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Abstract

In the past decade, deep neural networks, and specifically convolutional neural networks (CNNs), have been be-
coming a primary tool in the field of biomedical image analysis, and are used intensively in other fields such as object
or face recognition. CNNs have a clear advantage in their ability to provide superior performance, yet without the re-
quirement to fully understand the image elements that reflect the biomedical problem at hand, and without designing
specific algorithms for that task. The availability of easy-to-use libraries and their non-parametric nature make CNN
the most common solution to problems that require automatic biomedical image analysis. But while CNNs have many
advantages, they also have certain downsides. The features determined by CNNs are complex and unintuitive, and
therefore CNNs often work as a ”Black Box”. Additionally, CNNs learn from any piece of information in the pixel
data that can provide discriminative signal, making it more difficult to control what the CNN actually learns. Here we
follow common practices to test whether CNNs can classify biomedical image datasets, but instead of using the entire
image we use merely parts of the images that do not have biomedical content. The experiments show that CNNs can
provide high classification accuracy even when they are trained with datasets that do not contain any biomedical infor-
mation, or can be systematically biased by irrelevant information in the image data. The presence of such consistent
irrelevant data is difficult to identify, and can therefore lead to biased experimental results. Possible solutions to this
downside of CNNs can be control experiments, as well as other protective practices to validate the results and avoid
biased conclusions based on CNN-generated annotations.
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1. Introduction

Enabled by the increasing availability of digital imag-
ing and large storage devices, the ability to analyze large
databases of images has become pivotal in discovery from
data in a broad range of fields. In particular, convolutional
neural networks (CNNs) are widely popular in biomedical
research, and are used for a very large number of applica-
tions within the biomedical domain (Litjens et al., 2017;
Min et al., 2017; Shen et al., 2017; Cao et al., 2018; Wain-
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berg et al., 2018), and obviously also other domains such
as object recognition, face recognition, and more. The
use of machine learning has also reinforced the need for
performance analysis models (Liu et al., 2017).

In the past decade, the rapid advancement in digital
imaging and storage devices have enabled the collection
of very large datasets of biomedical images. For instance,
microscopes with robotic stages are capable of collect-
ing thousands of microscopy images within a few hours
of operation (Abraham et al., 2004; Zanella et al., 2010;
Shamir et al., 2010; Singh et al., 2014). Digital radiogra-
phy has generated a high number of radiographs, allow-
ing to automate the data analysis to make new discover-
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ies or improve healthcare practices through tasks such as
automatic image-based diagnostics (Hu et al., 2018; Ker-
many et al., 2018; Bychkov et al., 2018; Aina et al., 2019;
Thomsen et al., 2020).

The availability of large databases of biomedical im-
ages has reinforced the need for methodology that can an-
alyze these images and turn them into scientific discover-
ies or new healthcare practices. Such datasets also allows
the AI community to develop AI-based solutions to prob-
lems within the biomedical domain. Once the datasets
become public, the AI community can use them as bench-
marks, develop algorithm that can analyze them, and com-
pare the performance of different algorithms to identify
the optimal solutions.

In the past decade, deep learning, and specifically con-
volutional neural networks have become the most com-
mon AI approaches for biomedical image analysis (An-
war et al., 2018; Chen et al., 2019; Zhang et al., 2019).
CNNs can be applied to a broad range of image data
without the need to tailor specific algorithms, and can
achieve superior performance. With the availability of
easy-to-use libraries, CNNs have become very common
also among researchers who are not necessarily computer
scientists. However, while CNNs have substantial advan-
tages, their prevalence also requires studying their dis-
advantages in the context of biomedical images, and the
common practices in the application of CNN to biomed-
ical image datasets. CNNs identify features automati-
cally from the image pixels, leading to non-intuitive fea-
tures that often act as a “black box”. These features are
determined automatically by their ability to discriminate
between the different classes, and therefore might also
be driven by signal that does not necessarily reflect the
biomedical problem at hand.

