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Abstract

In this paper we present a novel method for recovering high-resolution spatially-varying isotropic surface reflectance of a pla-

nar exemplar from a flash-lit close-up video sequence captured with a regular hand-held mobile phone. We dot not require

careful calibration of the camera and lighting parameters, but instead compute a per-pixel flow map using a deep neural net-

work to align the input video frames. For each video frame, we also extract the reflectance parameters, and warp the neural

reflectance features directly using the per-pixel flow, and subsequently pool the warped features. Our method facilitates con-

venient hand-held acquisition of spatially-varying surface reflectance with commodity hardware by non-expert users. Further-

more, our method enables aggregation of reflectance features from surface points visible in only a subset of the captured video

frames, enabling the creation of high-resolution reflectance maps that exceed the native camera resolution. We demonstrate and

validate our method on a variety of synthetic and real-world spatially-varying materials.
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1. Introduction

Reproducing the appearance of real-world materials for use in vir-
tual worlds is a challenging problem that has seen tremendous
progress. Leveraging recent advances in deep learning, a number
of techniques have been introduced that enable non-expert users to
digitize real-world material appearance with commodity hardware
from a single photograph [LDPT17, YLD∗18, DAD∗18, LSC18,
LXR∗18]. More recently, deep-learning based methods that oper-
ate on a variable number of input photographs have been introduced
to overcome the inherent accuracy limitation of single photograph
methods [GLD∗19, DAD∗19]. While producing more accurate re-
sults, such multiple-image methods limit the resolution of the ma-
terial maps to that of a single photograph, and require an arduous
and error-prone calibration and alignment of the photographs to
compensate for the differences in view, limiting the practical appli-
cability of these methods for non-expert users.

In this paper we introduce a novel easy-to-use deep-learning
based method for digitizing the isotropic material appearance of
a planar material exemplar by ªscanningº a mobile phone over
the surface of the sample lit by the camera’s flash. Our method is
self-calibrating; it does not require manual alignment or additional
markers to be placed in the scene. Besides greatly simplifying ac-
quisition and improving alignment accuracy, this automatic align-
ment also allows us to scan SVBRDFs at resolutions exceeding

the camera resolution by aligning the video frames to a (relatively
low resolution) macro view of the surface. Our method consists of
two main components: a motion and warping alignment network,
and an image-to-reflectance translation network. A key challenge
is that the different observations might only partially overlap and
consequently a variable number of observations are available for
each surface point, precluding prior deep-learning based strategies
that treat each observed pixel value as a valid measurement with an
equal number of observations. To address this challenge, we train
our image-to-reflectance network such that the encoded intermedi-
ate neural reflectance features can be warped by the results from
the alignment network; allowing us to combine the extracted deep
reflectance features directly and decode the combined reflectance
property maps.

Our solution builds on two existing deep network architectures:
PWC-net [RGS∗19] for motion and warp estimation, and a multi-
image reflectance estimation network [DAD∗19]. We employ two
instances of PWC-net; one trained to estimate the flow between
subsequent frames, and one trained to estimate flow between dis-
tant frames to combat drift over longer sequences. The reflectance
estimation network of Deschaintre et al. [DAD∗19] is expanded by
adding a ªwarpingº layer before the max-pooling layer that aggre-
gates the feature vectors from each input frame. The advantage of
warping feature vectors instead of the input photographs, is that in-
valid pixels/features (i.e., pixels in the target SVBRDF without a
corresponding pixel in the source video frame or vice versa) can
be set to a low value such that they are effectively ignored during
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aggregation by max-pooling; this would not be possible if the in-
put images were warped before inputting them into the network.
We train our networks with a synthetic ªscanningº dataset. This
synthetic training set is based on the Abode Stock 3D Material
dataset [Ado18] and the INRIA SVBRDF dataset [DAD∗18] aug-
mented with a Perlin noise [Per02] based specular enhancement.
Furthermore, we enhance the reflectance-estimation network by re-
placing the instance normalization with a convolution weight nor-
malization [KLA∗20] to address small high value artifacts in the
reconstructed reflectance property maps.

We demonstrate and thoroughly analyze our deep reflectance
scanning technique on a wide variety of synthetic and real-world
materials. In summary our contributions are:

1. A method for automatically aligning the photographs in a multi-
image reflectance capture process;

2. that performs the alignment directly on the neural reflectance
features to improve robustness against the adverse effects of un-
seen surface points (in one or more photographs);

3. and that enables aggregation of reflectance information from
multiple viewpoints to produce a higher resolution SVBRDF.

4. Finally, we present various improvements on prior neural re-
flectance estimation networks that yield more accurate specular
and diffuse reflectance properties.

2. Related Work

Measurement-based appearance modeling has been an active re-
search topic over the past few decades. In this section, we focus
our discussion on work related to hand-held reflectance modeling

techniques. We refer to Weinmann et al. [WdBKK15] and Guarn-
era et al. [GGG∗16] for a broader overview of reflectance and ap-
pearance modeling, and to the survey by Dong [Don19] on deep
learning-based appearance modeling. We further categorize related
work in single versus multi-image approaches:

Single Image Reflectance Estimation Methods These meth-
ods have the advantage that no registration between different pho-
tographs is required, thereby greatly easing processing. However,
a single observation only provides limited information. To aid re-
construction, assumptions are typically made on either shape, ma-
terial properties, or lighting. Romeiro et al. [RVZ08,RZ10] assume
a spherical exemplar to recover the homogeneous reflectance prop-
erties under uncontrolled natural lighting. Li et al. [LDPT17], and
the extension by Ye et al. [YLD∗18], recover spatially-varying sur-
face reflectance from a planar sample under uncontrolled natural
lighting by assuming a homogeneous specular component and by
leveraging prior knowledge embedded in a deep neural network.

While convenient, uncontrolled natural lighting only provides
weak cues for estimating surface reflectance. To elicit stronger
cues, a number of solutions employ active co-located flash lighting.
Aittala et al. [AAL16] exploit self-similarity and neural texture syn-
thesis to recover spatially-varying reflectance properties of station-
ary materials. Deschaintre et al. [DAD∗18] and Li et al. [LSC18]
use a deep translation network to recover spatially-varying material
properties from a single flash photograph of a flat exemplar. Finally,
Li et al. recover shape and surface reflectance from a photograph of

an arbitrary shaped exemplar [LXR∗18] or from a photograph of a
scene under spatially varying lighting [LSR∗20].

Despite the additional assumptions on either shape, surface re-
flectance, and/or lighting, these methods are fundamentally limited
in what can be recovered of the 6D reflectance function from a
2D observation. In our method, we aggregate reflectance cues from
multiple observations to improve the accuracy and robustness.

Multiple Image Reflectance Estimation Methods These meth-
ods aggregate reflectance cues from multiple observations to re-
construct the surface reflectance. Similar as with single image
methods, a number of techniques infer surface reflectance from
cues under natural lighting for recovering homogeneous surface
reflectance [LN16, ON16, LPG19], or spatially-varying surface re-
flectance [DCP∗14,XDPT16]. While multiple observations help to
strengthen the cues, the overall reconstruction quality is still condi-
tioned on the quality of the uncontrolled lighting.

