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Abstract

In this article, we improve our main results from [LL21] in two directions: First, we allow ramified places in
the CM extension E/F at which we consider representations that are spherical with respect to a certain special
maximal compact subgroup, by formulating and proving an analogue of the Kudla—Rapoport conjecture for exotic
smooth Rapoport—Zink spaces. Second, we lift the restriction on the components at split places of the automorphic
representation, by proving a more general vanishing result on certain cohomology of integral models of unitary
Shimura varieties with Drinfeld level structures.
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1. Introduction

In 1986, Gross and Zagier [GZ86] proved a remarkable formula that relates the Néron—Tate heights
of Heegner points on a rational elliptic curve to the central derivative of the corresponding Rankin—
Selberg L-function. A decade later, Kudla [Kud97] revealed another striking relation between Gillet—
Soulé heights of special cycles on Shimura curves and derivatives of Siegel Eisenstein series of genus
2, suggesting an arithmetic version of theta lifting and the Siegel-Weil formula (see, for example,
[Kud02, Kud03]). This was later further developed in his joint work with Rapoport and Yang [KRY06].
For the higher dimensional case, in a series of papers starting from the late 1990s, Kudla and Rapoport
developed the theory of special cycles on integral models of Shimura varieties for GSpin groups in lower
rank cases and for unitary groups of arbitrary ranks [KR 11, KR 14]. They also studied special cycles on
the relevant Rapoport—Zink spaces over non-Archimedean local fields. In particular, they formulated a
conjecture relating the arithmetic intersection number of special cycles on the unitary Rapoport—Zink
space to the first derivative of local Whittaker functions [KR 11, Conjecture 1.3].

In his thesis work [Liul la, Liul 1b], one of us studied special cycles as elements in the Chow group
of the unitary Shimura variety over its reflex field (rather than in the arithmetic Chow group of a certain
integral model) and the Beilinson—-Bloch height of the arithmetic theta lifting (rather than the Gillet—
Soulé height). In particular, in the setting of unitary groups, he proposed an explicit conjectural formula
for the Beilinson—Bloch height in terms of the central L-derivative and local doubling zeta integrals.
Such a formula is completely parallel to the Rallis inner product formula [Ral84], which computes the
Petersson inner product of the global theta lifting and hence was named arithmetic inner product formula
in [Liul Ia] and can be regarded as a higher dimensional generalisation of the Gross—Zagier formula.! In
the case of U(1, 1) over an arbitrary CM extension, such a conjectural formula was completely confirmed
in [Liul 1b], while the case for U(r, r) with » > 2 is significantly harder. Recently, the Kudla—Rapoport
conjecture has been proved by W. Zhang and one of us in [LZa],? and it has become possible to attack
the cases for higher rank groups.

In [LL21], we proved that for certain cuspidal automorphic representations & of U(r, r), if the central
derivative L’(1/2, ) is nonvanishing, then the m-nearly isotypic localisation of the Chow group of a
certain unitary Shimura variety over its reflex field does not vanish. This proved part of the Beilinson—
Bloch conjecture for Chow groups and L-functions (see [LLLL.21, Section 1] for a precise formulation
in our setting). Moreover, assuming the modularity of Kudla’s generating functions of special cycles,
we further proved the arithmetic inner product formula relating L’(1/2, ) and the height of arithmetic
theta liftings. In this article, we improve the main results from [LL21] in two directions: First, we allow
ramified places in the CM extension E/F at which we consider representations that are spherical with
respect to a certain special maximal compact subgroup, by formulating and proving an analogue of the
Kudla—Rapoport conjecture for exotic smooth Rapoport-Zink spaces. Second, we lift the restriction on
the components at split places of the automorphic representation, by proving a more general vanishing
result on certain cohomology of integral models of unitary Shimura varieties with Drinfeld level
structures. However, for technical reasons, we will still assume F # Q (see Remark 4.33).

1By ‘generalisation of the Gross—Zagier formula’, we simply mean that they are both formulae relating Beilinson—Bloch
heights of special cycles and central derivatives of L-functions. However, from a representation-theoretical point of view, the
more accurate generalisation of the Gross—Zagier formula should be the arithmetic Gan—Gross—Prasad conjecture.

2We remark that during the referee process of this article, the Kudla—Rapoport conjecture in the orthogonal case was also
formulated and proved by the same group of authors [LZb].
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1.1. Main results

Let E/F be a CM extension of number fields with the complex conjugation c. Denote by vaoo) and Vg“
the set of Archimedean and non-Archimedean places of F, respectively. Denote by V¥ g Vil;“ and V2™

F
the subsets of Vt}“ of those that are split, inert and ramified in E, respectively.
Take an even positive integer n = 2r. We equip W, := E" with the skew-hermitian form (with respect

to the involution c) given by the matrix (_lr Ir ) Put G, := U(W,), the unitary group of W,., which is

a quasi-split reductive group over F. For every v € Vgn, we denote by K, , € G,(F,) the stabiliser of
the lattice 0%‘, , which is a special maximal compact subgroup.

We start from an informal discussion on the arithmetic inner product formula. Let 7 be a tempered
automorphic representation of G, (Ar), which by theta dichotomy gives rise to a unique up to iso-
morphism hermitian space V, of rank n over Ag. It is known that the hermitian space V is coherent
(respectively incoherent); that is, V is (respectively is not) the base change of a hermitian space over
E, if and only if the global root number &(xr) equals 1 (respectively —1). When &(x) = 1, we have
the global theta lifting of 7, which is a space of automorphic forms on U(V,)(AF), and the famous
Rallis inner product formula [Ral84] computes the Petersson inner product of the global theta lifting
in terms of the central L-value L(%, n) of 7. When &(r) = —1, we have the arithmetic theta lifting of
m, which is a space of algebraic cycles on the Shimura variety associated to V,, and the conjectural
arithmetic inner product formula [Liulla] computes the height of the arithmetic theta lifting in terms
of the central L-derivative L’(%, m) of 7. In our previous article [LLL.21], we verified the arithmetic in-
ner product formula, under certain hypotheses, when E/F and 7 satisfy certain local conditions (see
[LL21, Assumption 1.3]). In particular, we want V™ = @, which forces [F : Q] to be even, and we
want the representation 7 to be either unramified or almost unramified at v € ViFm. Computing local root
numbers, we have &(r,,) = (=1)" if v € V;m), e(ny)=1ifv e V;Pl or , is unramified, e(x,) = -1 if
ve Vi;,“ and) 7,, is almost unramified. It follows that &(rr) = (=1)"[F:+ISz| where S, C V}“ denotes
the (finite) subset at which 7 is almost unramified, which equals (=1)!3<! as [F : Q] is even. In this
article, we improve our results so that V;fi‘m can be nonempty; hence, [F : Q] can be odd and we will
still have &(xr) = (=1)"F*Q*ISzl To show the significance of such improvement, now we may have
eg(m) = =1 but S; = 0, so that we can accommodate 7 that comes from certain explicit motives like
symmetric power of elliptic curves (see Example 1.10).

The reader may read the introduction of [LLL.21] for more background. Now we describe in more
detail our setup and main results in the current article.

Definition 1.1. We define the subset V. of V;fl U V‘}“ consisting of v satisfying that for every v’ €

V}p )N V2™, where p is the underlying rational prime of v, the subfield of F, generated by F,, and the
Galois closure of E, is unramified over F, .

Remark 1.2. The purpose of this technical definition is that for certain places v in VSFpl v Vilflt, we need
to have a CM type of E such that its reflex field does not contain more ramification over p than F, does

— this is possible for v € V7. Note that

o the complement (V;?l v Vifp‘t) \ V7 is finite;
o when E is Galois, or contains an imaginary quadratic field, or satisfies V;‘;m = (), we have
o _ yspl int
vy =viPyvint,
Assumption 1.3. Suppose that F' # Q, that V;fl contains all 2-adic places and that every prime in V;3™

is unramified over Q. We consider a cuspidal automorphic representation 7 of G, (AF) realised on a
space V. of cusp forms satisfying the following:

(1) Foreveryv € Vg,oo) , Ty, is the holomorphic discrete series representation of Harish-Chandra param-
eter {152, 52, .., 553, 251} (see [LL21, Remark 1.4(1))).
(2) For every v € V3™, &, is spherical with respect to K , ; that is, n\lf”' # {0}.
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(3) For every v € Vi,f_“, m,, is either unramified or almost unramified with respect to K, ,, (see [LL21,
Remark 1.4(3)]); moreover, if 7, is almost unramified, then v is unramified over Q.

(4) Forevery v € Vi, 7, is tempered.

(5) We have Ry U S, C V7. (Definition 1.1), where
o R; C V;Pl denotes the (finite) subset for which 7, is ramified,
oS, C V?Qt denotes the (finite) subset for which 7, is almost unramified.

Comparing Assumption 1.3 with [LL.21, Assumption 1.3], we have lifted the restriction that V2™ = 0
(by allowing 7, to be a certain type of representations for v € VjZ™) and also the restriction on 7, for
v E VSFPI. Note that (5) is not really a new restriction since when V2™ = 0, it is automatic by Remark 1.2.

Suppose that we are in Assumption 1.3. Denote by L(s, ) the doubling L-function. Then we have
g(m) = (1) F:Q+ISzl for the global (doubling) root number, so that the vanishing order of L(s, 7) at
the centre s = % has the same parity as r[F : Q] + |S,|. The cuspidal automorphic representation 7
determines a hermitian space V., over Ag of rank n via local theta dichotomy (so that the local theta
lifting of 7, to U(V,)(F,) is nontrivial for every place v of F), unique up to isomorphism, which is
totally positive definite and satisfies that for every v € V%“, the local Hasse invariant €(V,; ®4,. F,) =1
ifandonly if v ¢ S.

Now suppose that 7[F : Q] + |S,| is odd; hence, e(w) = —1, which is equivalent to that V, is
incoherent. In what follows, we take V = V in the context of [LL.21, Conjecture 1.1]; hence, H = U(V,).
Let R be a finite subset of V%“. We fix a special maximal subgroup LR of H (A;"’R) that is the stabiliser
of a lattice AR in V ®,,. A‘;’R (see Notation 4.2(H6) for more details). For a field L, we denote by T]%
the (abstract) Hecke algebra L[ LR\ H (A°F°’R) /LR], which is a commutative L-algebra. When R contains
R, the cuspidal automorphic representation m gives rise to a character

Xyt T = Q,
where Q% denotes the subfield of C of algebraic numbers, and we put
m? = ker y%,
which is a maximal ideal of TR ..
In what follows, we will fix an arbitrary embedding ¢: E < C and denote by {X; } the system of

unitary Shimura varieties of dimension n— 1 over ¢(E) indexed by open compact subgroups L € H(AY)
(see Subsection 4.2 for more details). The following is the first main theorem of this article.

Theorem 1.4. Let (7,V,) be as in Assumption 1.3 with r[F : Q] + |Sz| odd, for which we assume
[LL21, Hypothesis 6.6]. IfL’(%, ) # 0—that is, 0rds=% L(s, ) = 1 —then as long as R satisfiesR; C R

and |RN V?l NV%| > 2, the nonvanishing
i (CH (X110, #0
LR 4
holds, where the colimit is taken over all open compact subgroups Ly of H(FR).

Our remaining results rely on Hypothesis 4.11 on the modularity of Kudla’s generating functions of
special cycles and hence are conditional at this moment.

Theorem 1.5. Let (rr,V,) be as in Assumption 1.3 withr[F : Q] +|S,| odd, for which we assume [L.L.2],
Hypothesis 6.6]. Assume Hypothesis 4.11 on the modularity of generating functions of codimension r.

(1) For every collection of elements
o 1 =®yp1v € Vyand ¢2 = ®,p2, € V, such that for every v € Vl(;o), Y1y and @), have the
lowest weight and satisfy {¢{ , ¢2v)r, = L,
o ¢7 =@y¢7, € S(V" ®@a, AY) and ¢35 = @, 85, € S(V" @4, AY),
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the identity
L

[F:Q] | b ¢ 0o o nc
b, (0) Cr l_[ SHV,VV ((’01V’(’02V’¢1v ® (¢2v) )

fin
vevy

(@45 (91). O (02))} 1 =

holds. Here,

o Oy (yp;) € li_r)nL CH" (XL)g is the arithmetic theta lifting (Definition 4.12), which is only
well-defined under Hypothesis 4.11;

o (B4 (1), Oge (¢2))§(,E is the normalised height pairing (Definition 4.17),7 which is
constructed based on Beilinson’s notion of height pairing;

o by, (0) is defined in Notation 4.1(F4), which equals L(M) (1)) where M, is the motive
associated to G, by Gross [Gro97]; in particular, it is a positive real number;

o Cr = (—1)’2_2r7rr2 %, which is the exact value of a certain Archimedean doubling
zeta integral; and

) Siv,vv (¢, p2v, 97, ® (#3,,)°) is the normalised local doubling zeta integral [LL2],
Section 3], which equals 1 for all but finitely many v.

(2) In the context of [LL21, Conjecture 1.1], take (V = V, and) % to be the theta lifting of n°° to
H(AY). IfL' (3, 7) # 0~ that is, ord,_y L(s,7) = 1~ then

JU 0
HomH(A;) (ﬂ ,&nCHr(XL)C 0

L

holds.
Remark 1.6. We have the following remarks concerning Theorem 1.5.

(1) Part (1) verifies the so-called arithmetic inner product formula, a conjecture proposed by one of us
[Liulla, Conjecture 3.11].

(2) The arithmetic inner product formula in part (1) is perfectly parallel to the classical Rallis inner
product formula. In fact, suppose that V is totally positive definite but coherent. We have the classical
theta lifting 64~ (¢) where we use standard Gaussian functions at Archimedean places. Then the
Rallis inner product formula in this case reads as

L(l’ ) : ) 00 \C
(B (91), 095 (92))m1 = bzz(g) PO T 35 v (65, 020 03 @ (6309,

fin
vevy

in which {, )iy denotes the Petersson inner product with respect to the Tamagawa measure on H(Ap).

In the case where R, = (), we have a very explicit height formula for test vectors that are new
everywhere.

Corollary 1.7. Let (w,V ) be as in Assumption 1.3 withr[F : Q]+|S| odd, for which we assume [LL.21,

Hypothesis 6.6]. Assume Hypothesis 4.11 on the modularity of generating functions of codimension r.

In the situation of Theorem 1.5(1), suppose further that

o Ry =0;

opl=wr=gpE€ VE,’”’ (see Notation 4.3(G8) for the precise definition of the 1-dimensional space
VL{]‘D of holomorphic new forms) such that for every v € Vg, (¢S, ¢y )r, = 1; and

o ¢ = ¢ = ¢> such that for every v € vin g% = L A0y

3Strictly speaking, (@ o (¢1),0 S (¢2) >§( . Telies on the choice of a rational prime £ and is a priori an element in C ®g Q.
However, the above identity implicitly says that it belongs to C and is independent of the choice of £.
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Then the identity

, L'(3,7) : T (gy +1
o900 = (- T 1A []
r veS, \dv v

holds, where q,, is the residue cardinality of F,,.

Remark 1.8. Assuming the conjecture on the injectivity of the étale Abel-Jacobi map, one can show
that the cycle ®4~(¢) is a primitive cycle of codimension r. By [Bei87, Conjecture 5.5], we expect

that (=1)" (@ g~ (¢), @,,;oo(go))i £ = 0 holds, which, in the situation of Corollary 1.7, is equivalent to
L’(%, 7) = 0.

Remark 1.9. When S, = 0, Theorem 1.4, Theorem 1.5 and Corollary 1.7 hold without [LL.21, Hypoth-
esis 6.6]. See Remark 4.32 for more details.

Example 1.10. Suppose that E/F satisfies the conditions in Assumption 1.3 and that » > 2. Con-
sider an elliptic curve A over F without complex multiplication, satisfying that Sym?* ~' A and hence
Sym?~! Ag are modular. Let IT be the cuspidal automorphic representation of GL, (Ag) correspond-
ing to Sym* ! A, which satisfies ITY =~ ITo c. Then there exists a cuspidal automorphic representation
nm of G,(AF) as in Assumption 1.3 with IT its base change if and only if A has good reduction at ev-
ery v € Viny\ V?l% Moreover, if this is the case, then we have S, = 0; hence, e(x) = (=1)"1F:Q . In
particular, the above results apply when both r and [F : Q] are odd.

1.2. Two new ingredients

The proofs of our main theorems follow the same line in [LLL21], with two new (main) ingredients,
responsible for the two improvements we mentioned at the beginning.

The first new ingredient is formulating and proving an analogue of the Kudla—Rapoport conjecture
in the case where E/F is ramified and the level structure is the one that gives the exotic smooth
model (see Subsection 2.1). Here, F is a p-adic field with p odd. Let L be an O g-lattice of a nonsplit
(nondegenerate) hermitian space V over E of (even) rank n. Then one can associate an intersection
number Int(L) of special divisors on a formally smooth relative Rapoport—Zink space classifying quasi-
isogenies of certain unitary O g-divisible groups and also the derivative of the representation density
function dDen(L) given by L. We show in Theorem 2.7 the formula

Int(L) = dDen(L).

This is parallel to the Kudla—Rapoport conjecture proved in [[.Za], originally stated for the case where
E/F is unramified. The proof follows from the same strategy as in [L.Za], namely, we write L = LY+ (x)
for a sublattice L” of L such that V;, := L” ®¢,. F is nondegenerate and regard x as a variable. Thus, it
motivates us to define a function Int;, on V' \ V;,, by the formula Int;, (x) = Int(L + (x)) and similarly

for 6Den; . For Int; », there is a natural decomposition Int;, = Inttib + Int‘l"b according to the horizontal
and vertical parts of the special cycle defined by LP. In a parallel manner, we have the decomposition

0Den;, = (’)Denlib + BDean by simply matching aDenlib with Intlib. Thus, it suffices to show that
Int‘ib = 0Den" . By some sophisticated induction argument on L", it suffices to show the following
remarkable property for both Inth and aDenzb: they extend (uniquely) to compactly supported locally
constant functions on V, whose Fourier transforms are supported in the set {x € V | (x,x)y € Ofr}.
However, there are some new difficulties in our case:

“Note that, when 7 > 2, the (27 — 1)th symmetric power of an irreducible admissible representation of GL; (Ey,) can never be
the base change of an almost unramified representation of G,-(F,) for v € Vll{lﬁ
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o The isomorphism class of an Og-lattice is not determined by its fundamental invariants and there is
a parity constraint for the valuation of an O g-lattice. This will make the induction argument on L°
much more complicated than the one in [[.Za] (see Subsection 2.7).

o The comparison of our relative Rapoport—Zink space to an (absolute) Rapoport—Zink space is not
known. This is needed in the p-adic uniformisation of Shimura varieties. We solve this problem
when F/Q),, is unramified, which is the reason for us to assume that every prime in V;2" is
unramified over Q in Assumption 1.3. See Subsection 2.8.

o Due to the parity constraint, the computation of Intzb can only be reduced to the case where n = 4
(rather than n = 3 in [L.Za]). After that, we have to compute certain intersection multiplicity, for
which we use a new argument based on the linear invariance of the K-theoretic intersection of
special divisors. See Lemma 2.55.

Here come three more remarks:

o First, we need to extend the result of [CY20] on a counting formula for §Den(L) to hermitian
spaces over a ramified extension E/F (Lemma 2.19).

o Second, we have found a simpler argument for the properties of (9Den2b (Proposition 2.22) which
does not use any functional equation or induction formula. This argument is applicable to [[.Za] to
give a new proof of the main result on the analytic side there. Also note that we prove the vanishing
property in Proposition 2.22 directly, while in [L.Za] it is only deduced after proving Intzb = BDenZb 2

o Finally, unlike the case in [L.Za], the parity of the dimension of the hermitian space plays a crucial
role in the exotic smooth case. In particular, we will not study the case where V has odd dimension.

The second new ingredient is a vanishing result on certain cohomology of integral models of unitary
Shimura varieties with Drinfeld level structures. For v € Vj?] N V7. with p the underlying rational prime,
we have a tower of integral models {X},, },,>0 defined by Drinfeld level structures (at v), with an action

RUVP)

by TQM £ via Hecke correspondences. We show in Theorem 4.21 that

H” (X, Q1)) =0

. @ o RV ROV RUV(P) -
with € # p and m := m;; N SQM , where S_,.© is the subalgebra of TQM consisting of those

supported at split places. We reduce this Vanigﬁng property to some other vanishing properties for
cohomology of Newton strata of &, by using a key result of Mantovan [Man08] saying that the closure
of every refined Newton stratum is smooth. For the vanishing properties for Newton strata, we generalise
an argument of [TY07, Proposition 4.4]. However, since in our case the representation m, has arbitrary
level and our group has nontrivial endoscopy, we need a more sophisticated trace formula, which was
provided in [CS17].

1.3. Notation and conventions

o When we have a function f on a product set A X - -+ X A, we will write f(ay,...,a,) instead of
fW(ay,...,an)) forits value at an element (ay,...,a;,) € A; X X Ay,.

o For a set S, we denote by 1 the characteristic function of S.

o All rings are commutative and unital, and ring homomorphisms preserve units. However, we use the
word algebra in the general sense, which is not necessarily commutative or unital.

o For a (formal) subscheme Z of a (formal) scheme X, we denote by .7 the ideal sheaf of Z, which is
a subsheaf of the structure sheaf Ox of X.

5We have also tried to apply our argument to prove this vanishing property directly in the case considered in [L.Za], but the
numerology seems much more complicated to make a success. Nevertheless, our argument does give a simpler proof of the weaker
vanishing property in [.Za, Theorem 7.4.1].
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o For aring R, we denote by Sch,r the category of schemes over R, by Sch; g the subcategory of
locally Noetherian schemes over R. When R is discretely valued, we also denote by Sch}R the
subcategory of schemes over R on which uniformisers of R are locally nilpotent.

o If a base ring is not specified in the tensor operation ®, then it is Z.

o For an abelian group A and a ring R, we put Ag := A ® R.

o For an integer m > 0, we denote by 0,, and 1,, the null and identity matrices of rank m, respectively.

We also denote by w,,, the matrix ( 1, L )

o We denote by c: C — C the complex conjugation. For an element x in a complex space with a
default underlying real structure, we denote by x€ its complex conjugation.

o For a field K, we denote by K the abstract algebraic closure of K. However, for aesthetic reasons, we
will write @p instead of QTP and will denote by Fp its residue field. On the other hand, we denote by
Q™ the algebraic closure of Q inside C.

o For a number field K, we denote by ¢k : K\Ag — C* the standard additive character, namely,

YK =g o Trg g in which yg: Q\A — C* is the unique character such that g . (x) = e27ix,

o Throughout the entire article, all parabolic inductions are unitarily normalised.

2. Intersection of special cycles at ramified places

Throughout this section, we fix a ramified quadratic extension E/F of p-adic fields with p odd, with
c € Gal(E/F) the Galois involution. We fix a uniformiser u € E satisfying u® = —u. Let k be the
residue field of F and denote by g the cardinality of k. Let n = 2r be an even positive integer.

In Subsection 2.1, we introduce our relative Rapoport—Zink space and state the main theorem (The-
orem 2.7) on the relation between intersection numbers and derivatives of representation densities. In
Subsection 2.2, we study derivatives of representation densities. In Subsection 2.3, we recall the Bruhat—
Tits stratification on the relative Rapoport—Zink space from [Wu] and deduce some consequences. In
Subsection 2.4, we prove the linear invariance on the K-theoretic intersection of special divisors, fol-
lowing [How19]. In Subsection 2.5, we prove Theorem 2.7 when r = 1, which is needed for the proof
when r > 1. In Subsection 2.6, we study intersection numbers. In Subsection 2.7, we prove Theorem
2.7 for general r. In Subsection 2.8, we compare our relative Rapoport—Zink space to certain (absolute)
Rapoport-Zink space assuming F/Q),, is unramified.