While deep learning is clearly an emerging trend in vir-
tually all aspects of biomedical image analysis, and that
trend is bound to continue, it is also important to care-
fully analyze its weaknesses. Unlike traditional “shallow
learning” methods designed to measure specific aspects
of the image data, CNNs are designed to learn automati-
cally from the pixel data without the need to design task-
specific features. The ability of deep neural networks
to identify complex features automatically is a substan-
tial advantage that makes deep learning highly prevalent,
and much easier to use by eliminating the need for deep
knowledge in image processing. However, these automat-

ically defined data-driven features are determined based
on their ability to separate between the different image
classes. That, however, reinforces a careful experimen-
tal design that might be as critical for testing “shallow
learning” algorithms that work by task-specific features.
For instance, pixels might have different values based on
subtle differences in the lighting conditions at the time of
imaging. CNNs might be able to capture these differences
in the case they are not normalized between the different
classes. Slight changes in the position of the imaging de-
vice or subject, differences in the temperature of the CCD
when the images are taken, and even different technicians
can lead to certain differences that are difficult to sense by
eye, but can have strong impact on CNNs. A CNN can
make predictions based on any information in the train-
ing set, regardless of whether it is of biomedical meaning.
Because the features are non-intuitive, it is difficult for the
experimentalist to identify situations in which the predic-
tions are driven by background noise or artifacts rather
than their biomedical meaning. Such situations can lead
to biased results published in scientific papers, while the
experimentalist is not aware of the bias and believes they
report on accurate findings.

In many cases the visual features leading to the bias are
too subtle to notice by eye, leading the experimentalist
to believe that the predictions made by the CNN reflect
the ability of the CNN to identify differences between the
visual content. Consequently, the experimentalist might
reach certain conclusions regarding the presence of dif-
ferences between the image classes, and the ability of the
CNN to identify these differences. As a simple example,
the ability of a CNN to identify a certain disease automat-
ically by analyzing radiographs can be estimated by the
benchmark dataset differently than the ability of the same
CNN to identify the same disease in a real-world setting.

Here we study possible dataset bias using several dif-
ferent datasets acquired in a controlled process, which is
typical to the acquisition of biomedical image datasets.
We show that in many cases the application of the CNNs
to the datasets leads to results driven by dataset bias re-
lated to the data acquisition process, and can therefore
lead to biased results. To avoid biased results, we pro-
pose simple control experiments. These experiments can
be performed at the time of applying a CNN to annotate
the data, and can assist in identifying situations in which
the annotation is driven by bias.
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2. Related work

Benchmark datasets are compiled for developing ma-
chine vision algorithms, and testing and comparing the
performance of different algorithms to identify the most
effective solution to a given biomedical image analysis
problem. These datasets have enabled substantial re-
search, and their use is a common standard practice in ma-
chine learning. However, benchmark datasets can also be
biased for different reasons. For instance, in the context
of benchmarks for object recognition, the perception of
the people annotating the samples by their ground truth or
selecting the samples for the dataset can lead to bias, es-
pecially when the dataset is collected from the web (Tor-
ralba and Efros, 2011; Khosla et al., 2012; Tommasi et al.,
2017; Kortylewski et al., 2019). That bias can also be
shown experimentally by the fact that training an algo-
rithm with one benchmark dataset and testing it with an-
other dataset leads to weaker results compared to train-
ing and testing using the same benchmark (Torralba and
Efros, 2011). That difference in performance is not ex-
pected given that larger training sets are expected to pro-
vide stronger or equal performance to smaller training
sets, and therefore the weaker performance can be consid-
ered evidence of dataset bias (Torralba and Efros, 2011).

In some cases, images that look visually identical can
be classified differently by a machine learning algorithm
due to certain information in the image that is too sub-
tle to notice by eye, but can have critical impact on the
classification process. That is known as adversarial ma-
chine learning (Huang et al., 2011). Such images can be
used to attack machine learning system, and can specifi-
cally impact the performance of artificial neural networks
(Goodfellow et al., 2014). The effect of adversarial sam-
ples can also impact video data (Zhang et al., 2020). The
ability to attack neural networks by using data that seem
visually indifferent to the human eye demonstrates that ar-
tificial neural network can be sensitive to bias originated
from the way the neural networks operate.

One of the solutions to the problem of dataset bias
is to increase the variability in the datasets. That can
be done by using data augmentation (McLaughlin et al.,
2015; Jaipuria et al., 2020), combining different datasets
(Khosla et al., 2012), or synthetically change the variabil-
ity of the dataset (Khosla et al., 2012). Another proposed
approach is to weight the different features by the abil-

ity of a certain feature set to classify them, and penal-
ize samples that are easy to classify (Li et al., 2019).
The weighted dataset can then be used to reduce the
bias in the results.

