
Parallel Block-Delayed Sequences
Sam Westrick

Carnegie Mellon University
Pittsburgh, PA, USA
swestric@cs.cmu.edu

Mike Rainey
Carnegie Mellon University

Pittsburgh, PA, USA
me@mike-rainey.site

Daniel Anderson
Carnegie Mellon University

Pittsburgh, PA, USA
dlanders@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University

Pittsburgh, PA, USA
guyb@cs.cmu.edu

Abstract
Programming languages using functions on collections of
values, such as map, reduce, scan and filter, have been used
for over fifty years. Such collections have proven to be partic-
ularly useful in the context of parallelism because such func-
tions are naturally parallel. However, if implemented naively
they lead to the generation of temporary intermediate col-
lections that can significantly increase memory usage and
runtime. To avoid this pitfall, many approaches use “fusion”
to combine operations and avoid temporary results. How-
ever, most of these approaches involve significant changes
to a compiler and are limited to a small set of functions, such
as maps and reduces.
In this paper we present a library-based approach that

fuses widely used operations such as scans, filters, and flat-
tens. In conjunction with existing techniques, this covers
most of the common operations on collections. Our approach
is based on a novel technique which parallelizes over blocks,
with streams within each block. We demonstrate the ap-
proach by implementing libraries targeting multicore paral-
lelism in two languages: Parallel ML and C++, which have
very different semantics and compilers. To help users under-
stand when to use the approach, we define a cost semantics
that indicates when fusion occurs and how it reduces mem-
ory allocations. We present experimental results for a dozen
benchmarks that demonstrate significant reductions in both
time and space. In most cases the approach generates code
that is near optimal for the machines it is running on.

CCS Concepts: • Software and its engineering → Paral-
lel programming languages; Functional languages; • The-
ory of computation→ Parallel algorithms.

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9204-4/22/04.
https://doi.org/10.1145/3503221.3508434

Keywords: parallel programming, fusion, collections, func-
tional programming

1 Introduction
Collection-oriented programming is a style of programming
in which programs use operations over collections of values,
such as map, reduce, filter, and scan. Languages support-
ing this style date back to 1960s with APL (arrays) [18],
SETL (sets and maps) [29], Codd’s relational algebra (rela-
tions) [11] and FP (sequences) [3]. These languages allowed
a particularly simple and elegant way to work with collec-
tions. With the advent of highly parallel machines in the
mid 80s, there was a significant increase in interest in this
style of programming. The observation is that by raising the
level of abstraction, sequential loops go away, and code of-
ten becomes inherently parallel. Furthermore, working with
collections promotes a functional style of programming, and
hence mostly avoids mutation and, in the context of paral-
lelism, the potential dangerous data races they cause. Early
such data parallel languages include CM-Lisp [19], C* [28],
and Nesl [4]. Later ones used in a distributed setting include
map-reduce [14] and Spark [37].
It was quickly noted, however, that collections can incur

large overheads due to the generation of intermediate re-
sults. For example, a map squaring every element of a vector,
followed by a reduce summing the results would naïvely
generate an intermediate vector of the products before sum-
ming them. A loop, on the other hand, would multiply and
add as it went along. The generation of this intermediate
vector wastes not only space but also time, due to additional
reads and writes in situations where memory bandwidth is
often the bottleneck. This problem of avoiding intermediate
results has been studied extensively since the 1970s [1, 35]
and is often referred to as “loop-fusion”, just “fusion”, or orig-
inally “jamming”. Fusion has been applied to data-parallel
languages since the start of the 90s with dozens of papers
on the topic (e.g., [9, 12, 13, 17, 20–22, 24, 26, 31]). Most of
these techniques rely on compiler transformations.

Interestingly, however, Keller et al. [20] were able to show
that by taking advantage of standard compiler optimizations,
fusion can be implemented efficiently for sequences as a

61

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3503221.3508434
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Sam Westrick, Mike Rainey, Daniel Anderson, and Guy E. Blelloch

library interface (Repa). Their approach is based on the idea
that operations on sequences, such as map, can be “delayed”
by representing a sequence as a function from index to value.
In the map-reduce example, the map can generate such a
function at almost no cost, and the reduce can then call this
function to generate values for all indices. Their observation
is that a reasonable compiler can inline the function, avoid-
ing the cost of a function call at each index, and generating
near optimal code without a slew of special-purpose com-
piler optimizations. We refer to this as index fusion. Keller
et al.’s approach, however, only supported a limited set of
transformations, which (roughly speaking) consists of maps
followed by maps, or maps followed by a reduce.
In this paper we present a technique that, like Repa, can

be supported at the library level, but is significantly more
general, allowing fusion in many more cases. In particular it
allows fusion of scan operations with both maps before and
after the scan, or even a scan followed by a scan, filter, or
reduce. It furthermore allows fusion when a nested sequence
is flattened before or after a map, scan, or filter. This covers
the majority of common functions on collections.
Our approach uses two forms of delayed sequences. The

first, called a random-access delayed (RAD) sequence, rep-
resents a sequence as a function from index to value, similar
to Repa. The second, called a block-iterable delayed (BID)
sequence, splits a sequence into many equal-sized blocks,
where each block is a delayed stream of elements that can be
retrieved sequentially. RADs allow random-access and are
generated by operations such as map and tabulate. BIDs do
not allow random-access, and are generated by scan, filter,
or a flatten, as well as by a map or zip that is itself given a
BID as input. The idea of a BID sequence is new, whether
supported by a compiler or as a library as we do.

By achieving fusion optimizations entirely within a library,
our approach requires no changes to the compiler, and is easy
to implement in a broad set of languages. To demonstrate
portability, we implement libraries for both C++ and Parallel
ML, languages with very different semantics and compilers.
To help users understand when there is a benefit from the
approach, and in some cases potential loss, we define a cost
semantics that captures the work, span (critical path length,
a.k.a., depth), and temporary space generated by different
computations. The space is a good prediction of performance
due to memory bandwidth limitations.
To evaluate our delaying technique, we study the perfor-

mance of a collection of benchmarks on a 72-core machine,
with each benchmark implemented in both C++ and Par-
allel ML, using the MPL [2, 36] compiler for Parallel ML.
We compare the delayed versions against programs that use
a fast, non-delayed implementation of sequences. At scale,
our delayed versions achieve speedups that are up to 5.3x
faster in MPL, and 19x in C++. The speedup is in most cases
is at least 2x. Moreover, we observe a 3x improvement in
maximum space usage in most cases, and up to 250x in both

type 𝛼 seq // sequences with elements of type 𝛼
val empty: 𝛼 seq // written ⟨⟩
val length: 𝛼 seq → int // written |𝑎 |
val sub: 𝛼 seq → int → 𝛼 // written 𝑎[𝑖]
val tabulate: int → (int → 𝛼) → 𝛼 seq

val map: (𝛼 → 𝛽) → 𝛼 seq → 𝛽 seq

val zip: 𝛼 seq × 𝛽 seq → (𝛼 × 𝛽) seq

val reduce: (𝛼 × 𝛼 → 𝛼) → 𝛼 → 𝛼 seq → 𝛼

val scan: (𝛼 × 𝛼 → 𝛼) → 𝛼 → 𝛼 seq → 𝛼 seq × 𝛼

val filter: (𝛼 → bool) → 𝛼 seq → 𝛼 seq

val filterOp†: (𝛼 → 𝛽 option) → 𝛼 seq → 𝛽 seq

val flatten: 𝛼 seq seq → 𝛼 seq

†Also known as mapMaybe (Haskell) and mapPartial (SML).

Figure 1. Sequence interface: common operations

MPL and C++. Given our delayed sequence library, we could
attain these speedups with only a modest effort for each
benchmark, often with no additional implementation effort.

Our contributions include:
1. An approach based on blocking that allows agressive loop

fusion for operations on sequences at the library level,
covering several more cases than previously covered, and
supporting nested parallelism.

2. Implementations in both C++ and Parallel ML.
3. A cost semantics that enables users to reason about the

performance of fused operations in terms of work, span,
and allocations (memory footprint).

4. An experimental evaluation on a collection of benchmarks
demonstrating the effectiveness of our approach.

The approach described in this paper has already been in-
tegrated in the Parlay Library [5] and has been applied to
improve the performance of several of the benchmarks in
PBBS [30], including breadth-first search (BFS), inverted in-
dices, and ray-triangle intersection.

2 Background
Our goal is to provide an interface like that shown in Fig-

ure 1. We present code in ML-like syntax, but we support the
same functions in C++ via templates and overloading. The
interface includes standard functions on sequences, similar
to those found in a variety of collection-oriented languages
(e.g. [3, 4, 8, 17, 18, 20, 37]).

Stream fusion. The idea of stream fusion is to create
the elements of a list on demand starting at the front [12,
16, 24, 32, 34]. In a functional setting, a stream is typically
implemented as a function 𝑆 returning a pair (𝑥, 𝑆 ′), where
𝑥 is the first element and 𝑆 ′ is a stream for the rest of the
elements. When a function such as map 𝑓 𝑆 is applied to the
stream 𝑆 , it can return a new stream such that each request
for an element will first request an element from 𝑆 and then
apply 𝑓 to it, returning the result and the rest of the stream.
In an imperative setting, a stream can be implemented with

62

Parallel Block-Delayed Sequences PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

side effects as an iterator (where incrementing the iterator
will evaluate the next element). Stream functions such asmap
or reduce can be composed. For example, a map followed by
a reduce would never instantiate the intermediate list, only
instantiating one element at a time, requiring𝑂 (1) additional
memory beyond the input to run.

Collection-oriented programming with stream fusion has
gained recent popularity in the programming community, as
demonstrated for example by the C++20 ranges library [27].
It promotes collection-oriented programming by supplying
a variety of generic algorithms for ranges of elements in the
form of so-called view adapters. Whatmakes them interesting
for us is that they are implemented using stream fusion.1 The
library allows operations such as maps, filters, and flattens to
be composed and fused, and is entirely library-based, requir-
ing no language extensions or specialized compiler support.
However, it is designed for sequential computation, and does
not support parallelism, except in easy cases. Similar tools
exist in other languages, such as the java.util.stream li-
brary introduced in Java 8.
To make stream-fusion efficient requires the compiler to

get rid of (possibly multiple) function calls on each iteration.
Several special purpose compiler techniques have been sug-
gested, and many modern compilers can do it without any
special purpose techniques. Indeed we use stream fusion as
a component and rely completely on off-the-shelf compilers
for Parallel ML (MPL) and C++ (GCC).