Here are two preliminary definitions for this section:

o A hermitian O g-module is a finitely generated free O g-module L together with an O g-bilinear
pairing (, )r.: L X L — E such that the induced E-valued pairing on L ®¢,. F is a nondegenerate
hermitian pairing (with respect to c). When we say that a hermitian O g-module L is contained in a
hermitian O g-module or a hermitian E-space M, we require that the restriction of the pairing (, )ar
to L coincides with (, )z.

o Let X be an object of an additive category with a notion of dual.

— We say that a morphism ox : X — XV is a symmetrisation if oy is an isomorphism and the

0_\/
composite morphism X — XV¥ — XV coincides with ox.
— Given an action tx : O — End(X), we say that a morphism Ax : X — XV is tx-compatible if
Ax o tx (@) = tx(a®)" o Ax holds for every a € Og.

2.1. A Kudla—Rapoport type formula

We fix an embedding ¢o: E — C, and let E be the maximal complete unramified extension of ¢ (E)
in C,. We regard E as a subfield of E via ¢¢ and hence identify the residue field of £ with an algebraic
closure k of k.

Definition 2.1. Let S be an object of Sch/p,.. We define a category Exo(,-1,1)(S) whose objects are
triples (X, tx, Ax) in which
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o X is an Op-divisible group® over S of dimension n = 2r and (relative) height 2n;
o tx: O — End(X) is an action of O on X satisfying:
— (Kottwitz condition): the characteristic polynomial of tx (#) on the locally free Og-module
Lie(X) is (T — u)" (T +u) € Os[T],
— (Wedge condition): we have

2
N\ (ex (@) = u | Lie(X)) =0,

— (Spin condition): for every geometric point s of S, the action of tx («) on Lie(X;) is nonzero;
o Ax: X — XV is a tx-compatible polarisation such that ker(1x) = X [ex (u)].

A morphism (respectively quasi-morphism) from (X, tx, Ax) to (¥, ty, Ay ) is an O g-linear isomorphism

(respectively quasi-isogeny) p: X — Y of height zero such that p*1y = Ax.

When S belongs to Schyoé, we denote by EXO[()n—l,l) (S) the subcategory of Exo(,—1,1)(S) consisting

of (X, tx,Ax) in which X is supersingular.’

Remark 2.2. Giving a tx-compatible polarisation 1x of X satisfying ker(dx) = X[tx (u)] is equivalent
to giving a ty-compatible symmetrisation ox of X. In fact, since ker(1dx) = X[tx (u)], there is a unique
morphism oy : X — XV satisfying 1x = ox o tx(u), which is, in fact, an isomorphism satisfying

oy =ix(@ ) oy =—tx(u ) oldy =-Ax o ix () = Ax oux (u™h) = oy

and is clearly tx-compatible. Conversely, given a tx-compatible symmetrisation ox of X, we may
recover Ay as ox o ty (u). In what follows, we call oy the symmetrisation of Ax.

To define our relative Rapoport—Zink space, we fix an object
(X, Lx, /lx) € Exot()n—l,l) (E)

Definition 2.3. We define a functor N := N(x,, 1x) On Schyoﬁ such that for every object § of Sch70F ,

N(S) consists of quadruples (X, tx, Ax; px) in which ) )

o (X,tx,Ax) is an object of Exot(’n_l’l) (S); ~ ~

o px is a quasi-morphism from (X, tx, Ax) Xs (S ®o,. k) to (X, tx,dx) ® (S ®0,. k) in the
category Exot(’n_l’l) (S ®o, k).

Lemma 2.4. The functor N is a separated formal scheme formally smooth over Spf O of relative

dimension n — 1. Moreover, N has two connected components.

Proof. It follows from [RZ96] that \is a separated formal scheme over Spf O ;. The formal smoothness
of N follow from the smoothness of its local model, which is [RSZ17, Proposition 3.10], and the
dimension also follows. For the last assertion, our moduli functor N is the disjoint union of N o) and
No,1y from [Wu, Section 3.4], each of which is connected by [Wu, Theorem 5.18(2)].¢ m]

To study special cycles on N, we fix a triple (Xo, tx,, 1x,) Where

o X is a supersingular O r-divisible group over Spec O of dimension 1 and height 2;
o tx,: O — End(Xp) is an O g-action on Xy such that the induced action on Lie(X) is given by ¢o;
o Ax,: Xo — XOV is a tx,-compatible principal polarisation.

6An OF -divisible group is also called a strict O -module.

7Here, the superscript ‘b’ stands for basic, which is related to the basic locus in the Shimura variety that appears later.

8The article [Wu] only studied the case F = Q,,. In fact, all arguments and results work for general F. This footnote applies to
the proof of Proposition 2.28 as well.
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Note that tx, induces an isomorphism tx, : O — Endo, (Xo). Put
V := Homo, (Xo ®0, kX)®Q,
which is a vector space over E of dimension n. We have a pairing

(LW:VxV—SE 2.1)

sending (x, y) € V2 to the composition of quasi-homomorphisms

as an element in Endp, (Xo) ® Q and hence in E via L;((l). It is known that (, )y is a nondegenerate and
nonsplit hermitian form on V [RSZ17, Lemma 3.5].°

Definition 2.5. For every nonzero element x € V, we define the special divisor N(x) of N to be the
maximal closed formal subscheme over which the quasi-homomorphism

p}_fl ox: (Xp ®0; Z) ®r (S ®0; Z) — X Xg (S ®0; Z)

lifts (uniquely) to a homomorphism Xp ®o,. § — X.

Definition 2.6. For an O g-lattice L of V, the Serre intersection multiplicity

L L
X | ON(x) ®op - ®0p ON(x,)
does not depend on the choice of a basis {xy,...,x,} of L by Corollary 2.35, which we define to be
Int(L).

Theorem 2.7. For every Og-lattice L of V, we have
Int(L) = dDen(L),

where dDen(L) is defined in Definition 2.16.

The strategy of proving this theorem described in Subsection 1.2 motivates the following definition,
which will be frequently used in the rest of Section 2.

Definition 2.8. We define b(V) to be the set of hermitian O g-modules contained in V of rank n — 1. In
what follows, for L € b(V), we put V;, := L” ®¢,. F and write V., for the orthogonal complement of
VLb inV.

Remark 2.9. Let S be an object of Scho,. We have another category Exo,,0) (S) whose objects are
triples (X, tx, Ax) in which

o X is an Of-divisible group over S of dimension n = 2r and (relative) height 2n;
o tx: O — End(X) is an action of Og on X such that tx («) — u annihilates Lie(X);
o Ax: X — XV is a tx-compatible polarisation such that ker(1x) = X [ex (u)].

Morphisms are defined similarly as in Definition 2.1.

9The readers may notice that we have an extra factor u~2 in the definition of the hermitian form. This is because we want to
ensure that A/(x) is nonempty if and only if (x, x)y € OF.
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For later use, we fix a nontrivial additive character Y : F — C* of conductor O . For a locally
constant compactly supported function ¢ on a hermitian space V over E, its Fourier transform ¢ is
defined by

) = /V O (Trs (5, ¥)y ) dy

where dy is the self-dual Haar measure on V.

2.2. Fourier transform of analytic side

In this subsection, we study local densities of hermitian lattices. We first introduce some notion about
OEg-lattices in hermitian spaces.

Definition 2.10. Let V be a hermitian space over E of dimension m, equipped with the hermitian form

v

(1) For a subset X of V,
o we denote by X™ the subset {x € X | (x,x)y € Or};
o we denote by (X) the O g-submodule of V generated by X; when X = {x, ...} is explicitly
presented, we simply write (x, ...) instead of ({x,...}).
(2) For an Og-lattice L of V, we put

LY :={x €V |Trg/r(x,y)v € OF forevery y € L}
={xeV|(xyyv eu'Og forevery y € L}.

We say that L is

o integral if L C LV;

o vertex if it is integral such that LY /L is annihilated by u; and

o self-dual if L = LV.

(3) For an integral Og-lattice L of V, we define

o the fundamental invariants of L unique integers 0 < a; < --- < a,, such that
LY/L=O0g/(u™)®-- - ®Og/(u*) as O g-modules;

o the type t(L) of L to be the number of nonzero elements in its fundamental invariants; and

o the valuation of L to be val(L) := .1, a;; when L is generated by a single element x, we simply
write val(x) instead of val({x)).

The above notation and definitions make sense without specifying V, namely, they apply to hermitian
O g-modules.

Definition 2.11. For a hermitian O g-module L, we say that a basis {ey, ..., ¢;,} of L is a normal basis

if its moment matrix T = ((e;, ej)L)l.’”j:1 is conjugate to

0 u2c1—1 0 uZC,—l
(,31M2b1)@"'@(ﬁSMZbS)@(_MZQl 0 )@...@(_uqu 0 )

by a permutation matrix, for some 8i,...,8s € 0; and by,...,bs,c1,...,c; EZ.
Lemma 2.12. In the above definition, we have

(1) normal basis exists;

(2) the invariants s,t and by, . ..,bg,c1,...,cs depend only on L;

(3) when L is integral, the fundamental invariants of L are the unique nondecreasing rearrangement of
(2by +1,...,2bg +1,2¢1,2c1,...,2¢,2¢y).
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Proof. Part (1) follows from [Jac62, Propositions 4.3 & 8.1]. Part (2) follows from the canonicity of the
Jordan splitting on [Jac62, Page 449]. Part (3) follows from a direct calculation of L. O

Remark 2.13. The above lemma implies that for an integral hermitian Og-module L of rank m with
fundamental invariants (ay,...,dm),

(1) Lis vertex if and only if a,, < 1 and self-dual if and only if a,, = 0;
(2) t(L) and val(L) must have the same parity with m.

Definition 2.14. Let M and L be two hermitian O g-modules. We denote by Hermy, 5, the scheme of
hermitian O g-module homomorphisms from L to M, which is a scheme of finite type over Or. We
define the local density to be

Herm 0 uN
Den(M, L) := lim L.y (Or /( ))|
N —+c0 qN'dL,M

where dy » is the dimension of Hermy, s ®o, F.

Denote by H the standard hyperbolic hermitian O g-module (of rank 2) given by the matrix ( _3,, ”(; 1 )
For an integer s > 0, put Hy := H®. Then Hj; is a self-dual hermitian O g-module of rank 2s. The

following lemma is a variant of a result of Cho—Yamauchi [CY20] when E/F is ramified.

Lemma 2.15. Let L be a hermitian O g-module of rank m. Then we have

Den(Hy,L)= » |L/L™> [ (-¢™

’ rvee ! .
LCL’CcL s_m+r2(L ) <i<s

for every integer s > m, where the sum is taken over integral O g-lattices of L ®o,. F containing L.

Proof. Put V := L ®p, F. For an integral Og-lattice L” of V, we equip the k-vector space L; :=
L’ ®o, Ok /(u) with a k-valued pairing (, ) L, by the formula

(g = u (6, yFymod (u)

where x* and y’i are arbitrary lifts of x and y, respectively. Then L; becomes a symplectic space over k
of dimension m whose radical has dimension ¢(L’). Similarly, we have Hj x, which is a nondegenerate
symplectic space over k of dimension 2s. We denote by Isomy; p, , the k-scheme of isometries from
L;( to H sk-

By the same argument in [CY20, Section 3.3], we have

DGH(HS, L) — q—m(4s—m+1)/2 . Z |L//L|m—25
LcL'cLy

Isomp; g, , (k)| .

Thus, it remains to show that

ISOHlL;(,HS,k (k)) _ qm(4s—m+1)/2 1_[ (1- q—Zi)' (2.2)

1+t (L) .
s—%“ <i<s

We fix a decomposition L;{ = Lo ® L in which L¢ is nondegenerate and L; is the radical of
Lj. We have a morphism x: Isomz; g, — Isomg, g, given by restriction, such that for every

element f € Isomy, g, , (k), the fibre 77! f is isomorphic to Isomy, jm(f):. As im(f)* is isomorphic
toH__maw . it suffices to show (2.2) in the two extremal cases: t(L’)=0and t(L") = m.
s-mtE)
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Suppose that #(L") = 0; that is, L;( is nondegenerate. Note that Sp(Hj x) acts on ISOHIL;(,HM

transitively, with the stabiliser isomorphic to Sp(HS_%’ ). Thus, we have

| Sp(H, 1) (K)|
[Sp(Hy-2 ) (k)|
TP -
) M2 (g% - 1)
:qm(4s—m+])/2 1_[ (1 _q—Zi)’

s=3<i<s

Isomz; g, , (k)’ =

which confirms (2.2).
Suppose that #(L") = m; that is, L} is isotropic. Note that Sp(Hj ) acts on Isomy; g, transitively,
with the stabiliser Q fitting into a short exact sequence

1-U,—>Q0— Sp(Hs—m,k) -1

in which Uy, is a unipotent subgroup of Sp(H,_x) of Levi type GL,, x x(Hs_m,k). Thus, we have
| Sp(H k) (k)|
[Unn (k)| - | Sp(Hs—m.ic) (k)|
2 .
q* 1 (¢* - 1)
_om m(m+1) s—m L i
qm(2s 2m)+ L q(‘ )2 H?:lm(qz -1)

:qm(4s—m+l)/2 1—[ (1 _q—Zi)’

S—m<i<s

| Isomp; (k)| =

which confirms (2.2).
Thus, (2.2) is proved and the lemma follows. m]

Now we fix a hermitian space V over E of dimension n = 2r that is nonsplit.

Definition 2.16. For an Og-lattice L of V, define the (normalised) local Siegel series of L to be the
polynomial Den(X, L) € Z[X], which exists by Lemma 2.19, such that for every integer s > 0,

Den(H, 4, L)
l—lzr:+;+l (1- q—Zi) ’

where Den is defined in Definition 2.14. We then put

Den(¢~%,L) =

d
oDen(L) = — X Den(X, L).
x=1

Remark 2.17. Since V is nonsplit, we have Den(1, L) = Den(H,, L) = 0.

Remark 2.18. Let L be an O g-lattice of V. Let T € GL,,(E) be a matrix that represents L and consider
the Tth Whittaker function Wy (s, 14, 1 Hrzr) of the Schwartz function 1 pr at the identity element 14,
By [KR 14, Proposition 10.1],'° we have

Wr (s, 14, :[IHVZr) = Den(H, s, L)

10]n [KR 14, Proposition 10.1] and its proof, the lattice L, ,- should be replaced by H,-.
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for every integer s > 0. Thus, we obtain

W7 (0, 147, 1 y2r)
logg - 0Den(L) = a L

HL](I - q_Zi)
by Definition 2.16.
Lemma 2.19. For every O g-lattice L of V, we have
“h
Den(X,L)= » x*"hor (WD T (1 - g2x?) 2.3)
LCLCLY i=0
and
ESR|
dDen(L) =2 Z ]_[ (1- g%, (2.4)

LcLcLy =l
where both sums are taken over integral O g-lattices of V containing L.

Proof. The identity (2.3) is a direct consequence of Lemma 2.15 and Definition 2.16. The identity (2.4)
is a consequence of (2.3). ]

Definition 2.20. Let L be an element of b(V) (Definition 2.8). Forx € V' \ Vv, we put

dDeny, (x) := dDen(L’ + (x)),
(’9Den]£b (x):=2 Z 1.(x),

L’cLcLY
t(LﬂVLb)=1

dDen, (x) := dDen,p (x) — BDen}ib (x).

Here in the second formula, L in the summation is an O g-lattice of V.
Remark 2.21. We have

(1) The summation in 6Den2b (x) equals twice the number of integral O g-lattices L of V that contains
L’ + (x) and such that (L N Vi) = L.

(2) There exists a compact subset C;» of V such that dDen;, (')Dentzb and 6Den2b vanish outside C;»
and are locally constant functions on Cy \ Vy».

(3) For an integral Og-lattice L of V, if t(L N V;,) = 1, then #(L) = 2 by Lemma 2.23(1) and the fact
that V is nonsplit.

(4) By (3) and Lemma 2.19, we have

t(L)
5 -1

dDen}, (x) =2 Z 1_[ (1-¢*)|1(x)

L’cLcLY i=1
1(LNV,p)>1

forx e V\ V.

The following is our main result of this subsection.

(L, )
In (2.4), when ¢ (L) = 2, we regard the empty product Hi:21 (1-g*)asl.
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Proposition 2.22. Let L” be an element of b(V). Then 6Den2b extends (uniquely) to a (compactly
supported) locally constant function on V, which we still denote by 6Den2b. Moreover, the support of

dDeny, is contained in V'™ (Definition 2.10).
We need some lemmas for preparation.
Lemma 2.23. Let L be an integral hermitian O g-module of with fundamental invariants (aj, ..., a;).

) IfT = ((ey, ej)L)lf"].:l is the moment matrix of an arbitrary basis {ey, ..., en} of L, then for every
1 <i < m,ay+- --+a;—iequals the minimal E-valuation of the determinant of all i-by-i minors of T.

(2) If L = L’ + {x) for some (integral) hermitian O g-module L’ contained in L of rank m — 1, then we
have

t(L)Y+1, ifx’ eul’N+L',
(= {1 e
t(L") — 1, otherwise,

where x’ is the unique element in L’ such that (x’,y);, = (x,y)r for everyy € L’.

Proof. Part (1) is simply the well-known method of computing the Smith normal form of uT (over

OF) using ideals generated by determinants of minors. For (2), take a normal basis {xj,...,x;;—-1} of L
(Definition 2.11) such that {xy, ..., X;u—1-(z)) is self-dual. Applying (1) to the basis {x{, ..., X1, X}
of L, we know that (L) = (L") + 1 if (x;,x) € Of for every m —t(L’) < i < m — 1; otherwise, we
have t(L) = t(L”) — 1. In particular, (2) follows. O

In the rest of this subsection, in order to shorten formulae, we put

t
-

p(ey =1 -q*
i=1

for every positive even integer 7.

Lemma 2.24. Take L’ € b(V) that is integral. For every compact subset X of V not contained in Vi, we
denote by 6x the maximal integer such that the image of X under the projection map V — V]j induced
by the orthogonal decomposition V =V, @ VLLb is contained in u®x (VLL,))““. We denote by L the set of
Og-lattices of V containing L° and by € the set of triples (L",6,¢€) in which L" is an Og-lattice of
V5 containing L, § € Z and & u‘s(Vle)lnt — LY ®o,. F/OF is an Og-linear map.

(1) The map & — € sending L to the triple (L NV, 81, €L) is a bijection, where g1, is the extension
map u®t (VLL,,)int — (LNV5) ®op F/OF induced by the short exact sequence

0->LNVyp > L— u‘SL(VIj,)im — 0.

Moreover, L is integral if and only if the following hold:
o LNVyy is integral;

o the image of € is contained in (L N\ V)Y /(L N Vpb);
o er(x) +x C V" for every x € u°r (VLLb)im. 12

(2) For L € & that is integral and corresponds to (L”, 8, €) € €, we have

(L) = t(LY) + 1, ifthe image of € is contained in (u(L"")Y + L*")/L"’,
ey =1, otherwise.

2For (LY, 6§, &) € €, we regard £(x) + x as an L”-cosetin V as long as we write £(x) + x C Q for a subset Q of V.
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(3) For every fixed integral O g-lattice L” of Vi» containing L", the sum

D a Ot lu(L)]
LcrY
LNV, =LY

is convergent, and if t(L") > 1, then we have

> qTuaL) =0
LcLY

LNV, ,=LY
zelV

for every z € V\ Vin,
(4) For every fixed integral O-lattice L” of V,» containing L with t(LY) > 1, we have

D, HL)=0.
LcLY

LNV, ,=LY
61.=0

Proof. For (1), the inverse map & — & is the one that sends (L", 6, €) to the O g-lattice L generated by
L' and &7 (x) + x for every x € u®c (Vle)im. The rest of (1) is straightforward.

Part (2) is simply Lemma 2.23(2).

Part (4) follows by applying (3) to generators z of O g-modules ™! (VLLb)im and u‘z(Vle)int and then
taking the difference.

Now we prove (3), which is the most difficult one. For every x € V, we denote by x” € V;,, the first
component of x with respect to the orthogonal decomposition V =V;, & VL*b. Put

Qi={xeV™|x e (L)}, Q :={xeV™|x eu(Ll”)+L"}.

Note that both Q and Q° are open compact subsets of V stable under the translation by L”. For an
element L € £ corresponding to (L, 8, &) € & from (1), L is integral if and only £(x) + x C Q for
every x € u‘S(Vlj)im. By (2), for such L,

(L) = (L) +1, ife(x)+x CQ°forevery x € u‘S(Vle)i"t \ u5+1(VLﬁ,)im,
@) — 1, ife(x) +x € Q\ Q° forevery x € ul (V)M \ ud (VL )i,

Thus, we may replace the term corresponding to L in the summation in (3) by an integration over the
region UxEué(VLb)im\uJH v+ ym (£(x) +x) of Q. It follows that
L L

J — l br bry _
S gl C( Ji L Dl i oy IO D).

LcLY
LNV, ,=LY

which is convergent, where

C = vol(L”) - vol (V)™ \ u(V,)™).

Now we take an element z € V' \ V"', We may assume z’ € (L") since otherwise the summation
in (3) is empty. Put

Q ={xeQ| (v eu'Op}, Q:={xeQ|(x,2)y €u'Og},
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both stable under the translation by L" since z’ € (L"’)". Similarly, we have

_ 1 , /
Y, aewy=g| [ ueanenacs [ H(H(L”) = 1) dx
LcLY A\Vib Q\(Q2UV, )
LNV, =LY

zelV
_u@(L) - 1)
B C
_u@(L) - 1)
a C

(vol(QZ \ Q2) + (1 _ qz(Lb/)—l) vol(Qg))
(Vol(Qz) — g vol(Q;)) ,

where we have used 7(L"”) > 1 in the second equality. Thus, it remains to show that

vol(Q;) = ¢' "7 vol(Q2).

17

(2.5)

We fix an orthogonal decomposition LY = Ly ® L, in which Lo is self-dual and L, is of both rank
and type 7(L""). Since both Q, and Q7 depend only on the coset z + LY, we may assume z’ € L} and

anisotropic. Let V, C V be the orthogonal complement of Lo + (z). We claim
(*) There exists an integral O g-lattice Ly of V5 of of type 7(L"’) such that
W'Ly)™ = {x e V" | x" € u'LY}
fori =0,1.
Assuming (), by construction, we have

{xeV]|x,zy € M_IOE} =Ly®o, F & (Z)v V.

(2.6)

Now we use the condition z ¢ V™, which implies that (z)¥ C u(z) N V™. Combining with (2.6), we

obtain
Q. =Lox(z)" x (Ly)™, Q2 =Lox(z)" x (uLy)™.

Thus, (2.5) follows from Lemma 2.25. Part (3) is proved.
Now we show (x). There are two cases.
First, we assume z # z’; that is, z € V. Let L, be the unique O g-lattice of V, satisfying

Li={xeVy|x" €L}

Then (2.6) clearly holds. Thus, it remains to show that L, is integral of type 1(L?"). Putw := z—z €

which is nonzero and hence anisotropic. Then

_ , (2,7
SN CEE D
(w, wy

is the unique element in V, such that 7 = z’. To compute L, we write
Ly =M+ (y+az’)
for some y € V;, NVa and @ € E \ uOg, where M := L} N'V,. Then
M= LinV,={x¢€ MY | (x,y)y € M_IOE}.
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Since MV /M is isomorphic to an O -submodule of E/u~'Of, we may take an element y* € M" that
generates MY /MT. Then we have

Li=M"+("+a'7)
for some " € EX such that (y', y)y +a'a(z’,z')v € u"'Of. Now by (2.7), we have
LY =M+ (y+az).
By the same argument, we have
Ly=M"+(y"+a'p2),
where
(@2
@y
By Lemma 2.23(2), we have 1(L2) = (L) = (L") as long as L, is integral. Thus, it suffices to show
that y' + o pz € VI". We compute
(O +alpzy +aTpay - (6 +a' ) +aldy
= (a'pz,a’p2y — (@', a7 )y
(2, 2)}
= NmE/p(a/T) TV - (2w
(z,2v
(.2 )W
, , (Z,,Z')Z
(2,2 + (w,w)“//

(Wa W)V 1)

(2,2 +(w,wy

= Nmg,r(a’) (2,2 )y

= NmE/F(CYT)(Z,y Z’)V (

_ _(a'}')c (Q'TZ',Z')‘Z/

af (z,2v

Asz € LY, wehave (a'z/,2)v € u”'Op. As z ¢ V™, we have (z,2)y ¢ u~'Og. Together, we have

(a'2,2)}

(z,2)v )

Second, we assume z = z’; that is, z € Vpp. Take Ly = (L] NV2)¥ @ u‘S(VLi,))"lt for some integer

> 0 determined later. We show that (L} NV,)" is an integral hermitian O g-module of type t(LP)—1.
As in the previous case, we write

€ Op.Thus, y" +afpz € VIMas y" + a7’ € VI™; hence, L, meets the requirement in ().