Benchmark datasets used in the domain of machine
learning aim at representing the real world as reliably as
possible (Torralba and Efros, 2011), allowing to develop
and compare the performance of different algorithms that
solve general common problems such as automatic ob-
ject recognition or face recognition. In the biomedical
domain, benchmark datasets are used to develop and com-
pared algorithms for different biomedical image analysis
problems. In other cases biomedical datasets are collected
for one single experiment, and used by a single research
team. While substantial work has been done to analyze
bias in datasets that were collected from the web, col-
lecting images from the web is much less frequent in the
preparation of biomedical image datasets. Here we focus
on biases in datasets collected in controlled environment
and well-defined data acquisition processes, as often is the
case in image analysis in the biomedical domain.

Assuming no bias in the dataset, the classification ac-
curacy shown by a convolutional neural network can be
trusted as an indication of differences between the dif-
ferent classes, and the ability of the algorithm to pro-
vide an automatic solution to the problem reflected by
that dataset. The application of the trained CNN to large
datasets can be used to annotate a large number of sam-
ples and make discoveries in the data, or automate anno-
tation as done in tasks such as image-based diagnostics.
However, if the dataset is biased in a certain way, that
bias could lead to signal driven by the bias rather than
by the biomedical information. That misleading situation
can lead to differences between the performance achieved
by the neural network when using the benchmark dataset,
and the performance of the neural network when applied
to real-world medical images.

A controlled data acquisition process does not neces-
sarily guarantee unbiased datasets. For instance, a medi-
cal dataset for automatic image-based diagnostics can be
acquired at more than one clinic. If the positive cases are
not distributed equally across the different clinics, a CNN
can learn the features that characterize a certain clinic,
and in fact develop an algorithm for “clinic classification”
rather than identification of the actual medical condition.
Because different clinics can use different hardware, dif-
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ferent settings, and different technicians, it is difficult to
guarantee that the image acquisition process in all clinics
is identical.

An example of such bias was demonstrated using mi-
croscopy data, where an algorithm could predict the treat-
ment applied to cells in microscopy images (Zanella et al.,
2010; Singh et al., 2014). But the ability to classify the
cells was also driven by the imaging session rather than
the morphology of the cells (Shamir, 2011). That was
shown by the consistency of the results regardless of the
presence of cells in the images, demonstrating that the sig-
nal was driven by the background noise rather than the
cells (Shamir, 2011). That is, even when the cells were
completely removed from the images, the classification
accuracy was nearly identical to the classification accu-
racy of the original dataset, when the cells were present
(Shamir, 2011).

3. Biomedical image datasets

Several datasets of biomedical images were tested, as
shown in Table 1. The first dataset that was used was
COVID-CT (Khan et al., 2020). The COVID-CT dataset
was compiled in order to test whether COVID-19 can
be diagnosed through automatic analysis of chest X-
rays. The dataset was used for CoroNet (Khan et al.,
2020), a deep convolution neural network that can iden-
tify COVID-19 infection from chest X-ray radiographs.

Figure 1 shows examples of original chest x-rays im-
ages from the dataset, and a 20×20 pixels sub-images
from the top left corner of the original image. It is clear
that by using the human eye alone it is not possible to
identify differences between the different classes based on
the cropped sub-images, as these are blank background ar-
eas that do not contain visual information of any part of
the body. Table 1 shows the classification accuracy when
classifying the blank 20×20 sub-images using a LeNet-5
convolutional neural network (LeCun et al., 1998; Sultana
et al., 2018). The activation function used in most lay-
ers of the convolutional neural network is Rectified Lin-
ear Unit (ReLU), except for the output layer, where the
sigmoid activation function is used. During training the
model used the Adam (Adaptive Moment estimation) op-
timizer (Kingma and Ba, 2014) with an adaptive learn-
ing rate, and the binary cross entropy is used as the loss

function because of binary classification. The number of
training epochs was 120.