Index fusion. The idea of index fusion is to create ele-
ments of a random-access array on demand by supplying
the index [20]. Essentially, a delayed array is a function from
index to value. When a function such as map 𝑓 𝐴 is applied
to a delayed array𝐴 it can return another delayed array that,
given index 𝑖 , evaluates and returns 𝑓 (𝐴[𝑖]). The delayed
map does almost no work—it just needs to create a single new
function (typically removed by the compiler). As with stream
fusion, functions such as map and reduce can be composed,
and no intermediate results will be created. For example, in
reduce (+) (map 𝑓 𝐴), the map would do almost no work,
and the reduce would sum up the elements and evaluate 𝑓

on each element when that index is requested. Also, as with
stream fusion, for efficiency it is important to remove the
function calls (e.g., inlining 𝑓 and the addition functions into
the compiled reduce). As noted by the Repa system [20], the
Haskell (GHC) compiler can already do this in most cases.
We have verified that the MPL and GCC compilers also can
handle it.

Combining stream and index fusion. Stream and index
fusion have their tradeoffs. Index fusion does not support
functions where the result at an index depends on results at
earlier indices. For example, in the scan operation, accessing

1Technically, they are required to be𝑂 (1)-movable, and𝑂 (1) copyable if
they are copyable, which effectively forces them to use stream fusion.

the 𝑖th element requires evaluating all previous elements.
Stream fusion can easily support scans since it has seen all
previous elements and can keep a running sum. On the other
hand, stream fusion does not support random access and
is therefore not useful by itself for parallelism, while index
fusion supports random access and works well in a parallel
context. This suggests that a combination of the two could
be powerful.

2.1 Stream-of-blocks
Previous work has shown how to use variants of stream
fusion with parallelism [17, 24] using the stream-of-blocks
approach. The idea is to break the stream into blocks of
fixed length such that requesting the next “element” would
instantiate a whole block and return it. Parallelism is then
exploited within blocks: for example, for map 𝑓 𝐴, we could
apply 𝑓 to each element of a single block in parallel. This ap-
proach works well with fine-grained SIMD parallelism, such
as with GPUs or vectorization (where the block-size could
correspond to the size of a hardware vector). It is, however,
not well suited for coarse-grained parallelism where blocks
would have to be gigantic to overcome the cost of spawning
tasks to run in parallel. In particular, our experiments (Sec-
tion 6) show that it is hard to get any improvements with
streams of blocks over non-fused operations on a multi-chip
processor because of the high cost of synchronization. This
work also does not support flatten.

2.2 Block-based implementations
Our approach relies on standard block-based implementa-
tions of reduce, scan, flatten, and filter. These are commonly
used in practice (including in ParlayLib [5] and Parallel
ML [2, 36]) since blocks are a natural mechanism for gran-
ularity control and load balancing. The idea is simply to
break the input (and/or output) into equal sized blocks.2 The
number of blocks is often chosen to be proportional to the
number of processors.
A reduce can be implemented efficiently in two phases.

The first phase sequentially computes a partial sum for each
block, in parallel across blocks. The second phase sums these
partial sums, often sequentially because the number of blocks
is small. For 𝑛 elements across 𝑏 blocks, the first phase does
𝑛 reads and 𝑏 writes, and the second 𝑏 reads and one write.

Scan can be implemented similarly, with three phases [10]
instead of two. The first phase again sums within blocks. The
second phase then does a scan on these partial sums. The
results of the scan are then used as offsets for the third phase,
which rereads the input along with the offsets to do a scan
within each block, each starting from an offset. See Figure 2.
Here the first phase does 𝑛 reads and 𝑏 writes, the second 𝑏
reads and writes, and the third 𝑛 + 𝑏 reads, and 𝑛 writes.

2Throughout we will ignore roundoff issues.

63

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Sam Westrick, Mike Rainey, Daniel Anderson, and Guy E. Blelloch

input

block
sums

block
prefix
sums

output

phase 1

phase 2

phase 3

Figure 2. Three phases of scan

B(0) B(1) B(2) B(3)

input

output

Figure 3. Flattening sequences into multiple uniform blocks.

The flatten operation—illustrated in Figure 3—blocks the
output iteration space instead of the input. It first does a
scan on the input lengths, which returns the offset for each
subsequence in the output, as well as the overall size. The
overall size is partitioned into equal sized blocks, and the
start of each block is merged with the calculated offsets. This
tells each block which subsequences or parts of them it is
responsible for. Each block then copies its part to the output.

The block-based filter works in two phases. The first phase
does a filter within each block, packing the kept elements
within the block into a contiguous region. The second phase
is simply a flatten on the packed blocks as described above.

Note that for these implementations, all inner loops within
blocks are sequential. This is important for our technique.

3 Technical Overview and Examples
Our idea is to break a sequence into many equal sized blocks,
where each block is a (delayed) stream. We call this represen-
tation a block-iterable delayed sequence (BID). The insight
is that the BIDs work well with with the common block-
based implementations of reduce, scan, filter, and flatten (as
described in Section 2.2) because the inner loop on each block
is sequential and therefore can be converted into a stream.
If the block boundaries are chosen consistently across se-
quences, then the streams from one operation can be fused
blockwise with streams of the previous or next operation.
More implementation details are given in Section 4.
In comparison to the stream-of-blocks technique (Sec-

tion 2.1), we essentially turn it “inside-out”, using blocks
of streams instead. This offers two important advantages.
First, it is well-suited for coarse-grained parallelism which
is required on multicores. Second, it efficiently supports a
broader set of operations on sequences (such as flatten).
In addition to BIDs, we also support a form of random-

access index fusion, which we refer to as random access
delayed sequences (RADs). Any RAD can be converted to a

fun bestCut(𝐴) =

let val isEnd = map 𝑓 𝐴

val (endCounts, _) = scan (op+) 0 isEnd

val costs = map 𝑔 endCounts

in reduce ℎ costs end

Figure 4. Simplified version of best-cut for ray tracing.

map

phase 1

phase 2

phase 3

scan

map

reduce

Normal Fused

n

R

n

b

n+b

n

n+b

W

n

b

b

n

n

b+1

R

—

n

b

—

—

n+2b

W

—

b

b

—

—

b+1

Total (R+W): 8n + O(b) 2n + O(b)

Figure 5. The sequence of operations for best-cut showing
the three phases of scan for 𝑛 elements and 𝑏 blocks. On
the right, the number of reads (R) and writes (W) for both
normal and fused versions.

BID in work and space proportional to the number of blocks,
but to convert from BID to RAD requires first converting
to a non-delayed sequence to allow for random access. We
supply a mechanism to force a RAD or BID into a standard
non-delayed sequence. This can be useful to avoid evaluating
a delayed sequence more than once when passed to more
than one operation. Our cost semantics (Section 5) helps the
user determine the tradeoffs of when or when not to delay.

Example: best-cut for ray tracing. This example is mo-
tivated by a ray-tracing benchmark in the PBBS benchmark
suite [30], which recursively builds a kd-tree by partition-
ing triangles based on the surface area heuristic [23]. To
decide how to partition, the heuristic picks an axis-aligned
cut of the volume so as to minimize a cost function involving
the surface areas of the two resulting subvolumes, and the
number of triangles that fall in each.
Figure 4 shows a simplified version of the best-cut code,

ignoring some implementation details (e.g., the definitions
of 𝑓 , 𝑔, and ℎ.) To compute the best cut, four operations are
applied in sequence: map, scan, map, and reduce.
Figure 5 illustrates the sequence of operations with the

scan broken into its three phases. To the right is the number
of reads and writes required by each operation, assuming
an input sequence of length 𝑛, and 𝑏 blocks. Without fusion
there are a total of 8𝑛 +𝑂 (𝑏) reads and writes. In the fused
version the initial map can be fused with the first phase of

64

Parallel Block-Delayed Sequences PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

type graph // graph interface
type vertex = int

val numVertices: graph → int

val outNeighbors: graph → vertex → vertex seq

fun BFS (𝐺: graph) (𝑠: vertex) = // search from "source" 𝑠
let val 𝑛 = numVertices 𝐺

val 𝑃 = arrayTabulate 𝑛 (fn 𝑖 ⇒ −1) // parents
fun outPairs (𝑢: vertex) = // tag neighbors with self

map (fn 𝑣 ⇒ (𝑢, 𝑣)) (outNeighbors 𝐺 𝑢)
fun tryVisit(𝑢, 𝑣) = // try to visit 𝑣 from parent 𝑢

if compareAndSwap(𝑃, 𝑣,−1, 𝑢) then SOME(𝑣)
else NONE

fun search(𝐹: vertex seq) =

if |𝐹 | = 0 then () else
let val 𝐸 = flatten (map outPairs 𝐹)

val 𝐹 ′ = filterOp tryVisit 𝐸 // next frontier
in search 𝐹 ′ end

in tryVisit (𝑠, 𝑠); // visit source vertex (use self as parent)
search ⟨𝑠⟩; // do the BFS (first frontier: source only)
𝑃 end // after search is done, return parents

Figure 6. Forward BFS with sequences

the scan. In particular, the input is converted into 𝑏 blocks
of streams, each of which is fused with one of the blocks in
the first phase of the scan. The parallelism is across blocks.
The third phase of the scan can be fused with the map and
then the reduce. Again this uses stream fusion within each
block. The final fused loops only pass over the data twice
requiring only a total of 2𝑛 +𝑂 (𝑏) reads and 𝑂 (𝑏) writes.

We note that the fusion comes at the cost of evaluating the
elements of the initial map twice, once in each of the fused
loops. An alternative is to force the result of the initial map
so that it is only calculated once. This comes at the cost of
increasing the number of reads and writes to 4𝑛 +𝑂 (𝑏) (the
force would require 𝑛 reads and 𝑛 writes). This difference is
exposed by our cost semantics (Section 5) without needing
to know the details of the implementation.

Example: Breadth-first search (BFS). Our second exam-
ple uses flatten and filter to generate a BFS tree. The pseu-
docode is shown in Figure 6. On each iteration the code maps
over the frontier (i.e. all vertices at some distance 𝑖 from the
source), generates all their neighbors, and then keeps those
that have not yet been visited. This first involves a map with
a nested map inside (outPairs), followed by a flatten to gen-
erate a sequence of source-destination pairs corresponding
to all pairs of a frontier vertex and an out neighbor. It then
uses a filterOp to filter out any visited neighbors, and at the
same time labeling each newly visited vertex with its parent
in the BFS tree, using shared mutable state. There is a race
(among those in the frontier to claim an unvisited neighbor
and set its parent) which is resolved with a CompareAndSwap.