To better regularize the reflectance reconstruction, active illu-
mination methods control the lighting on the scene, either using
a controlled light source (e.g., a linear light source [RWS∗11]),
structured illumination from an LED cube [KCW∗18, KXH∗19],
photometric images [BXS∗20a], or using the co-located camera
flash light [AWL15,RPG16,HSL∗17,GLD∗19,DAD∗19,GSH∗20].
However, these methods all require that the full sample remains
in view for all photographs, limiting the size of material samples
that can be acquired, and they require careful geometrical align-
ment of the input photographs. A notable exception is the work by
Deschaintre et al. [DDB20], who overfit a neural network to trans-
fer material parameters from a small set of exemplars. While De-
schaintre et al. do not require any alignment between the exemplars
and the guidance photograph, they require fully labeled exemplars.
Nam et al. [NLGK18] recover both shape and reflectance from
backscatter observations and thus can take occlusions in account.
However, their method relies on complex and time-consuming non-
linear optimizations. Bi et al. [BXS∗20b] avoid non-linear opti-
mization by using a deep learning framework to estimate shape and
reflectance from multiple photographs, at the cost of requiring a
complex and carefully calibrated acquisition setup. Using a sim-
ilar acquisition procedure as us, Albert et al. [ACGO18] recover
spatially varying surface reflectance by scanning a mobile cam-
era over the planar exemplar. However, their method requires the
addition of markers to the scene and relies on rigid homography-
based alignment. Furthermore, explicit (recursive) clustering is em-
ployed to (non-linearly) fit BRDFs to the observations, possibly
losing unique reflectance details. Our method avoids the use of
fragile non-linear BRDF fitting, and instead builds on deep neural
networks to aggregate the reflectance information similarly to De-
schaintre et al. [DAD∗19] but without requiring an explicit align-
ment of the input photographs.

3. Overview

Our method is designed from the top down starting from a user-
friendly hand-held acquisition procedure. We will therefore first de-
tail the acquisition process before detailing the technical machinery
that enables reflectance reconstruction.

The acquisition process is designed to be accessible to non-
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Figure 1: Overview of our method. Given a guidance image and an input video, we first compute a warp function between each input video

frame and the guidance image by estimating per-frame optical flow. Next, we extract SVBRDF feature vectors for each input frame and align

(warp) the feature maps. Finally, the SVBRDF is reconstructed based on aggregated (max-pooled) feature maps.

expert users, and therefore only relies on commodity hardware in
the form of a standard mobile phone operating in video mode with
the flash enabled. We opt for using a video sequence instead of a
discrete set of photographs for two reasons. First, capturing a dis-
creet set of photographs is only practical for a small number of
photographs; users quickly loose track for which view positions
they already captured a photograph and are consequently uncertain
where to capture the next photograph. Second, automatic alignment
is easier on video frames when subsequent frames will have less
visual differences that can adversely affect alignment (e.g., mov-
ing highlights). Our capture procedure is straightforward: the user
holds the mobile phone at a relatively fixed distance above the ma-
terial sample pointing straight down at the sample, and ªscansº the
mobile phone over the exemplar. The user needs to take care that
the target surface is fully scanned, and that the captured frames are
free of motion blur; a specially designed app that provides feed-
back to the user regarding these constraints is a direction for future
development. In addition, we require the user to acquire a guidance
image of the area of interest for which the SVBRDF is recovered.
This guidance image can be in the form of a selected frame from
the video sequence or a separately captured photograph (possibly
captured from a macro view). For ease of exposition and clarity, we
will first explain the core components of our method by assuming
the guidance image is a frame from the video sequence, and thus
the resolution of the video frames, the guidance image, and the re-
constructed SVBRDF are the same. In Section 7, we will generalize
the guidance image to photographs under different lighting and at a
possibly different scale and resolution to enable the reconstruction
of high-resolution SVBRDFs.

Given the guidance image, our method fully automatically pro-
cesses the video sequence and outputs spatially varying reflectance
property maps corresponding to the guidance image in three stages.
First, we estimate a per-frame flow between subsequent frames.
Naively accumulating these per-frame flow maps, will result in drift
over long sequences. Therefore, we regularize the accumulation by
computing global transformation parameters for each frame based
on the flow maps. While warping the frames purely based on the
global transformation parameters matches the large scale motion
well, it fails to capture small scale motions (e.g., due to occlusions,

geometric details, deviations for the planar sample assumption, op-
tical inaccuracies, etc.). Therefore, we compute a detail-flow map
between the transformed frames and the guidance frame.

Directly warping the video frames to the guidance image will
result in an uneven number of warped pixels for each guidance
pixel which complicates SVBRDF estimation. Ideally we would
like to leverage all the available information from all of the video
frames for estimating the SVBRDF, therefore, instead of aggre-
gating the directly warped pixels, we first extract per-pixel feature
vectors for each frame, and then warp the per-pixel features based
on the refined flow, before accumulating the features using a max-
pooling layer from which the reflectance properties are estimated.
The resulting reflectance properties maps contain per-pixel esti-
mates of the diffuse albedo, specular albedo, specular roughness,
and normal map that drive a (per-pixel) GGX microfacet BRDF
model [WMLT07]. Figure 1 summarizes our method.

We will first describe the synthetic training dataset used for train-
ing both components of our framework (Section 4), before detailing
the automatic alignment network (Section 5) and the SVBRDF es-
timation network (Section 6). Finally, in Section 7 we generalize
our method to estimate high-resolution SVBRDFs from a guidance
image which is not part of the video sequence, possibly captured
from a macro-view of the exemplar under different lighting.

4. Training Data

To train both components of our solution (i.e., the automatic align-
ment network and the SVBRDF estimation network), we generate
a synthetic dataset of video sequences with a simulated camera and
a co-located light source scanning synthetic SVBRDFs.

SVBRDF datasets At its core, our synthetic dataset is synthesized
from the INRIA SVBRDF dataset [DAD∗18] and the Adobe Stock
3D Material dataset [Ado18]. This yields 1,195 SVBRDFs for the
Adobe Stock 3D Material dataset, of which 1,000 are used for train-
ing and 195 are used for testing. We use the Adobe SVBRDFs at
their native 4,096×4,096 resolution. The INRIA SVBRDF dataset
includes 1,590 SVBRDF exemplars, and 38 test exemplars. How-
ever, the SVBRDFs in the INRIA dataset are only at 512 × 512
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Figure 2: We enlarge a 512 × 512 resolution SVBRDF into a

4,096×4,096 resolution SVBRDF by first creating a 1,024×1,024
resolution map by mirroring and flipping, and subsequently tiling

the 1,024 × 1,024 SVBRDF to a full 4,096 × 4,096 resolution

SVBRDF.

resolution. Because this is too small for a simulated scanning ac-
quisition, we augment their resolution to 4,096×4,096 as follows.
First, we increase their resolution to 1,024×1,024 by tiling a mir-
rored and/or flipped copy to the other quadrants. Next, we simply
tile this 1,024×1,024 SVBRDF to a full 4,096×4,096 resolution
(Figure 2). To avoid biases when inferring the flow maps due to
the tiling, we only use the augmented INRIA SVBRDF dataset for
training the SVBRDF estimation network; we use the Adobe Stock
3D Material dataset for training both the alignment as well as the
estimation component.