The experiments were done by training the network
with the blank sub-images of the training set, and then
testing with the test blank sub-images in the test set. For
comparison, the same experiment was done by also train-
ing and testing with the original images. In any case, in
all experiments the training and test images were of the
same type, and no attempt was done to classify the 20×20
sub-images with a CNN trained with the original images,
or vice versa. Obviously, training images were not used
for testing. As the table shows, despite the absence of in-
formation related to COVID-19 in the seemingly blank
background sub-images, the CNN was able to achieve
classification accuracy of 67.14%, much higher than mere
chance accuracy of 50%.

Classification accuracy of ∼62.5% was observed with
the original dataset for COVID-CT, when classifying the
images into COVID-19 or not COVID-19 using LeNet-
5 architecture. This shows that the dataset of the sub-
images provided better prediction accuracy than the orig-
inal dataset. That surprising observation can be due to the
signal from the differences in the imaging process being
stronger than the signal from the medical condition re-
flected by the images. A dataset of sub-images is more
consistent, allowing the CNN to learn the subtle but con-
sistent differences between the images originated from the
imaging process.

Another biomedical dataset that was tested is a dataset
with four X-ray classes (Khan et al., 2020). In this dataset
the chest X-rays were separated into the classes COVID,
Normal, Pneumonia bacterial and Pneumonia viral.

Figure 1 shows examples of the original images and the
corresponding cropped top left corner of the original im-
ages. As the figure shows, the cropped images are similar
to each other, and cannot be classified easily by the naked
eye. They only contain background areas, and not any
part of the body. A convolutional neural network used
to distinguish the classes based on the cropped images
alone provided classification accuracy of ∼41.25%, which
is far higher than the expected random chance classifica-
tion of ∼25%. That is, even when no biomedical infor-
mation was present in the image, the CNN was able to
identify COVID-19 cases with accuracy far greater than
mere chance. The classification accuracy when applying
the same LeNet-5 architecture to the original dataset pro-
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No Dataset Classes # Training images # Test images Image size Accuracy (%)
1 COVID-19 (two classes) 2 558 140 20×20 pixels 67.14
2 COVID-19 (four classes) 4 960 240 20×20 pixels 41.25
3 Kvasir 8 3200 800 20×20 pixels 30.75

Table 1: Medical image datasets used in this study, the size of the separated seemingly blank background area, and the classification accuracy in
each dataset achieved when classifying the blank sub-images with a LeNet-5 convolutional neural network.

Figure 1: Example images from COVID-CT and a 20×20 portion of the
top left corner separated from the original images. Only the sub-images
were used for the classification.

vided accuracy of ∼77.50%. That shows that the CNN
trained and tested with the full images provided a higher
classification accuracy compared to the CNN trained and
tested using the blank sub-images. However, the dataset
made of the small blank sub-images also provided predic-
tion accuracy far higher than mere chance.

The Kvasir dataset (Pogorelov et al., 2017) is a biomed-
ical dataset that contains images of endoscopic examina-
tions. Figure 2 shows the original images and the blank
sub-images of size 20×20 pixels that were cropped from
the topmost left corner of the original dataset. As the fig-
ure shows, it is virtually impossible to classify the images
into their respective labels by using the visual informa-
tion in the cropped sub-images alone. However, LeNet-5
can perform this distinction with an accuracy of ∼30.75%,
even when the images do not contain any information that
can allow a person identify the class. As before, the accu-
racy achieved with the blank sub-images is much higher
than mere chance accuracy, which is ∼12.5% for the eight
classes.

When applying the LeNet-5 to the original images,
the classification accuracy was ∼73.75%. That accuracy
is higher than the accuracy when using the blank sub-
images. That difference can be attributed to the ability of
the CNN to identify differences between the classes based
on the visual content. But since the classification of the
blank sub-images also shows accuracy higher than mere
chance, it can be assumed that background visual features
related to the image acquisition process might have a cer-
tain impact on the results.

Another dataset that was used was a dataset of 200
microscopy images of drosophila (D. melanogaster) cells
separated into 10 classes, taken from the public bench-
mark of (Shamir et al., 2008b). Each class is a dif-
ferent gene being masked using mRNA interception,
and the cells are stained with DAPI (4’,6-diamidino-
2-phenylindole). The images were acquired using a
DeltaVision light microscope with a robotic stage and a
60× objective as described in (Shamir et al., 2009). Fig-
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Figure 2: Example images from the COVID-19 dataset with four classes,
and the 20×20 portion of the top left corner separated from the original
images. When only the sub-images were used the classification accuracy
was ∼41%.