By using fusion in our approach, the flattened sequence
of pairs is never instantiated. Furthermore, the filter only
needs to pack down within blocks without having to return
the result as a contiguous array. This significantly improves
performance as show in Section 6, and improved the perfor-
mance in the PBBS benchmarks [30]. A more in-depth cost
analysis, using our cost semantics, is given in Section 5.1.

4 Block-Delayed Sequences
At a high level, our delayed sequence type is a tagged union
of two different representations, called RAD and BID.

datatype 𝛼 seq = // the delayed sequence type
| RAD of int × int × (int → 𝛼) // random−access delay
| BID of int × (int → 𝛼 stream) // blocked−iterable delay

A RAD (random-access delayed sequence) uses a tuple
(𝑖, 𝑛, 𝑓) to represent the sequence ⟨𝑓 (𝑖), . . . , 𝑓 (𝑖 + 𝑛 − 1)⟩. In
this representation, any element can be retrieved indepen-
dently by calling the index lookup function 𝑓 at the appro-
priate index.
A BID (blocked-iterable delayed sequence) represents a

sequence with the tuple (𝑛,𝑏) where 𝑛 is the total number of
elements and 𝑏 is a function used to retrieve blocks. Specif-
ically, 𝑏 (𝑖) is the 𝑖th block, and there are ⌈𝑛/B𝑛⌉ blocks for
a sequence of size 𝑛, where B𝑛 is the block size. Ignoring
roundoff issues for the last block, each block contains the
same number of elements.

There are a number of reasonable ways to choose the block
sizeB𝑛 : it could be set as a constant at compile-time, or could
be computed as 𝑛/𝑃 where 𝑃 is the number of processors,
etc. Our definitions work the same for any block-size.

Notation Convention. The code presented in this sec-
tion uses three distinct types of sequence-like data: arrays,
streams, and our delayed sequences. Some standard func-
tions have multiple implementations, one for each type. To
distinguish these, we write a.XXX to indicate the version of
function XXX which operates on arrays, and similarly s.XXX

for the stream version. No prefix is used for the version
defined for delayed sequences.

4.1 Auxiliary Definitions
The implementation presented in this section relies on a few
auxiliary functions, which are shown in Figure 7.

Parallel Apply.The apply function (Figure 7) is essentially
a tabulate with no result. It takes a length 𝑛 and function
𝑓 , and executes 𝑓 (𝑖) in parallel for each 0 ≤ 𝑖 < 𝑛. The
apply function is the only parallel primitive we use, and can
be implemented using parallel divide-and-conquer over the
iteration space.
Arrays. Delayed sequences internally use arrays to hold

intermediate results where necessary. We therefore use a

65

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Sam Westrick, Mike Rainey, Daniel Anderson, and Guy E. Blelloch

val apply: int → (int → unit) → unit

type 𝛼 array // arrays with elements of type 𝛼
val a.allocate: int → 𝛼 array

val a.length: 𝛼 array → int

val a.tabulate: int → (int → 𝛼) → 𝛼 array

val a.map: (𝛼 → 𝛽) → 𝛼 array → 𝛽 array

val a.reduce: (𝛼 × 𝛼 → 𝛼) → 𝛼 → 𝛼 array → 𝛼

val a.scan:

(𝛼 × 𝛼 → 𝛼) → 𝛼 → 𝛼 array → 𝛼 array × 𝛼

Figure 7. Auxiliary code: parallel apply and arrays.

type 𝛼 stream // delayed streams of elements of type 𝛼
val s.length: 𝛼 stream → int

// these operations require only 𝑂 (1) work
val s.tabulate: int → (int → 𝛼) → 𝛼 stream

val s.map: (𝛼 → 𝛽) → 𝛼 stream → 𝛽 stream

val s.zip: 𝛼 stream × 𝛽 stream → (𝛼 × 𝛽) stream

val s.scan:

(𝛼 × 𝛼 → 𝛼) → 𝛼 → 𝛼 stream → 𝛼 stream

// these operations require (at least) linear work
val s.reduce: (𝛼 × 𝛼 → 𝛼) → 𝛼 → 𝛼 stream → 𝛼

val s.applyStream: 𝛼 stream → (𝛼 → unit) → unit

val s.packToArray:

(𝛼 → bool) → 𝛼 stream → 𝛼 array

Figure 8. Streams

1 fun BIDfromSeq (BID(𝑛,𝑏)) = BID(𝑛,𝑏)
2 fun BIDfromSeq (RAD(𝑖, 𝑛, 𝑓)) =

3 BID(𝑛, fn 𝑗 ⇒

4 s.tabulate B𝑛 (fn 𝑘 ⇒ 𝑓 (𝑖 + 𝑗 · B𝑛 + 𝑘)))

5 fun applySeq 𝑆 𝑓 =

6 let val BID(𝑛,𝑏) = BIDfromSeq 𝑆

7 fun doBlock(𝑖) = s.applyStream (𝑏 (𝑖)) 𝑓

8 in apply ⌈𝑛/B𝑛⌉ doBlock end

9 fun toArray 𝑆 =

10 let val 𝑛 = length 𝑆

11 val 𝐴 = a.allocate 𝑛 // new array
12 val 𝐼 = RAD(0, 𝑛, fn 𝑖 ⇒ 𝑖)
13 in applySeq (zip (𝐼 , 𝑆)) (fn (𝑖, 𝑥) ⇒ 𝐴[𝑖] := 𝑥);
14 A end

15 fun RADfromArray 𝐴 = RAD(0, |𝐴|, fn 𝑖 ⇒ 𝐴[𝑖])

16 fun force 𝑆 = RADfromArray (toArray 𝑆)

17 fun RADfromSeq (RAD(𝑖, 𝑛, 𝑓)) = RAD(𝑖, 𝑛, 𝑓)
18 fun RADfromSeq (BID(𝑛,𝑏)) = force (BID(𝑛,𝑏))

Figure 9. Conversions between arrays, RADs, and BIDs.

small parallel array library conforming to the interface shown
in Figure 7.

4.2 Blocks as Streams
In the BID representation, each block is a delayed stream
of values. Streams can be represented in a number of ways,
and in fact our implementation of streams differs between
Parallel ML and C++, which we discuss in more detail in
Section 4.4. The only requirement here is that streams are
delayed, and so can be constructed in 𝑂 (1).
Figure 8 shows the interface for a small set of functions

on streams, implemented both in Parallel ML and C++ for
our framework. Outside of standard sequence functions,
there are two special functions we need: s.applyStream and
s.packToArray. The s.applyStream function applies a func-
tion to each element produced by the stream. The s.packToArray
function is essentially a filter, except it outputs an array; it
is fully sequential and can be implemented with dynamic-
resizing arrays to ensure that only as much memory is allo-
cated as needed.
All stream functions require only 𝑂 (1) work except for

three: s.reduce, s.applyStream, and s.packToArray. These
three functions require 𝑂 (𝑛) work and span for a stream of
length 𝑛 (assuming the function passed as argument is𝑂 (1)).

4.3 Implementing Block-Delayed Sequences
We present the implementation of our block-delayed se-
quences in Figures 9 and 10. Figure 9 defines a few func-
tions which convert between different representations of
sequences (arrays, RADs, and BIDs). These are then used in
Figure 10, which implements standard functions such as map,
scan, filter, etc.

Between RADs and BIDs. The function BIDfromSeq (Fig-
ure 9, lines 1-4) converts a sequence to the BID representa-
tion. Any BID given as input is left unchanged. RADs are
blockified by reindexing: the 𝑗th block of the output starts
at offset 𝑗 · B𝑛 .
Similarly, the function RADfromSeq (Figure 9, lines 17-18)

ensures that a sequence is RAD. To convert a BID to a RAD,
we “force” it (toArray, lines 9-14) by allocating an array of
the appropriate size, and then traversing the BID to write
each element into the array. Finally, we package up the array
as a RAD. Traversing a BID is accomplished by the function
applySeq (Figure 9, lines 5-8) which calls s.applyStream in
parallel across the blocks.
Force. The force function (Figure 9, line 16), while not a

standard sequence function, is useful for programming with
delayed sequences, to ensure that all delayed work has been
performed. It is essentially the same as RADfromSeq, except
that a RAD given as input will be fully evaluated, too.
Tabulate and Map. The tabulate function (Figure 10,

line 19) is fully delayed in the sense that it always returns
a RAD, requiring only 𝑂 (1) work. Similarly, map (Figure 10,

66

Parallel Block-Delayed Sequences PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

19 fun tabulate 𝑛 𝑓 = RAD(0, 𝑛, 𝑓)

20 fun map 𝑔 (RAD(𝑖, 𝑛, 𝑓)) = RAD(𝑖, 𝑛, 𝑔 ◦ 𝑓)
21 fun map 𝑔 (BID(𝑛,𝑏)) = BID(𝑛, (s.map 𝑔) ◦ 𝑏)

22 fun zip (RAD(𝑖, 𝑛, 𝑓), RAD(𝑗, 𝑛, 𝑔)) = // if both are RAD...
23 RAD(0, 𝑛, fn 𝑘 ⇒ (𝑓 (𝑖 + 𝑘), 𝑔(𝑗 + 𝑘)))
24 fun zip (𝑆1, 𝑆2) = // if at least one is BID...
25 let val BID(𝑛,𝑏1) = BIDfromSeq 𝑆1
26 val BID(𝑛,𝑏2) = BIDfromSeq 𝑆2
27 in BID(𝑛, fn 𝑖 ⇒ s.zip(𝑏1 (𝑖), 𝑏2 (𝑖))) end

28 fun reduce 𝑓 𝑧 𝑆 =

29 let val BID(𝑛,𝑏) = BIDfromSeq 𝑆

30 val sums = // phase 1
31 a.tabulate ⌈𝑛/B𝑛⌉ ((s.reduce 𝑓 𝑧) ◦ 𝑏)
32 in a.reduce 𝑓 𝑧 sums end // phase 2