Ly =M+ (y+az’)
forsomey € V;y NV and @ € E \ uOf, where M := LY N V,. Then
Li=M+{(+a'7),

so that M" is generated by M and y'. As Ly is of type #(L"’), which is its rank, we have L; C uL};
that is,

MY+ (T +a'2y CuM +uly +az’);
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hence, M C uM.Asz’ € L\l’,wehave (az’,7)v e u'Og.Asz’ =z ¢ V" wehave (z/,z')y ¢ u"'Og;
hence, @' € uOg. Again, as z’ € LY, we have @'z’ € uL; hence, y* € uL} NV, = uM. Together, we
obtain M C uM:; thatis, (LY N'V>)" is an integral hermitian O g-module of type t(LY) - 1.
Consequently, L, is an integral O g-lattice of V5 of type t(L""). Since Ly = (LYnVy)@u %! (VLlh)im,
it is clear that for ¢ sufficiently large, (2.6) holds for i = 0, 1. Thus, (x) is proved.
The lemma is all proved. O

Lemma 2.25. Let L be an integral hermitian O g-module of rank 2m + 1 for some integer m > 0 with
t(L) =2m + 1. Then we have

|(L\/)int/L‘ — qu . |(MLV)im/L|. (28)
Note that both (LV)™ and (uL")™ are stable under the translation by L as t(L) = 2m + 1.

Proof. Put V := L ®o, F. We prove by induction on val(L) for integral Og-lattices L of V with
t(L) = 2m + 1 that (2.8) holds.

The initial case is such that val(L) = 2m + 1; that is, LY = u~'L. The pairing u?(, )y induces a
nondegenerate quadratic form on LY /L. It is clear that (LV)™/L is exactly the set of isotropic vectors
in LY /L under the previous form. In particular, we have

|(LV)int/Li — q2m — q2m . |(MLV)int/L| )

Now we consider L with val(L) > 2m + 1 and suppose that (2.8) holds for such L’ with val(L’) <
val(L). Choose an orthogonal decomposition L = Ly @ L; in which Ly is an integral hermitian O -
module with fundamental invariants (1,...,1) and such that all fundamental invariants of L are at
least 2. In particular, L has positive rank. It is easy to see that we may choose a hermitian O g-module
L} contained in u~'Ly satisfying L, ¢ L{ and t(L]) = t(Ly). Put L’ := Lo & L{. By the induction
hypothesis, we have

|(LYY™/L] = g )™ L)
It remains to show that
LY\ (L)L) = g (L™ \ (aL)™) /L] 2.9)
We claim that the map
(L™ (L)) /L = (L™ \ (ul)™) /L

given by the multiplication by u is ¢>"-to- 1.
Take an element x € (L") \ (uL’)™, Its preimage is bijective to the set of elements (yq, y{) €
Lo/uLg & Ly /uLy such that u~'(x + (o, y1)) € V'™, which amounts to the equation

(x,x)v + Trg r (X, yo)v + Trer (x, y1)v + (y0. Yo)v € u*OF.

Since x € (uLy) x ((uLy)™\ (u?L})™), there exists y; € L; such that (x, y1)y € O’ In other words,
for each yy, the above relation defines a nontrivial linear equation on L;/uLj. Thus, the preimage of x
has cardinality ¢>”*. We obtain (2.9) and hence complete the induction process. m

Proof of Proposition 2.22. We fix an element L? € b(V). If L is not integral, then <9Den2b = 0; hence,

the proposition is trivial. Thus, we now assume L’ integral and will freely adopt notation from Lemma
2.24.
To show that GDean extends to a compactly supported locally constant function on V, it suffices to

show that for every y € V;/ LY, there exists an integer §(y) > 0 such that 6DenVLb (y +x) is constant for
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x € ud® (VLLb)int \ {0}. If L® + (y) is not integral, then there exists 5(y) > 0 such that L® + (y + x) is
not integral for x € u%®) (Vle)im \ {0}, which implies dDen, (y +x) =0

Now we fix an element y € V;/ LY such that L + (y) is integral. We claim that we may take
5(y) = an—1, which is the maximal element in the fundamental invariants of L. It amounts to showing
that for every fixed pair (fi, f>) of generators of the O g-module (Vl )" we have

oDen), (y +u’ fi) — dDen}, (y +u®~" f2) = 0 (2.10)
for 6 > a,_;. For every ¢’ € Z, we define two sets

¥ :={LeQ|LCL",6,=06,y+u’fi €L},
e ={LeQ|LCL",6,=06,y+u’'fel}.

By Remark 2.21(4), we have

gDeny, (y+ufi)=2 3 > pn=2 Y > > u@);

&< Legd LPcLMc(LY)Y <6 pegd
t(LNV,},)>1 t(L”)>1 Lmv’b—LW
5-1
Deny, (y+u®'f)=2 3 > opt@n=2 > Y ) u(L).
§<o-1 Legy LPcLYc(Lh)Y 6'<6-1 e’
1(LNV,p)>1 t(LY)>1 LAV,,=LY

Now we claim that

D, QL mmy= Y Y aL)=0 2.11)

6'<6 Leﬁ‘s/ 6'<6-1 Leﬁf/
LNV, [,_Lb LNV, , =LY

for every LY in the summation. Since & > a,—1, it follows that for §’ < 0, we have
=09 ={LeQ|LCL,6,=6,yeL}.
Thus, the left-hand side of (2.11) equals

Z > u(r(L))—Z D, H@). (2.12)

=0 Legd =0 Legd
LNV, —Lb LNV, =LY

However, we also have 2(1) ={Le8|LCLY,6=5"ye L}, whichimplies

D, HE@) =1 Y, u(L),

Leg? LcLY ,
LOV,,=L” LNV, =L
62=0

which vanishes by Lemma 2.24(4). Thus, we obtain

(2.12) = Z 2. u(t(L))—Z D, ML) (2.13)

6'= Leﬁ‘S 6'=0 Leﬁé
LNV, =LY LNV b—Lb’
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Finally, the automorphism of € sending (L",6’,¢) to (L",6" — 1,& o (ua-)), where a € O7% is the
element satisfying fi = af, induces a bijection from ﬂf' to 255'_1 preserving both L NV, and ¢(L).
Thus, (2.13) vanishes; hence, (2.11) and (2.10) hold. _ '

Now we show that the support of dDen , is contained in V™ Take an element z € V \ V™. Using
Remark 2.21(4), we have

0Den, (2) = | FDen, (0 (Trge(x. ) dz
\ 4

=2 Z w(t(L)) vol(L)11v(z)
LbcLcLY
t(LNV,p)>1

=2 ) ), mD)vol(L)

ngLb/g(th)v LcLY
I(Lb/)> 1 LﬂVLb =L

zeLY
=2 ) ol vol((VA)™) Y g (L),
LbcrY (L)Y LCLY
I(Lb’)>1 LﬂVLb :Lb/
zelV
which is valid and vanishes by Lemma 2.24(3).
Proposition 2.22 is proved. O

2.3. Bruhat-Tits stratification

Let the setup be as in Subsection 2.1. We first generalise Definition 2.5 to a more general context. For
every subset X of V such that (X) is finitely generated, we put

NX) = [ M),
xeX

which is always a finite intersection and depends only on (X). Clearly, we have N(X’) € N(X)
if (X) € (X’). When X = {x,...} is explicitly presented, we simply write A(x,...) instead of
N{x,... D).

Remark 2.26. When (X) is an Og-lattice of V, the formal subscheme A(X) is a proper closed
subscheme of . This can be proved by the same argument for [I.Za, Lemma 2.10.1].

Definition 2.27. Let A be a vertex O g-lattice of V (Definition 2.10).
(1) We equip the k-vector space A" /A with a k-valued pairing (, )ov/a by the formula

(6, Y)av/a = u? Trg e (6, yH)ymod (u?)

where x* and y* are arbitrary lifts of x and y, respectively. Then AY /A becomes a nonsplit (nonde-
generate) quadratic space over k of (even positive) dimension #(A).
(2) Let V4 be the reduced subscheme of N(A) and put

Vj\ = VA - U VA/.
AGN

Proposition 2.28 (Bruhat-Tits stratification, [Wu]). The reduced subscheme Nieq is a disjoint union of
V3 for all vertex Og-lattices A of V in the sense of stratification, such that Vo 0 Var coincides with
Vasn (respectively is empty) if A+ A’ is (respectively is not) a vertex O g-lattice.
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Moreover, for every vertex O g-lattice A,

(1) Va is canonically isomorphic to the generalised Deligne—Lusztig variety of O(AY/A) over k clas-
sifying maximal isotropic subspaces U of (AY /| A) ®y. k satisfying

dim(U n§(U)) = 1M 1,

where § € Gal(k/k) denotes the Frobenius element;

(2) the intersection of Vx with each connected component of Nieq is connected, nonempty and smooth

Lo . . t(A)
projective over k of dimension =5~ — 1.

Proof. This follows from [Wu, Proposition 5.13 & Theorem 5.18]. Note that we use lattices in V, which
is different from the hermitian space C used in [Wu], to parametrise strata. By the obvious analogue of
[KR11, Lemma 3.9], we may naturally identify V with C, after which the stratum S, in [Wu] coincides
with our stratum V,zv. |

Remark 2.29. In the above proposition, when ¢t(A) = 4, )V, is isomorphic to two copies of IP"?, though
we do not need this explicit description in the following.

Corollary 2.30. For every nonzero element x € V, we have

Nrea = | V3

xeA

where the union is taken over all vertex O g-lattices of V containing x.

Proof. Since M(x)eq is a reduced closed subscheme of Mg, it suffices to check that

N &) = | Vi),

xXeA

By Definition 2.27(2), we have

N & 2 | va®.

xXeA

For the other direction, by Proposition 2.28, we have to show that if A does not contain x, then
N(x) (k) N v;(%) = (. Suppose that we have s € N(x)(k) N v;(%); then s should belong to Va (k)
where A’ is the Og-lattice generated by A and x. In particular, A’ is vertex and strictly contains A. But
this contradicts with the definition of V. The corollary follows. O

Corollary 2.31. Suppose that r > 2. For every nonzero element x € V, the intersection of N(x) with
each connected component of Nyeq is strictly a closed subscheme of the latter.

Proof. By Corollary 2.30 and Proposition 2.28(2), it suffices to show that the intersection of all vertex
Og-lattices of V is {0}.

Take a nonsplit hermitian subspace V; of V of dimension 2 and an O g-lattice L, of V; of fundamental
invariants (1, 1). Then the orthogonal complement V2l of V, in V admits a self-dual Og-lattice L.
Choose a normal basis (Definition 2.11) {ey,...,es -2} of L; under which the moment matrix is

o\ @er—1
given by (_L?,] ”01 ) . For every tuple a = (ay,...,as_2) € Z* 72 satisfying as;_1 + ap; = 0 for

1 <i<r-1,the Og-lattice

.— a ay—
Ao =L@ uey,...,u ey )

is integral with fundamental invariants (0, ...,0, 1, 1) and, hence, vertex. It is clear that the intersection
of all such A, is L,. Since r > 2, the intersection of all 2-dimensional nonsplit hermitian subspaces of
V is {0}. Thus, the intersection of all vertex O g-lattices of V is {0}. O
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Lemma 2.32. Let A be a vertex Og-lattice of V. For each connected component V, of V and integer
d > 0, the group of d-cycles of V, up to {-adic homological equivalence for every rational prime € # p,
is generated by Vn NV}, for all vertex Og-lattices A’ containing A with t(A") = 2d + 2.

Proof. Let k’ be the quadratic extension of & in %. Note that Vj\ has a canonical structure over k’, so
that V3" := V} NV} (over k') is the classical Deligne—Lusztig variety of SO(AY/A) of Coxeter type.

Recall that ¢ is the Frobenius element of Gal(k/k). Fix a rational prime ¢ different from p. For every
finite-dimensional Q,-vector space V with an action by 62, we denote by V' the subspace consisting of
elements on which 6 acts by roots of unity. Then for the lemma, it suffices to show that for every d > 0,
Haq (V3, Q,(—d))" is generated by (the cycle class of) Vi N V) for all vertex Og-lattices A” containing
A witht(A") = 2d+2. By the same argument for [[.Za, Theorem 5.3.2], it reduces to the following claim:

(*) The action of 6% on V := (P H% (W, Q,(j)) is semisimple and VT = H (V3 Q).

There are three cases. _

When #(A) =2, V;’\Jr is isomorphic to Spec k; hence, (x) is trivial.

When t(A) = 4, Vj\J’ is an affine curve; hence, () is again trivial.

When ¢(A) > 6, by Case D, (with n = # > 3) in [Lus76, Section 7.3], the action of
6% on s H.(V', Q) has eigenvalues {1,4% ¢*,...,q'™2} and the eigenvalue g% appears in

st
C

! (V3, Q). Moreover by [Lus76, Theorem 6.1], the action of 62 is semisimple. Thus, (x) fol-
lows from the Poincaré duality.
The lemma is proved. O

2.4. Linear invariance of intersection numbers

Let the setup be as in Subsection 2.1. For every nonzero element x € V, we define a chain complex of
locally free On~modules

Cx):=(+— 0> Inu — Oy —0)

supported in degrees 1 and O with the map S x) — O being the natural inclusion. We extend the
definition to x = 0 by setting

C(0) := (--.—>0—>w3>@N—>0) (2.14)

supported in degrees 1 and 0, where w is the line bundle from Definition 2.38.
The following is our main result of this subsection.

Proposition 2.33. Let 0 < m < n be an integer. Suppose that x1,...,x,, € Vand yi,...,ym €V
generate the same O g-submodule. Then we have an isomorphism

H; (C(x1) ®oy -+ ®0y Cxm)) = Hi(C(y1) ®oy -+ ®0pr C(ym))
of Onr-modules for every i.
Proposition 2.33 has the following two immediate corollaries.

Corollary 2.34. Let 0 < m < n be an integer. Suppose that xy,...,x, € Vand yi,...,ym €V
generate the same O g-submodule. Then we have

[C(x1) ®oy -+ ®0p C(xm)] = [C(¥1) ®py ++ - By C(ym)]
in Ko(N), where Ko(N) denotes the K-group of N'[LL21, Section B].
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Corollary 2.35. Suppose that x1,...,x, € V generate an Og-lattice of V. The Serre intersection
multiplicity

L L i+ . L L
X (OnGe) @0+ By On | = ) (=) P lengthg HY (N Hi [Oxiay) @ -+ B, Ona)
i,j>0

depends only on the Og-lattice of V generated by xi, . ..,x,. Note that by construction, the element

above number is finite by Remark 2.26.

Now we start to prove Proposition 2.33, following [How19]. Let (X, tx, Ax) be the universal object
over N. We have a short exact sequence

0 — Fil(X) —» D(X) — Lie(X) - 0

of locally free @Ox~modules, where D(X) denotes the covariant crystal of X restricted to the Zariski site
of V. Then tx induces actions of Og on all terms such that the short exact sequence is O g-linear.

We define an Opr-submodule Fx of Lie(X) as the kernel of tx (#) — u on Lie(X), which is stable
under the O g-action.

Lemma 2.36. The Onr-submodule Fyx is locally free of rank n — 1 and is locally a direct summand of
Lie(X).

Proof. Let s € N(k) be a closed point. By the wedge condition and the spin condition in Definition 2.1,
we know that the map

tx(u) —u: Lie(X) ®q, On,s — Lie(X) ®q,, Ons

has rank 1 on both generic and special fibres. Thus, Fx ®¢, O s is a direct summand of Lie(X) ®4,, On, s
of rank n — 1. The lemma follows. i

The symmetrisation ox of the polarisation Ax (Remark 2.2) induces a perfect symmetric O~bilinear
pairing

(,): D(X)xD(X) - On

satisfying (tx (@)x,y) = (x,tx(a®)y) for every @« € O and x,y € D(X). As Fil(X) is a maximal
isotropic Opr-submodule of D(X) with respect to (, ), we have an induced perfect Op~-bilinear pairing

(,): Fil(X) x Lie(X) — Oy,
under which we denote by Fy C Fil(X) the annihilator of Fx. Then the Oa~submodule Fy is locally
free of rank 1 and is locally a direct summand of Fil(X).

Following [How 19, Section 3], we put

e=u®l+1®u € O ®o; Oy,
€ =-u®l+1®uc O ®o, Op.

Lemma 2.37. There are inclusions of On-modules Fy C eD(X) € D(X), which are locally direct
summands. The map €: D(X) — eD(X) descends to a surjective map

Lie(X) = eD(X)/F%,
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whose kernel Lx is locally a direct summand On-submodule of Lie(X) of rank 1. Moreover, the OF-
action stabilises Lx and Of acts on Lie(X)/Lx and Lx via o and ¢, respectively.

Proof. This follows from the same proof for [How 19, Proposition 3.3]. O

Definition 2.38. We define the line bundle of modular forms w to be L)‘(l, where Ly is the line bundle
on N from Lemma 2.37.

For every closed formal subscheme Z of N, we denote by Z the closed formal subscheme defined
by the sheaf JZZ. Take a nonzero element x € V. By the definition of A/(x), we have a distinguished
morphism

X
Xolnvio = Xlv

of O -divisible groups, which induces an O g-linear map

D(Xo) [xix) = D(X)nix)

of vector bundles. By the Grothendieck—-Messing theory, the above map admits a canonical extension

D(Xo)| i = DO
which further restricts to a map
Fil (Xo) 7, 5 Lie(X) | o - (2.15)

From now on, we fix a generator y of the rank 1 free O z-module Fil(Xp).

Lemma 2.39. The image %(v) is a section of Lx over N(x), whose vanishing locus coincides with
N(x), where % is the map (2.15).

Proof. This follows from the same proof for [How 19, Proposition 4.1]. O
The following lemma is parallel to [KR 11, Proposition 3.5].

Lemma 2.40. For every nonzero element x € V, the closed formal subscheme N(x) of Nis either empty
or a relative Cartier divisor.

Proof. The case r = 1 has been proved in [RSZ17, Proposition 6.6]. Thus, we now assume
r>=2.

We may assume that A/(x) is nonempty. By the same argument in the proof of [How19, Propo-
sition 4.3], M(x) is locally defined by one equation. It remains to show that such an equation is not
divisible by u. Since r > 2, this follows from [KR 11, Lemma 3.6], Lemma 2.4 and Corollary 2.31. O

Proof of Proposition 2.33. The proof of [How19, Theorem 5.1] can be applied in the same way to
Proposition 2.33, using Lemma 2.39 and Lemma 2.40. O

To end this subsection, we prove some results that will be used later.

Lemma 2.41. The Onr-submodule Ly from Lemma 2.37 coincides with the image of the map tx (u) —
u: Lie(X) — Lie(X).

Proof. Denote by L, the image of the map tx (u)—u: Lie(X) — Lie(X). As wehave L}, ~ Lie(X)/Fx,
L’ is a locally free Op-submodule of Lie(X) of rank 1 by Lemma 2.36. By the spin condition in
Definition 2.1, for every closed point s € N(k), the induced map L ®c, k — Lie(X) R0, k over the

residue field at s is injective. Thus, the quotient Ox~module Lie(X)/L} is locally free. It remains to
show that L}, C Lx.
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By definition, every section of L} can be locally written as the image of (itx (u) — u)x for some
section x of D(X). We need to show that

(1) e(tx (1) — u)x is a section of Fil(X);
(2) (e(ex(u) —u)x,y) =0 for every section y of Fyx.

For (1), we have €(tx (1) —u)x = (tx () +u) (tx (1) — u)x = (1x (u?) — u?)x. Since tx (u?) — u? acts
by zero on Lie(X), (1) follows.

For (2), we have (e(tx(u) — u)x,y) = ((tx(u) — u)x, (—tx(u) + u)y) = 0 as y is a section of
ker(tx (u) — u). Thus, (2) follows.

The lemma is proved. O

Lemma 2.42. Let A be a vertex Og-lattice of V with t(A) = 4. Then w has degree q — 1 on each
connected component of (the smooth projective curve) Vp (Definition 2.27).

Proof. Let 6 be the Frobenius element of Gal(k /k).

Let s € N(k) be a closed point represented by the quadruple (X, tx, dx;px). Let M be the co-
variant O -Dieudonné module of X equipped with the Og-action tx, which becomes a free O -
module. We have Lie(X) = M/VM. By Definition 2.38 and Lemma 2.41, the fibre w™'| is canon-
ically identified with ((# ® 1)M + VM)/VM. By the identification between V, and the generalised
Deligne-Lusztig variety of O(AY/A) in Proposition 2.28 given in [Wu, Proposition 4.29 & Proposi-
tion 5.13], we know that w™!|y, coincides with (§(U) + U)/U where U is the tautological subbundle of
(AV/A) Bk @VA‘

To compute the degree of (§(U) + U)/U, let V; and V, be the two connected components of
V. Let £, be the scheme over k classifying lines in A" /A with the tautological bundle L. We may
identify V} and V, as two closed subschemes of L, via the assignment U +— §(U) N U (see [HP14,
Section 3.2] for more details). Then, V}’\ and V, are the two irreducible components of the locus
where L and §(L) generate an isotropic subspace and the assignment L ~— §(L) switches V} and
V,. Let Z, be the locus where L is isotropic and L = §(L). Then 7, is a disjoint union of >+ 1
copies of Specz since there are exactly ¢> + 1 isotropic lines in AV /A and is contained in ViNV;.
Note that the map 6(U)/(6(U) N U) — (6(U) + U)/U is an isomorphism and there is a short exact
sequence

0—=8(6(U)NU) = 6U)/((U)NU) = O, =0

of @v,*\ -modules. Since §(U) N U is the restriction of the tautological bundle L on £, we have

deg (w_llvlr\) = deg ((5(U) + U)/U|v§)
= deg (6(5(U) NV)lys ) + (4 + 1)

= deg (L®q|v7\) +(g2+ 1)
= —qdeg(Vi) + (¢* + 1),

where deg(V) denotes the degree of the curve V5 in the projective space L. Thus, it remains to show
that deg(V3) = ¢ + 1.

To compute the degree, take a 3-dimensional quadratic subspace H of AV /A. Let Ef be the hyper-
plane of £, that consists of lines contained in H. Then ﬁf N VY, is the subscheme of lines L C H that
is isotropic and fixed by &, which is a disjoint union of ¢ + 1 copies of Spec k since there are exactly
q + 1 isotropic lines in H. As L‘f N V, is contained in Z,, it is contained in V;\ N V,. Therefore, we
have deg(V3) = ¢ + 1.

The lemma is proved. O
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2.5. Proof of Theorem 2.7 when r = 1

Let the setup be as in Subsection 2.1. In this subsection, we assume r = 1. Note that since V is nonsplit,
the fundamental invariants of an integral O g-lattice of V must consist of two positive odd integers.