SVBRDF Augmentation Both the INRIA SVBRDF dataset and
the Adobe Stock 3D Material dataset contain a relatively small
number of specular materials, especially, materials with a struc-
tured specular component. While this bias is not critical for training
the alignment network, it is important for training the SVBRDF es-
timation network. Hence, for the latter, we augment the SVBRDFs
with a structured specular component. First, we precompute 100
Perlin noise maps at 4,096×4,096 resolution, using 1 to 3 octaves
with frequencies randomly selected uniformly between 16 and 48,
and threshold the resulting map with a threshold randomly sam-
pled from [−0.3,0.3] to obtain a structured binary map. When we
encounter a diffuse material during training (i.e., all specular values
fall below 0.1), we decide with a 50-50 probability to blend (for a
randomly selected thresholded binary Perlin noise map) a homoge-
neous material with the diffuse albedo, specular albedo, and specu-
lar roughness maps with randomly sampled specular albedo color,
a specular roughness sampled from [0.1,0.4], and a diffuse albedo
color proportional to the specular albedo multiplied with a random
scale in [0,0.1] (Figure 3).

In addition, to further diversify the SVBRDF exemplars used for
training the SVBRDF estimation network, we apply the following
additional augmentations on the fly during training:

1. We flip horizontally, vertically, and rotate by 90 degrees with a
50% probability.

2. We randomly scale the diffuse albedo, the specular
albedo, and specular roughness with a scale sampled from
[0.8,min(1.25,1/(vmax +0.0001))], where vmax is the maximum
value in the corresponding map. The resulting roughness map is
furthermore remapped (i.e., scale + offset) to [0.1,1.0] to avoid
very small roughness values.

Base SVBRDF Augmented SVBRDF

Figure 3: Illustration of Perlin noise based specular augmentation.

Given a SVBRDF (left; first row: diffuse and specular albedo, sec-

ond row: normal and specular roughness), a homogeneous specu-

lar component is added with its spatial distribution determined by

a thresholded Perlin noise map; the diffuse component is similarly

modulated (right).

Figure 4: Illustration of the capture setup, and the two template

paths used for generating the synthetic video sequences.

Video Sequence Synthesis Each synthetic video sequence con-
tains 141 frames and, similarly to prior works [LDPT17, DAD∗18,
DAD∗19], each video sequence is rendered on-the-fly during train-
ing. An augmented SVBRDF is put on the z = 0 plane and mapped
such that it covers [−1,1]× [−1,1] in the x and y coordinates. The
field of view is uniformly selected between 25◦ and 35◦. Each
video sequence starts at a random starting point, with x and y
sampled uniformly from [−0.5,0.5], and the height offset is set

to ξ

tan( 1
2 f ov)

, where ξ is uniformly sampled from [0.05,0.1]. Fur-

thermore, we assume that the rotation around the view direction is
independent of the camera motion, and we initially set it such that
the ’up’ axis of the view corresponds to (0,1,0).

The motion of each video is based on 2 templates: a spiral tem-
plate, and a straight (up-down) line (see Figure 4). The former is
used for training both the alignment and the SVBRDF networks.
The latter is only used for training the SVBRDF network (selected
with 1/3 probability). The templates are further augmented to bet-
ter reflect the diversity of real-world acquisition conditions as fol-
lows:

1. The template path is flipped, mirrored, and rotated 90 degrees,
each with a 50% probability.

2. The template paths are scaled with a factor uniformly sampled
from [0.075,0.1] and then centered at the starting point. The
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Table 1: Magnitudes of λ f (the strength of the perturbation on the

acceleration), λv
f (the influence of the previous frame’s velocity),

and λ
p
f (the influence of the previous frame’s position) for the dif-

ferent components: {cx,cy,cz, lx, ly, t}.

f λ f λv
f λ

p
f

cx, cy 0.001 0.1 0.2
cz 0.001 0.01 0.1

lx, ly 0.001 0.01 0.1
t 0.001 0.01 0.1

camera (initially) looks straight down on the SVBRDF exem-
plar.

3. To simulate the variability of free-form hand-held acquisition,
we perturb the acceleration of the camera; directly perturbing
the velocity of the camera results in an unnatural discontinuous
motion. We perturb the acceleration for a component ’ f ’ for the
’i’-th frame by:

a f [i] = λ fN (0,1)−λv
f v f [i−1]−λ

p
f p f [i−1], (1)

where λ f is the strength of the perturbation, λv
f measures the

influence of the previous frame’s velocity v f , and λ
p
f is the in-

fluence of the previous frame’s position p f . The exact magni-
tude of the weight parameters depends on the component f ; Ta-
ble 1 summarizes the weights. The components f can be: the
x and y-coordinate of the position (cx and cy respectively), the
camera height (cz), the look-at point (lx, ly) (defined as the pro-
jection of (cx,cy) on the SVBRDF plane), and the cotangent of
up direction (in the SVBRDF plane) t, i.e., the ’up’ axis corre-
sponds to (t,1,0). Given the acceleration a f for the component
f ∈ {cx,cy,czlx, ly, t}, the perturbed component fÅ is computed
as:

v f [i] = v f [i−1]+a f [i], (2)

p f [i] = p f [i−1]+ v f [i], (3)

fÅ = f + p f [i]. (4)

Finally, given the 141 frame camera path, we render each frame
at 256× 256 resolution with the light source co-located with the
camera. The light source intensity is randomly sampled for training
PWC-net, following the strategy by Deschaintre et al. [DAD∗19],
and proportional to the (initial) square camera distance/height for
training the SVBRDF estimation net. All rendering is implemented
directly in TensorFlow and computed at training time.

5. Automatic Alignment

The first step in our method is to register the target frame to the
guidance image. Registration is an active research area and a wide
variety of solutions exist [Nag17, Sze06]. Robustly registering the
input frames for reflectance scanning poses a number of challenges.
First, the top-down view with semi-constant viewing distance pre-
cludes methods based on estimating camera extrinsic and intrin-
sic parameters which become unstable in such cases. Second, the
co-located light source also induces strong view-dependent appear-
ance changes that can confuse algorithms based on explicit track-
ing of sparse feature points. Finally, lens distortion and deviations

from planarity of the material sample necessitates a per-surface
point alignment and precludes simple global alignment methods.
Therefore, we decided to opt for a dense per-surface point align-
ment strategy based on optical flow with a global correction step to
minimize drift.

