compact subset of V ®, A%,
we denote by XZ7(¢>) 1 the component of

L L
Oz, (¢°) ©0x, " Q0x, Oz, (6),

supported on Z7(¢>) 1, regarded as an element in K& (XL, )c (see Appen-
dix B for the notion of the K-group), where (¢1,...,t,) is the diagonal of
T and Z denotes the image of Z7(¢>°) in Xf. In general, we may always
write ¢>° as a finite complex linear combination (possibly after shrinking
L away from V%p) \Vi?l) of those as above, and we define XZ7(¢>°);, by
linearity. By [GS87, Prop. 5.5], ¥Z7(¢>)1, belongs to F'KE (Xr)c, and
hence is an extension of Zp(¢>)} (Definition B.9).

'"Here, we note that Zr(¢°)r, is an open and closed subscheme of Z¢, (¢°°)r X x, - X x,,
Z1, ()L
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e We denote by Zp(¢>)7 the restriction of Z1(¢>)r, to X}'. Then we have
the following description:

Zr(e™)E= > A U
(8.3) PN H N VT HEHT (F)\H(AF )/ L

(N (@), h) L Xsprog V',

where NV (z) is the special cycle of A indexed by z ([KR11, Def. 3.2] or [LZ,
§2.3]), (M (x), h)r denotes the corresponding double coset in the expression
(8.2), and H? is the subgroup of “H of elements that fix every component
of x.
In what follows, for x = (z1,...,zy) € “V™ with T'(z) € Herm;, (F,), we
put
N () = N(z)] U U N (2m)]

as an element in Ké\/(x) (N). See [Zha21, App. B| for the analogue of Gillet—
Soulé K-groups for formal schemes; we denote similarly by [ | the associated
element in the K-group.

Proof of Proposition 8.1. By Lemma B.3 and Definition 3.11, it suffices
to show that for every pair of p-basic elements ¢5°, ¢3° € S (V™ @4, AR)L
satisfying that supp(¢$° ® (#5°)¢) C (V2

" reg for v € R/, and every pair of

O

elements s1,s9 each of which is a product of two elements in (SE..) I we have

vol?(L)

Tog@ 7] e (T T2 51 21, (3520, (65°) ),

1
— Z - Wi (0, Lar, Lan)2r)
(84) TOcHerms, (F)* “
Diff(75,V)={u}
Oy,» TO=(T1,T2)

] W (0, 1ar, (9% © (5197° @ (5205°)%))o)-
vAEU

Now using vol®(L,) = 1 and [Toeve\fu} 7\2/Z,¢F,U =1, (8.4) is equivalent to

vol( H (Fao) LX) o
—deg(v ) 0T T 8120, (61152 (651 x,
boy (0
- Z 120:g((] ) jlﬂD (0, 147‘7 H(ARE)QT)
(8.5) TDGHermgT(F)‘*' w

Diff (T5,V)={u}
aT,rTD :(Tl »TQ)

b o 0 00 00\ C
T 22,00, 1, (8% © (5165 @ (5265)%))e).
’U;ﬁﬂ ’YVU,@DF,U
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By Proposition B.13 and Lemma 8.3, we have
(5127, (62018321 (630 ) xp ke = (51 52m (6701 ) - (55 %2 m(63°)1)
= x (7 (57 21, (65°)L U5 %21, ((65)°)1) ) ,
where m: X;, — Spec Ok denotes the structure morphism. As supp(¢gS ®
(62)¢) C (V2 )yeq for v € R', the support of 7 X271, (¢5°), Uss *Z1, ((#5°)°) 1,

is contained in the supersingular locus of X7,. Moreover, since s} and s} preserve
the supersingular locus, we have

x (e (51527, (07°) 2 Ut ¥ 2, ((63°)°)1))
= x (70 (1520, (677 Uss *21,((639)°)7))
where 7/ : X' — Spf O denotes the structure morphism. To summarize, the
left-hand side of (8.5) equals

(8.6)
vol(H (F)L™)
deg(Y/K)
From (8.3), it is straightforward to see that

S: KZTi (‘b?o)g

O (T, Ty) - x (7 (51 K27, (6°)7 Uss K21, ((65°)9)7) ) -

= > > (507> ) (hy i) - ("N (), ha) 1 Xspt 0 Y
zi € H(F)\"V" hye H*i (F)\H (A7) /L%
T(z;)=T;
for i = 1,2. It follows that
81820 (67°)7 Ust "2, ((65°)°)] = > >

THeHerm$, (F)* x€“H(F)\ “V2"
8 TO=(T1,1n)  T(x)=T"

Yo 5167 @ (52057)°) () - (N (@), h)p Xsproge Y

heH(AF™)/Lv

Now by [LZ, Th. 3.4.1, Rem. 3.4.2], we have

bar.u(0)
K 2r,u
X (ﬂ'i\ N($)) = log " zlﬂ (0, 141"7 l(A‘;)”)
if T(z) = TV. Thus, we have
(8.6) = vol(H(Fuo ) L%) - ®° (T}, T5) - > > >

THeHerm$, (F)T z€“H (F)\ “V?" he H(AZ ™)/ L=
O TO=(T1,15)  T(x)=T"

0, U 00,UN\ C — b U 0
167 @ 20990 (2000 0,10, 1050 )
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By Definition 3.8, we have

vol(H (Fy)) - @y (T1, Tz) = b’é’;”(m Wro (0, Lar, (20 ® (5165° ® (5205°)°))o)

’va 7'¢’F,v

forv e V%OO). By Definition 3.8, for (unique) z € “H(F)\ “V?" with T'(z) = T",
we have

vol(Ly) Z (s167% ® (S2¢?7H)C)v(h;1$)
ho€H(Fy)/Ly
_ b2r,v(0)

2r
W br,o

W (0, Ly, (B2 @ (5165° ® (8205°)°))0)

for v € VR \ {u}.
Therefore, we obtain (8.5) and hence (8.4). The proposition is proved. O

9. Local indices at inert places: almost unramified case
In this section, we compute local indices at places in V%‘t above S. Our
goal is to prove the following proposition.

PROPOSITION 9.1. Let R, R, ¢, and L be as in Definition 6.3. Let (m, Vy)
be as in Assumption 3.1, for which we assume Hypothesis 6.6. Take an ele-
ment u € Vi}i%t such that u € S and whose underlying rational prime p is odd,

unramified in E, and satisfies ng) NR C Vi?l. Recall that we have fized a
u-nearby space “V and an isomorphism "V ®@p Ay =~V ®4, A% from Nota-
tion 2.2(H9). We also fir a Y y-self-dual lattice Ay, of “Vy,. Then there exist
elements sy, sY € St \ m} such that

10g qu * VOlh (L) : IT1,T2 (¢(1)O’ ¢go’ Slltsl) SIQLS% g1, gQ)%,u
= €1, 1 (91, 92), B @ (s75107° @ (s55265°)°) )

_ logqu
4 —1

Ery 1,((91,92), P @ (5751077 @ (s§52057)°) @ L(ay)er)

for every (R,R', ¢, L)-admissible sextuple (¢5°, d3°, 81,82, 91,92) and every pair
(T1,Ty) in Herm((F)*t, where the right-hand side is defined in Definition 3.11
with the Gaussian function ®%, € #(V* ®@u, Fx) (Notation 2.2(H3)), and
vold(L) is defined in Definition 3.8.

To prove Proposition 9.1, we may rescale the hermitian form on V', hence
assume that ¢, is unramified and that A% is either a self-dual or an almost

self-dual lattice of V,, for every v € Vg’) \Vi?l, and moreover that A} is a self-dual
lattice of “V,.
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In order to deal with spherical Hecke operators, we consider the projective
system of Shimura varieties { X7 } indexed by open compact subgroups LCL
satisfying L, = L, for v € Vg) \Vi?l.

We invoke Notation 5.1 together with Notation 5.6, which is possible since
VE}D) NVE™ = (. There is a projective system {X;} of strictly semistable
projective schemes over O (see [LZ, §11.3])'® with

Xi®OKK:X}:®E/K: (X£®EY) Rp K

and finite étale transition morphisms. In particular, S* is naturally a ring of
étale correspondences of X.

LEMMA 9.2. Let the situation be as in Proposition 9.1. Then there exists
an element in SE..\m& that gives an (-tempered Q*-étale correspondence of X,

(Definition B.12).