Lemma 2.43. Let L be an integral O g-lattice of V with fundamental invariants (2by+1,2by +1). Then

by
gDen(L) =2 (1+q+--+q’ + (b2 = )g’) .
=0

Proof. We denote by £ the set of integral O g-lattices of V containing L. We now count L.

Fix an orthogonal basis {e1,e2} of V with (ej,e1)y € O} and (ez,e2)y € OF and such that
L = (ubrey) + (uP2e;). For every L € £, we let j(L) be the unique integer such that L N {(e;) ®o, F =
(u/e;) and let k(L) be the unique integer such that the image of L under the natural projection map
V — (e2) ®0, F is (u*Pe,). Then by Lemma 2.23(1), L is uniquely determined by j(L), k(L) and the
extension map £, : (ukWey) — (u/Bey) ®0, F/OF. The condition that L contains L is equivalent to
that j(L) < by, k(L) < b, and that &7 vanishes on (u”2e,). Since L is nonsplit, the condition that L is
integral is equivalent to that j (L) > 0, k(L) > 0 and that the image of £ is contained in {e;)/{(u/ D ey).
Thus, the number of L € £ with j(L) = j for some fixed0 < j < byequals 1+g+---+¢/ +(by— j)q’.
Summing over all 0 < j < by, we obtain

b

121= " (14 q+--+q + (b2 = d’).
j=0
The lemma then follows from (2.4) as t(L) = 2. m]

Proposition 2.44. Theorem 2.7 holds when r = 1. More explicitly, for an integral Og-lattice L of V
with fundamental invariants (2by + 1,2b, + 1), we have

b
Int(L) = dDen(L) =2 " (1+q+---+q’ + (b2 = ))g’).
7=0

Proof. If L is not integral, then Int(L) = dDen(L) = 0. If L is integral with fundamental invariants
(2by +1,2by + 1). We may take an orthogonal basis {x1,x;} of L such that val(x;) = 2b; + 1 and
val(xy) =2by + 1.

Put D := Endo,. (Xo) ® Q, which is a division quaternion algebra over F with the F-linear embedding
tx,: E — D. By the Serre construction, we may naturally identify D with V and we have an identity

by
N(x)) = Z Wig.; (2.16)

Jj=0

of divisors, decomposing the special divisor as a sum of quasi-canonical lifting divisors (see [RSZ17,
Section 6 & Proposition 7.1]).
We claim that for every 0 < j < by, the identity

lengthy Wi ; N N(x2) =2 (1 +g+---+ q’ +(by—1)q’) (2.17)

holds. In fact, this can be proved in the same way as for [KR 11, Proposition 8.4] using Keating’s
formula [Vol07, Theorem 2.1]. Notice that in [KR 11, Proposition 8.4] we replace e by 2¢” since E/F
is ramified and the factor 2 comes from the fact that Z; has two connected components. By (2.16) and
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(2.17), we have

by

Int(L) = length, NV(x1) N N(x) = Z 2(14g+---+q  +(by—1)g’).

j=0
The proposition follows by Lemma 2.43. O
Definition 2.45. For L’ € b(V), we put

ML) = ML”) = N(w™'L")

as an effective divisor by (the » = 1 case of) Lemma 2.40.

Corollary 2.46. Take an element L € b(V). For every x € V \ V},, we have

lengthobu‘/\/(Lb)o NN(x) =2 Z 17 (x).
LcLY
LNV, ,=Lb

Proof. By Proposition 2.44, we have

length, N(L") N N(x) = Int(L” + (x)) = dDen(L" + (x)) = 2 Z 1z(x),

LcLY
LPcLnv,,
in which the last identity is due to (2.4). Similarly, we have
lengthOEN(u_lLb) NN(x) =2 Z 1.(x).
LcLY
ulLbcLnv,,
Taking the difference, we obtain the corollary. O

2.6. Fourier transform of geometric side

Let the setup be as in Subsection 2.1. We will freely use notation concerning K-groups of formal schemes
from [LL21, Section B] and [Zha21, Appendix B], based on the work [GS&7].

Definition 2.47. Let X’ be a formal scheme over Spf O ;.

(1) We denote by A" the closed formal subscheme of X’ defined by the ideal sheaf G [p®].

(2) For every closed formal subscheme Z of X, we denote by Ko(X, Z) the image of the map
K(%(X) — Ko(&) and similarly by F"Ko (X, 2) the image of the map F’”Kf(z’k’) — Ko(X) for
m 2 0.

Definition 2.48. Let X be a subset of V such that (X) is finitely generated of rank m.

(1) We denote by “N(X) € Ko(N) the element [C (x;) ®p, * ** B, C(xp)] from Subsection 2.4 for
a basis {xy,...,x,,} of the Og-module generated by X, which is independent of the choice of the
basis by Corollary 2.34.

(2) We denote by “A(X)" € Ko(N) the class of N(X)".

(3) We put *AV(X)Y := EM(X) — KENM(X)! € Ko(N).

Lemma 2.49. Let L" be an element of b(V) (Definition 2.8). We have

(1) N(LPYM is either empty or finite flat over Spf Op;
(2) all ofKJ\/(Lb), KAL) and KAV(LP)Y belong to F*'Ko (N, N(L));
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(3) there exist finitely many vertex O g-lattices A1, . . ., A, of V of type n such that *N(LP)" belongs to
" KN VA,
Proof. Part (1) follows from Lemma 2.54 and Lemma 2.53.

Take a basis {xy, ..., x,—1} of the O g-module L.

For (2), it suffices to show XA(LY) e F*'Ko(WN,M(L")) by (1). By definition, “A(LP) is
the cup product of the classes in Ko(N) of NM(xy),...,N(x,—1), each being a divisor by Lemma
2.40. Thus, ¥A(L?) belongs to F*'Kyo(N, V(L)) by (the analogue for formal schemes of)
[GS87, Proposition 5.5].

For (3), by the same argument for [LLZa, Lemma 5.1.1], we know that there exists a proper closed
subscheme Z of A containing the reduced fibre of N(L”)", such that N{L") is contained in N(L*)" | Z.
By (1) and (2), there exists a closed reduced 1-dimensional subscheme C of Z containing the reduced
fibre of AM(L")", such that A(LP) belongs to Ko(N, C U NM(L?)"). By [GS87, Lemma 1.9] (and its
notation), “A(L") belongs to the image of the natural map Kj(Cu MUL"P) — Ko(X) that sends a
coherent O vyn-module M to any finite projective resolution of M on & It follows, by the definition

of *A(L)Y, that *A/(LP)Y can be represented by a finite complex of coherent sheaves on C UN(LP)" that
are Artinian on V(L") which implies that A/(LP)" belongs to the image of the map K{(C) — Ko(N).
Let Cy,...,Cy, be the irreducible components of C. It is clear that the map @:’;1 K{(Ci) — K(O)
is surjective, which implies that KA/ (Lb)V belongs to Zﬁl Ko (W, C;). Finally, for each 1 < i < m, we
may choose a vertex Og-lattice A; of V of type n such that C; C V,, by Proposition 2.28. Then (3)
follows. O

Definition 2.50. Let L be an element of b(V) (Definition 2.8). Forx € V' \ Vi, we put
Int,y (x) := ML) SN (x),
Int", (x) := KAL) KM(x),
Int}, (x) = "M(L")". *Mx).
Here, the intersection numbers are well-defined since N(L?) N A(x) is a proper closed subscheme of
N'by Remark 2.26. Note that Int;, (x) = Int(L? + (x)) (Definition 2.6).
The following is our main result of this subsection.
Proposition 2.51. Let L” be an element of b(V) (Definition 2.8).

(1) We have Int';‘b (x) = 0"Den}£b (x) for x € V\ Vyp, where 6Den'£,, is from Definition 2.20.
(2) The function Intzb extends (uniquely) to a (compactly supported) locally constant function on 'V,

which we still denote by Intzb. Moreover, we have

Int}, = —Int},.

In particular, the support of Int‘ib is contained in V™ (Definition 2.10).
The rest of this subsection is devoted to the proof of this proposition.

Remark 2.52 (Cancellation law for special cycles). Let V' be a hermitian subspace of V that is nonsplit
and of positive even dimension n’. Let L be an integral hermitian O g-module contained in V such that
L NV’ is a self-dual O g-lattice of V'*. We may choose

o an object (X', tx/,Ax’) € Exol(’n_1 0 (k) (Definition 2.1),
o an object (¥, ty,dy) € Exo(,—p 0)(O) (Remark 2.9),'3

13When n’ = n, we simply ignore (Y, ty, dy).
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o aquasi-morphism ¢ from (Y, y, dy) ®o, ko (X', 1x, Ax’) to (X, tx, Ax) in the category
Exol(’nf]’l)(S ®0,. k) satisfying ~
— o identifies Homo, (Xo ®0, k, X") ® Q with V” as hermitian spaces;
— o identifies Homo,. (Xo ®0,. kY ®0 . Z) with L N V% as hermitian O g-modules.
Let NV := N(x’,1y.,15,) De the relative Rapoport—Zink space for the triple (X”,tx’, 1x’) (Definition
2.3). We have a morphism NV — A such that for every object S of Sch}oE, N(S) it sends an object
(X', 1x, Ax+; px) € N(S) to the object

Y ®0E So X',y ®OE S @iy, Ay ®OE‘ S @ Ax:; 00 (idy ®0E S®pxr)) € N(S)

‘We have

(1) The morphism N7 — N above identifies AV with the closed formal subscheme NV(L N V’+) of V.

(2) Suppose that LNV’ # {0}; then N(L) coincides with the image of A’ (L N V’) under the morphism
N — N above.

(3) For a nonzero element x € V written as x = y + x” with respect to the orthogonal decomposition
V=V+®V’, wehave

0, ifyg LNV,
N Xy Nx) =N, ifye LNV'*andx’ =0,
N (x"), ifyeLnV*andx’ #0.

(4) If L is an O g-lattice of V, then we have Int(L) = Int(L N V).

These follow from the similar argument for the cancellation law in [[.Za, Section 2.11]. Indeed, we
may choose compatible framing objects for A7 and A as in [RSZ17, Page 2207]. Note that the hermitian
form on V in [RSZ17] is the scaled form u2( , )y and thus u-modular lattices in [RSZ17] correspond to
our self-dual lattices.

Lemma 2.53. Let L” € b(V) be an element that is integral and satisfies t(L"") = 1.

(1) The formal subscheme N(L"") is finite flat over Spf Og.
(2) If we put N(L")° := N(L"") = N(L"") as an element in F*"'Ko(N), then for every x € V \ V;»,

ML”)°. EM(x) =2 Z 1 (x).

LcrY
LNV, =LY

Here, L is the unique element in b(V) satisfying L*" < LY < (L")Y with |L*/LY"| = g (so that
LY is either not integral or is integral with t(L*") = 1).

Proof. Since (L") = 1, we may choose a 2-dimensional (nonsplit) hermitian subspace V’ of V such
that L* N V'* is a self-dual Og-lattice of V’*. We adopt the construction in Remark 2.52.

For (1), we have V(L") = N’(L" n V'), which is finite flat over Spf O by (the r = 1 case of)
Lemma 2.40.

For (2), we write x = y + x’ with respect to the orthogonal decomposition V = V'* @ V’. Since
x ¢ Vb, we have x” # 0. By Remark 2.52(2), N(L"")° coincides with (the class of) N’(L"” N V’)° in
F'Ko(N) under the map F'Ko(N’) — F*~'Ko(N). There are two cases.

Ify ¢ L nV’*, then N(L")°. ¥XA(x) = 0 by Remark 2.52(3) and there is no integral O g-lattice of
V containing L + (x). Thus, (2) follows.

If y € L N V'*, then by Remark 2.52(3), we have

ML) KN(x) = N(L” 0 V') KN (1) = length N (LY N V)" AN (x).
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By Corollary 2.46, we have

length, N (LY N V')° NN (x') =2 > () =2 > 1.
L'cLY(cv’) LcLY
L'n(V,,nV")=L"nV’ LNV, =LY

Thus, (2) follows. ]

Lemma 2.54. Let L” be an element of b(V) (Definition 2.8). We have

N(Lb)h — U N(Lb/)o
Lb nglg(Lbr)v
t(L*)=1

as closed formal subschemes of N and the identity

KN(Lb)h — Z N(Lb/)o
Lb ng/g(Lb/)v
t(LY)=1

in F'"" 1Ko (N) /F"Ko(N), where N(L"")° is introduced in Lemma 2.53(2).

Proof. This lemma can be proved by the same way as for [LZa, Theorem 4.2.1], as long as we establish
the following claim replacing [L.Za, Lemma 4.5.1] in the case where E/F is ramified.

o Let L be a self-dual hermitian O g-module of rank 7 and LY a hermitian O g-module contained in L.
If L/L" is free, then L is integral with r(L) = 1.

However, this is just a special case of Lemma 2.23(2). m

Lemma 2.55. Let A be a vertex O g-lattice of V with t(A) = 4. Take an arbitrary connected component
V\ of the smooth projective curve V, from Proposition 2.28, regarded as an element in F*~ 1Ko (N). For
every x € V \ {0}, put Inty (x) = V. KN(x). Then Inty extends (uniquely) to a compactly supported
locally constant function on V, which we still denote by IntV/»\ . Moreover, we have

Intvx = —Intv;\.

Proof. Since t(A) = 4, we may choose a 4-dimensional (nonsplit) hermitian subspace V’ of V such that
AN V'™ is a self-dual Og-lattice of V'*. We adopt the construction in Remark 2.52. Write x = y + x’
with respect to the orthogonal decomposition V = V'* @ V’. Put A’ := A N V’. By Remark 2.52(2)
and Definition 2.27(2), VA coincides with V- under the natural morphism A” — N. Denote by V7, the
connected component of V- that corresponds to V;. By Remark 2.52(3), we have

0, ifyg ANV,

K —
VAN = {Vx,.W(x'), ifyeAnve.

In other words, we have Intyx = Ty ® Intv;v . Therefore, it suffices to consider the case where n = 4.
We now give an explicit formula for Intvf\ (x) when n = 4. Let N* be the connected component of

that contains V and put Z* := Z N N* for every formal subscheme Z of V. Put A(x) := A + (x). There
are three cases.

(1) Suppose that A(x) is not integral. By Corollary 2.30, V5 has empty intersection with A(x). Thus,
we have Inty+ (x)=0.
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(2) Suppose that A(x) is integral but x ¢ A. Then A(x) has fundamental invariants (0,0, 1, 1). By
Corollary 2.30, Vi N N(X)rea = V/’“\( ) which is a E-point. Thus, we have Intvf\ (x) > 1. Choose a
normal basis (Definition 2.11) {x], x2, x3, x4 } of A and write x = A1 x1+Apx2+A3x3+A4x4 with A; € E.
Without loss of generality, we may assume A4 ¢ Og. Since ux € A, we have A(x) = (x, x2, X3, X).
By Corollary 2.30, M(x1) N M(x3) N N(x3) contains V, as a closed subscheme. By Remark 2.52
and Proposition 2.44 applied to V’ spanned by x3 and x4, M{(A(x)) is a 0O-dimensional scheme and
Int(A(x)) = 2. It follows that

Intyr (x) < lengthy, (N(x1) N N(x2) N N(x3)) NN (x)* = Int"(A(x)) = 1

by Lemma 2.56. Thus, we obtain Int*(A(x)) = 1; hence, Intyx (x)=1.
(3) Suppose that x € A. Then V is a closed subscheme of N(x), which implies

L L L L L
Oy ®oy Onix) = |Ovye oy @N(x)) ®0p ON(x) = Ovys B0y (@N(x) Q0 @N(x)) .
However, by Corollary 2.34, we have
L
ON(x) B0y ON(x) = OnN(x) ®o, C(0)
in Ko (), where C(0) is the complex (2.14). Thus, we obtain
Intvx(x) =y (C(0)|v;) = deg (@VX) —deg (a)lv;\) = —deg (a)lyx) =1-¢q

by Lemma 2.42.

Since there are exactly g> + 1 vertex Og-lattices of V properly containing A, combining (1-3), we
obtain

Intyr = —g(1+4)Lx+ Z 1y

AGACAY
It follows that
— 1+ 1
Mty = ——— 2Ly + ~ > 1w (2.18)
q AQA’ gA/V
o Ifx eA,thenIntv;\(x) = —H7q+$ =qg-1.
o If A(x) is integral but x ¢ A, then the number of A’ in the summation of (2.18) is such that x € A"V
is exactly 1 (namely, A(x) itself). Thus, we have Inty+ (x) = —HTq + é =-1.

o If A(x) is not integral but x € A, then the set of A’ in the summation of (2.18) satisfying x € A"V is
bijective to the set of isotropic lines in A" /A perpendicular to x. Now since A(x) is not integral, x is
anisotropic in AY /A, which implies that the previous set has cardinality g + 1. Thus, we have
Intyr (x) = =22 + 24 = 0,

o Ifx ¢ AV, then Intyx (x) = 0.

Therefore, we have Intvf\ = —Intvx . The lemma is proved. O

https://doi.org/10.1017/fmp.2022.2 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.2

Forum of Mathematics, Pi 33

Lemma 2.56. Denote the two connected components of N'by N* and N~ and Int* (L) the intersection
multiplicity in Definition 2.6 on N*. Then

Int"(L) = Int" (L) = JInt(L).

Proof. Choose a normal basis (Definition 2.11) {xy,...,x,} of L. Since V is nonsplit, there exists an
anisotropic element in the basis, say, x,. Let 6 the unique element in U(V)(F) satisfying 6(x;) = 1
for 1 < i < n-1and 0(x,) = —x,. Then 6 induces an automorphism of N, preserving N(x;)
for 1 < i < n, but switching N* and N~ as detd = —1. Thus, we have Int"(L) = Int”(L). Since
Int(L) = Int* (L) + Int™ (L), the lemma follows. O

Proof of Proposition 2.51. We first consider (1). By Lemma 2.54, we have forx € V' \ Vp,

Inth, (x) = Z NL”)° . EM(x),
b ng/g(Lb/)v
t(LY)=1

which, by Lemma 2.53, equals

2 Z Z 1.(x) =2 Z 1 (x).

ngLblg(Lb/)v LcLY ngLgLV
t(Lb')=1 LﬂVLb:Lb/ t(Lvab):l

Thus, Proposition 2.51(1) follows from Definition 2.20.
We first consider (2). We may assume r > 2 since otherwise Int‘ib = 0; hence, (2) is trivial. We
write N'= N* U N~ for the two connected components. For every vertex Og-lattice A of V, we put

Vi := Va NN, Since the natural map F #‘2K0(VA) — F"_IKX A(AN) is an isomorphism, by Lemma
2.49(3) and Lemma 2.32, there exist rational numbers c;—; for vertex O g-lattices A of V with t(A) =4,
of which all but finitely many are zero, such that

A

KMLP)Y - (Z ch-Vi+en: VX)
has zero intersection with F1K (N). Thus, Proposition 2.51(2) follows from Lemma 2.55. m]

2.7. Proof of Theorem 2.7

Let the setup be as in Subsection 2.1. In this subsection, for an element L € b(V) (Definition 2.8), we
set val(L?) = —1 if L" is not integral.

Lemma 2.57. Suppose that r > 2 and take an integral element L? € b(V) whose fundamental invariants
(ai,...,an-2,an-1) satisfy ay—» < ay—1 (in particular, a,_, is odd). Then the number of integral OF-
lattices of V containing L with fundamental invariants (ay, . ..,an-2,an-1 — 1, a,-1 — 1) is either 0 or
2. When the number is 2 and those lattices are denoted by L and L™, we have

() LNV =L

(2) an-123;

(3) there are orthogonal decompositions L° = L? & L", and L"* = L & L**, in which L" , L", and
L% are integral hermitian O g-modules with fundamental invariants (ay, .. .,an), (an_1) and
(an-1 — 1,a,-1 — 1), respectively.

Proof. Let L be an integral Og-lattice L of V containing L’ with fundamental invariants
(al’ ceesap-2,dp-1 — 17an*l - 1)'
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We first claim that (1) must hold. We have val(L N V;b) > a; + -+ + dp—2 + ap—1 — 1 by Lemma
2.23(1). Since L N Vy, contains L° and val(L N V) is odd, we must have L NV, = L.

Choose a normal basis (eq, ..., e,—1) of Lb (Definition 2.11) and rearrange them such that for every
1 <i < n -1, exactly one of the following three happens:

(@) (ei,ei)y = ﬁiu“"_ll for some B; € O%;
(b) (ei,eirt)y =u™;
© (eieiy =—u®".

By the claim on (1), we may write L = L” + (x) in which
x=A1e1+---+ A _1€n_1 + X,

for some A; € (E\ Og) U {0} and 0 # x,, € VLﬁ,. Let T be the moment matrix with respect to the basis
{e1,...,en_1,x} of L.

We show by induction that for 1 < i < n -2, 4; = 0. Suppose we know A = ---4;_; = 0. For 4;
(with 1 <i < n - 2), there are three cases.

o If e; is in the situation (a) above, then applying Lemma 2.23(1) to the i-by-i minor of T consisting of

rows {1,...,i} and columns {1,...,i — 1, n}, we obtain ValE(/l,ﬂiu“"_l) > a; — 1, which implies
A =0.

o If e; is in the situation (b) above, then applying Lemma 2.23(1) to the i-by-i minor of T consisting of
rows {1,...,i —1,i+ 1} and columns {1,...,i — 1,n}, we obtain valg (—;u%~') > a; — 1, which
implies 4; = 0.

o If e; is in the situation (c) above, then applying Lemma 2.23(1) to the i-by-i minor of T consisting of
rows {1,...,i} and columns {1, ...,i—1, n}, we obtain valE(/liuaf‘l) > a;— 1, which implies A; = 0.

Note that e,,—; is in the situation (a). Applying Lemma 2.23(1) to the (n — 1)-by- (n — 1) minor of T
consisting of rows {1,...,n — 1} and columns {1, ...,n — 2,1}, we obtain valg (Ad,_1 B,_u®'"1) >
an-1 — 2, which implies 4,,_; € u~'Og. On the other hand, 4,,_; # 0 since otherwise a,_; will appear
in the fundamental invariants of L, which is a contradiction. Thus, we have 4,,_; € u”'Of \ Of. After
rescaling by an element in O%., we may assume A,_; = u~'. Applying Lemma 2.23(1) to the (n — 1)-by-
(n = 1) minor of T consisting of rows {1,...,n —2,n} and columns {1, ...,n —2,n}, we obtain

valg ((xn,xn)v - u_zﬁn_lu“"“_l) >a,-1—2. (2.19)

We note the following facts.

The set of x,, € VLLb satisfying (2.19) is stable under the multiplication by 1 + uOg.

The set of orbits of such x, under the multiplication by 1 + uOF is bijective to the set of L.
The number of orbits is either 0 or 2.

If the number is 2, then a,-; > 3, since V is nonsplit.

O O O O

Thus, the main part of the lemma is proved, with the properties (1) and (2) included. For (3), we simply
take L” = (ey,...,en_) with L”, and L* uniquely determined.
The lemma is proved. O

In the rest of subsection, we say that L" is special if L” is like in Lemma 2.57 for which the number
is 2. We now define an open compact subset S;» of V for an integral element L" € b(V) in the following
way:

Sy e Lo+ u b, if LY is special,
R (VLL,))““, if L is not special.
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Lemma 2.58. Tuke an integral element L® € b(V). Then for everyx € V '\ (Vi» U Sp»), we may write
LV + (x) = L" + (x')

for some L € b(V) satisfying val(L?") < val(LP).

Proof. Take an elementx € V \ (V;, U S;p). Put L := LY + (x). If L is not integral, then by Lemma
2.12, we may write L = L + (x’) with L?" € b(V) that is not integral; hence, the lemma follows.