Figure 3: Example original images from KVASIR and the 20×20 portion
of the top left corner separated from the original images. Only the sub
images were used for the classification.

ure 4 shows example images from the dataset for each of
the 10 genes being masked.

The dimensions of each microscopy image is
1024×1024 pixels, and each image contains multiple cells
as can be seen in Figure 4. The distribution of the cells in
the images is expected to be random, and the differences
between the classes are expected to be reflected through
the cells. Therefore, the cells were separated from the im-
ages by applying a simple Otsu binary threshold (Otsu,
1979), and objects with more than 40 neighboring pixels
were identified. The 60×60 subimage around each such
object was separated to create a dataset of 2000 images of
cells, and another dataset of 2000 subimages of the same
size taken from background parts of the image, where
cells were not present. The Table shows that while the
cell images are classified with much higher accuracy, the
background subimages are classified in accuracy much
higher than the expected 10% mere chance.

Objects # Training # Test Image Accuracy
images images size (pixels) (%)

Cells 1500 500 60×60 81.11
Background 1500 500 60×60 63.45

Table 2: The classification accuracy when using the cell images and
when using subimages taken from the background.

3.1. Face and object recognition

The source of the bias shown with the biomedical
datasets above could be the image acquisition process, as
will be discussed in Section 5. Some of the most com-
monly used datasets in the machine learning domain are
datasets of images downloaded from the web such as Im-
ageNet, and in these cases the process of image acquisi-
tion is not controlled. In the biomedical domain, however,
datasets are normally not acquired by downloading differ-
ent images from the web, but through a controlled pro-
cess. That process can be compared to the the process of
preparation of some face recognition datasets and object
recognition datasets.

For controlled face recognition datasets we tested the
Yale Faces A and the Yale Faces B face recognition bench-
mark datasets. The Yale Faces A dataset has 15 subjects,
where each subject has 11 face images. The Yale Faces
B dataset has 28 subjects, where each subject has 585 im-
ages.
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Figure 4: Example images and gene IDs from the RNAi dataset. Each class is the result of masking a different gene.

The Yale Faces B was transformed into a dataset of the
same number of images, where each image in the origi-
nal dataset was transformed into an image containing the
27×20 pixels of the top left corner in the original im-
age. That part of the image contained just the background,
which was visually identical in all images. Figure 5 shows
the first five images of the first five subjects in Yale Faces
B. As the figure shows, the sub-images separated from the
original images of the different subjects are very difficult
to distinguish when using the unaided human eye.

In the Yale Faces A dataset the background was re-
moved from the image, leading to an artificially blank
background. Therefore, in the case of the Yale A dataset,
each image was transformed such that the 22×29 pixels
from the forehead of each subject were used. Unlike Yale
B dataset, in which no pixel containing any feature of the
face or hair was used, in the Yale A dataset the small im-
ages contained pixels representing the skin of the person.
However, the images did not contain information that al-
lows to identify the face by visually looking at the image,
or to even identify that the image is a face or any other part
of a person’s body. Figure 6 shows examples of the origi-
nal face images and the smaller images that were used for
classification by the CNN.

As with the biomedical datasets, the classification ac-

curacy of the dataset was measured by using the common
LeNet-5 CNN architecture. The number of training and
test images in each dataset and the classification accuracy
of each dataset are shown in Table 3.

No Dataset classes # training # test Image size Accuracy
images images (pixels) (%)

1 Yale Faces A 15 132 33 22×29 54.6
2 Yale Faces B 28 13104 3276 27×20 87.8

Table 3: The size of the datasets and the classification accuracy when
using LeNet-5 for classifying the cropped small sub-images from the
face recognition datasets.