33 fun scan 𝑓 𝑧 𝑆 =

34 let val BID(𝑛,𝑏) = BIDfromSeq 𝑆

35 val sums = // phase 1
36 a.tabulate ⌈𝑛/B𝑛⌉ ((s.reduce 𝑓 𝑧) ◦ 𝑏)
37 val (𝑃, 𝑡) = a.scan 𝑓 𝑧 sums // phase 2
38 val 𝑅 = // phase 3
39 BID(𝑛, fn 𝑖 ⇒ s.scan 𝑓 (𝑃 [𝑖]) (𝑏 (𝑖)))
40 in (𝑅, 𝑡) end

41 fun getRegion(𝑆: 𝛼 seq array, offsets, 𝑛, 𝑖) =

42 ... // 1. binary search in offsets to find start of 𝑖𝑡ℎ block
43 // 2. construct stream (length B𝑛) to walk through 𝑆

44 fun flatten 𝑆 =

45 let val 𝑆 ′ = a.map RADfromSeq (toArray 𝑆)
46 val (off,𝑛) = a.scan (op+) 0 (a.map length 𝑆 ′)
47 in BID(𝑛, fn 𝑖 ⇒ getRegion(𝑆 ′,off,𝑛,𝑖)) end

48 fun filter 𝑝 𝑆 =

49 let val BID(𝑛,𝑏) = BIDfromSeq 𝑆

50 val 𝑆 ′ = a.tabulate ⌈𝑛/B𝑛⌉
51 (RADfromArray ◦ (s.packToArray 𝑝) ◦ 𝑏)
52 val (off,𝑚) = a.scan (op+) 0 (a.map length 𝑆 ′)
53 in BID(𝑚, fn 𝑖 ⇒ getRegion(𝑆 ′,off,𝑚,𝑖)) end

Figure 10. Implementation of block-delayed sequences.

lines 20-21) is also fully delayed, and is efficiently imple-
mented with function composition. There are two cases. For
RAD input, the index function 𝑓 is replaced by 𝑔 ◦ 𝑓 . For
BID input, the block-stream function 𝑏 is replaced by the
composition (s.map 𝑔)◦𝑏. That is, when a block of the output
is needed later, the block will be computed by first calling
𝑏 (which produces a stream) and then applying the stream-
map, creating another stream of the resulting values. These
function calls are delayed: each block of the output is en-
coded as a function that will only be called later when the
elements of the block are needed.

Zip. The zip function (Figure 10, lines 22-27) has two
cases. When both sequences given as input are RAD, then
the output is also RAD. But when at least one input sequence
is BID, we fall back on converting both sequences to BID and
then applying the stream-zip pairwise to block-streams. Note
that we require that both sequences are the same length: this
way, the blocks are guaranteed to align.

Reduce and Scan. The reduce function (Figure 10, lines
28-32) first converts the input to a BID, and then begins
by eagerly computing the sum of each block by calling the
stream-reduce for each block-stream (this is the first phase of
the reduce, as described in Section 2). They are then summed
up to produce the final result (second phase).

The scan function (Figure 10, lines 33-40) is more interest-
ing since it supports functionality not supported by RADs.
In particular, its output is a BID, which means that phase 3 of
the algorithm can be delayed. Looking at the implementation,
phase 1 can be fused with its input (either a BID or RAD)
but will be fully evaluated to generate the sums sequence. In
phase 2, the array-scan is computed eagerly, but only needs
to operate over the number of blocks (rather than the full
input size). Phase 3 then generates delayed streams for each
block as a BID.

Flatten. The flatten function (Figure 10, lines 44-47), like
scan, allows both its input and output to be fused with sur-
rounding operations. For the output, the key idea is to parti-
tion the output index space into equal-sized blocks so that
the output can be represented as a BID. This involves doing
an array-scan on the sizes of each subsequence to produce
offsets for the start of each subsequence in the output. Then
each block can extract a region of the top-level sequence, as
depicted previously in Figure 3.
In the code, the output blocks are defined by a function

getRegion whose implemention is omitted for brevity. We
implement this function by binary searching on the offsets
to find which subsequence the block begins in, and then
constructing a stream (of length B𝑛) which walks left-to-
right across adjacent subsequences. Because the beginning
of a block may be in the middle of one of the subsequences,
we force that all the subsequences are RAD (line 45).

Altogether, assuming all input sequences are RAD, this
results in eager work proportional to the length of the outer
sequence. The rest of the work is delayed (e.g. the binary
searches to find the fronts of the blocks will not occur until
the blocks are actually computed by a different function).

Filter. The filter function (Figure 10, lines 48-53) begins
by packing the input down into many arrays, one for each
block. Then (similar to flatten) the getRegion approach is
again used to package up these arrays into a BID. As a result,
the filter only allocates space for the elements which survive
(as well as the space for the subsequence offsets). By using a
BID for the output, we avoid needing to copy the surviving
elements into a final output array.

67

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Sam Westrick, Mike Rainey, Daniel Anderson, and Guy E. Blelloch

4.4 Library Implementation
We implemented block-delayed sequences in both Parallel
ML and C++ as libraries. Note that in Parallel ML, the library
code is very similar to that shown in Figure 10.

In our C++ implementation, we use forward iterators to im-
plement streams. The iterators maintain their current state,
and each time they are incremented, the next position is eval-
uated, updating the state. Templates are used to make the
type of the iterators specific to the underlying data, which
could itself be a stream that was composed with a delayed
operation, making it particularly easy for C++ compilers to
inline the resulting fusion. Overloading is used to dispatch
on the type of the sequence (BID, RAD or fully realized). Our
implementation is built on top of the Parlay Library [5].

In ML, we used an approach similar to forward iterators, in
the form of functions of the type unit → unit → 𝛼 . These
functions have a particular mode of use, where applying
the first unit produces a stateful “trickle” function that can
be called repeatedly to produce elements of the stream. In-
ternally, the trickle function maintains the current state of
the stream. All of these details are internal to the library
implementation.

5 Cost Semantics
We define costs in terms of work, span, and allocations. The
work W(𝑒) is the total number of steps to evaluate an ex-
pression 𝑒 . The span S(𝑒) counts the number of steps on the
critical path. The allocation-count A(𝑒) is the total size of
all intermediate arrays. These costs are defined in Figure 11
for selected functions from the sequence library. Costs for
omitted functions can be similarly defined.

In Figure 11, the eager costs (W, S, A) are those that are
incurred now, and the delayed costs (W∗, S∗, A∗) are those
that are possibly incurred later, when the output sequence is
passed as input to another operation. Delayed costs appear
in the cost semantics as properties of individual sequences.
That is, just as a sequence 𝑋 has a length |𝑋 | and elements
𝑋𝑖 , we also equip it with delayed costs at each index.

1. W∗
𝑋
(𝑖) ∈ N is the delayed work at index 𝑖 of 𝑋 .

2. S∗
𝑋
(𝑖) ∈ N is the delayed span at index 𝑖 of 𝑋 .

3. A∗
𝑋
(𝑖) ∈ N is the delayed allocation at index 𝑖 of 𝑋 .

For example, the expression tabulate 𝑛 𝑓 always has con-
stant eager costs, i.e.,W(tabulate 𝑛 𝑓) ∈ 𝑂 (1). This is be-
cause all computation is delayed in the output 𝑌 . Later, these
delayed costs may contribute to an eager cost, such as in
forcewhich causes all delayed computation to occur eagerly.
In Figure 11 this is expressed asW(force 𝑋) = ∑

𝑖 W∗
𝑋
(𝑖),

i.e., the work of force is the sum of delayed input work (and
similarly for span and allocations).

We also keep track of the representationR(𝑋) ∈ {RAD,BID}
of each sequence 𝑋 , which can affect the cost of operations.
Specifically, in some cases in Figure 11, we assume the input

sequence is RAD. This is purely for brevity and is not a re-
striction on when the costs are defined. Our library conforms
to these cost specifications by implicitly force’ing sequences
where necessary.

Blockmaxes.When specifying span costs, wewrite bmax𝑛𝑖
to indicate the max of sums of blocks in a sequence of length
𝑛. Specifically, this is defined as follows.

bmax𝑛𝑖 . . . = max ⌈𝑛/B𝑛 ⌉−1
𝑗=0

∑(𝑗+1)B𝑛−1
𝑖=𝑗B𝑛

. . .

ForBIDs, bmax computes spans appropriately, as each block
is internally sequential (requiring a sum) but all blocks are
processed in parallel (requiring a max). Note also that many
operations on RADs internally convert to a BID (see Fig-
ure 10), and therefore are still subject to bmax’ed spans.
Simple function arguments. There is a standard prob-

lem with higher-order functions, where to accurately specify
costs, the implementation of the library itself must be ex-
posed. Therefore, for simplicity here, we assume that the
functions 𝑓 passed as argument to both reduce and scan are
“simple” in the sense that they are constant-time functions for
all inputs and do not perform any intermediate allocations.
This covers typical uses such as scan-plus, reduce-min, etc.

5.1 Cost analysis example: Forward BFS
We now use our cost semantics to analyze the BFS from
Figure 6. For an input graph with 𝑁 vertices,𝑀 edges, and
a diameter 𝐷 , the total (eager) costs of the BFS under our
semantics are 𝑂 (𝑁 +𝑀) work, 𝑂 (𝐷 (log𝑁 + B)) span, and
𝑂 (𝑁 + 𝑀/B) allocation. (For this analysis we assume the
block-size is a fixed value B.) The work bound shows that
BFS is work-efficient, and the span bound shows that it is
highly parallel. The amount of allocation is asymptotically
better than the 𝑂 (𝑁 +𝑀) allocation that would be incurred
by a naïve array-based implementation.

These bounds are derivable directly from our cost seman-
tics. For example, consider analyzing the allocations. A single
round of BFS has input 𝐹 , output 𝐹 ′, and consists of a map, a
flatten, and a filterOp (which has the same cost as filter). The
map incurs no eager allocation, and delays no allocations in
its output. The flatten incurs |𝐹 | eager allocation (as well as
any delayed allocationA∗

𝐹
(𝑖) for each element of 𝐹 , but these

costs are 0). The filter then allocates |𝐹 ′ | + |𝐸 |/B (as well as
any allocations due to applying the tryVisit function or
delayed allocation on each element, but again these are 0).
Altogether, that adds up |𝐹 | + |𝐹 ′ | + |𝐸 |/B allocation for a
single round. Summing over all rounds then yields a total
allocation of 𝑂 (𝑁 +𝑀/B).