In what follows, we assume L integral and write its fundamental invariants as (ai, ....ay,). By
Lemma 2.12, it suffices to show that

ay+--+a,_ <ar+-o+ap- -2 (2.20)

Choose a normal basis (eq, ..., e,—1) of Lb (Definition 2.11) and rearrange them such that for every
1 <i < n-1,exactly one of the following three happens:

(a) (ei, e;)y = Biu~" for some B; € OF;
(b) (ei,ein)y =usl;
(©) (ei,eim)y = —u !,

Write x = Aje; + -+ Ay_1€,-1 + x,, for some A; € (E\ Og) U {0} and 0 # x,, € Vle. Let T be the
moment matrix with respect to the basis {ey, ..., e,—1,x} of L.

IfA; =--- = A,-1 =0, then since x ¢ S, we have either (x) is not integral or val(x) < an—; —2
(only possible when LP is special), which implies (2.20).

If 4; # 0 for some 1 < i < n— 1 such that ¢; is in the situation (b) or (c); then applying Lemma
2.23(1) to the (n — 1)-by- (n — 1) minor of T deleting the ith row and the ith column, we obtain (2.20).

If 4, ¢ u”'Of for some 1 < i < n— 1 such that ¢; is in the situation (a); then applying Lemma
2.23(1) to the (n — 1)-by- (n — 1) minor of T deleting the ith row and the nth column, we obtain (2.20).

If 3; #0and A; # Ofor 1 <i < j < n—1 such that both e; and e; are in the situation (a), then
applying Lemma 2.23(1) to the (n — 1)-by- (n — 1) minor of T deleting the ith row and the jth column,
we obtain (2.20).

The remaining case is that A; € ulog \ OE for a unique element 1 < i < n— 1 such that e; is in the

situation (a). Then LY+ (x) is the orthogonal sum of {ey,...,é;,...,e,—1) and {e;, x). In particular, if
we write the fundamental invariants of (e;, x) as (by, b,), then the fundamental invariant of L + (x) is
the nondecreasing rearrangement of (ay,...,a;,...,a,_1, b1, by). We have two cases:

o If (x,x)y € u®~'OF, then (b1, b)) = (a; — 1,a; — 1). Thus, we have either (2.20) ori =n — 1,
An_n < an_1 and L’ + (x) has fundamental invariants (ai, . .., dn—2, dn_1 — 1, an_1 — 1) (hence L is
special). The latter case is not possible as x & S;p.

o If (x,x)y ¢ u¥~'Op, then by < a; — 2. Thus, we have (2.20).

The lemma is proved. O
Proof of Theorem 2.7. For every element L” € b(V), we define a function

®;, := 0Den), —Int;,,

which is a compactly supported locally constant function on V by Proposition 2.22 and Proposition
2.51(2). It enjoys the following properties:

(1) Forx € V\ V;,,, we have ®@; (x) = dDen;, (x) — Int;, (x) by Proposition 2.51(1).

(2) @, is invariant under the translation by L?, which follows from (1) and the similar properties for
0Den;p and Intyp.

(3) The support of d/DE is contained in V™, by Proposition 2.22 and Proposition 2.51(2).
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We prove by induction on val(L") that ®,, = 0.

The initial case is that val(Lb) = —1: that is, L’ is not integral. Then we have dDen;, = Int;, = 0;
hence, ®;» = 0 by (1).

Now consider L that is integral and assume ®;, = 0 for every L € b(V) satisfying val(L") <
val(LP). Forevery x € V'\ (Vi» U Spp), by Lemma 2.58, we may write LY+ (x) = L" + (x’) with some
LY € b(V) satisfying val(LP") < val(LP) and we have

@,y (x) = dDenyp (x) — Intyp (x)
= dDen(L" + (x)) — Int(L" + (x))
= dDen(L" + (x')) — Int(L” + (x'))
=@, (x")=0

by the induction hypothesis. Thus, the support of @, is contained in S;». There are two cases.

Suppose that L" is not special. By (2), we may write ® > = 1, ® ¢ for a locally constant function
¢ on Vfb supported on (VLﬁ,)im. Then @, = C - Loy ® ¢ for some C € Q. Now since ¢ is invariant
under the translation by ™! (VLﬁ,)im, we must have ¢ = 0 by (3); that is, @, = 0.

Suppose that L is special. We fix the orthogonal decompositions L” = L? &L and L'* = L? @L’*
from Lemma 2.57. Put V_ = L? ®o, F and denote by V_, the orthogonal complement of V_ in V.
Then both L and L"7 are integral O g-lattices of V_, with fundamental invariants (a,_; — 1, a,_; — 1).
Moreover, we have S;» = LY x (L™ U L"3). Thus, by (2), we may write Oy =1, ®¢fora
locally constant function ¢ on V_, supported on L** U L";. Since a,_; > 3 by Lemma 2.57, we have
LY U LY c uVi™, which implies that the support of ¢ is contained in V™", On the other hand, by (3),
the support of q/b\ is contained in V"', Together, we must have ¢ = 0 by the uncertainty principle [LZa,
Proposition 8.1.6]; that is, ®;, = 0.

By (1), we have dDen;, (x) = Int;, (x) for every x € V' \ V;,,. In particular, Theorem 2.7 follows as
every Og-lattice L of V is of the form L” + {x) for some L® € b(V). O

2.8. Comparison with absolute Rapoport-Zink spaces

Let the setup be as in Subsection 2.1. In this subsection, we compare N to certain (absolute) Rapoport—
Zink space under the assumption that F is unramified over Q,,. Put f := [F : Q,]; hence, g = p/ . This
subsection is redundant if f = 1.

To begin with, we fix a subset ® of Hom(E,C,) = Hom(E, E) containing ¢y and satisfying
Hom(E, E) = ® || ®°. Recall that we have regarded E as a subfield of E via ¢o. We introduce more
notation.

o For every ring R, we denote by W(R) the p-typical Witt ring of R, with F, V, [ ] and I(R) its
(p-typical) Frobenius, the Verschiebung, the Teichmiiller lift and the augmentation ideal,
respectively. For an Fi-linear map f: P — Q between W(R)-modules with i > 1, we denote by

f%wm&wwpeo

its induced W(R)-linear map.

o Fori € Z/fZ,puts; :== F': O — Op, define §J;: O — W(Op) to be the composition of y; with
the Cartier homomorphism Or — W(OF) and denote by ¢; the unique element in @ above ;.

o Fori € Z/ fZ, let € be the unique unit in W(OF) satisfying

Ve, = [y (uP)] = di(u?),
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which exists by [ACZ16, Lemma 2.24]. We then fix a unit g, in W(O F~), where F denotes the
complete maximal unramified extension of F' in E, such that

Ff f-l

Mu Ef-1-i
= €, (2.21)
Hu D

which is possible since the right-hand side is a unit in W(OFp).
o For a p-divisible group X over an object S of SCh70E with an action by O, we have a decomposition

£l
Lie(X) = () Liey, (X)
i=0

of Osg-modules according to the action of O on Lie(X).

Definition 2.59. Let S be an object of Sch/o,.. We define a category Exo‘&_l 1 (S) whose objects are
triples (X, tx,Ax) in which

o X is a p-divisible group over S of dimension n f and height 2n f;
o tx: O — End(X) is an action of O on X satisfying:
— (Kottwitz condition): the characteristic polynomial of ¢x (#) on the Os-module Liey, (X) is
(T —u)" (T +u) € Os[T],
— (Wedge condition): we have

2

/\ (tx () — u | Liey, (X)) = 0,

— (Spin condition): for every geometric point s of S, the action of ¢x (#) on Liey, (X;) is nonzero;
— (Banal condition): for 1 <i < f — 1, O acts on Liey, (X) via ¢;;
o Ax: X — XV is a txy-compatible polarisation such that ker(dx) = X [tx (u)].

A morphism (respectively quasi-morphism) from (X, tx, Ax) to (Y, ty, dy) is an O g-linear isomorphism
(respectively quasi-isogeny) p: X — Y of height zero such that p*1y = Ax.

When S belongs to SCh>,OE~’ we denote by Exoc(l”;t_’l’l) (S) the subcategory of Exo
of (X, tx,Ax) in which X is supersingular.

(0]

(-1.1) (S) consisting

Note that both Exot(’n_l 1 and Exo?r;'il ) are prestacks (that is, presheaves valued in groupoids) on

Sch}o _. Now we construct a morphism
E

—l: Exo®®  — ExoP

(n—1,1) (n—=1,1) (2.22)

of prestacks on Schjoé. We will use the theory of displays [Zin02, Lau08] and O g-displays [ACZ16].
Let S = Spec R be an affine scheme in Sch}oé. Take an object (X, tx,Ax) of Exo?jf_’l D (S). Write
(P,Q,F,F) for the display of X (as a formal p-divisible group). The action of Of on P induces

decompositions
f-1 f-1 r-1 f-1
P=Pr. a=EPa. F=) F. F=)F,
i=0 i=0 i=0 i=0

where P; is the W(R)-submodule on which Of acts via J; and Q; = Q N P;. It is clear that the above
decomposition is O g-linear and P; is a projective O ®,. W(R)-module of rank n.
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Lemma 2.60. For 1 <i < f — 1, we have
Qi=u®l-1®[gi(w)])P; +I(R)P;,
and the map
Fio=Fio®l-1®[¢;(u)]): Pi = Py

is a Frobenius linear epimorphism and, hence, isomorphism.

Proof. The banal condition in Definition 2.59 implies that for 1 <i < f -1,
(u®1-1® [¢;(u)])P; +I(R)P; € Q;.
To show the reverse inclusion, it suffices to show that the image of
(u®1l-1 [¢:i(u)])P;

in P; /I(R)P; = P; ®w(r) R is a projective R-module of rank n. But the image is the same as (¥ ® 1 —
1 ® ¢;(u))P; ®w(r) R, which has rank n since P; is projective over Og R0 i W(R) of rank .

Now we show that (Fl’.)h is surjective. It suffices to show that coker(Fl’.)h ®w(r) K vanishes for every
homomorphism W(R) — « with k a perfect field of characteristic p. Since W(R) — « necessarily
vanishes on I(R), it lifts to a homomorphism W(R) — W(«). Thus, we may just assume that R is a
perfect field of characteristic p. Since

We1-18 (i) (-u® 1~ 18 [¢i)]) = [vi )] - §i(?) = Ve
in which ¢; is a unit in W(OF), the image of the map
(uel-1&[¢;(u)]):P;i—P; (2.23)

contains (u ® 1 — 1 ® [¢;(u)])P; + W(R) Ve; - P;. As R is a perfect field of characteristic p, we have
W(R) Ve; = I(R); hence, (2.23) is surjective. Thus, F? is a Frobenius linear epimorphism as F; is.
The lemma is proved. O

Now we put

P =Py, Q“:=Q), F:=F); o---0FoF), F“:=F; o---oFfoF.

Then (P™, Q™! Frl, Frel) defines an f(- Zp,)-display in the sense of [ACZ16, Definition 2.1] with an
O g-action, for which the Kottwitz condition, the wedge condition and the spin condition are obviously
inherited. It remains to construct the polarisation Ayw~. By Remark 2.61, we have the collection of
perfect symmetric W(R)-bilinear pairings {(, ); | i € Z/fZ} coming from Ax. For x,y € Py, put
xj = (F/_o---oF oFg)(x)and y; := (F/_ o---0F} oFg)(y) for | <i < f and we have

(Fx, Fy)o = (F _yxp 1, Fyrido
=(Fro(uel-1& [er1@)xr-1), Fro((u®l-1® [er—1(m)])yr-1)
=V((wel-18 [or-1(@Dxp-1,(u®1=1® [¢r_1(W)])yr-1)r-1

V!

= (W @ =G ) - Gy s

V*l
= (fo—l : (xf—l,y.ffl)ffl)
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=€ro1 (Xpo1,ypo1)f1

£ol
Foli Foi
= (1_[ F Gi) Ly

i=1

-1
Fo1-i Foly-1
(H ] fi) SV o

i=1

Put (, )™ := 11,(, Jo, which satisfies (F™lx, Felyyrel = "V (x y)rel by (2.21). Then the f(-Z,,)-display
(Prel, @l Frel Frel) with O g-action together with the pairing (, )™ define an object (X, tx, Ax)™ of
Exot(’n_]’l) (S), as explained in the proof of [Mih22, Proposition 3.4] and Remark 2.61. It is clear that
the construction is functorial in S.

Remark 2.61. For an object (X, tx, dx) of Exoc(brf1 D (S) with (P,Q,F, F) the display of X, we have a
similar claim as in Remark 2.2 concerning the pola’risation Ax. In particular, as discussed in [Mih22,
Section 11.1], the polarisation Ax, or, rather, its symmetrisation, is equivalent to a collection of perfect
symmetric W(R)-bilinear pairings

{(,)i: PixP; > W(R) |i € Z/fZ}

satisfying (tx (@)x,y)i = (x,1x(a)y); for every @ € Op and (Fix,Fiyv)is1 = ¥ (x,y): for every
ieZ/fZ.

Similarly, for an object (X', tx/, Ax+) of Exo'(’n_l’w (S) with (P”,Q", F’, F’) the f(-Z,)-display of X',
the polarisation Ay~ is equivalent to a perfect symmetric W(R)-bilinear pairing

(,):P'xXP"—= W(R),

satisfying (cx (@)x,y)’ = (x, ix (@) y)’ for every a € O and (F'x, E’y)’ =7 V' (x, y)".
Proposition 2.62. The morphism (2.22) is an isomorphism.

Proof. Tt suffices to show that for every affine scheme S = Spec R in Schyoé, the functor —!(S) is fully
faithful and essentially surjective.

We first show that —"°!(S) is fully faithful. Take an object (X, tx, Ax) of Exo‘(l)r;t_’ L) (S). It suffices to

show that the natural map Aut((X,tx,Ax)) — Aut((X,tx, Ax)™) is an isomorphism, which follows
from a stronger statement that the map Endp, (X) — Endg, (X™!) is an isomorphism, where X"
denotes the first entry of (X, tx, /lX)rel, which is an Op-divisible group. For the latter, it amounts to
showing that the natural map

Endo,. ((P,Q,F,F)) — Endo, ((P™, Q™ Fel, Frely) (2.24)

is an isomorphism. For the injectivity, let f be an element in the source, which decomposes as f = Zlf: 61 fi
for endomorphisms f;: P; — P; preserving Q; and commuting with F and F. Since for every i € Z/ fZ,
F; is a Frobenius linear surjective map from Q; to P;;;, the map f is determined by fy. Thus, (2.24) is
injective. For the surjectivity, let ! be an element in the target. Put f := f°!: Py — Py. By Lemma
2.63(2), there is a unique endomorphism f; of P; rendering the following diagram
=
W(R) & yy(g) Qo —— P

1®(fooo)i ‘/fl
(£l

W(R) & g Qo —> P
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commutative. For 2 < i < f — 1, we define f; to be the unique endomorphism of P; satisfying that
fio(Fj_yo-oF) = (F_ o 0F) o(l1®f).
Then f := Zlf: 61 f; is an O g-linear endomorphism of P, which commutes with F and hence F. It remains

to check that f(Q) C Q, which follows from Lemma 2.60.
We then show that —"!() is essentially surjective. Take an object

(X', 1x, Ax7) € Bxof,_ | (S)

in which X" is given by an f(-Z,)-display (P’,Q’,F’,F’). For 0 < i < f — 1, put

Pii= W(R) ® \ . P’

Denote by ug: Py — Py the endomorphism given by the action of u € Og on P’. Put Qy = Q" and for
1<i< f-1,put

Q:=((10u)®1-(1®1)® [¢;(u)])P; + (R)P;.

Fix a normal decomposition P’ =L’ & T’ for Q” and let

Fo=F|v+F|p: P > P’

be the corresponding F/ -linear isomorphism. For 0 < i < f — 1, let F;: P; = Piy be the Frobenius
linear isomorphism induced by the identity map on P’ and, finally, let |'if_1: Pr_1 — Po be the
Frobenius linear isomorphism induced by F’. Let Fo: Qy — P; be the map defined by the formula
Fo(I+Yw-1) = Fo(I)+wFo(t) forl € L, t € T"and w € W(R), which is a Frobenius linear epimorphism.
By Lemma 2.63(2), there is a unique endomorphism u; of P; rendering the following diagram

,‘:h
W(R) & yy(g) Qo ——> P

1®(U0|Q0)i l“'
=

W(R) @ yy(g) Qo —— P,
commutative.'* For 2 < i < f — 1, we define u; to be the unique endomorphism of P; satisfying that
G0 (Biyonr o= (o oFnfio(lau)
and define a map Fi: Q — Piy by the following (compatible) formulae:

Fil(ui ® 1 = 1® [¢;(u)])x) = F;(x),
Fi(Yw - x) = t unel+le Floi w])F:(x),

for x € P; and w € W(R), which is a Frobenius linear epimorphism. Put

f-1 f-1 . -1
Pzz@Pi, Ozz@Qi, F:= ) F, u:=Zu,~.
i=0 i=0

i=0
Then it is straightforward to check that (P, Q,F, F)is a display with an action by O for which u
acts by u, where F is determined by F in the usual way. Now we construct a collection of perfect

-1

~

1l
[}

i

4We warn the readers that the endomorphism u; might be different from 1 ® ug as u does not necessarily preserve the normal
decomposition. However, the image of u; — 1 ® u is contained in |(R)P;.
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symmetric W(R)-bilinear pairings {(, ); | i € Z/fZ} as in Remark 2.61. Put (, ) := u;'(, )’, where
(, )’ is the pairing induced by Ax-. Define inductively for 1 < i < f — 1 the unique (perfect symmetric
W(R)-bilinear) pairing (, ); satisfying (F;_1x,F;_1y); = Vi](x, ¥)i-1. It is clear that we also have
(Frox,Froiy) = V(x, ¥)7-1. Then the display (P,Q,F,F) with the Og-action together with the
collection of pairings {(, ); | i € Z/fZ} define an object (X,tx,dx) € Exo?,{t_’lyl)(S), which satisfies
(X, tx, /lx)“31 ~ (X', 1x, Ax+) by construction.

The proposition is proved. O

Lemma 2.63. Let R be a ring on which p is nilpotent. For a pair (P, Q) in which P is a projective W(R)-
module of finite rank and Q is a submodule of P containing |(R)P such that P/Q is a projective R-module,
we define Q* to be the image of J(R)P under the map W(R) ®F w(R) I(R)P — W(R) ®F w(R) Q that is the
base change of the inclusion map \(R)P — Q, where J(R) denotes the kernel of (V-1): W(R) ®F w(R)
I(R) — W(R). Then for every Frobenius linear epimorphism F: Q — P’ with P’ a projective W(R)-
module of the same rank as P, we have

(1) the kernel of F% coincides with Q*;
(2) foreveryendomorphismf: P — P that preserves Q, there exists a unique endomorphismf’: P’ — P’
rendering the following diagram

Fh
W(R) & gy Q — P’

1®(flo)l lf’

=
W(R) & yy(p) Q —= P’

commutative.

Proof. We first claim that J(R) is contained in the kernel of the map
W(R) &y, I(R) = W(R) & yp) W(R) = W(R) (2.25)

that is the base change of the inclusion map I(R) — W(R). Take an element x = Y a; ® b; in
W(R) ®F w(R) I(R). If x € J(R), then Y, a;b; = 0. But the image of x under (2.25) is Y, a; "Vb;, which
equals p Y a;b;. Thus, J(R) is contained in the kernel of (2.25).

For (1), choose a normal decomposition P = L & T of W(R)-modules such that Q = L @ I(R)T. By
(the proof of) [Laul0, Lemma 2.5], there exists a Frobenius linear automorphism ¥ of P such that
F(l+at) =) +Y'a-W(t) forl €L, t € Tand a € I(R). Thus, ker F¥ equals the submodule J(R)T
of W(R) ®F W(R) Q. However, by the claim above, the image of J(R)L under the map

W(R) @ gy I(R)P = W(R) @ ) Q

vanishes. Thus, we have J(R)T = Q*.
For (2), the uniqueness follows since F? is surjective, and the existence follows since the map 1® (f|q)
preserves Q*, which is a consequence of the definition of Q*. O

To define our (absolute) Rapoport—Zink space, we fix an object

(X, x, Ax) € Exo(?, | (k).

Definition 2.64. We define a functor N® := /\/((DX ix.Ay) O Schyoé such that for every object S of
Sch}'oﬁ, N(S) consists of quadruples (X, tx, Ax; px) in which
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o (X,tx,Ax) is an object of Exoc(pr;ljl D (S);
o px is a quasi-morphism from (X, tx, Ax) Xs (S ®0, k) to (X, tx,Ax) ®r (S ®o, k) in the
category Exo‘(l)';'jl’])(S ®0,. k).

Corollary 2.65. The morphism

N(D :./Vt(bx’ _>N:=N(X,Lx,/lx)f°'

tx,Ax)

sending (X, tx,Ax; px) to (X, LX,/lX)rel;pggl) is an isomorphism.

Proof. This follows immediately from Proposition 2.62. O

Now we study special divisors on N'® and their relation with those on N. Fix a triple (X, txy> Ax;)
where

o X is a supersingular p-divisible group over Spec O of dimension f and height 2 f;

o tx,: Op — End(Xp) is an Og-action on Xy such that for 0 < i < f — 1, the summand Lie,, (X) has
rank 1 on which O acts via ¢;;

o Ax,: Xo — X is a tx,-compatible principal polarisation.

Note that tx, induces an isomorphism tx,: Of > Endo,. (Xo). Put
V := Homo,, (X ®0, kX)®Q,

which is a vector space over E of dimension 7, equipped with a natural hermitian form similar to (2.1).
By a construction similar to (2.22), we obtain a triple (Xo, tx,, /lXO)r€l as in the definition of special
divisors on NV (Definition 2.5) and a canonical map

Homo,. (Xo ®0, k, X) — Homo, (X(r)e] ®0,: k, X,
which induces a map
=V — V™ := Homo, (X{ ®0, k. X™) ® Q. (2.26)

For every nonzero element x € V, we have similarly a closed formal subscheme N®(x) of N'® defined
similarly as in Definition 2.5.

Corollary 2.66. The map (2.26) is an isomorphism of hermitian spaces. Moreover, under the isomor-
phism in Corollary 2.65, we have N® (x) = N(x™).

Proof. By the definition of —™!, the map (2.26) is clearly an isometry. Since both V and V™! have
dimension n, (2.26) is an isomorphism of hermitian spaces. The second assertion follows from Corollary
2.65 and construction of —'¢!, parallel to [Mih22, Remark 4.4]. m]

(g

Remark 2.67. Let S be an object of Sch,p,.. We have another category Exo (n.0

triples (X, tx,Ax) in which

)(S) whose objects are

o X is a p-divisible group over S of dimension n f and height 2n f;
o tx: O — End(X) is an action of O on X such that for 0 < i < f — 1, Og acts on Liey, (X) via ¢;;
o Ax: X — XV is a tx-compatible polarisation such that ker(1x) = X [ex (u)].

Morphisms are defined similarly as in Definition 2.59. The category Exo‘(bn’o) (S) is a connected groupoid.

(g

Moreover, one can show that there is a canonical isomorphism Exo(n 0)

— Ex0(,,0) of prestacks after
restriction to Sch‘/’oé similar to (2.22).

Remark 2.68. It is desirable to extend the results in this subsection to a general finite extension F'/Q,,.
We hope to address this problem in the future.
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3. Local theta lifting at ramified places

Throughout this section, we fix a ramified quadratic extension E/F of p-adic fields with p odd, with
c € Gal(E/F) the Galois involution. We fix a uniformiser u € E satisfying u® = —u and denote by ¢
the cardinality of Og/(u). Let n = 2r be an even positive integer. We fix a nontrivial additive character
Y. F — C* of conductor Op.

The goal of this section is to compute the doubling L-function, the doubling epsilon factor, the spher-
ical doubling zeta integral and the local theta lifting for a tempered admissible irreducible representation
7 of G, (F) that is spherical with respect to the standard special maximal compact subgroup.