We will assume an input video sequence V = {F0, ...,Fn−1} of
n frames Fi, and that (without loss of generality) F0 also serves as
the guidance image. To estimate the surface reflectance sufficiently
different appearance observations are needed, while for alignment
as little as possible appearance difference is preferred. Hence, we
will only use a regularly sampled (with step size k) subset of the
captured frames K = {F0,Fk,F2k, ...} with sufficient appearance
difference for estimating the reflectance (we denote these selected
frames K as key frames), but we use all frames for estimating the
alignment. Our goal is now to compute a set of warp function (i.e.,
flow) {W0,Wk,W2k, ...} to warp a frame to the guidance image:
F0 ≈ Wtk(Ftk).

Alignment Overview To avoid error accumulation over long se-
quences, we employ a three step algorithm to compute regularized
warp maps between the guidance image and the key frames. In
a first step, we will compute a warp between subsequent frames
wi→i+1 for all frames in the sequence V. Next, we compute a rough
estimate of the warp function W̃tk from the guidance image to the
t-th key frame Ftk based on the regularized warp function Wr

(t−1)k
of the previous key frame F(t−1)k, and the frame-per-frame flows

of the intermediate frames: W̃tk = wtk−1→tk ◦ wtk−2→tk−1 ◦ ... ◦
w(t−1)k→(t−1)k+1 ◦Wr

(t−1)k. The regularized warp Wr
(t−1)k is com-

puted as the best per-image affine transformation approximation of
W(t−1)k. We then compute the final per-pixel warp Wtk as the su-

perposition of the (regularized) rough warp W̃
r
tk and a fine-scale

alignment W
f

tk
such that F0 ≈ Wtk(Ftk), with Wtk = W

f
tk
◦ W̃

r
tk.

Warp Computation To compute the frame-to-frame warps
wi→i+1 and the fine-scale alignment warps W

f
tk

we use PWC-
net [RGS∗19]. We employ two networks, one for computing the
frame-to-frame warps and one for the fine-scale alignment, that
are both a refinement of a common pre-trained PWC-net model
(trained for 50 epochs on the ªFlying Chairsº dataset). For the
frame-to-frame network, we use all adjacent frames from a syn-
thesized video sequence for training; the reference flow for the se-
quence is computed directly from the camera parameters. For the
refinement network, we select two frames from the first 20 and
last 120 frames of the sequence respectively. We compute a rough
flow W̃

r
k as the average x and y displacement between both frames’

camera positions perturbed by a random offset in x and y direc-
tion between 0 and 10 pixels. To compute the detail warp W

f
tk

, we
transform the target image with the coarse flow W̃

r
tk, and crop the

source and target image to minimize invalid pixels (i.e., that do not
feature a corresponding pixel in the other image). If the overlap-
ping width/height is less than 30 pixels, we repeat the process with
newly selected random frames. As a consequence each training pair
can have a different size and therefore we train the refinement net-
work for variable image sizes with a batch size of 1.

Regularization A final ingredient in our alignment algorithm is
the regularization of the accumulated flow W̃ tk to the rough regu-
larized warp W̃

r
tk. The key reason for this regularization is that the
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Figure 5: SVBRDF Estimation Network.

concatenation of long streams of frame-to-frame flows can result
in drift (i.e., accumulation of subpixel errors and view-dependent
appearance effects).

To regularize the flow, we assume that the field of view of the
camera is 30◦. Because the regularization step is refined in the next
step, any errors introduced due to this assumption can still be cor-
rected. Next, we collect all valid points between both frames (i.e.,
points that have corresponding points in the other frame), and solve
for the rotation and translation transformations that best match the
pairs using OpenCV’s solvePnP function. Finally, we convert these
transformation back to a dense flow map using OpenCV’s project-
Points function.

6. SVBRDF Estimation

Given a set of key frames K and corresponding warps Wtk to the
guidance image, our goal is to estimate the SVBRDF property maps
S= {ρd ,ρs,ms,n}, where ρd is the diffuse albedo map, ρs the spec-
ular albedo map, ms the specular roughness map, and n the normal
map.

SVBRDF Estimation Network Our SVBRDF estimation network
is closely based on the SVBRDF estimation network of Deschain-
tre et al. [DAD∗19]. Our solution differs on three important points.
First, we employ a more richer training set, in particular, the Perlin
Noise specular augmentation is a critical component for improving
the estimation on materials with a structured specular component
and for improving the accuracy of the specular roughness estima-
tion. Second, we add a warping layer before the max-pooling aggre-
gation layer on the 256× 256× 64 feature maps. During warping
we employ bilinear interpolation between the feature vectors, and
invalid pixels are set to −1e38 such that they do not influence the
max-pooling. Consequently, invalid pixels/features are effectively
ignored during aggregation; this eases reflectance estimation as the
network does not need to actively ignore invalid pixels as would be
the case if the input images were warped before inputting them into
the network. Third, we observe that the SVBRDF estimation net-
work of Deschaintre et al. suffers from small high value artifacts.
To solve this issue, we follow Karras et al. [KLA∗20] who observed
a similar phenomenon in the context of StyleGan, and replace the
instance normalization by a convolution weight normalization. We

normalize the convolution weights wi jk as:

w
′

i jk =
wi jk

√︂

∑i,k w2
i jk

+ ε
, (5)

where i is the input channel dimension, j the output channel di-
mension, k the kernel spatial dimension, and ε = 1e−8. Finally, we
simplify the network architecture by only using 3×3 convolutions,
instead of a mixture of 3×3 and 4×4 in the network of Deschain-
tre et al. [DAD∗19]. Figure 5 summarizes the SVBRDF estimation
network.

Training For each 141 frame synthetic video sequence, we ex-
tract 20 different training exemplars for training the SVBRDF net.
For each training exemplar, we select one of the first 20 frames
as the guidance image, and we extract K key frames, where K

is uniformly sampled from [4,16] (in other words, each train-
ing exemplar contains between 4 and 16 frames plus a guidance
image). The key frames are selected at regular intervals start-
ing at the guidance frame, with the interval length sampled from
[⌊60/K⌋, ...,⌊120/K⌋]. The corresponding warp maps Wk are com-
puted directly from the extrinsic camera parameters. The target
SVBRDF property maps are resampled from the SVBRDF used
to generate the synthetic video sequence based on the camera pa-
rameters of the guidance frame.

Our training loss consists of three components:

L = δsLs +δrLr +δtLt , (6)

where Ls is the L1 loss on the SVBRDF property maps with
δs = 0.1, Lr is the rendering loss as defined by Deschaintre et
al. [DAD∗19] which contains 3 renderings from diffuse directions,
and 6 from specular directions, with δr = 1.0. Lt is a novel top-
view rendering loss with δt = 1.0 for 6 top-view renderings from
randomly selected camera positions, with the x and y coordinate
uniformly sampled on the target SVBRDF, and the camera offset
set to 1

tan(0.5ξ)
, with ξ uniformly sampled from [25,35], making it

similar to the video camera offsets.