6 Experimental evaluation
We present an empirical evaluation of our delayed sequences,
as implemented in both C++ and Parallel ML, against two
baseline implementations: a highly optimized parallel array
library with no fusion, and an extension of the array-only
library which enables RAD fusion, but not BID fusion. These

68

Parallel Block-Delayed Sequences PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Operation Output Representation and Delayed Costs Eager Work Eager Span Eager Alloc
R(𝑌) W∗

𝑌
(𝑖) S∗

𝑌
(𝑖) A∗

𝑌
(𝑖) W S A

𝑌 = force 𝑋 RAD 1 1 0
∑

𝑖 W∗
𝑋
(𝑖) bmax|𝑋 |

𝑖
S∗
𝑋
(𝑖) |𝑋 | +∑

𝑖 A∗
𝑋
(𝑖)

𝑌 = tabulate 𝑛 𝑓 RAD W(𝑓 (𝑖)) S (𝑓 (𝑖)) A(𝑓 (𝑖)) 1 1 0

𝑌 = map 𝑓 𝑋 R(𝑋) W∗
𝑋
(𝑖)+

W(𝑓 (𝑋𝑖))
S∗
𝑋
(𝑖)+

S(𝑓 (𝑋𝑖))
A∗

𝑋
(𝑖)+

A(𝑓 (𝑋𝑖))
1 1 0

𝑌 = filter 𝑝 𝑋 BID 1 1 0
∑

𝑖

[
W∗

𝑋
(𝑖)

+W(𝑝 (𝑋𝑖))
] bmax|𝑋 |

𝑖

[
S∗
𝑋
(𝑖)+

S(𝑝 (𝑋𝑖))
]
+ log |𝑋 |

|𝑌 | + |𝑋 |/B|𝑋 |
+∑𝑖

[
A(𝑝 (𝑋𝑖)) + A∗

𝑋
(𝑖)

]
𝑌 = flatten 𝑋

where R(𝑋𝑖) = RAD BID See note† See note† See note†
∑

𝑖 W∗
𝑋
(𝑖) log |𝑋 | + bmax|𝑋 |

𝑖
S∗
𝑋
(𝑖) |𝑋 | +∑

𝑖 A∗
𝑋
(𝑖)

(𝑌, _) = scan 𝑓 𝑏 𝑋

where 𝑓 is simple BID 1 + W∗
𝑋
(𝑖) 1 + S∗

𝑋
(𝑖) 1 + A∗

𝑋
(𝑖) ∑

𝑖 W∗
𝑋
(𝑖) log |𝑋 | + bmax|𝑋 |

𝑖
S∗
𝑋
(𝑖) |𝑋 |/B|𝑋 | +

∑
𝑖 A∗

𝑋
(𝑖)

_ = reduce 𝑓 𝑏 𝑋

where 𝑓 is simple – – – –
∑

𝑖 W∗
𝑋
(𝑖) log |𝑋 | + bmax|𝑋 |

𝑖
S∗
𝑋
(𝑖) |𝑋 |/B|𝑋 | +

∑
𝑖 A∗

𝑋
(𝑖)

†For 𝑌 = flatten 𝑋 , delayed costs for each index are carried through to the output. Specifically, we have W∗
𝑌
(𝑖) = W∗

𝑋 𝑗
(𝑖 −𝑂 (𝑗)) where 𝑋 𝑗 is the

inner sequence which contains 𝑖th overall element and𝑂 (𝑗) is the offset of 𝑋 𝑗 . Delayed span and allocations are computed in the same way.
Figure 11. Costs of sequence operations. Each operation takes an input sequence 𝑋 , eagerly performs work W, span S, and
allocations A, and (possibly) produces output sequence 𝑌 .

Name Abbr Fusion Description

array A none highly optimized parallel arrays
rad R RAD only extends A with RAD fusion (for

tabulate, map, reduce, etc.)
delay Ours RAD+BID our block-delayed sequences

Figure 12. Library implementations used in evaluation

comparisons allow us to separately determine the impact of
fusion due to our two (RAD and BID) representations.
The three libraries used in this section, as summarized

in Figure 12, are respectively referred to as array (A), rad
(R), and delay (Ours). Each library is implemented in both
C++ and Parallel ML, resulting in six implementations to-
tal. The two baseline libraries (array and rad) are based on
ParlayLib [5] for C++, and all Parallel ML code (libraries
and benchmarks) is ported from C++. All code used in this
evaluation is publicly available.3

Our experiments collectively show that:
• For benchmarks which utilize BID fusion, in almost all
cases, we see a significant improvement in both time and
space due to the BID representation.

• At full scale (72 processors), BIDs are consistently faster
and use less space than RADs alone, with up to 2.7x and
10x improvements in time and space, respectively.

• RADs alone offer significant benefits in comparison to
arrays without fusion, providing up to 19x improvement
in time and 92x improvement in space on 72 processors.

• Our block-delayed sequences are portable across different
programming languages and paradigms, providing similar
performance benefits in both C++ and Parallel ML.
Benchmarks. Our benchmarks are split into two cate-

gories: those that utilize BID fusion (via operations such as
scan, flatten, and filter), and those that only utilize RAD
3https://github.com/mpllang/delayed-seq

fusion. All benchmark codes are well optimized; in particular,
we verified that with our block-delayed sequences library,
the C++ benchmarks perform similarly to hand-optimized
codes from the state-of-the-art PBBS [30] benchmark suite.
Many of the benchmarks utilize nested parallelism, which
our libraries support seamlessly.

BID Benchmarks. The following benchmarks utilize both
BID and RAD fusion. The bestcut benchmark performs a
kd-tree best cut (as described in Section 3) on 200M bounding
boxes of triangles. bfs computes a forward BFS as shown
in Figure 6; the input is random power-law graph [7] with
approximately 16.7M vertices and 199M edges. bignum-
add performs addition on two bignums of 500M bytes each.
primes calculates all primes less than 100M. tokens splits
500M characters into words (average word length 7).
RAD Benchmarks. These benchmarks do not use BIDs

but make extensive use of RADs. grep finds all lines of a
file that contain a pattern, similar to Unix grep; the input is
843M characters across 28M lines where approximately 850K
lines match the pattern. integrate calculates the integral of√︁
1/𝑥 for 𝑥 ∈ [1, 1000] using 𝑛 = 500M points. linearrec

solves a linear recurrence of the form 𝑅𝑖 = 𝑥𝑖𝑅𝑖−1 + 𝑦𝑖 ; the
input is 500M pairs of doubles (𝑥𝑖 , 𝑦𝑖). linefit finds a line of
best fit for 500M 2D points (pairs of doubles).mcss computes
the maximum contiguous subsequence sum of an array of
500M 64-bit integers. quickhull computes the convex hull
of 20M points (pairs of doubles) in a circle from a uniform
distribution. sparse-mxv multiplies a sparse matrix (2M
rows, 200M nonzero entries) with a vector of length 2M. wc
counts the number of lines, words, and bytes (same as Unix
wc) in a file of 500M chars.

Experimental setup. We run all experiments on a 72-
core Dell PowerEdge R930 with 4 × 2.4GHz Intel 18-core
E7-8867 v4 Xeon chips, 1TB of main memory, 45MB of L3
cache per chip, and a memory bus clocked at 4800MHz. The
C++ programs are compiled with g++ version 7.4.0 with -O3,

69

https://github.com/mpllang/delayed-seq

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Sam Westrick, Mike Rainey, Daniel Anderson, and Guy E. Blelloch

Time Space

𝑃 = 1 𝑃 = 72 𝑃 = 1 𝑃 = 72

A R Ours R
Ours A R Ours R

Ours A R Ours R
Ours A R Ours R

Ours

bestcut 43.9 13.9 9.52 1.5 .912 .258 .158 1.6 34 9.0 .82 11 33 8.9 .87 10
bfs 18.8 14.1 15.2 0.93 .509 .470 .425 1.1 9.6 7.7 4.3 1.8 13 8.7 5.7 1.5

bignum-add 7.87 7.38 4.56 1.6 .151 .132 .080 1.7 2.6 2.1 1.5 1.4 2.7 2.2 1.6 1.4
primes 13.7 9.05 7.99 1.1 .647 .181 .136 1.3 8.1 2.2 .16 14 7.5 2.2 .22 10
tokens 22.7 12.6 6.85 1.8 .746 .322 .125 2.6 21 9.6 1.5 6.4 18 9.7 1.6 6.1

bestcut 3.40 1.90 2.90 0.66 .196 .063 .053 1.2 8.8 2.4 .87 2.8 10 3.6 2.0 1.8
bfs 17.1 8.41 6.72 1.3 .406 .211 .168 1.3 7.1 5.7 5.3 1.1 8.1 6.9 6.4 1.1

bignum-add 2.03 2.15 2.07 1.0 .150 .093 .048 1.9 7.0 5.0 3.1 1.6 8.2 6.2 4.3 1.4
primes 2.54 2.42 1.56 1.6 .159 .118 .071 1.7 5.0 3.0 .98 3.1 6.3 4.1 2.1 2.0
tokens 3.62 2.86 1.59 1.8 .176 .077 .029 2.7 7.0 3.0 1.6 1.9 8.2 4.2 2.7 1.6

Figure 13. Benchmarks with BID improvement. Top half: results for MPL (Parallel ML). Bottom half: C++. Times are in seconds,
and space numbers are in GB.

Time Space

𝑃 = 1 𝑃 = 72 𝑃 = 1 𝑃 = 72

A Ours A
Ours A Ours A

Ours A Ours A
Ours A Ours A

Ours

grep 14.7 8.61 1.7 .359 .153 2.3 8.9 1.7 5.2 9.2 2.0 4.6
integrate 4.99 3.24 1.5 .130 .053 2.5 4.0 .015 267 4.1 .044 93
linearrec 41.9 10.7 3.9 1.04 .454 2.3 55 33 1.7 64 33 1.9

linefit 10.5 2.39 4.4 .497 .143 3.5 24 8.0 3.0 24 8.1 3.0
mcss 11.5 4.83 2.4 .397 .081 4.9 20 4.0 5.0 20 4.1 4.9

quickhull 11.7 3.60 3.2 .479 .121 4.0 6.7 2.7 2.5 11 3.1 3.5
sparse-mxv 4.12 2.10 2.0 .090 .052 1.7 6.3 4.2 1.5 4.8 4.9 0.98

wc 5.89 2.25 2.6 .195 .037 5.3 8.5 .54 16 8.6 .58 15

grep 4.33 3.29 1.3 .085 .064 1.3 2.4 1.5 1.6 3.6 2.6 1.4
integrate 2.41 1.85 1.3 .086 .032 2.7 4.0 .016 250 5.2 1.2 4.3
linearrec 4.76 2.44 2.0 .366 .198 1.8 20 12 1.7 21 13 1.6

linefit 4.36 2.14 2.0 .308 .146 2.1 16 8.0 2.0 17 9.2 1.8
mcss 4.83 .987 4.9 .376 .038 9.9 20 4.0 5.0 21 5.2 4.0

quickhull 1.33 1.14 1.2 .055 .033 1.7 2.8 2.6 1.1 4.2 3.8 1.1
sparse-mxv 3.07 1.78 1.7 .062 .042 1.5 4.2 4.2 1.0 5.3 5.3 1.0

wc 2.96 .510 5.8 .171 .009 19 8.5 .52 16 9.7 1.7 5.7

Figure 14. Benchmarks with RAD-only improvements. Top half: MPL (Parallel
ML). Bottom half: C++. Times are in seconds, and space numbers are in GB.