Proof. The proof relies on Arthur’s multiplicity formula for tempered
global L-packets [KMSW14, Th. 1.7.1], which we first recall, using the language
for unitary groups adopted in [GGP12, §25]. Recall that IT = II; B - - - B I
from Notation 3.14(3), which is the automorphic base change of 7 as in As-

sumption 3.1. Put Ap = ,ugl"“’s}. For every place v € Vg,

e I, determines a conjugate-symplectic representation M, of WD(E,) of
dimension n;

e there is a finite abelian 2-group Ajy, attached to M,;

e every character y,: Ay, — C* gives a pair (VXv, 7Xv) in the Langlands—
Vogan packet of M, unique up to isomorphism, in which VXv is a hermit-
ian space over I, of rank n and 7X¥ is an irreducible admissible represen-
tation of U(VXv)(F);

e we have a homomorphism «,: A — Ay, -

Denote by a: A — Hvevp Apy, the product of oy, for v € Vp. We say that a
collection x = {xy | v € Vp} of characters in which all but finitely many are
trivial is coherent (resp. incoherent) if the character [],cy, Xv 0 a: Ag — C*
is trivial (resp. nontrivial). Then Arthur’s multiplicity formula states that

(a) If x is incoherent, then either ®,VXv is incoherent or it is coherent but
®,mXv does not appear in the discrete spectrum. If y is coherent, then
there exists a hermitian space VX over E, unique up to isomorphism, such
that V¥ ~ VXv for every v € Vp; the representation ®,7Xv appears in the
discrete spectrum of U(VX) with multiplicity one. Moreover, every discrete

18This is the place where we need the assumption that v is unramified over Q (and that
K is unramified over E,,).
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automorphic representation of U(V)(Ar) for some hermitian space V over
FE of rank n with II its automorphic base change is obtained from this way.

Now we take a special look at the places w and wu.

(b) We may canonically identify Az, with p3 from Notation 3.14(2). Then
the homomorphism ay,: ,uél’""s} — ,ug is the one induced by the map
J—{1,...,s} given by the partition J = J; U--- U Js.

(c) By (a), I1,, is the standard base change of 7,. By [LTX"19, Lemma C.2.3],
we have M, = M2+ M?~2, where M2 corresponds to the Steinberg rep-
resentation of GLg(E,) and M?~2 corresponds to a tempered unramified
principal series of GLn_g(Eu): which implies Ay, = Appz ¥ AME—Q in
which Az = po. - a

(d) Without lost of generality, we may assume that IIy, is ramified. Then the
composition of o, with the projection Ap;, — Aprz = p2 coincides with

the projection ugl’“"s} — o to the first factor.

Next, we recall some facts from [LTX 19, §§5.1, 5.2, 5.4, 5.5]'” about the
reduction of the scheme Xj. Denote by Ly C “H(F),) the stabilizer of A},
which is a hyperspecial maximal subgroup. We have a decomposition

X; @0, Fp =Y Y7

that is compatible with changing L, in which

° Yi’ is a P2~ L_fibration over
“H(F)\"“H(AF)/L*L} x (Y @0, Fy);

. YL. is proper and smooth over F,, of dimension 2r — 1;

e the intersection Yg = YE N Yf: is a relative Fermat hypersurface in Yi’.

By Corollary B.15 and Proposition 6.9(2), it suffices to show that for an arbi-
trary embedding Q* — Q, we have

(1) H(Y?, Q)m = 0 for i < 2r — 2,
(2) H(Y?,Q¢)m = 0 for i < 2r — 2,
(3) H{(Y,),Qp)m = 0 for i < 2r — 3,
where m := m® N S¥... Note that we have used the Gysin exact sequence and

the absolute purity theorem [Fuj02] to switch the cohomology from open strata
to closed strata.

198trictly speaking, [LTX*19] has more conditions on the place u and the level at p.
However, for those facts we will use in this proof, it is straightforward to remove those extra
conditions.
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q=2r+1 0 HI(Y?, Qt)m 0
o ;1,2T o

g=2r B2V, Qo(—1))m —— B> (Y2, Q) 0

g=2r—1 0 H (Y2, Q)m 0
o (1J,27‘—2 o
qg=2r—2 0= H" (Y2, Q) —= H2(Y], Qo)
q<2r—3 0 HY(Y?, Q¢)m 0
EP1 p=-—1 p=0 p=1

Table 1.

For (1), we have H (Y}, Q;) = 0 when i is odd. When i is even, H (Y7, Q¢)m
is a direct sum of L* x L*-invariants of ' for finitely many cuspidal automor-
phic representation «’ of “H (Ap) satisfying that 7/ is trivial and that =, ~ 7,
for all but finitely many v € Vi?l. For every such 7/, let I’ be its automor-
phic base change, which is isobaric automorphic representation of GL,(Ag)
[KMSW14, Th. 1.7.1]. Since II,, ~ I, for all but finitely many u € V', we
must have II' ~ I by [Ram18, Th. A]. Therefore, we have

, _ u o\ @ deg(Y/K)
H(Y?,Q)m~ P ((@vev%n\{y}ﬂxv)L 2 (WXM)LE) ,

x={x"}
xoo=1

However, since II,, is ramified, we have (mxe)la = 0 for every Xu- Thus, (1)
follows.

For (3), by the Lefschetz hyperplane theorem and the Poincaré duality,
we have Hi(YLT,@g)m =01if ¢ # 2r — 2 by (1). Thus, (3) follows.

For (2), we consider the weight spectral sequence EP¢ abutting to the
cohomology HPT9(X; ®0, Qp, Qp), after localization at m. We write down
the first page Ell’::; as in Table 1. By Proposition 6.9(1), we have Hi(Xi ®0k
Qp, Qp)m = 0 for i # 2r — 1, which implies that H4(Y;?, Qg)m = 0 for ¢ < 2r —3
and that d(l)fnrfz is injective. The spectral sequence then degenerates at the

second page and we have im( d(l)f:_2) = ker(Et?nT_2 — EL%n%). Thus, it
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1,2r—2
1,m

1272 .
— Exm ~ is an

remains to show that the canonical quotient map E
isomorphism. Consider an arbitrary collection y*% = {x" |v € Vin\ {u}}
in which all but finitely many are trivial and such that VXv ~ V,, for every
v e ViR {u}. Put 77" = yevtin {u3 ™" By a similar argument for (1), it
suffices to show the following statement:
(4) The canonical quotient map B 2[xX™™"] = E&Z"2[xX™"] is an iso-
morphism.

Now we show (4). Without lost of generality, we may replace K by a finite
unramified extension in @, such that Y is a finite disjoint union of Spec K.
Define the character x, (resp. x,) to be the inflation of the trivial (resp.
nontrivial) character of Ay2 = g along the quotient homomorphism Ay, —

Apgz. Then we have VXL = ", and VX = UW,. If EM?2[7X™*] = 0, then

we are done. Otherwise, we have HZ’”*Z(YLT,@K)[WXOO&] # 0. By (the proof of)
[LTX*19, Prop. 5.5.4], 7X™* can be complemented to a cuspidal automorphic

oo,g]

representation 7' of “H(Ap) such that 7/ is trivial and that 7, is almost
unramified with respect to the hyperspecial subgroup Ly. In other words, the

collection {x, =1|v € V%Oo)} Ux>®U{x;} is coherent, and we have
(9.1)

_ u\ ®deg(Y/K)
1’27‘—2 00,y 2r—2 T oo, u ~ » L @ deg

Ep7 0w = H 72 (Y,, Qo) [m 7] ((®UEV%“\{Q}WX ) ) :
On the other hand, since the representation 7X« is the only member in the
Langlands—Vogan packet of M, realized on "V, that has nonzero invariants
under LY, we have an isomorphism

H> (X} ®0, Qp, Qp)[rX "] (p[ﬁ-oo”Gal(@p/K))

® ((®vev12~“\{g}7fx”)w>

of representations of Gal(Q,/K), where #*° = 7X7" @ 7X«. By (a)-(d)
above, it is easy to see that, in the notation of Lemma 3.15(b), we must have
J(7) ]
by Hypothesis 6.6. Thus, p[7*]|q. g, k) has nontrivial monodromy, which

implies that the dimension of E&2"2[X**] is at least the dimension of

® deg(Y/K)

= 1, hence that the semisimplification of p[7°°] is isomorphic to pf,

N L\ ®deg(Y/K)

<(®vev%"\{g}” !) ) :

Therefore, (4) follows from (9.1). The lemma is proved. O
Proof of Proposition 9.1. The proof of Proposition 9.1 is parallel to that

of Proposition 8.1. Take elements s{,s§ € S%ac \ m} that give (-tempered
Q?¢-étale correspondences of X7, which is possible by Lemma 9.2.
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By Lemma B.3 and Definition 3.11, it suffices to show that for every pair
of p-basic elements ¢3°,¢3° € F (V™ ®,, AX)L satisfying that supp(¢$S @
(#35)¢) C (V2 )eg for v € R', and every pair of elements sq,s2 € (S%ac)gi that
give (-tempered Q?°-étale correspondences of X7, we have

VOIH(L) 0 * 00\/ ¥ 00/
(9:2) Wi’m(TMBXﬁZTK% )1,8221,(02°) L) X1, K
1 log q,
= Z (W}D (0, Lar, Lipryr) — 8 Wy (0, Lar, ]l(A*)Q’“))
log qu e q,—1 =
TOcHerm$, (F)*
Diff(75,V)={u}
8y TO= (T} T3) < T Wro(0, Ly, (92 @ (s165° @ (5265°)°))o)-
v#Y
As vol(Ly) = (qu + 1)(¢2" — 1)7%, (9.2) is equivalent to
(9.3)
vol(H (Fy) LY)