7. High-resolution SVBRDFs

In the previous sections we assumed the guidance image is a frame
from the video sequence. We will now generalize our method to a
guidance image of the material taken from a macro vantage point
(and thus seeing a larger area) possibly under different lighting. We
aim to reconstruct the SVBRDF at the full combined coverage and
resolution of the video frames, possibly exceeding the resolution of
the guidance image and the video frames.

First, we bilinearly upsample the guidance image to match the
pixels-per-area ratio of the video frames. We also manually set
the position of the first frame with respect to the upsampled guid-
ance image. Currently, this process is manual; automating this step
would be an interesting avenue for future improvements.

Next, we run the alignment algorithm 2 times. After the first it-
eration, we update the guidance image based on the warped video
frames. We update each pixel in the guidance image with the aver-
age of all corresponding pixels in the video key frames. If no video
key frames ’overlap’ with the guidance image pixel, we keep the
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original pixel value. As a result, the upsampled guidance image be-
comes more detailed, and consequently, the second alignment pass
will be more accurate too.

Finally, we use the SVBRDF estimation network to translate all
video key frames to feature vectors (at the resolution of the updated
and upsampled guidance image), and max-pool the features. For
large output resolutions, not all of the key frames and correspond-
ing features fit the memory capacity of modern GPUs. Therefore,
in such cases, we run the max-pooling and subsequent steps on the
CPU.

8. Results and Discussion

8.1. Results

Figure 6 and Figure 7 show a selection of SVBRDFs from the
Adobe Stock 3D Material dataset [Ado18] and INRIA SVBRDF
dataset [DAD∗18] (not part of the training set). For each material,
we show the guidance frame (in this case a selected frame from
the video sequence) and a few captured frames (after alignment) as
well as the recovered and reference SVBRDF property maps and
rerenderings from the top view of the guidance image, and from
two random view and light directions. Unless noted otherwise, all
recovered SVBRDFs and input frames are at 1,024×1,024 resolu-
tion and reconstructed from 29 key frames. From this we can see
that our method works well for such SVBRDFs.

Figure 8 shows a similar visualization of materials captured with
an iPhone XR at 1920×1080, 30fps in a dark environment with the
cell phone’s flash light on, with fixed exposure, fixed white balance,
and fixed aperture. We crop the center (square) area and resample
to a 1024× 1024 resolution. The mobile phone is moved by hand,
without additional aids such as markers, in a spiral pattern. The
first frame of the video sequence is used as the guidance image.
For comparison, we also capture 8 frames similar to the synthetic
validation frames; these are not used for training. While the differ-
ences are more visible than in the synthetic case (due to uncertainty
in matching the virtual flash light and virtual camera position to the
capture parameters), they are still a good match.

A key advantage of our method is that the guidance image does
not need to be part of the video sequence, allowing us to capture
a larger exemplar at high resolution. Figure 9 showcases such re-
covered high-resolution SVBRDFs from physical material exem-
plars. The hand-held camera (iPhone XR) is moved in a zig-zag
pattern (to cover a larger portion of the material), and the guidance
image is captured from a higher vantage point under uncontrolled
environment lighting. Note that none of prior work on multi-image
SVBRDF recovery using deep learning is able to capture such a
large material at the same level of detail without extrapolation.

The above results show that our method is capable of produc-
ing plausible SVBRDFs. To better illustrate the accuracy of our
method, we also perform numerical comparisons on the synthetic
test set of 195 SVBRDFs from the Adobe Stock 3D Material set
and 38 from the INRIA SVBRDF dataset. We validate the accu-
racy of: the recovered SVBRDF property maps, rerenderings of the
materials, and the warping functions. The accuracy of the property
maps is computed by taking the average L1 error over the corre-
sponding property maps. The rerendering accuracy is computed as

the L1 and DSSIM error on: a top view, 8 views from the each of the
sides with a view angle at 22.5◦ and 45◦ and co-located lighting,
and 9 random view/light directions. The accuracy of the alignment
is computed by A) the percentage of warped valid pixels (i.e., pix-
els visible in both guidance and target image) versus the reference
warp, and B) the error on the warp (in pixel distance) over the valid
predicted pixels. The former indicates how many pixels are valid,
while the latter indicates of those valid pixels, how accurate they
are. Table 2 (first row) shows the average error over the full test set.
From this we can see that our method is able to accurately recover
the material properties from reflectance scanning video sequences.

8.2. Comparison

While instructive, the error numbers presented in the previous sub-
section do not indicate how our method compares to prior work.
A direct comparison is difficult due to differences in the acqui-
sition. Therefore, we compare our method to the method of De-
schaintre et al. [DAD∗19] and Gao et al. [GLD∗19] for an equal
number (1, 5, 11 and 29) of input photographs optimized for each
respective method. We use the provided rendering and inference
code and trained network from Deschaintre et al. and Gao et al.
for the comparison. Figure 10 and Table 3 show a visual and nu-
merical comparison with the inference based method of Deschain-
tre et al. [DAD∗19] and the optimization based method of Gao et
al. [GLD∗19]. We can see that for an equal number of input frames,
our method on average yields a more accurate specular albedo and
roughness compared to both Deschaintre et al. and Gao et al., and a
more accurate diffuse albedo compared to Deschaintre et al. On av-
erage, our method yields slightly higher surface normal errors due
to the reflectance scanning that trades angular coverage for spa-
tial coverage; our input provides less lighting/view directions (i.e.,
angular coverage) because we only have top-down views, but un-

Table 2: Ablation study with synthetic video sequences. All

SVBRDFs are at 1,024× 1,024 resolution and reconstructed with

the automatic alignment.

SVBRDF maps L1 Render
Diffuse Normal Specular Roughness L1 DSSIM

Our method with default parameters
0.0274 0.0363 0.0255 0.0840 0.0282 0.1676

Without Perlin Noise based specular augmentation
0.0281 0.0400 0.0281 0.0996 0.0326 0.1833

Without top view rerendering loss Lt

0.0302 0.0423 0.0272 0.0884 0.0342 0.1962

Instance normalization instead of convolution weight normalization

0.0445 0.0437 0.0401 0.1317 0.0454 0.2581

Without alignment regularization
0.0312 0.0461 0.0263 0.1065 0.0329 0.2098

Warping input frames instead of feature maps
0.0425 0.0544 0.0302 0.1712 0.0437 0.2673

Alignment
Valid rate Pixel error

With alignment regularization 0.9174 5.623
Without alignment regularization 0.2770 10.683
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Figure 6: SVBRDF estimation results from synthetic video sequences. For each SVBRDF we show the guidance image and 4 selected aligned

frames, the reference and recovered SVBRDF property maps, and a comparison of a top view and two novel view/light direction renderings.
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Figure 7: Additional SVBRDF estimation results from synthetic video sequences. For each SVBRDF we show the guidance image and 4
selected aligned frames, the reference and recovered SVBRDF property maps, and a comparison of a top view and two novel view/light

direction renderings.
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Guidance/Aligned Diffuse/Normal Spec./Rough. Top Ref./Est. Novel Ref./Est. Guidance/Aligned Diffuse/Normal Spec./Rough. Top Ref./Est. Novel Ref./Est.