0 10 20 30 40 50 60 70
0

10
20
30
40
50
60
70 delay

array
rad

(a) bfs (ML)
0 10 20 30 40 50 60 70

0
10
20
30
40
50
60
70 delay

array
rad

(b) bfs (C++)

0 10 20 30 40 50 60 70
0

10
20
30
40
50
60
70 delay

array
rad

(c) primes (ML)
0 10 20 30 40 50 60 70

0
10
20
30
40
50
60
70 delay

array
rad

(d) primes (C++)

Figure 15. Speedups w.r.t 1-processor
delay. (Processors on x-axis, speedups
on y-axis.)

using ParlayLib [5] and the jemalloc library. For C++, we
use numactl -i all to allocate pages on NUMA nodes in a
round-robin fashion. The Parallel ML programs are compiled
with MPL [2, 36], version v0.2. For each benchmark result,
we report the average over 10 runs. We compute space with
maximum residency as reported by Linux for a single run of
the benchmark (and then average across 10 repetitions).

Disentangled Codes. All of our Parallel ML codes are dis-
entangled [36], a property which enables provably efficient
parallel memory management [2], and is a requirement of
using the MPL compiler.

6.1 Impact of BID fusion
Although it offers more opportunities for fusion, our BID
representation also introduces some potential for noticeable
runtime overheads. Such overheads might be triggered for

example by increased code size, additional conditionals (e.g.
to check the representation of a sequence) hampered com-
piler optimizations, etc. To determine the impact of BIDs in
comparison to the much simpler RAD-only fusion, we con-
sider the five benchmarks that utilize at least one instance
of BID fusion.
In Figure 13, we present results for these benchmarks

in terms of execution time (columns 1-8) and space usage
(columns 9-16) on both 𝑃 = 1 and 𝑃 = 72 processors. Each
benchmark has three versions for the three libraries we con-
sider, as described in Figure 12: array-based (A), RAD-based
(R), and the full library (Ours). The improvement of the full
library version due to BID fusion (in comparison to the RAD-
only library) is shown via the ratio in column “R/Ours”. We
also include the array-based numbers here just for complete-
ness; note that the RAD results are consistently faster and

70

Parallel Block-Delayed Sequences PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

use less space than the array-based implementations, often
by a significant margin.
Comparing our full library to the RAD-only library, we

first observe that across the board, our full library consis-
tently uses less space, with improvements ranging from 1.1x
to 14x. On 72 processors, the full library is always faster, with
between 1.1x and 2.7x improvement. On 1 processor, there
are two instances in which our full library is slower: bfs in
Parallel ML and bestcut in C++. This is due in part to the
BID representation being optimized for parallel execution.
BIDs require additional work to manage multiple representa-
tions, for example in flatten where the library checks that
all inner sequences are RAD (Figure 10, line 45). There may
also be additional performance impacts due to other factors
such as insufficient code inlining or increased code size. At
single-core scale, where execution time is more sensitive to
compute-based overheads, this additional work (although
small) appears to be occasionally non-negligible. At full scale
however, where memory bandwidth becomes the bottleneck,
these overheads are easily outweighed by reduced memory
pressure. As such, we believe that our BIDs fall on the right
side of the time/space tradeoff: BIDs reducememory pressure
at the expense of some modest compute-based overheads,
which favors performance at full scale.

6.2 Impact of RAD-only fusion
In Figure 14, we compare the performance of our delayed-
sequence library against the baseline array library. The bench-
marks in this section do not use BIDs, but make extensive
use of RAD fusion. For each benchmark, the column labeled
“Ours” uses our library, whereas the “A” column uses array-
based sequences.
Overall, in both MPL and C++, our delayed versions are

as fast or faster in all configurations. Speedups range from
1x to 19x, but most are close to 3x. The impact of delaying
is especially pronounced in cases where its use changes the
memory access pattern of the workload. In some cases, for
instance, delaying can improve the benchmark from perform-
ing 𝑂 (𝑛) reads and writes to 𝑂 (𝑛) reads and 𝑂 (1) writes,
which can be significant owing to the relatively large cost of
writes on our test machine. The benchmarks that are affected
in this manner aremcss, linefit, wc, and integrate.
In the majority of cases, the speedup from delaying is

larger when at scale, sometimes by a significant amount.
Avoiding temporary arrays allows us to achieve performance
close to the peak bandwidth of the machine in some cases.
For example, the linefit algorithm has to go over the input
data twice. Given that each element is 16 bytes and the input
is 500M elements, the total number of bytes that need to be
read is 16 GB. Our machine has a peak read bandwidth of
140Gbytes/sec, which implies a peak performance of 16/140
= .114 seconds. We achieve about .145 seconds for both C++
and SML, which is reasonably close to the peak bandwidth.
The time for the non-delayed version is more than twice

slower, which corresponds to the extra read and extra write
for each element it requires (write bandwidth is slower).
The space usage of the delayed version is often signif-

icantly less than the non-delayed version. The largest we
measure is approximately 250x space reduction for integrate
in both Parallel ML and C++ on 1 processor. This massive
space reduction owes to the delayed version avoiding en-
tirely the need to allocate one large intermediate array. On
72 processors, the space reduction is less, due primarily to
additional allocations in the runtime system (in both Parallel
ML and C++) which account for the additional parallelism.

There is one benchmark for which our delaying has little
effect on space usage: sparse-mxv. This is because the arrays
being eliminated by delaying are tiny, around 100 items big,
and therefore do not significantly increase space usage. The
delayed version nevertheless achieves speedup thanks to
reducing the number of writes and allocation of the memory
for an inner map function.

6.3 Parallel ML vs. C++
Although not the focus of our comparison, it is worth noting
that on 72 cores, the Parallel ML codes using our library
(with both RAD and BID fusion) are often no more than 3x
slower than their C++ counterparts. The only exceptions
are tokens (4.3x), quickhull (3.7x), and wc (4.1x). Multiple
benchmarks even performwithin a factor of 2 (bignum-add,
primes, integrate, linefit, sparse-mxv).
The performance gap on 1 core is more significant; we

believe this gap is due to additional work for runtime checks
(such as array bounds checks) and automatic memory man-
agement. As the number of cores increases, this additional
work parallelizes well, causing the gap to decrease. In par-
ticular, the MPL compiler has a memory manager which
benefits significantly from parallelism [2, 36].

6.4 Scalability
To study scaling trends, we present a few speedups plots in
Figure 15. In these plots, the line marked “delay” is our full
library (with both BID and RAD fusion), “rad” is the library
with RAD-only fusion, and finally “array” is the array-based
library with no fusion. The speedups (y-axis) are given with
respect to the 1-processor time using the full library (“delay”).
The number of processors is on the x-axis.

Overall, the delayed versions of the benchmarks scale no-
ticeably better than their counterparts with lesser fusion.
The primary reason for the better scaling in delayed versions
is the reduced memory pressure afforded by delaying. Scal-
ing is more pronounced in the MPL versions because the
sequential MPL baseline is burdened with sources of over-
head that are absent in C++, and some of these overheads
parallelize very well, as discussed in Section 6.3. The relative
steepness of the MPL curves shows the system effectively
parallelizing away the costs associated with a high-level,
mostly-functional programming language.

71

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Sam Westrick, Mike Rainey, Daniel Anderson, and Guy E. Blelloch

Block size 𝑇 𝑇
𝐴

𝑇
Ours

105 0.550 2.8 10
106 0.271 1.4 5.1
107 0.211 1.1 4.0
108 0.198 1.0 3.7

Figure 16. Times 𝑇 (in seconds) of stream-of-blocks bestcut
on 72 processors across different block sizes, and compar-
isons with array-based (A) and block-delayed (Ours).

6.5 Stream-of-blocks vs. blocks-of-streams
As described in Section 2.1, one prior block-based fusion
technique is to represent a sequence as a stream of blocks.
Our approach contrasts with stream-of-blocks by turning it
“inside out”, i.e., by instead using blocks of streams.

Here we present a small comparison of the two approaches
by considering the bestcut benchmark. For this comparison,
we implemented a stream-of-blocks version of the bench-
mark. As described in Section 3, this benchmark roughly has
the structure of a map, followed by a scan, followed by an-
other map, and finally a reduce. The stream-of-blocks version
therefore maintains a small array (of size 𝐵, the block-size)
which undergoes these operations, in that order, before then
moving on to the next block. This continues iteratively until
all blocks have been processed. All parallelism occurs within
blocks, rather than across blocks.

In Figure 16, we present runtimes of the stream-of-blocks
bestcut on 72 processors across a range of block sizes, and
compare these times against both array-based sequences
and our block-delayed sequences. First, we observe that the
performance of the stream-of-blocks version is never better
than the array-based version, and is at least 3.7x slower than
with our block-delayed sequences. In fact, as the block size
increases, the performance of the stream-of-blocks version
improves, until it eventually matches the performance of the
array-based version. This demonstrates that, for multicore
(coarse) parallelism, the overhead of synchronization makes
it difficult to exploit the parallelism available within the
stream-of-blocks approach, especially for small block sizes.