Qg (v 1) (T T2) (6120, (97185 2631 ) i

TUeHerms,. (F)*

Diff (T5,V)={u}

Brp TH=(T1,T2)
NONE -
logqu \ qu+1

log qu,
Qu + 1

jlﬂD (0, ].47», :[]-(ARH)QT) — WTD (0, 147“7 ]l(A,Z)QT))

b27’ﬂ) O 00 00\ C
T 22D 100 (0, 14y (82 © (167 © (5265)°)),).
v;ﬁg ’YVvﬂ/)F,v

parallel to (8.5).
The proof of (9.3) is same to that of (8.5) except that now we have

X (Wf K./\/(x))
boru(0) (@27 =1, log qu
= = = 17“7]]- R)2r ) — W ,].r,]. *)2r
log qu ( qu+1 ™ (0 14 (Ad)* ) qu+1 70(0; 14 (AL)? )

if T'(x) = T, by [LZ, Th. 10.5.1, Rem. 10.5.4]. The proposition is proved. [

10. Local indices at archimedean places

(c0)
B

In this section, we compute local indices at places in V
PROPOSITION 10.1. LetR, R, ¢, and L be as in Definition 6.3. Let (m, Vy)
be as in Assumption 3.1. Take an element u € VSEOO). Consider an (R,R', ¢, L)-

admissible sextuple (¢3°, $3°, 1,52, g1, g2) and an element @1 € VJﬂR. Let K7 C
G- (A) be an open compact subgroup that fixes both ¢3° and 1, and let §1 C
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G, (Fx) be a Siegel fundamental domain for the congruence subgroup G,(F)N
g K1(g8°) L. Then for every To € Herm?(F)T, we have

(10.1)

VOlu(L)'/ o (mg)) Y Inm (87,65, 51,52, 711, 92) Lu Ay
51 Ty €Herm?(F)*+

1
—5 [ ) T Enml(nene). 0% @ (16T © (265)9)udn
1 Ty €Herm?(F)t

in which both sides are absolutely convergent. Here, the term €, 1, is de-
fined in Definition 3.11 with the Gaussian function ®%, € (V¥ @4, Fx)
(Notation 2.2(H3)), and vol*(L) is defined in Definition 3.8.

Remark 10.2. The relation between I7, 1, and &7, 1, for each individual
pair (T1,T?) in the style of Proposition 8.1 is much more complicated, which
involves the so-called holomorphic projection. (See [Liullb, §6A] for the case
where 7 = 1.) The main technical innovation in the archimedean computation
in this article is that we do not need to compare I7, 7, and €, 7, in order to
obtain the main theorems; it suffices for us to compare both sides after taking
summation and convolution for any of the two variables as in Proposition 10.1,
which does not require holomorphic projection.

As we have promised in Section 6, we start by recalling the definition of
the archimedean local index in the decomposition (6.1).

Let X be a smooth projective complex scheme of pure dimension n — 1.
For an element Z € Z"(X)c, recall that a Green current for Z is an (r—1,r—1)-
current gz on X (C) that is smooth away from the support of Z and satisfies

ddcgz +67 = [wz]

for a unique smooth (r,r)-form wz on X (C), which we call the tail form of g.
If Z € Z"(X)Z, then we say that a Green current gz for Z is harmonic if
wz = 0, and we use gg to indicate a harmonic Green current. For two elements
Z1,79 € ZT(X)?C with disjoint supports, we define

1
(10.2) <Zl, Z2>X,(C = / gQZ71 A (525,
2 Jx(©

which is independent of the choice of harmonic Green current gQZQI.

By Lemma 5.5, we may assume u = u without lost of generality in the
proof of Proposition 10.1. Now we apply the above discussion to the complex
scheme X; ®g C. For ¢ =1,2,

e we denote by g% (9°, i, 65°) 1 @ harmonic Green current for the algebraic
cycle s7 2, (w(97°)¢77)L on X ®p C;
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o for every element g; € G,(Ar) with finite part g{°, there is a particular
Green current for s7Z7 (w°(g5°)¢°)r, on X1 ®p C, known as the Kudla—
Milson Green current (see the proof of [Liulla, Th. 4.20]), denoted by
g%M(gZ)ZOO, Siy §i) L, with the tail form w%M(quo, Siy Gi)L-

Proof of Proposition 10.1. As we have pointed out, it suffices to prove the
proposition for u = u. By (10.2), we have

IT11T2 (gbfo, ¢c2>o’ 51,52, 91, g2)L,u

10.3 1 - -
( ) — 20T1,T2(glooag2oo)/x © g%(¢1 ,51, 91 )L/\(S(SSZTQ(M,?O(QSO) L)
L

where

CT1,T2 (glooaQQOO) = wr,m(glw)¢go(Tl) : (wr,m(92w)¢go(T2))c-
We need a variant of (10.3). Put
(10.4)

KM
ITl,Tz (qb(ljov gbgo’ 81,52, 91, g2)L,u

1 KM/ 100
= ECTl,TQ (9100)9200) (/);'L((C) ng (¢1 781,91)L A 5(53ZT2(W790(9§O) SO)L)C

+/ MYISlM((ﬁTO’ Sl?gl)L /\ g%QM(¢§O7SQ7g2)E) :
Xr(C)

By [Liulla, Th. 4.20)%°, we have
VOIU(L) : IT17T2 (¢<1X>7 ¢go, 51,52, 91, 92)%}\1/1[

(10.5) 1 0 - e
= §€T1,T2((91792)a¢)oo ® (51677 @ (52057)°))u-

We first check the absolute convergence of the two sides of (10.1). It is
clear that the assignment

e Z ’€T17T2((7_191792)7 <I>go ® (5167° ® S2¢SO))U|
Th€Herm? (F)+

is slowly increasing on §1, which implies that the right-hand side of (10.1) is
absolutely convergent since ¢ is a cusp form.

20There is a sign error in [Liulla, Th. 4.20]: the correct sign should be [], 'y\%f, which
is 1, rather than [, ~yv,, which is —1. (The root of this sign error is that in the formula
for wy(wr) on [Liulla, p. 858], the constant vy should really be 7,.) This result was later
reproved in [GS19, Cor. 5.12] by a different method.
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For the left-hand side, by (10.5), it suffices to show that the expression

oo 400 KM
E ‘IT11T2(¢1 7¢2 ,51752,7—191792)[/,11
TreHerm? (F)+

—I7, 1, (47, 03°,51,52, T191, 92) L u
is absolutely convergent and is slowly increasing on 77. For short, put
. Q
n = _gT2 (d)gO? 52, 950)27

which is an (r — 1,7 — 1)-current on X (C) satisfying

(10.6) dd®n = O(s3 21, (wpe (95°)63°) )=
Then for every Ty € Herm{ (F)™,
Jr, (11)

. KM
= I, 1, (677, #5°,81,82, 7191, 92) T ou — L1y 12 (77, 957, 51,82, T191, 92) L u

=Cnom (7'1.910079200)/ © (g¥}\4(¢fo781,7191)L - g7 (¢?°,817T191)L) A dd®n
X (C

+ CTl-,T2 (Tlgloo7 9200) / ( )wi}SlM(QSTov S1, 7-191)[/ A g¥2M(¢§o’ 52792)2
Xr(C

=Cnm, (7'1910079200)/ dd* (gIT(lM(éf)CfO,Sl,Tlgl)L - g% (¢T°,5177191)L) AN
X1(C)
KM(

+Cn (71910079200)/ W
X (C)

= Crp, 1, (71910079200)/ W%M(dffoashﬁgl)L A (77 + 8¥2M(¢§°752,92)CL) .
X1r(C)

G381, T1g1) L A ghi (¢5°, 82, 92)§,

By the claim (%) below and the fact that n + g¥2M(¢§O,SQ,QQ)E is a smooth
form on X(C), we know that } p crerme(m)+ |7 (T1)] is convergent and is
slowly increasing in 71 € §1, which implies that the left-hand side of (10.1) is
absolutely convergent as we have pointed out.