Although all images are visually similar to each other,
the CNN was able to classify the images with accuracy far
higher than mere chance. With 15 subjects, the expected
mere chance accuracy of Yale Faces A is ∼7%, while
the mere chance accuracy expected for the Yale Faces B
dataset is ∼3%. The dramatically higher classification ac-
curacy as shown in Table 3 shows that the CNN identifies
discriminating features that are not necessarily related to
the faces, and therefore not related to the machine learn-
ing problem at hand. That shows that even of the CNN
achieves classification accuracy higher than mere chance,
it does not necessarily mean that the CNN is indeed able
to identify faces, but could possibly identify features of
the dataset that allows discrimination between the differ-
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Figure 5: Example images from Yale Faces B and the small sub-images from the topmost left corner separated from the original images. Only the
sub images were used for the classification.

ent subjects.
When applying the CNN to the original Yale Faces

A dataset with the same number of training and test
images specified in Table 3, the classification accu-
racy is ∼96.97%. That is clearly higher accuracy than
the ∼54.55% accuracy when the transformed dataset of
cropped sub-images are used. That shows that the images
have more information than what can be identified in the
sub-images that only contain the forehead, but the fore-
head information identified by the CNN can be used to
identify the subject with accuracy is still far higher than
random chance accuracy.

When applying the CNN to the original Yale Faces B
dataset, also with the same number of training and test
images specified in Table 3, the classification accuracy
was ∼99.97%. As with Yale Faces A, there is a signif-
icant drop in the classification accuracy when using just
the small blank background sub-images. But the accu-
racy with the seemingly uninformative small parts of the
background is still far higher than mere chance accuracy.
In the case of Yale B, the small sub-images are taken from
the background of the images, and do not contain any part
of the face, hair, clothes, or anything else that might al-
low the identification of the person in the image. Sine the
subject can be identified without any feature of the face or

body, the only explanation is that the imaging process led
to information present in the images, and allows the CNN
to identify the subject by identifying the session in which
the image was taken.

Object recognition benchmark datasets are in many
cases collected from the world wide web. Commonly
used benchmarks include ImageNet, MS COCO, PAS-
CAL, or CIFAR. That method of collecting the data and
preparing benchmark datasets is different from collect-
ing images in the biomedical domain, where the process
is normally a controlled process. To test for the possi-
ble bias, we used object recognition datasets that were
collected in a controlled imaging process. We used two
datasets: COIL-20 and the COIL-100. COIL-20 contains
20 object classes, and each object has 72 image samples
in the dataset. COIL-100 has 100 subjects, each contains
72 images(Nene et al., 1996b) (Nene et al., 1996a).

A separate dataset of sub-images was created from
the original COIL-100 and COIL-20 datasets. The new
datasets were equal in the number of image to the original
datasets, but each image was replaced with the 128×128
sub-image, cropped from the top right corner of the orig-
inal image. Figures 7 and 8 show examples of the origi-
nal images, and the sub-images that were separated from
the original images to form the new datasets. As the fig-
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Figure 6: Example images from Yale Faces A and the sub-images of the forehead separated from the original images. Only the forehead sub-images
were used for the classification.

ures show, the new datasets are made of seemingly blank
images that contain no features that can allow a person
identify the class.

Table 4 shows the number of images in the training and
test sets, as well as the classification accuracy achieved
when using the cropped sub-images that contain no in-
telligible image content. For COIL-20 and COIL-100, the
mere chance accuracy is ∼5% and ∼1%, respectively. The
much higher classification accuracy achieved by the CNN
clearly illustrates that the model is able to capture the hid-
den compounded relationship between the segmented im-
age an the target label. That can be explained by the abil-
ity of the CNN to recover information from the pixels of
the background, and that information can distinguish be-
tween the object classes. Since no objects are present in
these sub-images, the identification is driven by the imag-
ing process, and the CNN can identify the imaging session
rather than the object in the image.

When applying the CNN to the original images the
classification accuracy of COIL-20 dataset is ∼98.61%,
which is far higher compared to the classification accu-
racy when using the cropped sub-images of ∼35.42%.
Similarly, the classification accuracy when applying the
CNN to the original COIL-100 dataset is ∼96.46%, far
higher than the ∼27.48% accuracy achieved when apply-

ing the CNN to the cropped sub-images.

4. Proposed solutions to CNN classification bias

One of the primary advantages of convolution neural
networks (CNNs) is their innate power to select a feature
map automatically when supplied with training images.
However, the downside of that nature might in some cases
lead to potential weaknesses. The automated process of
feature map selection without human interference may
lead to the use of features that are not necessarily a re-
flection of the image analysis problem at hand. The CNN
is designed to select the most discriminating features au-
tomatically, and if such features exist in the dataset the
classification accuracy provided by the CNN can be mis-
leading.