7 Related Work
Fusion dates back to the 70s [1] and Allen and Cocke’s semi-
nal paper on compiler optimizations. This early work was in-
terested in fusing actual loops, and not focused on collection-
oriented languages. As such its emphasis was more on issues
such as strides, offsets, and loops along different dimensions
of an array [13, 21, 35]. Some of the work did allow the fusion
of a “map” (loop with no dependencies), with a “reduce” (a
loop which calculated a sum using an associative function),
but not other functions on collections.
The first work we know of that focused on data-parallel

languages was the work of Chatterjee et al. [9]. It is also the
only work of we know that fuses both the first and third

phase of the three-phase scan implementation The approach
was applied to VCODE [6] which was the intermediate lan-
guage for Nesl [4]. The compiler approach is quite sophis-
ticated, requiring size-inference as a subcomponent. This
approach was not applied to the filter or flatten functions.

Prior methods based on streams [16, 32, 34], indexing [20],
and streams of blocks [12, 17, 24] were described in Section 2.
In addition to the original work on delayed sequences [20],
there has been follow-upwork on addressing the challenge of
clients reasoning about cost (e.g., determiningwhether or not
a computation is delayed). To address this issue, Lippmeier et
al. [22] proposemaking certain representation details explicit
at the level of types. In our approach, such details are made
explicit via a cost semantics (Section 5), enabling clients to
perform a cost analysis. Other work extended the original
delaying approach so that a map can be fused with the first
phase of a scan [26], and so that some operations can fuse
more efficiently by avoiding conditional branches in inner
loops [33], which can be important for vectorization and
GPU programming.
In the distributed setting, there has been work on fusion

for operations such as map, reduce, scan, and filter [15, 25].
Our work differs from this prior work in multiple ways. First,
data-parallel operations in our proposal may be nested, and
our RAD representation allows for random access. Second,
our approach utilizes stream fusion within blocks and there-
fore is able to significantly decrease the number of memory
writes. For instance, in a reduce after a scan, our approach
performs only 𝑂 (𝑏) writes, where 𝑏 is the number of blocks.
Without stream fusion, 𝑂 (𝑛) writes to memory (where 𝑛 is
the number of elements) would be needed.

8 Conclusion
We present a fusion technique for collection-oriented pro-
gramming based on uniform blocks of (delayed) streams.
This approach efficiently supports a wide range of com-
mon operations (including scan, flatten, and filter), and is
well-suited for coarse granularities required on multicores.
Our library implementations and experiments in both C++
and Parallel ML demonstrate that the technique is portable
across multiple languages, offering significant performance
improvements without needing any changes to the compiler.
In future work, it would be interesting to adapt the technique
for many-core (e.g. GPU) and distributed settings, where the
cost of synchronization differs significantly.

Acknowledgements
We thank the anonymous reviewers for their comments and
suggestions, and Umut Acar for many helpful discussions
along the way. This work was supported by the National Sci-
ence Foundation under grants CCF-1901381, CCF-1910030,
CCF-1919223, CCF-2028921, CCF-2107241, CCF-2119352, and
CCF-2115104.

72

Parallel Block-Delayed Sequences PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

References
[1] Frances E. Allen and John Cocke. 1971. A Catalogue of Optimizing

Transformations. IBM Thomas J. Watson Research Center.
[2] Jatin Arora, Sam Westrick, and Umut A. Acar. 2021. Provably Space

Efficient Parallel Functional Programming. In Proceedings of the 48th
Annual ACM Symposium on Principles of Programming Languages
(POPL)".

[3] John W. Backus. 1978. Can Programming Be Liberated From the
von Neumann Style? A Functional Style and its Algebra of Programs.
Commun. ACM 21, 8 (1978), 613–641. https://doi.org/10.1145/359576.
359579

[4] Guy E. Blelloch. 1992. NESL: A Nested Data-Parallel Language. Tech-
nical Report CMU-CS-92-103. School of Computer Science, Carnegie
Mellon University.

[5] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Par-
layLib - A Toolkit for Parallel Algorithms on Shared-Memory Multi-
core Machines. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). https://doi.org/10.1145/3350755.3400254

[6] Guy. E. Blelloch and Siddhartha Chatterjee. 1990. Vcode: a data-parallel
intermediate language. In IEEE Frontiers of Massively Parallel Compu-
tation. 471–480.

[7] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004.
R-MAT: A recursive model for graph mining. In SIAM SDM.

[8] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones,
Gabriele Keller, and Simon Marlow. 2007. Data Parallel Haskell: A
Status Report. In Workshop on Declarative Aspects of Multicore Pro-
gramming (DAMP). 10–18.

[9] Siddhartha Chatterjee, Guy E. Blelloch, and Allan L. Fisher. 1991. Size
and Access Inference for Data-Parallel Programs. In ACM SIGPLAN
Conference on Programming Language Design and Implementation
PLDI). 130–144.

[10] Siddhartha Chatterjee, Guy E. Blelloch, and Marco Zagha. 1990. Scan
Primitives for Vector Computers. In 1990 ACM/IEEE Conference on
Supercomputing (SC). 666–675.

[11] E. F. Codd. 1970. A Relational Model of Data for Large Shared Data
Banks. Commun. ACM 13, 6 (June 1970), 377–387.

[12] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream
Fusion: From Lists to Streams to Nothing at All. In ACM SIGPLAN
International Conference on Functional Programming (ICFP). 315–326.

[13] Alain Darte. 1999. On the complexity of loop fusion. In IEEE Int. Con-
ference on Parallel Architectures and Compilation Techniques (PACT).

[14] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM 51, 1 (2008), 107–113.

[15] Kento Emoto and Kiminori Matsuzaki. 2014. An automatic fusion
mechanism for variable-length list skeletons in SkeTo. International
Journal of Parallel Programming 42, 4 (2014), 546–563.

[16] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. 1993. A
Short Cut to Deforestation. In Proc. Conference on Functional Pro-
gramming Languages and Computer Architecture (FPCA). https:
//doi.org/10.1145/165180.165214

[17] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein,
and Cosmin E. Oancea. 2017. Futhark: Purely Functional GPU-
Programming with Nested Parallelism and in-Place Array Updates.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 556–571.

[18] Kenneth E. Iverson. 1962. A Programming Language. Wiley, New York.
[19] Guy L. Steele Jr. and W. Daniel Hillis. 1986. Connection Machine LISP:

Fine-Grained Parallel Symbolic Processing. In ACM Conference on LISP
and Functional Programming (LFP). 279–297.

[20] Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchinskiy, Si-
mon L. Peyton Jones, and Ben Lippmeier. 2010. Regular, shape-
polymorphic, parallel arrays in Haskell. InACM SIGPLAN international
conference on Functional programming (ICFP). ACM, 261–272.

[21] Ken Kennedy and Kathryn S. McKinley. 1993. Maximizing loop paral-
lelism and improving data locality via loop fusion and distribution. In
Int. Workshop on Languages and Compilers for Parallel Computing.

[22] Ben Lippmeier, ManuelM. T. Chakravarty, Gabriele Keller, and Simon L.
Peyton Jones. 2012. Guiding parallel array fusion with indexed types.
In ACM SIGPLAN Symposium on Haskell. 25–36.

[23] J. David MacDonald and Kellogg S. Booth. 1990. Heuristics for ray
tracing using space subdivision. Vis. Comput. 6, 3 (1990), 153–166.
https://doi.org/10.1007/BF01911006

[24] Geoffrey Mainland, Roman Leshchinskiy, and Simon Peyton Jones.
2017. Exploiting vector instructions with generalized stream fusion.
Commun. ACM 60, 5 (2017), 83–91.

[25] Kiminori Matsuzaki and Kento Emoto. 2009. Implementing fusion-
equipped parallel skeletons by expression templates. In International
Symposium on Implementation and Application of Functional Languages.
Springer, 72–89.

[26] Trevor L. McDonell, Manuel M.T. Chakravarty, Gabriele Keller, and
Ben Lippmeier. 2013. Optimising Purely Functional GPU Programs. In
ACM SIGPLAN International Conference on Functional Programming
(ICFP). 49–60.

[27] Eric Niebler, Casey Carter, and Christopher Di Bella. 2018. The One
Ranges Proposal. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/
p0896r4.pdf.

[28] John R. Rose and Guy L. Steele Jr. 1987. C*: An Extended C Language.
In Proceedings of the C++ Workshop. Santa Fe, NM, USA, November 1987.
USENIX Association, 361–398.

[29] J. T. Schwartz, R.B.K Dewar, E. Dubinsky, and E. Schonberg. 1986.
Programming with Sets: An Introduction to SETL. Springer-Verlag, New
York.

[30] Julian Shun, Guy E. Blelloch, Jeremy T Fineman, Phillip B Gibbons,
Aapo Kyrola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012.
Brief announcement: the Problem-Based Benchmark Suite. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[31] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
Dubach. 2015. Generating Performance Portable Code Using Rewrite
Rules: From High-Level Functional Expressions to High-Performance
OpenCL Code. InACM SIGPLAN International Conference on Functional
Programming (ICFP). 205–217.

[32] Josef Svenningsson. 2002. Shortcut Fusion for Accumulating Param-
eters & Zip-like Functions. In Proc ACM SIGPLAN International Con-
ference on Functional Programming (ICFP). https://doi.org/10.1145/
581478.581491

[33] Bo Joel Svensson and Josef Svenningsson. 2014. Defunctionalizing
Push Arrays. In Proceedings of the 3rd ACM SIGPLAN Workshop on
Functional High-Performance Computing (Gothenburg, Sweden) (FHPC
’14). Association for Computing Machinery, New York, NY, USA, 43–52.
https://doi.org/10.1145/2636228.2636231

[34] Philip Wadler. 1990. Deforestation: Transforming Programs to Elimi-
nate Trees. Theor. Comput. Sci. 73, 2 (1990), 231–248.

[35] JoeWarren. 1984. AHierarchical Basis for Reordering Transformations.
In ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL).

[36] Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. 2020.
Disentanglement in Nested-Parallel Programs. In Proceedings of the
47th Annual ACM Symposium on Principles of Programming Languages
(POPL)".

[37] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. 2016. Apache Spark: a unified engine
for big data processing. Commun. ACM 59, 11 (2016), 56–65.

73

https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/3350755.3400254
https://doi.org/10.1145/165180.165214
https://doi.org/10.1145/165180.165214
https://doi.org/10.1007/BF01911006
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r4.pdf
https://doi.org/10.1145/581478.581491
https://doi.org/10.1145/581478.581491
https://doi.org/10.1145/2636228.2636231

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Sam Westrick, Mike Rainey, Daniel Anderson, and Guy E. Blelloch

A Artifact Description
A.1 Overview
The artifact is a self-contained Docker4 image containing
all code and scripts necessary for reproducing our results.
In particular, this includes source code for our library im-
plementations of block-delayed sequences (in both C++ and
Parallel ML) as well as all benchmarks used in evaluation,
and also all experiment scripts. These are described in detail
in Section A.7, below.