We claim that

(*) The summation

Z Cry 15 (T1 9100, 9200) - Wiy ($5°551, T191) L

Ti€Herm? (F)t
is convergent in the space of smooth (r,r)-form on X (C) with respect to
the C'°-topology, and is locally uniformly slowly increasing in 7 € §1.
Note that since X (C) is a finite disjoint union compact quotients of
the real Lie group "H(R), the C*°-topology on X (C), which is a Fréchet
topology, can defined by a natural family of semi-norms given by the upper
bound of |Df| on a compact neighbourhood of the identity in "H(R), where
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D runs through invariant differential operators on “H (R). Take such a semi-
norm || ||. By the construction of the Kudla-Millson form ([Mil85, §III.1] or
[KM86, §3]), it suffices to consider semi-norms || || satisfying that there exists
Do € L (W ®F Fuo) such that

KM(

Wr, 00 (T19100 )92 (T1) - Wi <Z5C1>°781,T1g1)LH

- Sup { |9¢00®Sl¢<1>° M (Tlgla h) | }
he“H(F)\"H(AF)

for every 7 € §1 and every T € Hermy(F)", where 64 os ¢,7, denotes
the Tj-component of the classical theta function of ¢ ® s1¢7°. Now since
YH(F)\“"H(AF) is compact, and the assignment

e ) [Bswesisrem (g )]
T1€Herm? (F)+

is slowly increasing on §1, locally uniformly in A, the claim follows.
Now we continue to prove (10.1). By (10.5), it suffices to show that

(10.7) /SOC(Tlgl) Yo In (67, 05, s1,8, 191, 92)Fw AT
51 Tr€Herm? (F)+

Z/ e (mig)) Y I (67, ¢5,51,52,Tig1, 92) L A,
1 Ty €Herm (F)+

in which we have already known that both sides are absolutely convergent.
Take an element T} € Herm{ (F)". We put

3 12/ ©°(T1.91)Cy 1, (T1 91005 G200 )81, (657551, 97°) L A1,

1

which is a harmonic Green current for
27, = (/3 @c(Tlgl)CTl,Tz(Tlgloo,g2oo)dﬁ) 8121 (w0 (977)07°) L
1
We also put
cg = /S ©°(1191)C1y 15 (T19100, G200 )& (65°, 81, Trg1 ) 1 A1,
1
which is a Green current for ?Zp,, whose tail form is

“wr, 32/3 ¢ (1191)C1y 1 (T1 9100, G200 )i (452, 81, T191) 1, AT
1
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Then by (10.3), (10.4), and (10.6), we have
Jr, = / (1190 I, 15 (67°, 657, 81,82, T191, 92) pow AT
$1
—/ 0 (T191) I, 1 (677, #3°, 81,82, T191, 92) L,u AT1
$1
[ gy nda [l A gl s
Xr(C) X (C)
= [ aas g - an+ [ AR A s )
X1(C) X1(C)

_ / AWM A (1 + g (05752, 92)5 )
Xr(©)

Therefore, the difference between the two sides of (10.7) equals

(10.8)
> - ST M) A (04 RN (60,0205 ).
Ty €Herm® (F)+ XL(©) \ 7 eHerme (F)+

Here, to validate the exchange of summation and integration, it suffices to
show that the summation 7 cperme(r)+ ‘Pw%M is convergent in the space of
smooth (r,r)-form on X, (C) with respect to the C*°-topology, since X1,(C) is
compact. However, this follows from the claim ().

We then continue by computing the right-hand side of (10.8). Since
supp(¢55) C (Vi )reg for some v € R’, we have

E : o KM __ E ¢ KM
le - le ’

Ti1€Herm? (F)+ Ti1€Herm, (F)*
where 2wiM for T € Herm,(F)™ \ Hermg (F)* is defined similarly. However,
S N = el )% (1) [ (g M ) drn
Ti€Herm, (F)* §1

where w¥M(g, ) is the Kudla—Milson form for the generating function Zsy420(91) L-
By [Mil85, Th. II1.2.1], we know that

109 [ engemgdn = [ e gha)e (g do]

gl FI\GT(FOO)
is a harmonic (r,7)-form on X (C). Since Z, ¢ (g1), is cohomologically triv-
ial, the cohomology class of (10.9) is also trivial, which implies that (10.9)
vanishes. Therefore, we obtain (10.7). The proposition is proved. U
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11. Proof of main results

In this section, we prove our main results in Section 1. Thus, we put
ourselves in Assumption 1.3. In particular, we have V2™ = (), Vg) - VSPPI.

Let (m,Vy) be as in Assumption 1.3 with [S;| odd, for which we assume
Hypothesis 6.6. Take

e a totally positive definite hermitian space V over Ag of rank 2r as in
Notation 2.2 satisfying that e(V,) = —1 if and only if v € S; (so that V is
incoherent and V = V; as in Section 1);!

e S = S, (so that every underlying rational prime of S is unramified in E);

e R a finite subset of Vi,?l containing R, and of cardinality at least 2, and
R’ =R;

e an R-good rational prime ¢ (Definition 6.1);

IR satisfying that (¢5,, ©20)r,

e fori=1,2, a nonzero element ¢; =R, p;, € V,LT
=1forveVp\R;
o for i = 1,2, an element ¢° = ®,¢55 € S (V" ®a, AF) satisfying
— ¢7,O$ = ]l(A%)'r for v € Vi;i;n \R;
— supp(47; @ (¢57)°) C (V" reg for v € R;
e an open compact subgroup L of H(AY) of the form LyL®, where L* is
defined in Notation 2.2(HS8), that fixes both ¢$° and ¢3°;
e an open compact subgroup K C G,(AY) that fixes o1, 2, $7°, $5°;

e a set of representatives {g(1),..., g(®)} of the double coset
G (F)\G(AF)/K

satisfying ¢\ e GT(A%O’R) for 1 < j < s, together with a Siegel fun-
damental domain 9 C G,(F) for the congruence subgroup G,(F) N
g K (g~ for each 1 < j < s;

e for i = 1,2, s; a product of two elements in (S%ac)ﬁf satisfying xR (s;) =1
(which is possible by Proposition 6.9(2));

e for i = 1,2, an element s} € (SRHC)%E for every u € VZPI U Sg, where Sg
denotes the subset of Vi]f;lt above S, as in Propositions 7.1 and 9.1, satisfying
X2 (s¥) = 1 and that s¥ = 1 for all but finitely many u.

S; =8 - H Sk

uevP'Us

In what follows, we put

fori=1,2.

LEMMA 11.1. Let the situation be as above.

21'We have changed the use of V from Section 1 since in the proofs below, we need to
consider all nearby spaces of V. In particular, V' in Section 1 is now V.
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(1) For every Ty € Hermy(F)" and every t € T, the identity

B(L / (4) 4 )
i)Y [ e
]7

Z ITl,T2 (t¢?o)¢507§17§27T(j)g(j)792)% dT(J)
T €Herm? (F)+

N0k / S E (0, (g1, 92), B0 © %) _ 1, dgy
GT(F)\GT(AF)

log q

— X3t pr—

UESE Ty
: / 25(91)E(0, (g1, g2), B © B @ Lpu)2r)— 1, dgn

Gr(F)\Gr(AF) a

holds for every go € G,(AY}), where @ = §1¢7° @ (8205°)°, A} is the
lattice in Proposition 9.1, and E(s, (g1, 92), ®)— 1, denotes the T»-Siegel
Fourier coefficient of the Fisenstein series F(s,(g1,92), ®) with respect

to the second variable gs.
(2) The identity

olf(L / / (72) g(72)) o () g 1)
¥ §U2) 3(21) ) ( ) Z

J2= 1J =1 TycHerm? (F)+
Z Iry 1y (650, 65°, 81, 82, TUV gU) £02) gU2)yE 47 (1) g7 (2)
Ti1€Herm? (F)+
L ClFal. o 1 oore
- b H 371'v Vo wlv’w2v’¢lv®(¢2v) )
27‘( veVﬁ“
holds.

Proof. For (1), pick an element h € H}, such that #*(h) = t as in Defini-

tion 6.8. Then there exist finitely many pairs (cx, hy) € Cx G, (AOO’R) such that

= > cwy® (hy)99° and hey = >4 cpm(hy)e1. By [Liu2lb, Th. 1.1] for

1nert places and [Liulla, Prop. A.5] for split places (see also [Ral82, p. 511]),
we have

667° = hgi® = crewp® (hy) 47,
k
Thus, we have

IT1,T2 (t(ﬁfoa ¢<2>07 §17 §27 T(])g(])7 92)%

(1]‘1) = Z Ck’ITl,T2 (tQﬁ?o, ¢c2>o7 glv 52? T(])g(])hk,QQ)%
k
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By Lemma 6.4, we have

Ity 1, (63°, ¢5°, 81,82, T gD hy, go)

= Y 205 1 (6%, 65, 81,52, TV gV b, go) Lo
(11.2) uev(s®)

+ Z log qu - IT1,T2(¢(1)07¢507§17§2’T(j)g(j)hk7gQ)%,u‘

fi
ueVy?