Figure 8: Recovered SVBRDFs from a hand-held captured video sequence where the guidance image is the first frame in the sequence.

For each example, we show the guidance image and 4 selected aligned frames, the material property maps (without a reference), and a

comparison between a captured and estimated top view and novel view/light direction. Note that for some novel view/light directions, the

reference photograph does not cover the full image after alignment to the guidance image view.

like Deschaintre et al. and Gao et al., our method does not require
the full sample to be visible in each input photograph (i.e., spatial
coverage). Our method also produces more accurate revisualiza-
tions than Deschaintre et al. under novel view and lighting direc-
tions; Gao et al. explicitely optimize visual error and produce even
lower revisualization errors at the cost of significantly higher com-
putational and alignment costs. A key difference is that both prior
methods vary the viewpoint while keeping the look-at-point fixed,
whereas our method varies the viewpoint and look-at-point in tan-
dem. Consequently, our method suffers less from depth-of-field is-
sues compared tilted-camera captures, and whereas the output reso-
lution of both prior methods is limited by the camera resolution, our
method aggregates pixels over all scanned surface points, and can

therefore recover sharper SVBRDFs with a resolution that exceeds
the native camera resolution. To avoid biases due to the enlarged
training data set (i.e., the network of Deschaintre et al. is trained
without the Adobe Stock 3D Material dataset), we also include a
comparison using only the INRIA test data in Table 3. Further-
more, to avoid additional bias due to the differences in the BRDF
models between Deschaintre et al. and Gao et al. / our method, we
generated the input image and reference with both BRDF models,
and compare the reconstruction quality (with the methods’ native
BRDF model) on both; the difference in revisualization error be-
tween both BRDF models is minimal for all methods (Table 3).
The conclusions of the numerical results are echoed in the visual
comparison in Figure 10.
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Figure 9: Hand-held mobile reflectance scanning results for a guidance image captured from a macro-view position under environment

lighting recovered at high resolution (first column). The visualization of the SVBRDF is shown under randomly selected environment lighting.

Note, the guidance image is slightly larger than the area of interest to aid the alignment at the boundaries.

Figure 11 and Table 4 show a visual and numerical comparison
with the guided upsampling method of Deschaintre et al. [DDB20]
which can generate high resolution results from a single high reso-
lution guidance image and SVBRDF exemplars of smaller patches.
The numerical comparison is performed on the dataset (includ-
ing the SVBRDF exemplar patches) provided by Deschaintre et
al. [DDB20] on their project web page. We use randomly se-
lected environment lighting to generate the guidance image for
our method, and a point light for the method of Deschaintre et al.
which is very sensitive to the guidance image lighting; we found
that the method of Deschaintre et al. performed not as well when
using environment lighting. Compared to the results generated by
the method of Deschaintre et al., our method produces more accu-
rate results. Even when using the ground truth SVBRDF patches in
the guided upsample method of Deschaintre et al., our method pro-
duces more accurate results, with exception for the specular albedo.
The visual comparison in Figure 11 confirms the conclusions from
the numerical comparison. For example, in the bottom example,
the guided upsampling method [DDB20] yields a less correct visu-
alization due to the larger error in the normal map and roughness.
Even in the case of ground truth exemplar patches (top example),
there are still important details missing such as the orange specular
dots.

8.3. Ablation Study

We perform extensive ablation studies to investigate the improve-
ment in the SVBRDF estimation component (the impact of Perlin
noise based augmentation on the specular properties and the impact
of the additional top view rerendering loss), and the improvement
in the alignment component (alignment regularization, and the im-
pact of feature vs frame warping).

Impact of Perlin Noise Augmentation We employ a Perlin noise
based augmentation which introduces more structured specular
components in the training data to improve the accuracy of the
roughness and specular albedo. Figure 12 compares SVBRDF in-
ference networks trained with and without this augmentation. Ta-
ble 2 (2nd row) lists the per-map property map errors, and the reren-
dering errors for the SVBRDF estimation network trained with and
without the Perlin noise based specular augmentation. The error
comparison in this table indicates modest improvements in diffuse
albedo and normal maps, but a more significant improvement in the
specular albedo and roughness.

Impact of Top view Rerendering Loss Lt In addition to the Per-
lin noise based specular component augmentation, we also include
an additional term in the loss function that measures the accuracy
of top-view renderings (from different positions). Leaving out this
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Table 3: Quantitative comparison with synthetic test data at 256× 256 resolution between our deep reflectance scanning, the deep multi-

image SVBRDF method of Deschaintre et al. [DAD∗19], and the deep inverse rendering method of Gao et al. [GLD∗19]. For all methods, the

input images follow the methods’ prescribed capture setups, and utilize the reference alignments. Furthermore, we also include a comparison

using only the test set from Deschaintre et al.

# Input SVBRDF maps L1 Render with Inria BRDF model Render with our BRDF model
Image Method Diffuse Normal Specular Rough. L1 DSSIM L1 DSSIM

Full test set

1
Refl. Scan 0.0374 0.0545 0.0246 0.1311 0.0360 0.2432 0.0364 0.2443
[DAD∗19] 0.0957 0.0525 0.0314 0.1439 0.0599 0.2591 0.0611 0.2612
[GLD∗19] 0.0279 0.0578 0.0490 0.2566 0.0323 0.2073 0.0323 0.2062

5
Refl. Scan 0.0302 0.0439 0.0227 0.0840 0.0297 0.1837 0.0300 0.1847
[DAD∗19] 0.0928 0.0328 0.0317 0.1416 0.0550 0.1696 0.0562 0.1712
[GLD∗19] 0.0175 0.0325 0.0456 0.1894 0.0153 0.0870 0.0147 0.0845

11
Refl. Scan 0.0276 0.0374 0.0221 0.0732 0.0268 0.1572 0.0272 0.1584
[DAD∗19] 0.0938 0.0289 0.0319 0.1384 0.0547 0.1564 0.0559 0.1578
[GLD∗19] 0.0136 0.0232 0.0417 0.1694 0.0106 0.0566 0.0098 0.0540

29
Refl. Scan 0.0272 0.0352 0.0216 0.0697 0.0261 0.1476 0.0264 0.1487
[DAD∗19] 0.0959 0.0272 0.0319 0.1345 0.0557 0.1543 0.0569 0.1555
[GLD∗19] 0.0132 0.0223 0.0385 0.1582 0.0097 0.0514 0.0089 0.0489

Test set from [DAD∗19]

1
Refl. Scan 0.0206 0.0336 0.0234 0.1039 0.0313 0.1792 0.0319 0.1804
[DAD∗19] 0.0490 0.0302 0.0242 0.1041 0.0424 0.1697 0.0433 0.1718
[GLD∗19] 0.0169 0.0389 0.0433 0.1932 0.0289 0.1457 0.0284 0.1450