Several practices can be used to avoid misleading re-
sults due to classification bias driven by discriminating
yet irrelevant features. Firstly, the background of an im-
age can provide substantial information about the sound-
ness of the image acquisition process. By separating small
seemingly blank sub-images of the background we can
create a control dataset made with just background infor-
mation. The ability of a CNN to identify the correct class
based on the background alone can alert on the existence
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Figure 7: Example images from COIL-100 and the seemingly blank images of the background separated from the original images. Each sub image
is the 128×128 sub-image separated from the top right part of the image. Because that part of the image is background, the sub-images seem to the
unaided eye as black squares, and do not seem to contain meaningful information. Only the blank sub-images were used for the classification.

Figure 8: Example images from COIL-20 and the seemingly blank sub-images of the background separated from the original images. The back-
ground sub-images are the 128×128 sub-image separated from the top right part of each original image. That part of the images contain black
background only, and therefore the separated sub-images are visually black squares. Only the blank sub-images were used for the classification.
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No Dataset # classes # training images # test images Image size Accuracy (%)
1 COIL-20 20 1152 288 21×21 pixels 35.42
2 COIL-100 100 5760 1440 21×21 pixels 27.85

Table 4: Datasets used for testing the classification of object recognition benchmarks using deep neural networks.

of certain anomalies in the data acquisition process. These
anomalies are difficult to detect, but CNNs can use them
to make a classification with accuracy higher than its ac-
tual ability to classify these images when anomalies are
not present. That is, if a CNN can predict the class of an
image based on its background with accuracy higher than
mere chance, the overall classification accuracy achieved
by that CNN on the entire dataset might be biased, and
therefore no strong assumptions can be made on the abil-
ity to use that CNN as a valid solution.

Another approach that can be used is acquiring the
training set and test set in two separate data acquisition
sessions, or obtaining the training and test data from dif-
ferent clinics or other sources. That is, instead of acquir-
ing the entire dataset in a single batch and then separat-
ing it to training and test sets, the training set is acquired
in one session, and the test set is acquired in a differ-
ent session. The common practice of acquiring the entire
dataset in a single batch and then randomly splitting the
data into training and test sets can allow CNNs to achieve
stronger classification accuracy by using potential infor-
mation from the imaging session. If all images of a cer-
tain class were acquired in a single session, a CNN might
be able to select features that identify the session rather
than the class. Separating the acquisition of the training
and test sets ensures that no features that can identify the
session in the training set can be used by the CNN to iden-
tify the images in the test set by their session. That is, if
each class of images is acquired in a single imaging ses-
sion, and then separated into training and test samples,
a CNN can associate an image to its session to increase
its ability to correctly classify the images into classes. If
all test samples are acquired in a different session than the
training images, the session information cannot be used to
associate test samples with training samples of the same
class.

The practice of separating the acquisition of the train-
ing and test sets can be tested with the microscopy images
described in Section 3, and shown in Figure 4. The dataset

was generated multiple times through the same process,
leading to equivalent datasets with the same genes, but
imaged in a different process and different slides. The
same 10 genes were also used for different experiments
(Shamir et al., 2008a, 2009). Table 5 shows the results of
training with one slide imaged with one image acquisition
batch, and testing with another slide imaged in a different
image acquisition batch.

As the table shows, the classification accuracy of the
background images when using different imaging ses-
sions for training and testing dropped to ∼12%, which is
very close to random accuracy of 10%. The classifica-
tion accuracy of the cells also dropped substantially from
81% when training and testing with the same batch, to
47% when training with images acquired in one batch and
testing with images acquired in a different batch. That
shows that training with one batch and testing with an-
other batch reduces the accuracy, meaning that some of
the signal used for classification was originated from the
imaging session, in addition to the signal coming from the
shape of the cell.

Avoiding acquisition of data in sessions can also im-
prove the reliability of benchmark datasets commonly
used to test the performance of CNNs. For instance, if
each sample is acquired in a separate session, the CNN
will not be able to use the subtle but significant infor-
mation that reflect the imaging session. While imaging
multiple images in one session is convenient and more ef-
ficient in terms of number of images that can be collected,
it is also an unsound practice that can allow CNNs classify
the imaging session (e.g., lighting conditions, temperature
of the CCD, etc) rather than the subjects in the images. If
each image is acquired separately, no session information
will be present. Also, if the images are also acquired in a
random order and not by imaging one class at a time, the
class cannot be identified by the session its samples were
acquired in.