Combining (11.1), (11.2), and Propositions 7.1, 8.1, 9.1, and 10.1, we have

()

wWHD)Y [ g
j=1

Yo In (667, 65, 81,8, 7V gD, gg)f dr)
Th€Herm? (F)+

:Zick/g_ 5 (r0gD)

k j=1

(11.3)
Z 63«17T2((T(j)g(j)hk’ 92)’ (I)(o)o ® (1)00)7
Th€Herm? (F)+

where we put

6%1,'1}((91792),(1)80 0%y (I)OO)
= > Cnmnl(on0) 2% ©0%),

U«GVE\VSEpl
log q
o Z r_jET17T2((91792)7(I)20® oo,g®]]_(Aa)2r).
uesy du T

By Proposition 3.10 and Remark 3.12, we have

Y & (VgD hy, g2), % @ %)
T1€Herm?(F)+

= E'(0, (9 g hy, g2), B, @ &) 1,

log gu e
=3 R0, (rDg Dy, g2), B © B @ 1 g y) -,
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for every 1 < j < s and every k. It follows that

(11.3)
ZCk/ Gr(F)\Gr( AF)
. Z 1quu Z

UESE qu k

(gl)El(07 (glhk7 g2)7 q)(o)o ® (Doo)f,TQ dgl

/ o1 B0, (g1 g2), D% © B @ Ly, por) 1, dys
Gr(F)\Gr(AF) -

log q,,
-/ () (01 (0, (g1, 2), @0 © B%) 1, dgy — 3 108
Gr(F)\Gr(AF)

UESE q —1
' / (he$)(g1)E(0, (91, g2), D%, ® ™" ® Liag)2r)— 1 dg-
Gr(F)\Gr(Ar) N
Part (1) follows as hp§ = x2(t)¢ - .
For (2), we apply (1) to t = 1 and go = 702)g2) for 1 < jo < s, and hence
obtain
(11.4)

VOU (J2) (41) 4(51)
: Z Z /(12) \/g(n) ) ( g ) Z Z

Je=1j1=1 TreHerm?(F)* Th €Herm?(F)*t
I, 1, (050, $5°, 81, B, T(jl)g(jl), T(j2)g(j2))€er7-(j1) dr02)

- / / 22(92)65 (01 E'(0, (g1, 92), 82 © %) dgr dgo
[Gr(F)\Gr(AF)]?

_ Z 1quu //
u€Sp Tu Gr(F)\Gr(AF))?

- 02(92)#5 (91) E(0, (91, 92), P @ B @ L(4)2r) dgi dgo.

By the classical Rallis inner product formula (see, e.g., [Liulla, (2)—(6)]) and
Proposition 3.6(2), we have

/GT(F)\GT(AF) / r(F\Gr(AF)

- 02(92) 5 (91) E(0, (g1, 92), P © B @ T(54)2r) dg1 dga = 0

for every u € Sp. Together with x2(s;) = x®(52) = 1, we have

(11.4) = / /
(11.5) Gr(F\Gr(Ap) J Gr(FN\G, (A1)

- 02(92)95(91) E' (0, (91, 92), B2 ® (67° ® (65°)°)) dg1 dga.
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By Proposition 3.7, we have

Ll 1
(11.5) = G, C[FQ 11 3%% (P10 P20, Ty @ (025)°)-

bQT( vEVﬁn

Part (2) is proved. O

Proof of Theorem 1.5. First, it suffices to prove the theorem for R satisfy-
ing R CR C V" and |R| > 2. Take an element w € V% ), and put ourselves
in the setup of Section 4. We prove that the localization of the T%—module
CH"(X1)Q at m®, is nonvanishing.

Assume the converse. Then for every element T € Herm(F)', we can
find tp, € T%M satisfying x%(t,) = 1 and t7, Zr, (wp® (g9 $3°) L = 0 for every
1 < j < s. Let tp, be the adjoint of t7,. Then we have

(31 2, (w7 (97°) (B 87°)) 1, 55 27, (w72 (99)) 951 >XLE
= (01,51 2 (07 (95°) 97 185 2, (Wi (V) 3°) L), o
= (5121, (w7 (97°) 05 1 8,55 21, (Wi (V) 5°) 1), o = O

for every Ty € Herm?(F)F, ¢3° € G,(AX™), and 1 < j < s. In particular, we
have

ITl,TQ (ETQ(Z)?O? ¢goa él; §27 T(])g(])7 92)% =0

for every g» € G,(A%) with g5° € {g(),...,g(®)}. Tt follows that

Volu Z/()
J

Z IT17T2 (ETQ (Z)Cfov ngoa S1, S2, T(j)g(j)a 92)% dT(j) =0
Ti1€Herm? (F)+
for every go € G,(A%) with g¢ € {g(V),...,¢®} and every Ty € Herm?(F)*.
Now applying Lemma 11.1(1) twice with t = t5, and t = 1, respectively, we
obtain

vol(I / ¢ () o)
DY [, #H0)

Z IT17T2 ((Z)Cfov ¢§Oa gl: §2> T(])g(])a 92)% dT(]) =0
Ti1€Herm? (F)+
for every go € G,(A%) with g¢ € {g(V),...,¢®} and every Ty € Herm?(F)*.
By Lemma 11.1(2) we obtain
L'(3,

b2 ( O[FQ H 3 v, Vo 901v7902v7¢1v (¢C2>?))C) = O’

vGVﬁ“
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that is,

1) g~ 1 . 1 00\ C
H ( ) 4y q +_ HB v, gph},gpgv,gblv (¢2v) ):O

2r—1
vES ( + 1 vER

Now by Proposition 3.13, we may choose @1, @2, #7°, pS° such that for every
v € R,

35, (950 920, 650 © (659)°) £ 0.
As I/ (%, 7) # 0, we obtain a contradiction. The theorem is proved. O

Proof of Theorem 1.7 and Corollary 1.9. By Definition 6.11 and Proposi-
tion 6.10(1), we have

(Op5 (21, @¢go<m>>&E
— volf(L / / )58 (70) gl1)
- E:I E:I (42) *g:(n )(’01 (T g ) Zo
J2=171 TreHerm? (F)+

Z Iy 1y (65°, 630, 1, 8o, T(jl)g(jl)’T(jz)g(h))% dr U1 qr02)
Th€Herm? (F)+

By Lemma 11.1(2) and Proposition 3.7, we obtain
_ LUz,

(©sr (1) Oog (2 = 5 T O
(11.6) '
H 37Tv,Vu 8011;7 P2v, Qb??) ® (gbg?l)c)
UGVﬁn

By Proposition 3.13, we may choose 1, p2, ¢7°, 95° such that
H 37TU,V1, 901117 P20, ¢<1>10) ® (¢g?))c) # 0.
vevin
Now we claim that (11.6) holds for arbitrary vectors @1, @2, 3%, ¢3° (not
necessarily those in the beginning of this section) as in the statement of Theo-
rem 1.7(1). This is a consequence of Proposition 3.6(1) as both sides of (11.6)
give elements in the space
® Home, (5,)xc, (F,) I (0), 70 B ),
vEV*}“
which is of dimension one. Thus, Theorem 1.7(1) follows.
By Proposition 6.10(2), the assignment (¢, ™) — Oy (¢) gives an ele-
ment in

Hom pr(as) (HomGr(Af;)(y(Vr ®Ap A%o)ﬂoo)ahﬂCHT(XL)%) ;
L

in which Homg, (a50) (< (V" ®@a, AF), 7*) is simply the theta lifting of 7>
to H(AY) by Proposition 3.6(3). Thus, Theorem 1.7(2) is a consequence of
(11.6) and the fact that [Toeven BErv,Vv is nontrivial.
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Finally, Corollary 1.9 is a consequence of (11.6) and Proposition 3.7 (where
one may take R = (). 0

Appendix A. Two lemmas in Fourier analysis

In this appendix, we prove two lemmas in Fourier analysis that are only
used in the proof of Proposition 3.13. Both the lemmas and their proofs are
variants of [ANO4, Th. 1] (in the non-archimedean setting).

Let F' be a non-archimedean local field (of arbitrary characteristic). De-
note the maximal ideal of Op by pp, and put ¢ := |Op/pr|. We fix a nontrivial
additive character ¢: F' — C* that is used to define the Fourier transform.

LEMMA A.1. Consider a finite-dimensional F-vector space X, a nonzero
homogeneous polynomial A on X, and a real number r > 0. Let f be a nonzero
locally constant function on an open subset Q C X on which A is nonvanishing.
Suppose that f is locally integrable on X and satisfies that for every € > 0, we
have

/Q (@) P A () [1F de < oo,

Then the support of the Fourier transform of f, as a distribution on XV, cannot
be contained in an analytic hypersurface.

Proof. Let n > 1 be the dimension of X. Without lost of generality, we
may identify both X and XV with F™, take dx to be the measure that gives
OpF volume 1, and assume that ¥y has conductor Op. For every integer N, we
put BY := (p¥)", which is an open compact subset of F™.

Let u be the Fourier transform of f. For every integer N > 0, put xn =
qN”]lB]r\L, € (F™), and put uyn = u* xn, which is a locally constant function
on ™. Take two real numbers 0 < § < 1 and € > 0 to be determined later. Let
p > 2 satisfy %_5 + % = 1. Since the Fourier transform is a bounded operator

from L?>79(F™) to LP(F™), we have
vl < Cs [ 1@ R ) da
= Cs [ 1f@)F g, (2 da
=Gy [ If@P s
B

N
for some constant Cs > 0 depending only on §. By Holder’s inequality, we

have
d+e 2—§

9_s _T‘(Q(;(S)E 24¢ ot 2+4¢
favl<Cs ([ a@ET T an) ([ r@Ptawian)

—N —N
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Let d be the degree of A. There exists a real number 0 < pa < n/d depending

_,.(2-0)e
only on A such that as long as r(251?€ < pa, the function ‘A(@‘FT Fe g

locally integrable. In this case, there exists a constant Cs. > 0 such that

_p(2=0)e -
[ @ de = Gy )
B

N

By the integrability condition on f, there is a new constant Cj_ > 0 depending
only on § and e such that

_gp(2=8)e\ 5+e

(A1) |2 < G - g )3

holds for every N > 0.