3.1. Weil representation and spherical module

We equip W, := E?" with the skew-hermitian form given by the matrix (—lr I ) We denote by

{ei,..., ez} the natural basis of W,. Denote by G, the unitary group of W,, which is a reductive
group over F. We write elements of W, in row form, on which G, acts from the right. Let K, C G, (F)
be the stabiliser of the lattice Oif C W,, which is a special maximal compact subgroup. We fix the
Haar measure dg on G, (F) that gives K, volume 1. Let P, be the Borel subgroup of G, consisting of
elements of the form
("
tac,—l ’

in which a is a lower-triangular matrix in Resg,r GL,. Let PY be the maximal parabolic subgroup of
G, containing P, with the unipotent radical N?, such that the standard diagonal Levi factor M of P?
is isomorphic to Resg,;r GL,.

We fix a a split hermitian space (V, (, )y ) over E of dimension n = 2r and a self-dual lattice Ay of
V,namely, Ay = A}, := {x € V| Trg/p(x,y)y € O forevery y € Ay }. Put Hy := U(V) and let Ly
be the stabiliser of Ay in Hy (F). We fix the Haar measure di on Hy (F) that gives Ly volume 1.

Remark 3.1. We have

(1) There exists an isomorphism «: W, — V of E-vector spaces satistying («(e;),k(e;))v = 0,
(k(er+i)sk(er+j))v = 0 and (x(e;),k(e,4;))y = u'6;; for 1 < i,j < r and such that Ly is
generated by {k(e;) | 1 <i < 2r} as an O g-submodule.

(2) The double coset K, \G, (F)/K, has representatives

ut

(—u)™

(—u)~er
where 0 < a; < --- < a, are integers.
We introduce two Hecke algebras:
Hw, =C[K,\G,(F)/K;],  Hy =C[Lv\Hy(F)/Ly].

Then by the remark above, both Hy, and Hy are commutative complex algebras and are canonically
isomorphic to 7 := C[Tlil, o ,Trtl]{il}”xer.
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Let (ww,,v, Vw,.v) be the Weil representation of G, (F) x Hy (F) (with respect to the additive
character ¥y and the trivial splitting character). We recall the action under the Schrodinger model
Vw, v = CZ(V") as follows:

o fora € GL,(E) and ¢ € C°(V"), we have

o ((“ et ) #) = ldetaly - plxa);

o for b € Herm, (F) and ¢ € C°(V"), we have

owy ([ 1)) 600 =g bT)) - (x)

where T'(x) := ((xi, X;)v) i<, 18 the moment matrix of x = (x1,...,x);
o for ¢ € CZ(V"), we have

ow.v (2, 17)) 60 = 6;
o forh e Hy (F) and ¢ € C2°(V"), we have
ww,.v (h)p(x) = ¢(h'x).

Here, we recall the Fourier transform C.° (V") — CZ(V") sending ¢ to 5 defined by the formula

o(x) = /v Y F (Z TrE/F(Xi,yi)V) dy,
im1

where dy is the self-dual Haar measure on V"

Definition 3.2. We define the spherical module Sy, v to be the subspace of Vy, v consisting of
elements that are fixed by K, X Ly, as a module over Hw, ®c Hy via the representation wy, yv. We
denote by Sph(V") the corresponding subspace of C°(V") under the Schrodinger model.

Lemma 3.3. The function 1y, belongs to Sph(V").

Proof. It suffices to check that

wWW,,v (( -1, r )) 1ay, = 1ay,
which follows from the fact that A\", = Ay . The lemma follows. O

Proposition 3.4. The annihilator of the Hw, ®c Hy -module Sw, v is Lw, v, where Ly, v denotes the
diagonal ideal of Hw, ®c Hy.

Proof. The same proof of [Liu22, Proposition 4.4] (with € = + and d = r) works in this case as well,
using Lemma 3.3. O

In what follows, we review the construction of unramified principal series of G, (F) and Hy (F).
We identify M,, the standard diagonal Levi factor of P,, with (Resg,;r GL1)", under which we write
an element of M, (F) asa = (ay,...,a,) witha; € E* its eigenvalue on ¢; for 1 < i < r. For every tuple

oc=(01,...,04) € (C/lig;Z)r, we define a character y,” of M, (F) and hence P, (F) by the formula

,

i+i—1/2

x7 (@) = [lail g2,
i=1
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We then have the normalised principal series

Iy, ={p e C*(G,(F)) | p(ag) = x; (a)p(g) fora € P,(F) and g € G, (F)},

which is an admissible representation of G, (F) via the right translation. We denote by 7/, the unique
irreducible constituent of I}, that has nonzero K-invariants.

For V, we fix a basis {vr, . .3 V1, V-1,...,v_} of the Og-lattice Ay, satistying (v;, v;)yv = u‘léi,_j
for every 1 < i, j < r. We have an increasing filtration

{0}=2Z,CZ C---CZ 3.1)

of isotropic E-subspaces of V where Z; are the E-subspaces of V spanned by {v,, ..., v;}. Let Qy be the
(minimal) parabolic subgroup of Hy that stabilises (3.1). Let My be the Levi factor of Qy stabilising
the lines spanned by v; for every i. Then we have the canonical isomorphism My = (Resg;r GL1)",
under which we write an element of My (F) as b = (by,...,b,) with b; € E* its eigenvalue on v; for
1 < i < r. Forevery tuple o = (01,...,0,) € (C/é’” Z)’ we define a character yy, of My (F) and
hence Qv (F) by the formula

(b) l_[|b |0'l+1 1/2

We then have the normalised principal series
Iy :=={¢ € C*(Hy (F)) | ¢(bh) = xy (b)¢(h) for b € Qv (F) and h € Hy (F)},

which is an admissible representation of Hy (F) via the right translation. We denote by 7y, the unique
irreducible constituent of Ij; that has nonzero Ly -invariants.
3.2. Doubling zeta integral and doubling L-factor

In this section, we compute certain doubling zeta integrals and doubling L-factors for irreducible
admissible representations 7 of G, (F) satisfying 7K~ # {0}. We will freely use notation from [Liu22,
Section 5].

We have the degenerate principal series IZ(s) := IndggD (I 15 o A) of GJ(F). Let ff‘y) be the unique
section of I7(s) such that for every g € pK, with p € PY(F),

i(e) = 1A

It is a holomorphic standard and hence good section.

Remark 3.5. By definition, we have IZ(s) C I'T‘:r, where
o._ 1 3 2ri 2r
og =(s+r—3,5+r—3,..., r+2,s—r+2)E(C/10 Z)

Moreover, if we denote by 90‘75 the unique section in I‘(;,‘i that is fixed by K>, and such that go‘TE (147) =1,
then 1) =

Let 7 be an irreducible admissible representation of G, (F). For every element £ € n¥ B, we denote
by Hg € C*(G,(F)) its associated matrix coefficient. Then for every meromorphic section f () of
I9(s), we have the (doubling) zeta integral

Z(6 f9) = /  HEF v, (. 12) .

r
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which is absolutely convergent for Re s large enough and has a meromorphic continuation. We let L(s, 7r)
and &(s, 7, ) be the doubling L-factor and the doubling epsilon factor of 7, respectively, defined in
[Yam14, Theorem 5.2].

Take an element o = (o7, ...,0,) € (C/ li’” Z)". We define an L-factor

g . - 1
L (s) := [1[ 7o Ao

Let £ be a generator of the 1-dimensional space ( (g, )K= (n%r)’(r, which satisfies Hgzo (15,) # 0.
We normalise £ such that Hgo (12,) = 1, which makes it unique.

Proposition 3.6. For o € (C/ lgg; Z)", we have

L7(s+3
Z(£7.§) = %

1

— r
where bgr(s) = i=1 W

Proof. We have anisomorphismm: Resg,r GL, — M? sending a to ( “ el ) Let 7 be the unramified

constituent of the normalised induction of ®;_ | |5, as arepresentation of GL, (E). We fix vectors vo € 7
and vy € 7V fixed by M?(F) N K, = m(GL,(Og)) such that (v}, vo) = 1.
By a similar argument in [GPSR87, Section 6] or in the proof of [Liu22, Proposition 5.6], we have

Z(E7,§) = Cy (s) / "3 (W (m(a), 1)) |detaly* (¥ (a)vy, vo)r da,  (3.2)
GL, (E

where

T Ce(2s+20) (r(2s+2i—1) 1 le@s+2i-1)
CW;(S)_D{E(2s+r+l)l_[ {r(2s +20) _U CEQs+r+i)

See the proof of [Liu22, Proposition 5.6] for unexplained notation. By [GPSR87, Proposition 6.1], we
have

L(s+ T)L(s+ ™)
1:1 lE(2s +1)

/ o9 (W (m(a), L)) [det al ;7 (e (@)Y vo) s da =
GL, (E)

Combining with (3.2), we have

o o _ [T78e@s+2i= 1| (LGs+3.DL(s+5.7")
Z(&7, 1y )_(!:1[ (E(23+r+i)) ( HH;E(ZSH)

L(s+ %,T)L(S + %,TV)
1—1:-;1 §E(2S + 21)

L (s+ %)
T b (s)
The proposition is proved. O
Proposition 3.7. For o € (C/ 1(2);:; Z)", we have

L(s,my, ) = L7 (s),
and s(s,ﬂ‘j'vr,z,bF) =1.
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Proof. Tt follows from the same argument for [ Yam 14, Proposition 7.1], using Proposition 3.6. m}

Remark 3.8. Itis clear that the base change BC(]TW ) is well-defined, which is an unramified irreducible
admissible representation of GL,,(E), and we have L(s 7rW ) = L(s, BC(JTW )) by Proposition 3.7.

For an irreducible admissible representation w of G, (F), let ®(x, V) be the m-isotypic quotient of
Vw, v, which is an admissible representation of Hy (F) and 6(x, V) its maximal semisimple quotient.
By [Wal90], 6(x, V) is either zero or an irreducible admissible representation of Hy (F'), known as the
theta lifting of m to V (with respect to the additive character r and the trivial splitting character).

Proposition 3.9. For an irreducible admissible representation m of G, (F) of the form ﬂ‘(,’vr for an

element o = (07q,...,07) € (iR/lig;Z)r, we have 6(nt,V) = nty.

Proof. By the same argument in the proof of [Liu22, Theorem 6.2], we have @(x, V)LV # {0}. By
our assumption on ¢, x is tempered. By (the same argument for) [GI16, Theorem 4.1(v)], ®(x, V) is a
semisimple representation of Hy (F); hence, ®(rr, V) = 6(x, V). In particular, we have 8(rr, V)V # {0}.
By Proposition 3.4, the diagonal ideal Zy, vy annihilates (ﬂ“,fvr)Kr ® (7, V)LV, which implies that
O(m,V) = ny. O

4. Arithmetic inner product formula

In this section, we collect all local ingredients and deduce our main theorems, following the same
line as in [LL21]. In Subsections 4.1 and 4.2, we recall the doubling method and the arithmetic theta
lifting from [LL21], respectively. In Subsection 4.3, we prove the vanishing of local indices at split
places, by proving the second main ingredient of this article, namely, Theorem 4.21. In Subsection 4.4,
we recall the formula for local indices at inert places. In Subsection 4.5, we compute local indices at
ramified places, based on the Kudla—Rapoport type formula Theorem 2.7. In Subsection 4.6, we recall
the formula for local indices at Archimedean places. The deduction of the main results of the article is
explained in Subsection 4.7, which is a straightforward modification of [LL21, Section 11].

4.1. Recollection on doubling method

For the readers’ convenience, we copy three groups of notation from [LL21, Section 2] to here. The
only difference is item (HS5), which reflects the fact that we are able to study certain places in V™ in
the current article.

Notation 4.1. Let E/F be a CM extension of number fields, so that c is a well-defined element in
Gal(E/F). We continue to fix an embedding ¢: E < C. We denote by u the (Archimedean) place of E
induced by ¢ and regard E as a subfield of C via «.

(F1) We denote by
o Vg and V'}“ the set of all places and non-Archimedean places of F, respectively;
o Vslfl, Vi;t and V?m the subsets of Vf}n of those that are split, inert and ramified in E, respectively;
Vl(;) the subset of Vi of places above o for every place ¢ of Q; and
o Vi the places of E above V7.
Moreover,
o for every place u € Vg of E, we denote by u € Vg the underlying place of F;
o for every v € Vi", we denote by p, the maximal ideal of O, and put g, := |Of, /p,|;
o forevery v € Vg, we put E, := E ®F F, and denote by | |g, : EY — C* the normalised norm
character.
(F2) Let m > 0 be an integer.
o We denote by Herm,,, the subscheme of Resg,r Mat,, ,,, of m-by-m matrices b satisfying
‘b = b. Put Hermy;, := Herm,,, N Resg/p GLy,.

o
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o For every ordered partition m = m; + - - - + my with m; a positive integer, we denote by
_____ m, . Herm,, — Herm,,,, X --- X Herm,, the morphism that extracts the diagonal blocks
with corresponding ranks.
o We denote by Herm,,, (F)* (respectively Herm;,(F)*) the subset of Herm,, (F) of elements
that are totally semi-positive definite (respectively totally positive definite).
(F3) For every u € V(m), we fix an embedding ¢, : E — C inducing u (with ¢, = ¢) and identify E,,
with C via .
(F4) Let np := ng/r: AX — C* be the quadratic character associated to E/F. For every v € Vg and
every positive integer m, put

m

By (5) 1= ]_[ LQ2s+i,7"7).
i=1

Put b, (s) := 1, evy. bm,v (5).
(F5) For every element T € Herm,,, (A ), we have the character

Y : Herm,,(Ap) — C*

given by the formula 7 (b) := Yy (tr bT).

(F6) Let R be acommutative F-algebra. A (skew-)hermitian space over R®r E is a free R®F E-module
V of finite rank, equipped with a (skew-)hermitian form (, )y with respect to the involution c that
is nondegenerate.

Notation 4.2. We fix an even positive integer n = 2r. Let (V, (, )y ) be a hermitian space over Ag of
rank 7 that is totally positive definite.

(H1) For every commutative A-algebra R and every integer m > 0, we denote by
T(x) = ((xi,xj)v)i’j € Herm,, (R)

the moment matrix of an element x = (x1,...,x,) € V" ®a, R.

(H2) Foreveryv € Vg, we putV,, := V®a, F,, which is a hermitian space over E,, and define the local
Hasse invariant of V,, to be €(V,,) :=n, ((—=1)"det V,,) € {1}, which equals 1 for all but finitely
many v. In what follows, we will abbreviate €(V,,) as €,. Recall that V is coherent (respectively
incoherent) if [], cy,. €, = 1 (respectively [, ey, € = —1).

(H3) Let v be aplace of F and m > 0 an integer.

o ForT € Herm,, (F,), we put (V)")r :={x e V" |T(x) =T} and

(V\tn)reg = U (VCn)T~

T eHerm;, (F,)

o We denote by &' (V") the space of (complex-valued) Bruhat—Schwartz functions on V)*. When
y e V}w), we have the Gaussian function ¢% € & (V") given by the formula ¢? (x) = e 7277 (%),
o We have a Fourier transform map ~: &(V*) — &(V!") sending ¢ to 5 defined by the formula

i(xi, yi)v) dy,
i=1

where dy is the self-dual Haar measure on V" with respect to Yg ,,.
o In what follows, we will always use this self-dual Haar measure on V.

5= [ s,
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(H4) Let m > 0 be an integer. For T € Herm,, (F), we put
Diff(T,V) :={v € Vg | (V)")r = 0},

which is a finite subset of Vg \ V?l.
(HS) Take a nonempty finite subset R C V%n that contains

{v e V" | either €, = -1, or v | 2 or v is ramified over Q}.

Let S be the subset of V‘}“ \ R consisting of v such that €, = —1, which is contained in ViIf}t.
(H6) We fix a [1, cymg Ok, -lattice A% in V @, AS"® such that for every v € Vi \ R, AR is a subgroup

of (AR)Y of index ¢y, where
(A})Y :={x € V,, |yE v ((x,y)v) = 1 forevery y € AY}

is the Y, -dual lattice of A.

(H7) Put H := U(V), which is a reductive group over Ap.

(H8) Denote by LR c H (A?’R) the stabiliser of AR, which is a special maximal subgroup. We have the
(abstract) Hecke algebra away from R

TR = Z[LMH(AT™) /LR,
which is a ring with the unit 1;& and denote by S® the subring

lim  Z[(L)\H (Fr)/(L%)1] @ Lzt

TcVPN\R
|T|<co
of TR,
(H9) Suppose that V is incoherent, namely, [, cy, € = —1. Forevery u € Vg \ V" we fix a u-nearby

space "V of V, which is a hermitian space over E and an isomorphism “V ®p A% >~V @, A%.
More precisely,
o ifuce Vgx’), then “V is the hermitian space over E, unique up to isomorphism, that has
signature (n — 1, 1) at u and satisfies “V ®F A;’; =~V ®ap A%;
o ifuce V%“ \ VSE?I, then “V is the hermitian space over E, unique up to isomorphism, that
satisfies “V ®p AL =V ®4, AL,
Put “H := U(*V), which is a reductive group over F. Then “H (A%) and H (A%) are
identified.

Notation 4.3. Let m > 0 be an integer. We equip W,, = E>™ and W,,, = E*™ the skew-hermitian forms
given by the matrices w,, and —w,,, respectively.

(G1) Let G, be the unitary group of both W,,, and W,,.. We write elements of W,,, and W,, in row form,
on which G,, acts from the right.

(G2) We denote by {ej,...,ex,} and {éy,...,&,,} the natural bases of W,, and W,,
respectively.

(G3) Let P,, C G,, be the parabolic subgroup stabilising the subspace generated by {e;;+1, ..., em}
and N,,, C P, its unipotent radical.
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(G4) We have
o a homomorphism m: Resg,;r GL,, — P, sending a to

m(a) = (“ tac,_l),

which identifies Resg/r GL,, as a Levi factor of P,;;
o a homomorphism n: Herm,, — N,,, sending b to

b= (1m 11;)
which is an isomorphism.
(G5) We define a maximal compact subgroup K, = [l ey, Km,v of Gn(AFr) in the following
way:
o forv € VM, K, , is the stabiliser of the lattice 0125’1:;

o forv e Vg’o), K. is the subgroup of the form

1 k1+k2 —ik1+ik2
kol =5\ Z ik kv |
in which k; € GL,,(C) satisfies k; tkl‘? = 1,, fori = 1, 2. Here, we have identified G,,(F,) as a
subgroup of GL,,,(C) via the embedding ¢, with v = u in Notation 4.1(F3).
(G6) For every v € V;m), we have a character kp,,: K, — C* that sends [kj, k2] to
det kq/det k.15
(G7) For every v € Vg, we define a Haar measure dg, on G,,(F,) as follows:
o forv e Vg“, dg, is the Haar measure under which K,,, , has volume 1;

o forv e Vl(;o), dg, is the product of the measure on K, , of total volume 1 and the standard
hyperbolic measure on G,,(Fy) /K., (see, for example, [EL, Section 2.1]).
Put dg =[], dg,, which is a Haar measure on G, (AFr).

(G8) Wedenote by A(G,(F)\G(AF)) the space of both Z(g,« )-finite and K, «-finite automorphic
forms on G, (AF), where Z(g,,..) denotes the centre of the complexified universal enveloping
algebra of the Lie algebra g,,,,c0 of G, ®F Fo. We denote by
o AVN(G,,(F)\Gn(AF)) the maximal subspace of A(G,(F)\G(AF)) on which for every

ve V}w), K,y acts by the character «J,, ,,

o AVR(G,,(F)\Gnm(Ar)) the maximal subspace of A" (G, (F)\Gm(Ar)) on which

— forevery v € V%“ \ (RUS), K., acts trivially and
— for every v € S, the standard Iwahori subgroup /,, , acts trivially and
ClLmv\Km,v /Im,v] acts by the character «,,, ,, ([Liu22, Definition 2.1]),
© Acusp(Gm (F)\Gm(AF)) the subspace of A(G ., (F)\Gm(AFr)) of cusp forms and by (, )g,,
the hermitian form on Acysp (G (F)\Gm(AF)) given by the Petersson inner product with
respect to the Haar measure dg.
For a subspace V of A(G,,(F)\G,,,(AFr)), we denote by

o V"1 the intersection of V and A1 (G, (F)\Gn(AF)),

o VI"IR the intersection of V and AU R(G,,(F)\G(AF)),

o V* the subspace {¢° | ¢ € V}.

Assumption 4.4. In what follows, we will consider an irreducible automorphic subrepresentation
(7, V) of Acusp(Gr(F)\G, (AF)) satisfying that

5]n fact, both Ky, and &,y do not depend on the choice of the embedding ¢, forv =u € V;‘X’) .
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(1) for every v € V(DO), m, is the (unique up to isomorphism) discrete series representation whose
restriction to K, ,, contains the character «;. ;

(2) for every v € Vg“ \ R, 7, is unramified (respectively almost unramified) with respect to K, , if
€, = 1 (respectively €, = —1);

(3) forevery v € Vi, 7, is tempered.

We realise the contragredient representation ¥ on V5, via the Petersson inner product (, )G, (Notation
4.3(G8)). By (1) and (2), we have VQ]R # {0}, where VLVJR is defined in Notation 4.3(G8).

Remark 4.5. By Proposition 4.8(2), we know that when R C ijl, V coincides with the hermitian space
over Ag of rank n determined by 7 via local theta dichotomy.

Definition 4.6. We define the L-function for r as the Euler product L(s,n) := [], L(s,m,) over all
places of F, in which

(1) forv e Vi L(s,x,) is the doubling L-function defined in [Yam14, Theorem 5.2];

(2) forv e Vg’o), L(s, m,) is the L-function of the standard base change BC(x,,) of 7,,. By Assumption

4.4(1), BC(m,) is the principal series representation of GL,,(C) that is the normalised induction of

arg" ' marg" 3 ®-- - marg3 " ®arg' ™", where arg: C* — C* is the argument character.

Remark 4.7. Let v be a place of F.

(1) Forv € Vﬁf’), the doubling L-function is only well-defined up to an entire function without zeros.
However, one can show that L(s,n,) satisfies the requirement for the doubling L-function in
[Yam14, Theorem 5.2].

(2) Forv € V;Pl, the standard base change BC(7,,) is well-defined and we have L(s, 7,) = L(s,BC(x,))
by [Yam 14, Theorem 7.2].

(3) For v € ViFnt \ R, the standard base change BC(x,) is well-defined and we have L(s,7,) =
L(s,BC(m,)) by [Liu22, Remark 1.4].

(4) For v € V2™ \ R, the standard base change BC(r,) is well-defined and we have L(s,7,) =
L(s,BC(m,)) by Remark 3.8.

In particular, when R C VSpl, we have L(s,n) =[], L(s,BC(m,)).

Recall that we have the normalised doubling integral
Siv,v‘, @, @S(VF) = C
from [LL21, Section 3].

Proposition 4.8. Let (,V) be as in Assumption 4.4.

(1) Foreveryv e Vf}“, we have
dim(c HomGr(Fv)XGr(Fv)(IE‘,V(O)’ m, X ﬂX) =1.

(2) Foreveryv € (Vgn \R) uvﬁ’l, V., is the unique hermitian space over E,, of rank 2r, up to isomorphism,
such that Siv,Vv 0.

(3) For every v € Vi, Homg, (r,\(S(V}), 7,) is irreducible as a representation of H(F,) and is
nonzero if v € (V‘;L“ \R)U V?l.

Proof. This is same as [LL21, Proposition 3.6] except that in (2) we have to take care of the case where
v € V¥, which is a consequence of Proposition 3.9. O
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Proposition 4.9. Let (,V ;) be as in Assumption 4.4 such that L(%, ) = 0. Take

o Y1 =®y1y € VETF]R and ¢y = ®, 2, € VETV]R such that (go?v, @2y)x, =1 forv e Vg \R “and
o ®=,D, € S(Vzr) such that ®©,, is the Gaussian function (Notation 4.2(H3)) for v € V(F‘X’) and
@, =L pry2r forv e V%" \R.