For evaluating the artifact, we provide two sets of instruc-
tions, one for a “small” evaluation, and the other for a “full”
evaluation. The small evaluation (Section A.5) considers just
a few benchmarks with reduced problem sizes, and takes
about 5 minutes to run. The full evaluation (Section A.6) is
intended for fully reproducing our results in the paper, and
takes between 4.5 and 10 hours to run (depending on how
much is reproduced).

A.2 Requirements
Running experiments requires the following.
• Software: Docker
• Operating System: Linux, macOS, or Windows. The pro-
vided setup instructions (Section A.4) should work on ei-
ther Linux or macOS. All other instructions are run inside
the container, and therefore should work regardless of
underlying OS.

• Hardware (small evaluation): Multicore server with at
least 8 cores and 6GB of memory.

• Hardware (full evaluation): Multicore server with a
large number of cores (ideally ≥32) and 100GB of memory.

Results are written to the terminal and in PDF files (for
speedup plots).

A.3 Getting the artifact
The artifact is available on Zenodo:

https://zenodo.org/record/5733288

All source code is also released on GitHub:
https://github.com/mpllang/delayed-seq

A.4 Setup
Step 1: Load the Docker image. If downloaded via Zen-

odo, the image can be loaded directly:
$ sudo docker image load

-i shwestrick-ppopp22-artifact-image.tar.gz

If desired, the image is also available from Docker Hub:
$ sudo docker pull shwestrick/ppopp22-artifact

For the rest of the instructions, we assume the arifact is lo-
cally tagged shwestrick/ppopp22-artifact. This should
be the default behavior from both of the above commands.

4www.docker.com

Step 2: Start the container. First, make a local directory
ARTIFACT-RESULTS which will be mounted in the docker
container (this lets us copy files out of the container). Then
start the container as shown below. This opens a bash shell
inside the container, which has the prompt #.
$ mkdir ARTIFACT-RESULTS
$ sudo docker run --rm --privileged
-v $(pwd -P)/ARTIFACT-RESULTS:/ARTIFACT-RESULTS
-it shwestrick/ppopp22-artifact
/bin/bash

Note: the --privileged flag is necessary for NUMA control
in the experiments.

A.5 Small Evaluation
Step 1: Run benchmarks. Run the following commands

inside the container (the prompt inside the container is #).
./run-small
./report-small

| tee /ARTIFACT-RESULTS/small-output
cp -r small/figures

/ARTIFACT-RESULTS/small-figures

Step 2: Check results. The output of the previous step
consists of tables (printed to stdout, and copied to
ARTIFACT-RESULTS/small-output) and a few speedup plots
(copied to ARTIFACT-RESULTS/small-figures).
• The tables (ARTIFACT-RESULTS/small-output) are com-
parable to Figures 13 and 14 in the main paper, except with
two important differences: the problem sizes are reduced
by a factor 10, and only 8 cores are used (as opposed to 72
in the paper). The reported improvement ratios (R/Ours
and A/Ours) therefore will not be exactly the same as in the
paper, but should still generally be larger than 1, indicating
improvement (speedup or reduced space usage).

• The speedup plots (ARTIFACT-RESULTS/small-figures/*)
are named respectively:
– mpl-cc-XXX-speedups.pdf: MPL (Parallel ML) results
on benchmark XXX

– cpp-XXX-speedups.pdf: C++ results on benchmark XXX
The speedup plots should show that the delay version
(our full library) scales consistently better than both the
array (no fusion) and rad (RAD-only) versions. These
are similar to Figure 15 in the paper, but on only a small
number of cores. The speedups will not be as high due
to the reduced problem size and smaller number of cores
used.

A.6 Full Evaluation
Step 1: Generate inputs. Generating inputs should take

approximately 2 minutes.
./generate-inputs

Step 2: Full experiments. Run the following commands
inside the container.

74

https://zenodo.org/record/5733288
https://github.com/mpllang/delayed-seq
www.docker.com

Parallel Block-Delayed Sequences PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

./run --procs <PROCLIST>
./report | tee /ARTIFACT-RESULTS/full-output
cp -r figures /ARTIFACT-RESULTS/full-figures

The run script takes an argument --procs <PROCLIST>
which is a comma-separated (no spaces) list of processor
counts to consider. We recommend choosing a maximum
number of processors corresponding to physical cores, to
avoid complications with hyperthreading. We also recom-
mend choosing a range of intermediate processor counts, to
see informative speedup curves.
For example, in our experiments we used a 72-core ma-

chine and the command --procs 1,10,20,30,40,50,60,72.
With 32 cores, we recommend --procs 1,10,20,32. With
64 cores, we recommend --procs 1,10,20,30,40,50,64.
For reference, on our machine, it takes 4.5 hours to run

the command ./run --procs 1,72. This is the minimum
required for reproducing Figures 13 and 14.

Step 3: Check results. Similar to the small evaluation,
the tables produced (ARTIFACT-RESULTS/full-output) are
comparable to Figures 13 and 14, and the speedup plots
(ARTIFACT-RESULTS/full-figures) are comparable to Fig-
ure 15. If a large number of processors (≥64) were used, the
reported improvement ratios (R/Ours and A/Ours) should
be similar to those reported in Figures 13 and 14, modulo
hardware differences and containerization overheads.

A.7 Reuse and Repurposing
The source code (library, benchmarks, and experiment scripts)
used in the artifact can easily be adapted for other uses. All
code is additionally available on GitHub (https://github.com/
MPLLang/delayed-seq).

At a high level, there are two sets of source codes:

• cpp-new/ contains all C++ code, and
• ml/ contains all Parallel ML code.

In cpp-new/, each benchmark source is in a file named
BENCHMARK.VERSION.cpp where VERSION is either array
(no fusion), rad (RAD-only fusion), or delay (full fusion,
i.e. both RAD and BID). The definition of the library codes
are in cpp-new/pbbsbench/parlaylib, which is a checkout
of the ParlayLib (https://github.com/cmuparlay/parlaylib)
framework. The delayed sequences as described in the paper
have been incorporated into this framework.
In ml/, the subdirectory bench/ contains one folder for

each version (array, rad, and delay) and these folders respec-
tively each have a file sources.mlb for compilation. The
definition of the library codes are in ml/lib/.

There are two primary makefiles: cpp-new/Makefile and
ml/Makefile. The former has targets of the form
BENCHMARK.VERSION.cpp.bin and the latter has targets of
the form BENCHMARK.VERSION.mpl-v02.bin. Whenmaking
a benchmark, the resulting binary is placed in a bin/ subdi-
rectory (cpp-new/bin and ml/bin).

Running C++ benchmarks. The cpp binaries all can be
run with the following syntax, where <N> is the number of
threads to use, <ARGS> are benchmark-specific arguments,
<R> is the number of repetitions, and <W> is the length (in
seconds) of the warmup period. The warmup is performed
by running the benchmark back-to-back until the warmup
period has expired. The benchmark is then run back-to-back
for the number of repetitions specified.
[cpp-new/]$

PARLAY_NUM_THREADS=<N>
bin/<BENCHMARK>.<VERSION>.cpp.bin
<ARGS> -repeat <R> -warmup <W>

Running Parallel ML benchmarks. The ML binaries
are similar to the above, but with slightly different syntax:
[delayed-seq/ml]$

bin/<BENCHMARK>.<VERSION>.mpl-v02.bin
@mpl procs <N> --
<ARGS> -repeat <R> -warmup <W>

Benchmark arguments. Many of the benchmarks (all
except quickhull, bfs, and grep) take only a single size
argument, -n <SIZE>. This makes it easy to test performance
across a range of problem sizes. For example, here are the
commands for running the C++ linefit benchmark (with
delay version of the library, i.e. full fusion) on 16 cores
across a range of problem sizes, with 10 repetitions and 3
seconds of warmup.
$ cd cpp-new
$ make linefit.delay.cpp.bin
$ PARLAY_NUM_THREADS=16 bin/linefit.delay.cpp.bin

-n 1000000 -repeat 10 -warmup 3
$ PARLAY_NUM_THREADS=16 bin/linefit.delay.cpp.bin

-n 500000000 -repeat 10 -warmup 3

And similarly for ML:
$ cd ml
$ make linefit.delay.mpl-v02.bin
$ bin/linefit.delay.mpl-v02.bin @mpl procs 16 --

-n 1000000 -repeat 10 -warmup 3
$ bin/linefit.delay.mpl-v02.bin @mpl procs 16 --

-n 500000000 -repeat 10 -warmup 3

Scripts. In the top-level folder, there are JSON files to
specify the parameters used in our experiments. These spec-
ifications are passed to scripts/gencmds which produces
“rows” of key-value pairs, where each row describes one ex-
periment. Examples of keys include config, tag, impl, etc.
The config is either cpp or mpl-v02, the tag is the benchmark
name, the impl is the version of the library used, etc.

The output of scripts/gencmds is then piped into
scripts/runcmds to produce results. See the run script for
more detail.

Finally, the script report parses the results and produces
tables and figures.

75

https://github.com/MPLLang/delayed-seq
https://github.com/MPLLang/delayed-seq
https://github.com/cmuparlay/parlaylib

	Abstract
	1 Introduction
	2 Background
	2.1 Stream-of-blocks
	2.2 Block-based implementations

	3 Technical Overview and Examples
	4 Block-Delayed Sequences
	4.1 Auxiliary Definitions
	4.2 Blocks as Streams
	4.3 Implementing Block-Delayed Sequences
	4.4 Library Implementation

	5 Cost Semantics
	5.1 Cost analysis example: Forward BFS

	6 Experimental evaluation
	6.1 Impact of BID fusion
	6.2 Impact of RAD-only fusion
	6.3 Parallel ML vs. C++
	6.4 Scalability
	6.5 Stream-of-blocks vs. blocks-of-streams

	7 Related Work
	8 Conclusion
	References
	A Artifact Description
	A.1 Overview
	A.2 Requirements
	A.3 Getting the artifact
	A.4 Setup
	A.5 Small Evaluation
	A.6 Full Evaluation
	A.7 Reuse and Repurposing