To test whether imaging each sample in a different ses-
sion, we used the c. elegans muscle age dataset, which
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Objects Classes # Training # Test Accuracy
images images (%)

Cells 10 1500 1500 47.27
Background 10 1500 1500 11.83

Table 5: The classification accuracy when using the cell images and when using subimages taken from the background. The training set was
acquired with one slide and one imaging session, and the test set was acquired in a different slide and a different image acquisition session than the
training set.

is also part of the benchmark dataset of (Shamir et al.,
2008b). The dataset contains 252 microscopy images of
the head of c. elegans nematodes, separated into four
classes. Each class is of a different age, 1 day old, 2 days
old, 4 days old, and 8 days old. Each image was acquired
separately, through a long manual process of imaging the
nematodes using a 20× objective light microscope. Ta-
ble 6 shows the classification accuracy of the entire im-
age, and the classification accuracy when separating the
20×20 top-left subimage from each image. Fifty images
per class are used from training, and seven images per
class are used for testing. Due to the relatively low num-
ber of test images, a 10-fold cross-validation is used.

Image Classes # Training # Test Accuracy
part images images (%)

All image 4 50 7 51.16
20×20 top-left 4 50 7 24.2

Table 6: Classification accuracy of the c. elegans muscle age dataset
when using the entire image, and when using the 20× seemingly blank
part of the images.

As the table shows, when separating the 20×20 top-left
subimage from each original image, the classification ac-
curacy drops to very close to mere chance accuracy of
25%. When using the entire image, the classification ac-
curacy is higher than random chance. That shows that
when acquiring each image separately the classification
accuracy is very close to the expected mere chance accu-
racy. That shows that if each image is acquired in a sepa-
rate batch, the background information cannot be used to
make associations between training and test images.

5. Conclusion

Dataset bias has been discussed in the computer vi-
sion literature in the context of the ability of benchmark
datasets to reflect the real world. In the biomedical do-
main, CNNs applied to biomedical image datasets have

been shown to provide in some cases better accuracy than
the classification made by expert pathologists (Paul et al.,
2021). Here we study biases that are not driven by the
human selection of the samples or preferences in the an-
notation process, but driven by the image acquisition pro-
cess. These biases are more relevant to the biomedical
domain, where in many cases the medical images are ac-
quired in a controlled process by a defined number of clin-
ics. These biases are difficult to identify, and are some-
times not expected since controlled image acquisition is
often assumed as a process that controls also for the pos-
sible biases.

Experiments show that when acquiring the training set
in one batch, and the test set in a different batch, the abil-
ity of the CNN to make accurate classifications with non-
informative background parts of the images drops to ap-
proximately mere chance accuracy. That is due to the ab-
sence of information that can associate the sessions. In
that situation, the ability to make correct classifications of
the foreground objects can be attributed to the real abil-
ity of the CNN to solve the image classification problem,
rather than its ability to identify subtle patterns that are
typical to certain image acquisition sessions. Acquiring
each image in a different session might not always be
practical, as it can require substantial labor. For instance,
in microscopy images preparing a separate slide for each
cell can be impractical when a single person attempts to
produce a dataset of several thousand cells. Preparing
one dataset for training and a separate dataset for testing
can achieve the same results. That practice doubles the
amount of work compared to the traditional approach of
splitting the data to training and test sets, but that practice
is still practical.

Being easy to use, powerful, and accessible through
available open source libraries, CNNs have been becom-
ing extremely popular in the biomedical domain, and the
default solution to automatic image analysis problems.
However, while CNNs are in many ways superior to pre-
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vious approaches, they also have the downside of over-
fitting and uncontrolled learning. When a growing pop-
ulation of biomedical researchers who are not necessar-
ily machine learning experts use CNNs, it is important to
ensure all CNN users are informed also with the possi-
ble weaknesses of CNN. That will help and avoid exper-
iments that might seem scientifically sound, but in fact
provide biased or unreliable results.
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