Now suppose that the support of u is contained in an analytic hyper-
surface U. For N > 0, put Uy = U + By C F" as a tubular neighbourhood
of U, which contains the support of uy. Then for every g € .7 (F"), we have

(A.2) lim qN/U g(x)d:v:/Ug(y)dy.

N—o0

Then by Holder’s inequality, (A.1), and (A.2), we have
|275 |276

’<uag> <U’N7.g>

= lim |
N—oo

. 2-6 2—6
< i v [ o)t da

Un

(2-9d)e e
< G Jim MO [ pas
Un

N—o0

_qr(2=9)e d+e _
:Cfs,a'/ l9(y)I*~dy - Jim N ((n—drB52) 32 -1).
U —00

Choose suitable 4, e such that

(2—90)e _d(2—5)5 2+¢

e e
Then the above limit is zero; that is, (u,g) = 0 for every g € .#(F™). Thus,
we have u = 0. The lemma is proved. U

LEMMA A.2. Consider a finite-dimensional F-vector space X, a nonzero
homogeneous polynomial A on X, and a real number r > 0. Denote by Q C X
the nonvanishing locus of . Let f be a nonzero locally constant function on )
that is locally integrable on X, satisfying the following condition: there exists
a decomposition X = X1 @ Xo & X3 with dimp X7 = dimp Xo > 0 such that

(1) Q is disjoint from X1 @& X3U X9 @ X3;
(2) |Alaxy, a trg, 23)|F = |A(z1, 22, 23)|F for every a € F* and z; € X;;
(3) |f(axy, o o, x3)| = |f(21, 2, 23)| for every a € F* and x; € X;;
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(4) for every e > 0, we have ]'FX\Q\f(x)\HE\A(:E)\;? dz < oo, where the
action of a € F* on Q is given by a - (1,72, 23) = (w1, o 1ag, 13).

Then the support of the Fourier transform of f, as a distribution on XV, cannot
be contained in an analytic hypersurface.

Proof. Let n > 1 be the dimension of X. Without lost of generality, we
may identify the decomposition X = X; & Xy & X3 with F" = F" ¢ F™" &
Fr=2m identify XV with F", take dz to be the measure that gives O volume
1, and assume that ¢¥r has conductor Op. For integers N and [ > 0, we put
va = (pg)l and Aﬂv = Bé\r \ B%\H—l’ which are open compact subsets of F!. Tt
is clear that the natural map w? x (AJ'x F™x F"~2m) — F™ given by the action
in (4) is injective, and by (1) that € is contained in w? - (AJ* x F™ x Fn=2m),

Let v be the Fourier transform of f. For integers N > 0, put xy =
qN”]lB}g] € .(F™), and put uy = u* x, which is a locally constant function
on F". Take three real numbers 0 < § < v < 1 and € > 0 to be determined
later. Let p > 2 satisfy ﬁ + % = 1. Since the Fourier transform is a bounded

operator from L?~7(F") to LP(F™), we have

lun]2 < C /F @ @) de
¢, /F F@) P gn (@) do
—o, [ f@P e
By

for some constant C,, > 0 depending only on 7. By (3) and Holder’s inequality,
we have

| 1t@P

—N

o0

= > (i+2N+1)/ f ()2 dz
i=—2N AP x AT X B 32
= 2=
o0 1=2 -
< Z (i+2N+1) </ dx) (/ |f(;L‘)|2_5 daz)
i=—2N AR X AT X BT A X ATV X BR R
3 =
< X (2N 1) (g g ( / |f(x)|2_5dx>
i=—2N ABRXA?LXBZ;VZM

2=y
2-35

= Cp-qVES (/ |f(@)]*~° dw)
AP x AT x B" 2™



886 CHAO LI and YIFENG LIU

for some constant C, ;5 > 0. Together, we obtain

n1=%

(A.3) lun ;™ < Cg-q""2 |f (@) de

/Agn X A x BT ™

for a new constant C’& s > 0 depending only on v and ¢. By Holder’s inequality,
we have

2—4§
d
/A s TP

_p(2=8)e g% 5 %
<(/ a0 a) @RI o)
AT X AT X B ™ AP x AT x B" 2™

—r(26"5)5 g% oie e %
< / A da / F@PA@E dr)
B AP X AT x B 2™

n
—2N

Let d be the degree of A. There exists a real number 0 < pa < n/d depending

(2-9)e o A ()5
572 < pa, the function [A(z)[p

locally integrable. In this case, there exists a constant Cs. > 0 such that

only on A such that as long as r is

. (2-9)e )
/ A5 5 de = Cj. - 2N (=)
n

—2N

On the other hand, by (4), we have

2—9

2+¢
( [ rf<a:>\2+€m<x>?dx) <.
g X AP x BT

for a constant C§_ > 0. Thus, continuing (A.3), we have a constant C. 5. > 0
depending only on 7, d, & such that

(A4) Jun 370 < O - g (135 P2 B2 35)

holds for all N > 0.

Now suppose that the support of w is contained in an analytic hyper-
surface U. For N > 0, put Uy == U + By, € " as a tubular neighbourhood
of U, which contains the support of uy. Then for every g € . (F"), we have

N—oo

(A.5) im o [ a()dr= [ oy
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Then by Holder’s inequality, (A.4), and (A.5), we have

|276 — |276

‘<u7g> <uN,g>

lim |
N—oo
2-5

2—y
< lim 20, / x 2 Tdz

=9 _dr(2=0)e) ote  2-8
< COy5e - lim qN(anerQ(n dr 00 ) 552 277)
T N—oo

2—4

- <qN /U lg(@)2 dx)M

2—96

=Chse- < / lg(y) > dy) -
U

(v 2 ) - )

. N
- lim ¢
N—00

Choose suitable 7, §, & such that

(2—-96)e v—0 < (2—5)6)5+€ 2—-9

— < 2{n—d < .

"ot pa n2—fy+ A S 2—7
Then the above limit is zero; that is, (u,g) = 0 for every g € .Z(F"™). Thus,
we have u = 0. The lemma is proved. O

Appendix B. Remarks on Beilinson’s non-archimedean local indices

In this appendix, we review Beilinson’s notion of non-archimedean local in-
dices between algebraic cycles [Bei87] and make some complementary remarks.

Let K be a non-archimedean local field, with the ring of integers Ox and
the residue field k. Take a rational prime ¢ that is invertible on k. Let X be a
smooth projective scheme over K of pure dimension n — 1. For every integer
d > 0, we have the cycle class map

cly e Z9(X) = H*(X, Qu(d)),
whose kernel we denote by Z4(X ).

Remark B.1. A priori, Z%(X){ depends on the rational prime ¢. However,
if K is of characteristic zero and we assume the monodromy-weight conjecture
for X, then one can replace clyx, by the geometric cycle class map, hence
Z4(X)%®) does not depend on /.

For a Zariski closed subset Z of X, we denote by Z% (X)) the subgroup of
Z4(X) consisting of cycles whose support is contained in Z.
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Definition B.2. For every pair of integers dy, ds > 0 satisfying d; +ds = n,
we define the subgroups

70 (X) = > P (X)e x ZE(X)e € 27 (X)c x Z2(X)c,

Z1,22
7042 (x) 0 = ST (2% (X)e N 28(X)Y) x (2 (X)e N 2%2(X) )
Z1,Z>

C ZM(X)e x Z%(X)c,

where the sum is taken over all pairs (77, Z3) of disjoint Zariski closed subsets
of X. Tt is clear that Z4:92(X)® is stable under switching the two factors.

Take a pair of integers dy,dy > 0 satisfying di + da = n. In [Bei87, §2],
Beilinson defined a map

(B.1) (Ve 20X 5 Cag Q
called local index, satisfying the following properties:
e its restriction to every subspace
d 4 d 4
(2%, (X)e N Z™(X)¢)) x (2, (X)e N 2% (0 )
is complex linear in the first variable;
o (, >§(’K is conjugate symmetric.

We briefly recall the definition. Take a pair (ci,cp) € Z4-%(X)@. By
linearity, we may assume ¢} € Z%ll (X) and ¢y € Z‘Z (X) with Z3 N Zy = 0. For
i =1,2, put U; := X \ Z;. Then we have the refined cycle class cl)de(ci) €
HQZfZ (X,Qe(d;)), which goes to 0 under the natural map HQZ‘? (X,Qu(dy)) —
H%4i (X, Qy(d;)). Thus, we can choose a class y; € H2%~1(U;, Qy(d;)) that goes
to cl)Zg'z(ci) under the coboundary map H2%~1(U;, Qu(d;)) — H2ZCfi(X, Qe(d;))-
Then we define (cq, 02)&7 x to be the image of 71 U~ under the composite map

H22(U} N Uy, Qy(n)) — H2H(X, Qu(n)) =5 HY(Spec K, Qy(1)) = Qp,
in which the first map is the coboundary in the Mayer—Vietoris exact sequence
for the covering X = U; U Us,. It is easy to check that (01,02%”( does not
depend on the choices of 71,72, and that (cy, 02>§(’K = (co, cl>§(7K.