Then we have

/ / ©2(82) T (81)E’(0, (g1, 82), @) dg; dg>
G, (F)\G, (Ar) JG, (F)\G, (AF)

L'(3,7) :
- _ 27 Cr[F»Q] . n SErV,VV (‘pfv,gon,(I)V)

b2r(0) v eyiin
F
Ll(%,ﬂ') [F:Q] (_l)rqr—l(qv +1) !
:—.Cr . . - \% . 3 (‘pc o ,‘D )’
b2 (0) gy [ 3w e

where

> T'(1)---T'(r)
r(r+1)---T'2r)’

C, = (=) 27%n"

and the measure on G, (AF) is the one defined in Notation 4.3(G7).

Proof. The proof is same as [LL21, Proposition 3.7], with the additional input

38 (5, 2. @) = 1
for v € V;3™ \ R by Proposition 3.6. m]
Suppose that V is incoherent. By [Liul Ib, Section 2B], we have

(1) Take u € Vg \ VZE’] and “® = ®, “®, € S(*V?" ®r Ar), where we recall from Notation 4.2(H9)
that “V is the u-nearby hermitian space, such that supp(“®,) C (“V2 Jreg (Notation 4.2(H3)) for v
in a nonempty subset R” C R. Then for every g € PE(FR/)GE‘(A}}'), we have

EQO.g"®)= > ] Wre(0.g,,"0y).

TPeHerm; (F) veVR

(2) Take @ = ®,®, € S(V?") such that supp(®,,) (V2" ) for v in a subset R’ C R of cardinality at
least 2. Then for every g € PE(FR/)GE‘(A%'), we have

E'0,g,®)= > E(g®),
weVp\VP

where

E®wi= Y W08 ®w) [ Wre(0.g., @)
TDEHerm(z’r(F) veVp\{w}
Diff(T",V)={w}

Here, Diff (7", V) is defined in Notation 4.2(H4).

16Strictly speaking, what we fixed is a decomposition <pf = ®y (t,ch)v and we have abused notation by writing ‘/’lcv instead of
(e)v-
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Definition 4.10. Suppose that V is incoherent. Take an element u € Vg \ V‘g)] and a pair (71,73) of
elements in Herm, (F).

(1) For“® = ®, “®, € S(“V? ®F Ar), we put

Ern(e,"®) = > ] Wre(0,8.,"®,).
T"eHerm;, (F) vEVF
ar,rTD:(TlsTZ)

(2) For ® = ®,®, € &(V?"), we put

Cra(e®ui= Y We0g®) || Wire(0,g, @),
T°€Herm;, (F) veVp\{u}
Diff(T°,V)={u}
ar,rTuz(TlvTZ)

Here, 0, : Hermy, — Herm, x Herm, is defined in Notation 4.1(F2).

4.2. Recollection on arithmetic theta lifting

From this moment, we will assume F # Q.

Recall that we have fixed a u-nearby space "V and an isomorphism "V ®p A;’; =V @, A% from
Notation 4.2(H9). For every open compact subgroup L C H(AY), we have the Shimura variety X,
associated to Resg/q "H of the level L, which is a smooth quasi-projective scheme over E (which is
regarded as a subfield of C via ¢) of dimension n — 1. We remind the reader of its complex uniformisation

(XL @ O™ ~"H(F)\D X H(Ap)/L,

where D denotes the complex manifold of negative lines in "V ®g C and the Deligne homomorphism is
the one adopted in [LTXZZ, Section 3.2]. In what follows, for a place u € Vg, we put Xp ,, := X1 Qg Ey,
as a scheme over E,,.

For every ¢ € S(V" ®a,. A°F°)L and T € Herm,, (F), we put

Zr(@™n = Y Y2,
XEL\V™ @y, A
T (x)=T

where Z(x);, is Kudla’s special cycle recalled in [LL21, Definition 4.1]. As the above summation is
finite, Z7 (¢>)L is a well-defined element in CH™ (X, )c. For every g € G,,(AFr), Kudla’s generating
function is defined to be

Zo(QLi= ). Omeo(g)9N(T) - Zr (Wi (8)0™)L
T eHerm,,, (F)*

as a formal sum valued in CH" (X} )c, where

Wm,eo(8e)%(T) = [ | @mv(20)80(D).

v EVL?O)

Here, we note that for v € Vl(;x’), the function w,, , (g,)¢" factors through the moment map V" —
Herm,,, (F, ) (see Notation 4.2(H1)).

Hypothesis 4.11 (Modularity of generating functions of codimension m, [LL21, Hypothesis 4.5]). For
every open compact subgroup L C H(AY), every ¢* € S(V" ®a, A"F")L and every complex linear
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map [: CH™(XL.)c — C, the assignment
g 1(Zg=(8)L)

is absolutely convergent and gives an element in A1 (G,,(F)\G,n(AF)). In other words, the function
Z g~ (—)r, defines an element in HomC(CHm(XL)g, AV (G o (F)\Gm(AF))).

Definition 4.12. Let (7,);) be as in Assumption 4.4, Assume Hypothesis 4.11 on the modularity of
generating functions of codimension r. For every ¢ € V,[Tr ], every open compact subgroup L € H(AY)
and every ¢* € S(V" ®4, AY)E, we put

By (@)L = / ¢ (8)Zg~(g)r dg,
Gr(F)\Gr(AF)

which is an element in CH" (X1, )c by [LL21, Proposition 4.7]. It is clear that the image of ® s~ (¢)., in

CH" (X)c := lim CH" (XL )c
L

depends only on ¢ and ¢>, which we denote by ® 4« (¢). Finally, we define the arithmetic theta lifting
of (7, V) to V (with respect to ¢) to be the complex subspace ©(rr, V) of CH" (X)c spanned by © g~ (¢)

forall € V1 and 6= € S(V" @4, AD).

We recall Beilinson’s height pairing for our particular use from [LLL.21, Section 6]. We have a map
(%, 5 CH (X)) xcH (X)) - C o Q

that is complex linear in the first variable and conjugate symmetric. Here, ¢ is a rational prime such
that Xy, has smooth projective reduction for every u € Vg). For a pair (cy,cy) of elements in
7' (X L)g> xZ" (XL)g> with disjoint supports, we have

¢ ¢
(c1,e2)x, g = 2(c1, )Xy o Ey + logqu - {c1,¢2)x,  E »
L LousLu

u EV(EOO) u EV’E
in which

o g, is the residue cardinality of E,, for u € yfin,
o {cy, cz>§L WEs € C ®q Qy is the non-Archimedean local index recalled in [LL21, Section B] for

ue Vg“ (see [LL21, Remark B.11] when u is above ¢), which equals zero for all but finitely many u;
o {cq, C2>XL,L,, E, € Cis the Archimedean local index for u € V(°°), recalled in [LL21, Section 10].

Definition 4.13. We say that a rational prime ¢ is R-good if £ is unramified in E and satisfies V(Ff) c
vin\ (RUS).

Definition 4.14. For every open compact subgroup Ly of H(FR) and every subfield L of C, we define

(1) (SP)7, to be the subalgebra of S} (Notation 4.2(H8)) of elements that annihilate

P Hip(XL2/E) &g L,
i#2r—1
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(2) for every rational prime ¢, (Slﬁ é? to be the subalgebra of SE of elements that annihilate

H* (X118 0 Qe (1)) ®g L.

finy y(€)
ueV\vy

Here, LR is defined in Notation 4.2(H8).

Definition 4.15. Consider a nonempty subset R” C R, an R-good rational prime ¢ and an open compact
subgroup L of H(AR) of the form LgL® where L® is defined in Notation 4.2(H8). An (R,R’,{, L)-
admissible sextuple is a sextuple (7, ¢5°, 81,52, g1, g2) in which

ofori=1,2,¢"=0,¢7 € S(V ®4, A}")L in which ¢7; = 1 (xz)- forv € V;“ \ R, satisfying that

supp($5, ® (¢5)€) © (V¥ )eg for v € R;

o fori=1,2,s; is a product of two elements in (S} ).

LR ’
o fori=1,2, g; is an element in G,(A‘},’).

For an (R,R’, £, L)-admissible sextuple (¢7°, ¢, 1, 52, g1, g2) and every pair (771, T2) of elements in
Herm; (F)*, we define

(1) the global index I7, 1, (¢, ¢5°. 51,52, 81, 82)% to be

(Wr 00 (8100) 8% (T1) + 81 Z1; (W5 ()DL Wr00(8200) % (T2) - S5 21, (w0 (85)05)L)Y, ko

as an elementin C®yQy, where we note that fori = 1,2, s Zz, (w;" (g;°) ¢;°) belongs to CH" (XL)é€>

by Definition 4.14(2);
(2) for every u € V", the local index I, 1, (¢, #5581, 52, &1 gg)i’u to be

(Wr,00(8100) 9% (T1) - 81 Z1; (07 (€771 @r o0 (8200) 8% (T2) - 5371, (w0} (855 )LV, o

as an element in C ®g Qg;

(c0)

(3) forevery u € V', the local index IT1,72(¢‘1’°, #5,81,82, g1,82)L.u to be

(Wr00(8100) 0% (T1) - 8121, (W3 (87T ILs Wi 00 (8200) 8% (T2) + 8527 (W (85) 5L VX1 o
as an element in C.

Let (7, V;) be as in Assumption 4.4 and assume Hypothesis 4.11 on the modularity of generating
functions of codimension r.

Remark 4.16. In the situation of Definition 4.12 (and suppose that F' # Q), suppose that L has the form
Lg LR where LR is defined in Notation 4.2(H8). We have, from [LLL.21, Proposition 6.10], that for every
¢ € VIR and every ¢ € S(V" ®p, AR,

(1) $"@g ()L = X7 () - O (@) for every s € SF,.;

(2) Oy~ (p)L € CH" (X)2:

(3) under [LL21, Hypothesis 6.6], © 4~ (¢)r € CH" (X, L)(ég> for every R-good rational prime ¢.

We recall the normalised height pairing between the cycles © g (¢) in Definition 4.12, under [LL21,
Hypothesis 6.6].

Definition 4.17. Under [LL2 1, Hypothesis 6.6], every collection of elements ¢, ¢, € VL’ Vand 7,95 €
S(V" ®a, AY), we define the normalised height pairing

(O (#1). O (92))5 € C® Qs
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to be the unique element such that for every L = Ly LR as in Remark 4.16 (with R possibly enlarged)
satisfying ¢1, ¢, € YLk P, 95 € S(V" @4, AF)L and that ¢ is R-good, we have

<®¢1°°(901),®¢;°(<P2)>§(,E =vol*(L) - (@ (¢1). Ogs (92)1)%, -
where vol?(L) is introduced in [LL.21, Definition 3.8] and

(@ (@1)L Oy (92)L)k,

is well-defined by Remark 4.16(3). Note that by the projection formula, the right-hand side of the above
formula is independent of L.

Finally, we review the auxiliary Shimura variety that will only be used in the computation of local
indices I, 1, (97, 657, 51,82, 81, 82)L.u-

Notation 4.18. We denote by Ty the torus over Q such that for every commutative Q-algebra R, we have
To(R)={a € E ®q R | Nmg/ra € R*}.

We choose a CM type @ of E containing ¢ and denote by E’ the subfield of C generated by E and the
reflex field of ®@. We also choose a skew-hermitian space W over E of rank 1, whose group of rational
similitude is canonically Ty. For a (sufficiently small) open compact subgroup L¢ of To(A>), we have
the PEL type moduli scheme Y of CM abelian varieties with CM type ® and level L¢, which is a smooth
projective scheme over E’ of dimension 0O (see, for example, [Kot92]). In what follows, when we invoke
this construction, the data ®, W and L, will be fixed and hence will not be carried into the notation E’
and Y. For every open compact subgroup L C H(A}), we put

XIC =X QY
as a scheme over E’.

The following notation is parallel to [LLL21, Notation 5.6].

Notation 4.19. In Subsections 4.3, 4.4 and 4.5, we will consider a place u € Vg“ \ V% (Definition 1.1).
Let p be the underlying rational prime of u. We will fix an isomorphism C — @p under which ¢ induces

the place u. In particular, we may identify ® as a subset of Hom(E, @p).
We further require that @ in Notation 4.18 be admissible in the following sense: if @, C @ denotes

the subset inducing the place v for every v € V}p ), then it satisfies

(1) whenv € V}p )N V;?l, @, induces the same place of E above v;
(2) whenv € Vl(pp )N V', @, is the pullback of a CM type of the maximal subfield of E, unramified

over Qp;
(3) whenv € V;” )N V2™, the subfield of @p generated by E,, and the reflex field of @, is unramified
over E,,.

To release the burden of notation, we denote by K the subfield of @p generated by E,, and the reflex
field of @, by k its residue field and by K the completion of the maximal unramified extension of K in
@p with the residue field FP. It is clear that admissible CM type always exists for u € V%“ \ V7 and that
K is unramified over E,,.

We also choose a (sufficiently small) open compact subgroup Lg of To(A™) such that Ly, is maximal
compact. We denote by ) the integral model of Y over Ok such that for every S € Sch; Ok’ YJ(S) is the
set of equivalence classes of quadruples (Ao, ta,, 14> ngo) where
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o (Ao, ta,.A4,) is a unitary O g-abelian scheme over S of signature type ® (see [LTXZZ,
Definition 3.4.2 & Definition 3.4.3])" such that 1,4, is p-principal;
o n/’:o is an Lg -level structure (see [[L.TXZZ, Definition 4.2.2] for more details).

By [How 12, Proposition 3.1.2], Vs finite and étale over Ok .

4.3. Local indices at split places

In this subsection, we compute local indices at almost all places in V?l. Our goal is to prove the following
proposition.
Proposition 4.20. Let R, R’, € and L be as in Definition 4.15 such that the cardinality of R is at least 2.
Let (11, Vy) be as in Assumption 4.4. For every u € V?l satisfying u & R\ Vy. and Vl(pp) NRC V;?l where
p is the underlying rational prime of u, there exist elements s, s; € SE{QM \ m® such that

I, 1, (85, 5, 8 s1, Sgsz,gl,gz)i,u =0

for every (R,R’, £, L)-admissible sextuple (¢7°, ¢5’, 51, 52, £1, §2) and every pair (T1, T2) in Hermy (F)™.
Moreover, we may take s{ = sy =1 ifu ¢ R.

Proof. This is simply [LL21, Proposition 7.1] but without the assumption that &, is a (tempered)
principal series and without relying on [LL21, Hypothesis 6.6]. The proof is the same, after we slightly
generalise the construction of the integral model X, to take care of places in V}P ) n Vie™ and use
Theorem 4.2 1, which generalises [LL.21, Lemma 7.3]. m|

From now to the end of this section, we assume Vl(pp )AR C V;Pl. We also assume u € V% and when we
need m > 1 below. We invoke Notation 4.18 together with Notation 4.19. The isomorphism C — Q »

in Notation 4.19 identifies Hom(E, C) with Hom(E, C,). For every v € V;” ), let @, be the subset of
®, regarded as a subset of Hom(E, C,), of elements that induce the place v of F.

For every integer m > 0, we define a moduli functor &;,, over Ok as follows: For every S € Sch; Ok’
X, (S) is the set of equivalence classes of tuples

p . p
(A(), LAos /lA()s nAO’ A, LA, /lA, nA’ {UA,V }VEV;F)QV;EI\{E}’ TIA,u,m)

where

o (Ao, tays Aags nﬁo) is an element in Y(S);

o (A,ta,44) is a unitary O g-abelian scheme of signature type n® — ¢, + (5, over S, such that
— forevery v € Vl(pp) \ V2™, A4 [v*] is an isogeny whose kernel has order q‘l,_sv;

— Lie(A[u®]) is of rank 1 on which the action of O is given by the embedding ¢, ;
— forevery v € Vl(pp) N VEM, the triple (Ao [v™®], ta, [v®], A4, [v?]) ®0x O is an object of
Exo?y{o)(S ®0y Og) (Remark 2.67, with E = E,, F = F, and E = K)'% ;
o nﬁ is an LP-level structure;
o foreveryv e V;p) N V;Pl \ {u}, na, is an L, -level structure;
0 NAu,m is a Drinfeld level-m structure.

See [LL21, Section 7] for more details for the last three items. By [RSZ20, Theorem 4.5], for every
m 2> 0, &, is a regular scheme, flat (smooth, if m = 0) and projective over Ok and admits a canonical
isomorphism

X ®ox K = XIIm L OF K

"Here, our notation on objects is slightly different from [LTXZZ] or [LL21] as we, in particular, retrieve the Of-action ¢4,
8The sign condition is redundant in our case by [RSZ20, Remark 5.1(i)].
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of schemes over K Note that for every integer m > 0, SRV naturally gives a ring of étale correspon-
dences of X},,.

The following theorem confirms the conjecture proposed in [LL21, Remark 7.4], and the rest of
this subsection will be devoted to its proof. It is worth mentioning that even in the situation of [LL21,
Lemma 7.3], the argument below is slightly improved so that [LL.21, Hypothesis 6.6] is not relied on
anymore.

Theorem 4.21. Let the situation be as in Proposition 4.20 and assume u € V. and p # {. For every
integer m > 0,

(H (X Q) 0 @) =0

(p)

holds, where m := mR N SRUV

We temporarily allow 7 to be an arbitrary positive integer, not necessarily even. Put Y, := X, ®oy k.
For every pointx € ¥,,(F,), we know that A, [u=%] is a 1-dimensional O, -divisible group of (relative)
height n and we let 0 < h(x) < n — 1 be the height of its étale part. For 0 < A < n—1, let Y,Lh] be the
locus where h(x) < h, which is Zariski closed and hence will be endowed with the reduced induced
scheme structure, and put Y,(nh) = Y,Lh] - Y,,[fH] (Y,L_l] = (). It is known that Y,g,h) is smooth over k of
pure dimension A.

Now we suppose that m > 1. Let &/ be the set of free O F, /P, -submodules of (p,™/OF,)" of rank
n— h and put S, := "=(1) S For every M € &I, we denote by Y,,(qM) c Y,(,Lh) the (open and closed)
locus where the kernel of the Drinfeld level-m structure is M. Then we have

vt =] v

M el
forevery 0 < h <n—1.Let Y,&lMJ be the scheme-theoretic closure of Y,51M) inside Y,,,. Then we have
yIMl — U y M) (4.1)
M’eG,
McM’

as a disjoint union of strata. Note that Hecke operators away from u (of level L) preserve Y,SLM) and

hence Y  for every M € G,

We need some general notation. For a sequence (gi,...,g;) of nonnegative integers with g =
g1+ +g:, we denote by Py, o the standard upper triangular parabolic subgroup of GL, of block
sizes g1,...,8 and Mg, . its standard diagonal Levi subgroup. Moreover, we denote by Cj, """ &t
the cardinality of

.....

its standard diagonal Levi subgroup. Moreover, we denote by C5!

,,,,, 8t

GLg(OFi/pr;)/Pgl ,,,,, g,(OFi/Df),

which depends only on the partition g = g + - - - + g;. We also put
Li’m := ker (GLg(OFE) — GLg(OFi/p;n)) .

Lemma 4.22. For (gi,...,8:) withg = g + - - -+ g, as above and another integer g’ > g, we have

'~8.8 ~&1s--s '—8+81,82,--,
C;gn 8gc;gnl gtch;l 81+81,.82 8t.

®When m = 0, we do not need u € VQ; as the same holds even when K is ramified over E,,.
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Proof. Tt follows from the isomorphism

Pg'—g,g(OFl/pE)/Pg'—g+g1,g2 ,,,,, 8 (OF!/pZL) = GLg(OFE/p;n)/Pgl ..... g (OFE/pZ)-

]

Lemma 4.23. Suppose that m > 1. Take a sequence (g1, ...,g:) of nonnegative integers with g =
g1+ +gs Let my ®--- ® 7, be an admissible representation of My, . o, (F,). Then we have

.....

GLg (Fy)

Lu, 8ls-mr8 : Liim
TR---R7T =C5 ’||dim7r.£‘.
Pg)..gr (Fu) ! t) m !

dim (Ind

Proof. Pick a set X of representatives of the double coset
Pg...q (Fu)\ GLg (Fu) [ Lit.m
contained in GL¢ (OF,), which is possible by the Iwasawa decomposition. Then an element

g
Ligm

GLg (Fy)
fe (Indpgi";(@) MnR---R® ﬂ,)

is determined by f|x. Since GL¢ (OF, ) normalises Li,m, a function f’ on X is of the form f’ = f|x if

Lim
and only if £’ takes values in Q_, 7, ™. As |X| = Cj5;"%", the lemma follows. |

For an irreducible supercuspidal representation 7 of GL,(F,) and a positive integer s, we have the
representation Sp, (1) of GL, (F,,) defined in [HTO1, Section I.3]. In particular, when ¢ is an unramified

s=1
character of Fj, Sp,(¢) is the Steinberg representation of GL (F,) twisted by ¢| [,* .

Lemma 4.24. Suppose that m > 1. For every positive integer g and every unramified character ¢ of
F, we have

8
3 (=18 dim Spy (¢) i = 0.
h=0

Proof. We claim the identity

8
D"
h=0

in Groth(GL, (F,,)). Assuming it, we have

GLg (Fu) gpol
tdg 1) (01w (011 et =0 @2)

g 15
. GL Fu) g+h-1 ‘u,m
(-1 dim (Indphz(h(Fu) Sp,, (¢) ® (¢| T o detg_h)) - 0.
h=0 o

By Lemma 4.23, the lemma follows.
For the claim, put

GLyg (Fu) -1
I(¢) :=Ind, “ ‘& oB[ [ 8- ®e| [ .
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By the transitivity of (normalised) parabolic induction, every irreducible constituent of

- GLg (Fy) gl
I(¢)h,é " = IndPh,Z—/z(Fi) Sph(¢) = (¢| |£ too detgh)

is a constituent of I1(¢). By [Zel80], there is a bijection between the set of irreducible subquotients of
I(¢) and the set of sequences of signs of length g — 1. For such a sequence o, we denote by 1(¢). the
corresponding irreducible subquotient. For 0 < & < g — 1, we denote by o (i) the sequence starting
from % negative signs followed by g — 1 — h positive signs. In particular,

U oren) = SPe(#) =B, WP =l L,* o dety = 1(#)°.

By [HTOI, Lemma 1.3.2], we have

[1()"#7"] = [1($)or ()] + [1(D)or (n-1)]
in Groth(GL, (F,,)) for 0 < h < g. Thus, (4.2) follows. |

Proposition 4.25. Fix an isomorphism @[ ~ C. Suppose that m > 1. For every 0 < h < n— 1 and
M € G, we have

H/ (4" @1 Fp. Qo = 0
for every j + h.

This is an extension of [TY07, Proposition 4.4]. However, we allow arbitrary principal level structure
at u and our case involves endoscopy.

Proof. In what follows, i will always denote an integer satisfying 0 < & < n — 1. Denote by D,,_j, the
division algebra over F, of Hasse invariant ﬁ with the maximal order Op,,_,, .

For a T-scheme Y of finite type over k and a (finite) character y : To(Q)\To(A®)/Ly — @?, we put

[Ho (Y, Q)] = D (~D/HJ (Y © F,, Q) [x]

JEZ

as an element in Groth(Gal(R,/k)) for? e {,c}.