5
Refl. Scan 0.0155 0.0252 0.0205 0.0573 0.0231 0.1129 0.0236 0.1139
[DAD∗19] 0.0457 0.0189 0.0270 0.0976 0.0373 0.1122 0.0383 0.1141
[GLD∗19] 0.0076 0.0190 0.0348 0.1430 0.0097 0.0422 0.0090 0.0405

11
Refl. Scan 0.0144 0.0200 0.0183 0.0459 0.0205 0.0883 0.0212 0.0901
[DAD∗19] 0.0455 0.0166 0.0308 0.0964 0.0359 0.1013 0.0369 0.1030
[GLD∗19] 0.0053 0.0102 0.0292 0.1245 0.0059 0.0207 0.0051 0.0191

29
Refl. Scan 0.0145 0.0179 0.0177 0.0400 0.0199 0.0798 0.0206 0.0819
[DAD∗19] 0.0458 0.0153 0.0288 0.0938 0.0354 0.0999 0.0364 0.1013
[GLD∗19] 0.0048 0.0093 0.0248 0.1086 0.0048 0.0170 0.0042 0.0155

Table 4: Quantitative comparison with synthetic test data at

2048 × 2048 resolution between deep reflectance scanning and

the guided fine-tuning method of Deschaintre et al. [DDB20]. In

both cases, we follow the assumed acquisition procedures. We use

the test set from [DDB20] which contains 24 SVBRDFs. For our

method, we by default use auto alignment, except for the 5 materi-

als that exhibit little texture; in this case we use the reference align-

ment. For [DDB20] we include results with reference SVBRDF

patches as input, and also with the SVBRDF patches predicted us-

ing the method of Dechaintre et al. [DAD∗18].

Method
SVBRDF maps L1 Render

Diffuse Normal Specular Rough. L1 DSSIM
Refl. Scan 0.0246 0.0504 0.0664 0.0969 0.0289 0.1926

[DDB20], ref. patch 0.0290 0.0758 0.0388 0.1238 0.0420 0.2641
[DDB20], pred. patch 0.0431 0.0831 0.0771 0.1829 0.0517 0.2998

additional term from the loss function (Table 2, 3rd row) affects
the diffuse and normal map errors as well as the rerendering er-
rors significantly. The specular albedo and roughness are modestly
affected. This indicates that both the Perlin noise based augmenta-
tion as well as the additional loss term work in unison to improve
different parts of the SVBRDF.

Instance Normalization We employ instance normalization in-

stead of convolution weight normalization as in Deschaintre et
al. [DAD∗19] to avoid small high value artifacts in the reconstruc-
tions. Table 2 (4th row) compares the errors on the property maps
and the rerenderings of the test data. From this we can see that in-
stance normalization significantly improves all property maps and
rendering errors.

Alignment Regularization The alignment regularization step
greatly improves the accuracy of the warp estimation. Figure 13
shows an example of an SVBRDF recovered from a video sequence
with and without alignment regularization. Without regularization,
long-range drift can introduce misalignments that result in visual
errors; most visible in the aligned frames and the normal map. Ta-
ble 2 (5th row) shows the average L1 errors on each of the recovered
SVBRDF property maps for the test set. We can see a clear increase
in error on the diffuse albedo and normals. The error on the specular
component is more limited. In terms of error on the alignment (Ta-
ble 2 bottom), we can observe a significantly lower number of valid
pixels, and a larger error on the valid pixels. Because we throw out
invalid pixels before max-pooling, the estimated SVBRDF values
are estimated from fewer observations, and thus less reliable.

Feature Warping vs. Frame Warping One of our key contribu-
tions is that we directly warp features instead of the input frames.
To illustrate the importance of this step, we compare our method to
a direct modification of the method of Deschaintre et al. where the
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Table 5: Quantitative robustness analysis on synthetic video sequences. All SVBRDFs are at 1,024×1,024 resolution and reconstructed with

the automatic alignment.

Alignment SVBRDF maps L1 Render
Parameter Valid rate Pixel error Diffuse Normal Specular Roughness L1 DSSIM

Impact of environment lighting (Parameter indicates the overall environment map brightness)
0.01 0.9171 5.510 0.0268 0.0363 0.0254 0.0842 0.0286 0.1707
0.02 0.9174 5.356 0.0269 0.0365 0.0257 0.0848 0.0295 0.1747
0.05 0.9173 5.330 0.0296 0.0369 0.0270 0.0856 0.0328 0.1844
0.1 0.9170 5.141 0.0398 0.0374 0.0285 0.0870 0.0398 0.1955
0.2 0.9173 5.110 0.0675 0.0389 0.0306 0.0911 0.0550 0.2207

Impact of frame rate (Parameter indicates frame rate factor)
4 0.9179 3.442 0.0274 0.0362 0.0253 0.0840 0.0282 0.1667
2 0.9181 3.792 0.0274 0.0363 0.0254 0.0845 0.0282 0.1671

0.5 0.8994 23.216 0.0320 0.0385 0.0255 0.0917 0.0315 0.1918

Camera Zig-zag motion
0.9363 5.265 0.0275 0.0366 0.0254 0.0848 0.0282 0.1664

Deviations from template path (Parameter indicates scale factor on parameters in Table 1)
0 0.9770 4.319 0.0275 0.0361 0.0255 0.0840 0.0282 0.1662

0.25 0.9330 5.971 0.0275 0.0363 0.0253 0.0843 0.0283 0.1678
0.5 0.9250 5.562 0.0275 0.0364 0.0253 0.0841 0.0283 0.1682
2 0.9054 11.039 0.0284 0.0372 0.0255 0.0870 0.0290 0.1753
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Figure 10: Comparison with Deschaintre et al. [DAD∗19] and

Gao et al. [GLD∗19] on 256× 256 resolution SVBRDFs with 29
input images following the respective methods’ prescribed acquisi-

tion procedure.

Table 6: Impact of the number of key frames on the SVBRDF recon-

struction accuracy at 1,024× 1,024 resolution. To avoid potential

bias due to errors in the alignment, we perform this experiment us-

ing the reference alignment warps.

# Key SVBRDF maps L1 Render
Frames Diffuse Normal Specular Roughness L1 DSSIM

8 0.0273 0.0377 0.0260 0.1008 0.0288 0.1661
15 0.0260 0.0337 0.0258 0.0873 0.0267 0.1468
29 0.0255 0.0323 0.0254 0.0815 0.0261 0.1403
71 0.0254 0.0317 0.0255 0.0808 0.0260 0.1374
141 0.0255 0.0316 0.0258 0.0817 0.0262 0.1370

frames are aligned in the image domain (as opposed to warping the
feature vectors). Invalid pixels are set to a −1 value, and we also
concatenate a mask for valid pixels to the input. Figure 14 shows
for a selected material the recovered SVBRDF as well as the ref-
erence SVBRDF, and Table 2 (6th row) lists the respective errors.
From this we can see that a direct modification does not work well
due to the invalid pixel values.
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Figure 11: Comparison with Deschaintre et al. [DDB20] on 2048× 2048 resolution SVBRDFs following the respective methods’ assumed

acquisition procedure. For robust flow calculation our method uses a slightly larger guidance image, and we crop the corresponding region

for comparison. For the guided upsample method of Deschaintre et al. [DDB20], we used the ground-truth SVBRDF patch as input for the

top example (best case scenario), and a predicted patch for the bottom example (real-world scenario).