LEMMA B.3. Take a pair (¢, c) € Z4:42(X)@,
(1) Let K' be a finite extension of K. Put X' == X @k K' regarded as a
scheme over K'. Then we have (¢}, ¢y) € Z4% (X)) and (¢, c’2>§(,7K/ =
(1, 02>§(7K, where ¢ is the restriction of ¢; on X' fori=1,2.
(2) Let u: X' — X be a finite étale morphism. Then we have (¢}, c,) €
24t (X0 and (), b = degu - (01,02>§(’K, where ¢, is the re-
striction of ¢; on X' fori=1,2.
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Proof. In both statements, it is clear that (c},c}) € Z4 %2 (X)),
Part (1) follows from the commutative diagram

H22(U; 1 Uy, Qe(n)) — H21(X, Qy(n)) —% HY (Spec K, Qp(1)) — Q;

| L]

H20=2(U) 1 U3, Qo(n)) — H2-1(X7, Qy(n)) —= H(Spec K7, Qy(1)) = Qy,

in which Ui’ is the restriction of U; on X’ and the construction of the local
index.
Part (2) follows from the commutative diagram

H2M2(Uy 1 U, Qy(n)) — 201 (X, Qg(n)) — > H'(Spec K, Qu(1))

lu* \Lu* ldeg u-id
T

H20=2(U1 O UL, Qu(n)) —= H2 1 (X", Qu(n)) —== H'(Spec K, Qy(1)),

in which U is the restriction of U; on X’ and the construction of the local
index. O

In what follows, m: X — SpecOgf is a projective morphism such that
X ®o, K=X. Weput Y =X ®o, k.

LEMMA B.4. Consider elements ¢ € Z%ll (X) and ¢z € Z%QQ (X) with Z1 N
Zy = 0. For every B € H%ddzl(.)(,@g(dl)) whose image in HQZ‘? (X, Qe(dr))
coincides with cl)Z(lz(cl) and whose image in H2 (X, Qy(d1)) vanishes, and for

every By € H?/djgj(nil)(x7 7'Qq(dy — n + 1)) whose image in

H2 20 (X, ' Qu(da — n + 1)) = HE2 (X, Qu(da))
coincides with clf&(c?), the image of B1 U B2 € HZ (X, 7'Qu(1)) under the
trace map HE (X, 7'Qu(1)) — ngeck(SpecOK,Qg(l)) = Q¢ coincides with
<01762>§(,K'

This is claimed in [Bei87, Lemma-definition 2.1.1] without proof. For
completeness, we include a proof here (though it is straightforward).

Proof. Before the proof, let us make a remark on cup products. Let S be
a Noetherian scheme on which / is invertible. Given F, G, H € D(S,Qy), the
bounded derived category of ¢-adic sheaves on S, together with a map

L
k: F®G— H,
we have a cup product map

Ue: HY(S,F) x B/ (S,G) — H"TI (S, H)
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for integers i and j, which is the composition of the cup product for (hy-
per)cohomology

. . . L
H'(S,F) x H/(S,G) — H' (S, F @ G)

L L L L
and the induced map H'* (S, k): H1 (S, F ® G) — H'*/(S, H). In particular,
if we have maps f: F — F’ and h: H — H’ rendering the diagram

L K
FG——H
f®idl Lh
L K
F'®@G——H'
commutative (in D®(S,Qy)), then the induced diagram
Hi(S, F) x H/(S,G) —=~ Hi+i (S, H)
Hi(S,f)xidl iHi“(S,h)
H(S, F') x H/(S, G) —~ HI (S, H')
commutes.
Put U; = X \ Z; for i = 1,2 as before. For i = 1,2, choose a class
v; € H2=1(U;, Qy(d;)) that goes to cl)Z(iE(ci) under the coboundary map
H*4N (U, Qo(dy)) — B (X, Qu(dy)).
Denote by (71, ¢2), the image of
MU, (c2) € HY (U1, Qu(n)) = HY (X, Qu(n))

under the composite map
n— n— Tr
HZ (X, Qe(n) — B 71X, Qe(n)) —5 H' (Spec K, Qu(1)) = Q-
We break the proof into two steps:
(1) (1, e2) = {er, ) s
(2) the image of 81 U By € HZ (X, 7'Qy(1)) under the trace map
HY (X, 7'Qe(1)) — Qe
coincides with (71, c2).

For (1), it is easy to see that the coboundary map H?"~2(U;NUs, Q¢(n)) —
H?"~1(X,Qy(n)) in the Mayer-Vietoris exact sequence is the composition of
the coboundary map §: H**"2(U; N Uz, Qy(n)) — H2Z72L_1(U1,Qg(n)) in the
Gysin sequence and the natural map szzfl(Ul,@g(n)) = H2Z7’2‘71(X, Qe(n)) —
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H?"~Y(X,Qy(n)). Thus, it suffices to show that the following diagram com-
mutes:

(B.2)
H2 (U, Qu(dr)) x H2 Uy, Qul(dy)) ——= H22(U 1 U, Qu(n)

idxél ié
H2 =1 (U, Qe(d)) x HZ2 (X, Qu(dz)) HZ, (U1, Qeln)).

Denote morphisms ¢;: U; — X and 3;: Z; — X fori =1,2, and ¢: UyNUy — X.
Then in view of the remark on the cup products, the first row of (B.2) is in-
duced by the natural map

L
111 Qe(d1) ® 12405Q¢(d2) — 12" Q(n),
and the second row of (B.2) is induced by the map

L
11:1Qe(dh) @ 7275 Qe(da) = 7217011Qe(n),
which is the cone (of columns) of the natural commutative diagram

1151Qy(d1) é Qe(da) —— 11417 Qe(n)

! i
1147 Qe(dy) & 1245Qp(d2) —— 14" Qy(n)

in D(X,Qy). It follows that (B.2) commutes. In particular, <c1,02>§(7K does
not depend on the choices of v, and 79, which justifies the notation.

For (2), we may assume that (i is the coboundary of 7;. We have the
commutative diagram

TI‘X

H (X, 7'Qy(1)) H'(Spec K, Q(1))

} }

H%/(X7 ﬂ!@f(l)) &) H%peck(spec OK7 Q@(l))

for the trace maps. Thus, as H' (X, 7'Q(1)) ~ H>"~1(X, Q¢(n)), it remains to
show that the diagram

H20 (U, Qu(dy)) x By 22D (X, w'Qu(dy — n + 1)) — HY (U1, 7'Qu(1))
5><idl )
H2A, (X, Qu(d1)) x H22207D (20, 7l Qu(dy — n + 1)) —= HE (X, 7'Qu(1))

commutes. The argument is similar to (1), which we leave to the readers.
The lemma is proved. |
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Remark B.5. In Lemma B.4, when X is regular, the natural map
T Q2 — 2n](1 —n) — Qy

is an isomorphism, which is a consequence of the absolute purity theorem
[Fuj02].

Now we provide a refined method to compute (B.1) in the presence of a
regular model of X. Until the end of this section, X will be regular.

We first review some constructions from [GS87]. For every Zariski closed
subset Z of X, we have the K-group K& (X) of complexes with support in Z
defined in [GS87, §1.1], equipped with the codimension filtration

D FIIKE(X) D FIKE(X) D FIMIKE(X) D --- .

We have
the pushforward map m,: K (X) — K5P°*(Spec Ok ) = Ko(Spec k);
e for 2’ C Z, a natural linear map K& (X) — K& (&), which preserves the

codimension filtration;
a cup-product map U: Kozl(X) X KOZZ(X) — K(?WZQ(X);

[ ]
e a natural linear map
(B.3) [ ]: @ zL(x) - FIKG(X)
d'>d

sending a closed subscheme Z’ of X’ contained in Z to the class of the
structure sheaf 0z.

See [GS87, §§1, 5] for more details.

Note that since X is regular, K& (X) coincides with Quillen’s K-theory
with support. (See the proof of [GS87, Th. 8.2].) Then by [Gil81, Def. 2.34(ii)]
in which we take the base scheme S to be Spec Ok and I' to be the f-adic
cohomology theory, we obtain the d-th Chern class map

clF o1 FIKF (X) = HE(X, Qu(d))

for every integer d > 0.

For the generic fiber X, we have K-groups KZ (X) for Zariski closed subsets
Z of X with similar properties as well. The following lemma is probably known,
but we cannot find an exact reference.

LEMMA B.6. For every c € Z%(X), the element cl)ZM([c]) € HZ(X, Qu(d))
coincides with the refined cycle class CI)ZM(C) of c.