Let I” be the Igusa variety (of the first kind) introduced in [HTO1, Section IV.1] so that I" is
isomorphic to Y,E,M) for every M € 6,’}1 as schemes over k (but not as schemes over Yo(h)). Combining
with (4.1), we obtain the identity

h
He Q01 = >, D (D" He, (1,1, Q) (4.3)
=0 pprect!
Mt

M=

(=" (M € Sl | M MY [He (1, Tp)

>
I

=0

(=) eh=hr I, (I, Q)]

M=

=
I

=0

in Groth(Gal(F, /k)).
Now to compute [HX(IZ, Q¢)], we use [CS17, Lemma 5.5.1] in which the corresponding J5,(Q,)
is D,_pr X GLj/ (F,), and we take ¢ = ¢“¢,, where ¢* is the characteristic function of L* and ¢, is the
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characteristic function of O % L,’jim. Then we have the identity

;) = , ox Lh’
[He, (I, Q)] = Z Z c(n,TI") - Red” (m) Dy "t 4.4)
n ]I

in Groth(D>_,,/OF _h/), where

o n runs through ordered pairs (ny, ny) of nonnegative integers such that n, + n, = n, which gives an
elliptic endoscopic group G, of U("V);

o II" runs through a finite set of certain isobaric irreducible cohomological (with respect to the trivial
algebraic representation) automorphic representations of G, (A ), with 7 the descent of IT]} to
Gn(Fg) = Mnl,nz(Fﬂ);

o c¢(n,IT") is a constant depending only on r and IT" but not on A’;

o Redﬁ/ : Groth(My, n, (Fy)) — Groth(D’_,, X GLy(F),)) is the zero map if 2" < n, and otherwise is
the composition of
— the normalised Jacquet functor

Groth(Mp, n, (Fy)) — Groth(Mu—p’ j'—ny,n, (Fu))s
— the normalised parabolic induction
Groth(My—p',1/—ny,n, (Fu)) — Groth(My—ps jr (Fu)),
— the Langlands—Jacquet map (on the first factor)
Groth(M,,—p s (F)) — Groth(D_,, X GLj (Fy)).
The image of [H., (I",Q,)] in Groth(Gal(F,/k)) is given by the map

Groth(D}_,, /O ) — Groth(Gal(F, /k))

sending an (unramified) character ¢ o Nme_’, torec(¢!)- ¥, where y is a finite character of Gal(F plk)
determined by y. In what follows, we will regard

, X n
Redﬁ (ﬂ;)ODn—h’XLﬂ‘m
as an element of Groth(Gal(Fp /k)) via the above map.
Now let us compute for each n = (n1,n3),
h OX Lh/
Z (=)t Redl () P ™ (4.5)

h’'=0

in Groth(Gal(Fp/ k)), when my is tempered. Write 7, = 7! ® 7% where 7 is an tempered irreducible
admissible representation of GL,,, (F,,). In particular, 7! is a full induction of the form

GLn, (Fu) 1 1
Indps,gl,,._.,s,g,(@) Sp,, (1) ® -+ & Spy, (7)),

where s1,...,s; and gy, ..., g, are positive integers satisfying s;g; +---+ 5,8, =nj,andfor 1 <i <1,
7r} is an irreducible supercuspidal representation of GLg, (F),) such that Spy, (n}) is unitary. Let I be the
subset of {1,...,t} such that 711! is an unramified character (hence g; = 1) and s; > n — h. Then we have
for ' > ny,
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’

L

Red () O i (4.6)
. GLy, (Fu) Lg,lm _ 1-n .
= Z dim (Indpq(’;@f SPyye—n(7]) B (xﬁi Spy; (”})) b ﬂz) frec((x) 7' 12 ) - ¥]
S{lefﬂ—h/

in which the suppressed subscript in Py is (s; + 7' — 1, 181, .-, 581>+ -»5:81>12).
We claim that for each i € I,
4

u,m

h
~h' ~h'.h . GL1’(FM)
ST 1y i (Indp?(’Fi)* SPy i (7)) B (x,# Sij(n'})) mz) -0 @47

h'=n-s;

if s; > n — h. In fact, by Lemma 4.23, there is a nonnegative integer D independent of 4’ such that the
left-hand side of (4.7) equals

i (= 1)t QI e st i 8 D  im Sp (el

h'=n-s;
& —h' =R, si+h' - S:8i si+h’-n

= Z (=)= S 181 Si8om i Sp. ()l
h'=n-s;

h+si— . ,
— Z (—l)h_h/C,T'si_n_h,’h,’s]g] ..... SigisSi86M2 |y ~dimSph,(7r3)Lﬁvm

h'=0

. h+s;—n ,
= (=D)hclrsimnsigrSigisigen2 | Z (_l)h’cri:lﬂi—n—h’,h’_dimsph/(ﬂ_il)Lg’m
h'=0

in which the last summation vanishes by applying Lemma 4.24 with g = h + s; —n > 0. Here, we have
used Lemma 4.22 twice.

By (4.6) and (4.7), we know that (4.5) is a linear combination of [rec((x})~!| |,;Tn) %] withi €1
satisfying s; = n — h. Thus, (4.5) is strictly pure of weight & since Sp, (ﬂ}) is unit;ry. By (4.3), (4.4)
and the fact that localisation at m annihilates all terms in (4.4) with 7! not tempered, we know that
[H, (Y,LMJ ,Q;)]m is strictly pure of weight A. Finally, by [Man08, Proposition 12], we know that Y,hMJ
is smooth over k of pure dimension 4. Since Y,LM] is also proper, we have

H (v @ B\ Q) [xIm = 0

for every j # h and every character y: To(Q)\To(A®)/Ly — @; from the Weil conjecture. Then the
proposition follows. O

Proof of Theorem 4.21. Recallthatn = 2r is even. We may assume
is finite and flat. In what follows, % is always an integer satisfying
T c &, we put

1 since the morphism &,,, — X

m >
0< h<n-1=2r-1.Fora subset

by M z M
v = = v
M ex MeX

in which the first union is disjoint. If 2 > 1, we also denote by X the subset of "1 consisting of M’
that contains an element in .
Fix an arbitrary isomorphism Q, =~ C. We claim
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(*) Forevery 0 < h < 2r — 1 and every = c G/,
HL (Vs @k By Qom = H (V) @1 By, Qo = 0

holds when j > h.

Assuming the claim, we prove H> (X,,,, @[ (r))m = 0. By the proper base change theorem and the
fact that taking global sections on Spec Ok is the same as restricting to Spec k and then taking global
sections, the natural map H* (X,,, Q,(r)) — H* (Y;,, Q;(r)) is an isomorphism. Thus, it suffices to
show that

HO (k, H? (Y ®k Fp, Qg (1)) = H (k, ™ (Y, @1 Fp, Qg (1))in = 0.

The vanishing of H?(k, H* (Y, ® F,,,@g(r)))m already follows from (x) as Y, = Y,hzr_”. Now we
consider H'! (k, H "' (Y,, ® Fp, Q(r)))m. Again by (), we have a2y 2r2l g Fp,Qp)m = 0;
hence, the natural map

Hir_] (Yrler—l) Rk Fp’ @f)‘m - H2r—1 (Ym Bk Fps@f)m

is surjective. It suffices to show that H! (k, HZ 1 (v, & Fp,Q;(r))m = 0. Now we prove by
induction on 0 < h < 2r — 1 that for every M € &/, H' (k, H?(Y,E,M) ®k ﬁp,@g(r)))m =0.

The case i = Ois trivial. Consider 7 > 0and M € &', Since Y,LM] is proper smooth over k by [Man08,
Proposition 12], we have H' (k, H" (Y,LM] ®k F,,, Q;(r)))m = 0 by the Weil conjecture. By (x), we have
H" (Y,L{M}%] ®k Fp, Qg)m = 0. Thus, it suffices to show that H' (k, H~! (Y,L{M}%] ®k Fp, Qp(r)))m = 0.

By (*) again, we have H"~! (Y,EL{M} " ®k FP,@[)m = 0. Thus, the desired vanishing property follows
from

_ t = = _ , - —
H (B (M) @ B Qe = @ B (G HET (M @ By, Qe (1)) = 0,
M'e{M}}

which holds by the induction hypothesis. We have now proved H¥ (X,,,Q,(r)m = O
assuming ().
To show the claim (x), we use induction on /. To ease notation, we simply write H3 (—) for H} (- ®x

E,, @[)m for ? € {, c}. The case for i = 0 is trivial. Suppose that we know (x) for & — 1 for some /7 > 1.
For every M € G, we have the exact sequence

RN Hj_l(YrL{Mm) = H{:(Yr(nM)) N H'i(yr,[1M]) ..

By Proposition 4.25 and the induction hypothesis, we have H{, (Y,;M)) =0 for j > h. Now take a subset
Y of G/. Then we have H’. ') = Pses HE (Y\M)y = 0 for j > h. By the exact sequence

s HEED) s W) s w ) S

and the induction hypothesis, we have H/ (Y,ELZ]) =0 for j > h. Thus, (*) holds for A.
The theorem is proved. O

Remark 4.26. In fact, our proof of Theorem 4.21 shows that for general n (not necessarily even),
(B (X Qe () @0 ) =0

as long as n < n’ < 2r’, where m is the maximal ideal of a suitable spherical Hecke algebra associated
to a tempered cuspidal automorphic representation of the corresponding unitary group.
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4.4. Local indices at inert places

In this subsection, we compute local indices at places in V%“ not above R.

Proposition 4.27. Let R, R’, £ and L be as in Definition 4.15. Take an element u € Vié“ such that its
underlying rational prime p is odd and satisfies Vl(pp 'ARC Vfl.

(1) Suppose that u ¢ S. Then we have
1og g - VOI*(L) - I, 7, (657, 65 51,82 81. 82)f,, = €115 ((81. 82), DL, ® (5105 ® (8265))u
for every (R,R’,{,L)-admissible sextuple (¢, ¢5,81,%2,81,82) and every pair (T1,T3) in
Herm; (F)*.
(2) Suppose thatu € SN V; and is unramified over Q. Recall that we have fixed a u-nearby space “V

and an isomorphism 'V ®f A:ﬁ =V ®a, A:’; from Notation 4.2(H9). We also fix a y g ,-self-dual
lattice Az of "Vy.. Then there exist elements s‘l‘, S;’ e SR\ ml}, such that

10g gu - VOI*(L) - I, 7, (657, 65, 851, 8552, 81, 82)f

= €7, 1, ((g1,82), @, ® (515167 ® (s55205)) )
_ loggu

qu—1

Er,1,((81,82), @, ® (sfs10]7 ® (s5528, ™)) ® Lagy>r)

for every (R,R’,t,L)-admissible sextuple (¢7,¢5,81,52,81,82) and every pair (T1,T3) in
Herm; (F)*.

In both cases, the right-hand side is defined in Definition 4.10 with the Gaussian function ®%, €
SV ®a, Foo) (Notation 4.2(H3)) and volf (L) is defined in [LL2 1, Definition 3.8].

Proof. Part (1) is proved in the same way as [LL21, Proposition 8.1]. Part (2) is proved in the same way
as [LL21, Proposition 9.1]. Note that we need to extend the definition of the integral model due to the

presence of places in V}P )N V2™, as we do in the previous subsection. The requirement that u € V7 in
(2) is to ensure that K is unramified over E,, (see Notation 4.19). O

4.5. Local indices at ramified places
In this subsection, we compute local indices at places in Vrg‘m not above R.

Proposition 4.28. Let R, R’, £ and L be as in Definition 4.15. Take an element u € V2™ such that its
underlying rational prime p satisfies V}p 'ARC V;Pl. Then we have

10g qu - VOlh(L) : IT],T2(¢<1>O’ ¢;o, 81, 82, gl’gZ)i,u = @Tl,Tz((gl’gZ)’ (I)go ® (Sl(ﬁ‘])<J ® (SZ¢;O)C))M

for every (R,R’, €, L)-admissible sextuple (¢, ¢35, 51,52, &1, 82) and every pair (T1,T») in Herm} (F)*,
where the right-hand side is defined in Definition 4.10 with the Gaussian function ®°, € & (V" ®ap Foo)
(Notation 4.2(H3)) and vol® (L) is defined in [LL21, Definition 3.8].

Proof. The proof of the proposition follows the same line as in [LL21, Proposition 8.1], as long as we
accomplish the following three tasks. We invoke Notation 4.18 together with Notation 4.19.

(1) Construct a good integral model X; for X; over Ok for open compact subgroups L C L satisfying

L,=L,forve V}p )\ VP, which is provided after the proof.

(2) Establish the non-Archimedean uniformisation of X; along the supersingular locus using the
relative Rapoport-Zink space A from Definition 2.3, analogous to [LL21, (8.2)], and compare

special divisors. This is done in Proposition 4.30.
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(3) Show that for x = (x1,...,x2) € “V¥ with T(x) € Herm3, (F,), we have

b2r,g(0)

Wia(0, 14, 1 v
102 ¢ T( 4r (AR£)2)

L L
X |On(x) ®oy - 0y @Nmr)) =

if T(x) = T". In fact, this follows from Theorem 2.7, Remark 2.18 and the identity

bZV,E(O) = l—[(l - Q;zi)-
i=1

The proposition is proved. O

Let the situation be as in Proposition 4.28. The isomorphism C — @p in Notation 4.19 identifies
Hom(E, C) with Hom(E,C,). For every v € Vl(,p ), let ®@,, be the subset of @, regarded as a subset of
Hom(E, C,), of elements that induce the place v of F.

To ease notation, put

Ui={v e VP \ VP |y 2 ).

In particular, UNR = 0.
There is a projective system {X7}}, for open compact subgroups L C L satisfying L, = L, for
vV E ng ) \ V;E’l, of smooth projective schemes over Ok (see [RSZ20, Theorem 4.7, AT type (2)]) with

X ®ox K =X; ®p K = (X; ® Y) ®p K

and finite étale transition morphisms such that for every S € Sch; Ok’ Xj (S) is the set of equivalence
classes of tuples

p . p
(A()’ LA(), /lA()a UA()’ Aa LA, /lA’ nA’ {nA,V }VEV;;p)ﬂViEI)

where

o (Ao, tags A4y nf\()) is an element in J(S);
o (A,ta,44) is a unitary O g-abelian scheme of signature type n® — ¢, +$, over S, such that
— forevery v € VI(,” ) \ V2™, A4 [v*] is an isogeny whose kernel has order qi_fv;
— for every v € UN V™, the triple (Ag[v™], ta,[v*™], 24, [v*]) ®0, O is an object of
Exoc(br:())(S ®ox Ok ) (Remark 2.67, with E = E,,, F = F, and E =K);
— for v = u, the triple (Ag[v™], ta,[V™], 24, [v]) ®0x O is an object of EXO?J_I’I)(S ®ox O)
(Definition 2.59, with E = E,,, F = F,, and E = K);
o nk is an LP-level structure;
o forevery v € V(Fp 'n ijl, nNA.v is an L, -level structure.
In particular, S® is naturally a ring of étale correspondences of X7..

Let = € S(V ®a, A;")L be a p-basic element [[LL.21, Definition 6.5]. For every element t € F
that is totally positive, we have a cycle Z,(¢>); € Z'(X;) extending the restriction of Z;(¢*) to X%,
defined similarly as in [L.Za, Section 13.3].

Now we study the non-Archimedean uniformisation of X; along the supersingular locus. Fix a point
Py := (Ao, LAg> AAy I]ZO) € y(Ok) Put

«—

X :=1lim X5
L
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and denote by Xj the fibre of Py along the natural projection X — ). Let Xg be the completion along
the (closed) locus where A[u®] is supersingular, as a formal scheme over Spf Ok . We also fix a point
P € X)) (F,) represented by (Po ®o, Fp: A, 14, 14,77, {nA,v}VGV(F,,)nngl).

Put V := Homp,. (Ao ®0; Fp, A) ® Q. Fixing an element @w € O that has valuation 0 (respectively
1) at places in UN Vi;‘ (respectively, UN ViZ™), we have a pairing

(b)W:VXV—>SE
sending (x, y) € V2 to the composition of quasi-homomorphisms
1 v w !

A5 X 25 A7 5 A —5 A

as an element in Endg,, (Ap) ® Q and hence in E via L;i} . We have the following properties concerning V:

[¢]

V, (, )v is a totally positive definite hermitian space over E of rank n;

o

forevery v € V%" \ (VI(VP ) \Vslfl), we have a canonical isome_try V®r F, =~ VQp F, of hermitian spaces;
for every v € U, the O, -lattice A, := Homo, (Ao ®o, Fp,A) ®o, OF, is

— self-dual if v e UN Vi and €, = 1,

— almost self-dual if v e UN ViFnt and €, = -1,

— self-dual if v e UN V}fi‘m;

V ®F F, is nonsplit and we have a canonical isomorphism

e}

o

V ®p F, ~ Homo,, (Ao[u™] ®0, Fp, A[u®]) ® Q

of hermitian spaces over E,,.

We have a Rapoport-Zink space A (Definition 2.3, with E = E,,, F = F,,, E = K and ¢, the natural
embedding) with respect to the object

(X, 1x, Ax) = (A[u™], ea[u®], 24 [u™])" € Exof, _, | (),

where —"! is the morphism (2.22). We now construct a morphism

Y Ay = U(V)(F)\ (VX U(V)(ADFO’K)/H L,

veu

4.8)

of formal schemes over Spf O, where L, is the stabiliser of A, in U(V)(F, ), as follows.
We have the Rapoport—Zink space N« = /\/c(I> A [ ta [0=]. 2 [ ]) from Definition 2.64. We first
define a morphism

Y: &) - U(V)(F)\

NP Uy AT/ | Lv)

veu

and then define Y™ as the composition of Y with the morphism in Corollary 2.65. To construct Y, we
take a point

P =(Py®o, S;A,ta, a1, 14w}, qyo) yn) € X5 (8)
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for a connected scheme S in SCh;ok nSchyok with a geometric point s. In particular, A[p*] is
supersingular. By [RZ96, Proposition 6.29], we can choose an Og-linear quasi-isogeny

p:AXs (S®o, F,,) — A ®5, (S ®o, ﬁp)

of height zero such that p*A4 ®Fp (S ®o, E,) =Aa Xs (S ®o, Fp). ‘We have
o (A[u®],ta[u®], Aa[u™]; p[u]) is an element in NP« (S);
o the composite map
~ nk
V®g A™P 5V eg A™P —5 Hompg,axr (Hi(Ags, A™P), Hi(Ag, A™P))
2, Homg gy amr (Hi(Ag,s, A¥P), Hi (A, AP)) = V @g AP
is an isometry, which gives rise to an element 4” € U(V) (A‘;’p );
o the same process as above will produce an element

e ] um&F;

ver'?) v
o for every v € U, the image of the map
Psx0O: HOIHOEV (AO,A‘ [VOO]’ Ag [Voo]) - HOIIlOEv (AO,s [Voo]’ Ag [Voo]) ®Q=VerF,

is an Og, -lattice in the same U(V)(F, )-orbit of A,, which gives rise to an element
hy, € U(V)(Fy)/Ly.
Together, we obtain an element

(AL ealu™) Aa L) p L]y, (7, BE' By Yyew)) € N®(8) x U AT )] ] Lo,

veu
and we define Y (P) to be its image in the quotient, which is independent of the choice of p.
Remark 4.29. Both V and Y depend on the choice of P, while the isometry class of V does not.

Proposition 4.30. The morphism Y™ (4.8) is an isomorphism. Moreover, for every p-basic element
¢ € S(V ®a, A‘;")L and every t € F that is totally positive, we have

el (thoo)m): > > $(h7'x) - (NMx™),h), (4.9
xeU(V)(FN\V heU(V*)(F)\U(V)(Ax™)/TTyey Ly
(x,x)y =t

where

o V* denotes the orthogonal complement of x in V;

o ¢ is a Schwartz function on'V ®p A?’E such that ¢, = ¢ forv € V%n \ (V;p) \ ij]) and ¢, =14,
Jorv e U;

o x™ is defined in (2.26); and

o (Mx'™), h) denotes the corresponding double coset in (4.8).

Proof. By a similar argument for [RZ96, Theorem 6.30], the morphism Y is an isomorphism. Thus,
Y™! is an isomorphism as well by Corollary 2.65.

For (4.9), by a similar argument for [Liu21, Theorem 5.22], the identity holds with N (x™) replaced
by N®«(x). Then it follows by Corollary 2.66.

The proposition is proved. m}
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4.6. Local indices at Archimedean places
In this subsection, we compute local indices at places in Vgx’).

Proposition 4.31. Let R, R’, £ and L be as in Definition 4.15. Let (n,V,) be as in Assumption 4.4.
Take an element u € Vgo). Consider an (R,R’, €, L)-admissible sextuple (qﬁ‘l"’, #3581, 82, 815 g2) and an
element ¢| € VE,F]R. Let Ky € G,(AY) be an open compact subgroup that fixes both ¢7° and ¢ and

&1 € G, (Fw) a Siegel fundamental domain for the congruence subgroup G,(F) N g7’ K (g‘lx’)_l. Then
for every T, € Herm; (F)*, we have

vol*(L) - / ©°(181) Z It 7, (67, 05, 51,82, T1&1, 82)Lu AT
81 T) eHerm{ (F)*

1
=3 /;; ¢ (T181) Z €11 (1181, 82), @ ® (5167 ® (5205)))u dry,
1

Ty €eHerm;. (F)*

in which both sides are absolutely convergent. Here, the term €r, 1, is defined in Definition 4.10 with
the Gaussian function ®), € S(V*" ®,, F.) (Notation 4.2(H3)) and vol® (L) is defined in [LL21,
Definition 3.8].

Proof. This is simply [LL21, Proposition 10.1]. O

4.7. Proof of main results

The proofs of Theorem 1.4, Theorem 1.5 and Corollary 1.7 follow from the same lines as for [LL21,
Theorem 1.5], [LL21, Theorem 1.7] and [LL21, Corollary 1.9], respectively, written in [LL21, Sec-
tion 11]. However, we need to take R to be a finite subset of ijl N V. containing R, and of cardinality
at least 2 and modify the reference according to the table below.

This article [LL21]

Proposition 4.8 Proposition 3.6
Proposition 4.9 Proposition 3.7
Proposition 4.20 Proposition 7.1
Proposition 4.27 Propositions 8.1 and 9.1
Proposition 4.28 (not available)
Proposition 4.31 Proposition 10.1

Remark 4.32. When S, = 0, Theorem 1.4, Theorem 1.5 and Corollary 1.7 can all be proved without
[LL21, Hypothesis 6.6]. In fact, besides Proposition 4.27(2) (which we do not need as S, = (), the only
place where [LL21, Hypothesis 6.6] is used is [LL21, Proposition 6.9(2)]. However, we can slightly
modify the definition of (SE f};) in Definition 4.14(2) such that it is the ideal of SE of elements that
annihilate

B B (Xperru Qe(r) g L,

fin\ ()
uev\vy

where H%’ (X120, Qe (1)) ®g L is the Q7 ®g L-submodule of H* (X s x ,,, Q¢ (r)) ®g L generated by
the image of the cycle class map CH" (X, yx ,) — H? (Xpprrus Qe(r)) ®g L.

. . . spl O (p) spl
Theorem 4.21 implies that when u satisfies 4 € RNV, NVg and V' NR C V. where p

(€)

1. \ Mm% that annihilates

is the underlying rational prime of u, there exists an element in (S®,.)
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H%r (Xrerk > Qe(r)) ®g Q*. Indeed, we have a commutative diagram (in the context of the proof of
Proposition 4.20)

CH' (X,,) H?" (X, Qe (1))

| |

CH" (X8 ) — H (X0 0 Qe (1) H* (X117, Qe (1))

in which the left vertical arrow is surjective, implying that H%’ (Xrprrus Qe(r)) is a quotient of

27 (X, Qe (7). ‘
It follows that with this new definition of (SE é?, [LL21, Proposition 6.9(2)] holds whenR C V;Pl ﬁV?
without assuming [LL.2 1, Hypothesis 6.6].

Remark 4.33. Finally, we explain the main difficulty on lifting the restriction F' # Q (when r > 2).
Suppose that F = Q and r > 2. Then the Shimura variety X7 from Subsection 4.2 is never proper over
the base field. Nevertheless, it is well-known that X; admits a canonical toroidal compactification, which
is smooth. However, to run our argument, we need suitable compactification of their integral models
at every finite place u of E as well. As far as we can see, the main obstacle is the compactification of
integral models using Drinfeld level structures when u splits over F, together with a vanishing result
like Theorem 4.21.
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