8.4. Validation

To better understand the many parameters that can potentially im-
pact the quality of the results, we also validate the impact of varia-
tions in lighting, number of key frames, and camera motion.

Environment Light In our experiments we assumed that the only
source of lighting is the co-located flash lighting. However, in
practice, pre-existing environment lighting ªpollutesº the measure-
ments. To validate the adverse effect of environment lighting, we
include a randomly selected environment light from the dataset of
Li et al. [LDPT17] during rendering, and scale it to control the
overall contribution. Table 5 plots the alignment, SVBRDF esti-
mation, and rerendering errors for the environment lighting at 1%,
2%, 5%, 10%, and 20% of its total brightness. From this we can
see that the alignment is robust to additional environment lighting,
as is the estimation of the normal map, and specular properties to
some degree. Unsurprisingly, the diffuse albedo is greatly affected
as it integrates the incident lighting over the full hemisphere.

Number of Key Frames Increasing the number of key frames
effectively provides more cues to the SVBRDF estimation algo-
rithm for recovering the material property maps. Table 6 shows a
steady improvement for an increasing number of key frames upto
29, after which the accuracy improves less quickly, and ultimately
converges.

Frame Rate In the above experiment, we kept the video frame rate
fixed, and just selected more key frames from the same video se-
quence. However, we can also change the frame rate (or conversely,
move the camera more rapidly), while keeping the number of key
frames fixed (at 29). Table 5 shows that the alignment accuracy de-
creases for a decrease in frame rate (i.e., larger difference between
subsequent frames). This is not unexpected; optical flow fails for
large motions.

Camera Motion We trained our network with two template paths.
This raises the question whether our method is robust to other forms
of motion.
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Figure 12: Ablation examples illustrating the impact of the Perlin noise based augmentation of the training data.
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Figure 13: Ablation examples of the impact of alignment regularization. Without alignment regularization we observe a steady alignment

drift over long sequences, and consequently, errors in the SVBRDF reconstruction.
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Figure 14: Ablation example of warping features versus directly warping video frames. Invalid pixels are set to ª−1º, and we also concate-

nate a mask for valid pixels to the input. However, this example shows that warping feature maps better handles invalid pixels.

Table 7: Robustness analysis of the guidance image’s relative scale with respect to the video frames for high resolution SVBRDF reconstruc-

tion performed on synthetic video sequences on a high resolution SVBRDF from the dataset of Deschaintre et al. [DDB20]. We reconstruct

2,048× 2,048 SVBRDF maps using our robust alignment estimation for a variety of guidance image scales. The first column reports the

relative size of a guidance image pixel compared to a pixel in the video sequence; a larger size means a more blurred guidance image.

Alignment SVBRDF maps L1 Render
Scale Valid rate Pixel error Diffuse Normal Specular Roughness L1 DSSIM

1.0 0.9558 8.221 0.0209 0.0413 0.0212 0.0864 0.0251 0.1350
2.0 0.9558 8.219 0.0209 0.0414 0.0212 0.0864 0.0252 0.1356
5.0 0.9557 8.260 0.0211 0.0425 0.0212 0.0864 0.0257 0.1467

10.0 0.9549 8.629 0.0238 0.0485 0.0213 0.0875 0.0292 0.2193

As a first test, we scan the material in a zig-zag motion (since
this also covers the full material sample). Despite the significant
difference in scanning pattern, we observe that the errors are similar
to those from a spiral pattern camera path (Table 5).

As a second test, we evaluate smaller deviations from the tem-
plate paths, by generating paths with a larger range of variability.
Practically, we scale the parameters in Table 1 when generating the
test video sequences. Table 5 shows that while increased variability
slightly increases the errors on the alignment, the overall error is
still too small to significantly impact the SVBRDF estimation.

Both experiments indicate that our alignment algorithm is robust
to typical camera motion variations encountered in real-world set-
tings.

Guidance Image Scale A key benefit of our method is that the
guidance image does not necessarily need to be at the same reso-
lution as the video frames. To validate this claim, we reconstruct
the high resolution SVBRDF from the database of Deschaintre et
al. [DDB20] with a varying guidance-pixel to video-pixel ratio. Ta-
ble 7 shows that our method is robust for a wide range of scales.
At a scale ratio of 10 video pixels per guidance pixel, we observe a
slight reduction in quality.

8.5. Limitations

Our method is not without limitations. First, our method is sen-
sitive to environment lighting. Including a constant environment
light during training as in Deschaintre et al. [DAD∗19] could po-
tentially alleviate this. Second, we observe that the benefit of addi-
tional frames decreases with increased number of key frames, and
eventually levels off. Improving the performance for a large num-
ber of input key frames is an interesting avenue for future work.
Third, materials with a sharp specular component are difficult to
capture manually as it requires a dense sampling of the surface
(to elicit a specular response at each surface point). Furthermore,
the large dynamic range required to accurately capture the bright
specular highlights and the diffuse surface reflectance simultane-
ously might exceed the dynamic range capabilities of current mo-
bile phones. Fourth, our method is limited to isotropic surface re-
flectance only. Extending our method to model anisotropic surface
reflectance would be an interesting avenue for future research. Fi-
nally, our method is somewhat robust to rotations of the camera
around the view axis, but for strong rotations our method fails. A
key reason for this is that currently each feature vector encodes the
local reflectance behavior in a rotation-variant manner. Empirically,
we found that training rotation-invariant features poses difficulties
for surface normal estimation.
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9. Conclusion

In this paper we presented a novel method for recovering spatially-
varying surface reflectance of a planar exemplar from a guidance
image of the exemplar and a video sequence captured by ªscan-
ningº a mobile phone manually over the surface while illuminating
the material exemplar by the co-located flash light. Our method re-
quires no calibration or manual alignment of the captured frames,
making our method suited for use by non-expert users. The robust
automatic alignment allows us to scan SVBRDFs at resolutions ex-
ceeding the camera resolution and produce an SVBRDF at the com-
bined resolution of all video frames. Our method builds on prior
work in recovering SVBRDFs using deep convolutional neural net-
works. Key to our method is that the alignment is performed on
feature vectors instead of the input frames directly. Our method has
the benefit that it can naturally handle uneven coverage of surface
points in the target SVBRDF by the input video frames.

For future work we would like to investigate other acquisition
protocols such as changing the view angle instead of the camera
position as in our work. Additionally, we would like to improve the
robustness of the method for a large number of key frames as well
as for rotational invariance.
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