Proof. We may assume Z irreducible and ¢ = Z. Let Z’ be the smooth lo-
cus of Z over K and put X' := X\ (Z\Z’). As a consequence of the semi-purity
theorem [Fuj02, §8], the restriction map HZ (X, Qu(d)) — HE (X', Q¢(d)) is an
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isomorphism. Thus, we may assume Z smooth over K as well. Then the
lemma follows from [Gil81, Th. 3.1] (with § = Spec K and k = ¢ = 0). O

Definition B.7. Let Z; and Z5 be two Zariski closed subsets Z of X sat-
isfying Z21 N 29 C Y. We define a pairing
K& (X)e x K§2(X)e — C
(Cl,CQ) —> Cl.CQ

that is complex linear in the first variable, conjugate complex linear in the
second variable, and such that for C; € KOZ"(X ) with ¢ = 1,2, we have

Cl.CQ =X (W*(Cl U CZ)) )
where y denotes the Euler characteristic function on Kg(Spec k). Note that as

Z1NZy CY, Ci UCy can be regarded as element in Ka/()()(c.

LEMMA B.8. Let Z1 and Z5 be two Zariski closed subsets of X satisfying
Z1NZy CY. ForC; € FdiKOZi(X) with i = 1,2, C1.Cy coincides with the image
of cl?é(cl) U Cli%e(cg) € HZ' 2, (X, Q¢(n)) under the natural composite map

HY 5, (X, Qe(n)) — HP (X, Qq(n))
& H%peck(spec OK, Qﬁ(l)) = HO(Spec k‘, Qg) = Qg_

Proof. By [GS87, Prop. 5.5], we have C; UCy € FPKZ1"#2(X)q. By (the
same proof of) [Gil81, Prop. 2.35], clile(cl)ud)zfg(cz) and Cl)Z(?Zz (C1UC2) have
the same image in HZ' 5 (X, Q¢(n)).?* Since the map Z"(X)q — F"K} (X)g
is surjective, the diagram

Y
chj

F'KY (X)g HY (X, Qu(n))

ClSpec k

Spec O ¢
FlK(S]peCk(SpeC OK)Q — H%peck(spec Ok, Qg(l))

22 Although [Gil81, Prop. 2.35] only implies the statement when Z; = 2, its proof works
more generally. In fact, in the proof of [Gil81, Prop. 2.35], if C; is represented by a map
A 5”% — QOB2%x, then the product C; U Cs is represented by the composite map

S nz, = L2 NT2, = QB2Px NOB2Px X OB2Px;

the remaining argument is same.
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commutes. Thus, the proposition follows since the diagram

cgpeck
FlKgpeCk(Spec Ok)o e Onc ! ngeck(Spec Ok, Q(1))
l clspec , l
Ko(Speck)q Speckt HO(Spec k, Q)
g |-
Q Qe
commutes. O

Definition B.9. For an element ¢ € Z%(X)c, we say that an element
C e FdKéfusupp(c)(X)(c is an extension of ¢ if C|x € F¥Ky(X)c coincides with
[c] under the map (B.3), and that C is an ¢-flat extension if the image of
cli);jsul)p(c) (C) in H24(X,Qy(d)) ®g C vanishes.

PROPOSITION B.10. Consider a pair (ci1,c) € Z%%2(X)O satisfying
supp(¢;) Nsupp(e2) = 0. If Z1 and 25 are two Zariski closed subsets of X
satisfying Z1NZ, CY, and C; € FdiKOZZ'(X)@ is an extension of ¢; fori=1,2
in which at least one is £-flat, then we have

<Cva2>§(,K =(1.C.

In particular, when 7 is smooth, we can take C; to be the one given by the
Zariski closure of ¢; in X wvia (B.3), hence <01,02>§(7K belongs to C and is
independent of £.

Proof. By Lemma B.6, for ¢ = 1,2, the image in the cycle class of cl? /(Ci)
in HQZ% (X, Q¢(d;)) ®qC coincides with cl;zg;?x (¢;). Without lost of generality,
we assume that C; is ¢-flat. Then the lemma follows from Lemma B.8, and
Lemma B.4 with 3; := cl)zjé(Ci) for i = 1,2 (together with Remark B.5). [

Remark B.11. Suppose X admits smooth projective reduction over Op.
Then the source of (B.1) is independent of ¢. Moreover, by Proposition B.10,
the map (B.1) takes value in C and is independent of . Thus, in this case,
(B.1) makes sense for an arbitrary rational prime ¢ of which it is independent.

In the remaining discussion, we only consider the case where n = 2r for
some integer r > 1, and d; = do = r. We say that a correspondence

tx Ly

of X is étale if both p and q are finite étale. In what follows, we take a subfield
L of C.
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Definition B.12. We say that an LL-étale correspondence t, that is, an
[L-linear combination of étale correspondences, of X is £-tempered if ¢* annihi-
lates H? (X, Qy(r)) ®g L.

ProprosiTION B.13. Let t be an {-tempered L-étale correspondence of X .
Then for every pair (c1,c2) €ZT (X )cXZ" (X)c satisfying supp(t*c1)Nsupp(t*ce)
= ), we have (t*cy,t*co) € Z7" (X)) and

<t*01, t*CQ%X’K = t*Cl.t*CQ,

where C; € FTKé/USpr(Ci)(X)(C is an arbitrary extension of ¢; in X fori=1,2.
In particular, we have (t*cl,t*02>§(7K e C.

Proof. For i = 1,2, put Z; == supp(¢;), Z! = supp(t*c;), and

Bi = ey (Ci) € Hluz, (X, Qu(r)) ©q C.

Note that we have the commutative diagram
HY Uz, (X, Qu(r) @g L —— H¥ (X, Qq(r)) ®g L

t*i it*

H%/ruzt (Xv QZ(T)) ®Q L——> Hzr(‘)(’ QK(T)) ®Q L

induced by t. Since t is (-tempered, the image of t*3; in H*" (X, Q,(r)) ®g C

vanishes. Now for ¢ = 1,2, since t*f; = cl?zz (t*C;), we know that t*C; is an

(-flat extension of t*¢;. In particular, we have (t*c;, t*c) € Z"" (X)), Finally,
the formula for (t*cq, t*62>€(7 . follows from Proposition B.10. O

Now we provide a criterion for an [L-étale correspondence to be /-tempered.

PROPOSITION B.14. PutYy = Y™, the induced reduced subscheme of Y.
Suppose that we have a finite stratification Yo D Y1 D --- of Zariski closed
subsets such that Y} =Y} \ Y1 is regular and has pure codimension nj > 1 in
X forj>0. Ift zs an LL- etale correspondence of X stabilizing the stratification
Yo O Y1 D and such that

(1) t* annihilates H* (X, Qu(r)) ®g L;
(2) t* annihilates HZ(YO @k Fp, Qr) ®g L for every integer i < 2r —2n; and
every j,

then some positive power of t annihilates H*" (X, Q,(r)) ®g L.
Proof. Tt suffices to prove that (t™)* annihilates H2 (X, Qu(r)) ®¢ L for
some integer m > 1, since then ™! is (-tempered.

We prove by decreasing induction on j that (¢"%)* annihilates the space
HQT_ (X,Qq(r)) ®g L for some integer m; > 1. We have

H2:+1 (X,Qe(r)) ®LL — Hy:(X,Qg(T)) ®qL — H (X \ Yj4+1,Qu(r)) ®q L.
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As Y7 is a regular closed subscheme of the regular scheme X \ Y, by the
absolute purity theorem [Fuj02], we have

HYo (X\ Yjat, Qe(r)) = B 729 (VE, Qe(r — ny)).

By condition (2) and the Hochschild—Serre spectral sequence, we know that
(t?)* annihilates H? 2 (Y7, Qe(r — nj)) ®g L. Thus, we may take m; =
mj4+1 + 2. In particular, (¢"°)* annihilates H%(X, Q¢(r)) ®g L, which is same
as H%/T(X, Qg(r)) X0 L. U

COROLLARY B.15. Let X and IL be as above. Let S be a ring of étale
correspondences of X, and m a maximal ideal of Sy.

(1) If (H?*(X,Q(d)) ®g L)m = 0, then there evists an {-tempered element
m S]L \ m.

(2) Suppose that we have a finite stratification Yy DO Y1 D --- of Zariski
closed subsets that is stabilized by the action of S, such that Yy =Y \
Y11 is regular and has pure codimension nj > 1 in X for j > 0. If

o (H>"(X,Qu(r)) ®g L)m =0 and
° (H’(Y]O @k Fp, Qr) ®g L)m = 0 for every integer i < 2r — 2n; and
every j,

then (H24(X,Qy(d)) ®g L)m = 0.

Proof. For (1), since H?" (X, Qy(r)) is of finite dimension over Qy, it follows
that H?" (X, Q(r)) ®g L is a finitely generated Syp-module. Then (1) follows
from Definition B.12.

For (2), since both H?"(X,Qq(r)) and ;0,1 @; H’(Y]O ®k Fp, Qp) are
of finite dimension over Qy, it follows that both H?*' (X, Q(r)) ®g L and
Picor—1 P, HZ(YJO @k Fp, Qr) ®@g L are finitely generated Sp-modules. Then
there exists t € S, \ m satisfying the two conditions in Proposition B.14. By
the same proposition, some power of ¢ annihilates H?¢(X',Q,(d)) ®g L, which

implies (H2¢(X,Q(d)) ®g L)m = 0. Thus, (2) follows. O
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