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Abstract

We consider online algorithms for the page
migration problem that use predictions, po-
tentially imperfect, to improve their perfor-
mance. The best known online algorithms
for this problem, due to Westbrook’94 and
Bienkowski et al’17, have competitive ratios
strictly bounded away from 1. In contrast, we
show that if the algorithm is given a predic-
tion of the input sequence, then it can achieve
a competitive ratio that tends to 1 as the pre-
diction error rate tends to 0. Specifically, the
competitive ratio is equal to 1+O(q), where q
is the prediction error rate. We also design a
“fallback option” that ensures that the com-
petitive ratio of the algorithm for any input
sequence is at most O(1/q). Our result adds
to the recent body of work that uses machine
learning to improve the performance of “clas-
sic” algorithms.

1 Introduction

Recently, there has been a lot of interest in using ma-
chine learning to design improved algorithms for vari-
ous computational problems. This includes work on
data structures Kraska et al. (2018); Mitzenmacher
(2018), online algorithms Lykouris and Vassilvitskii
(2018); Purohit et al. (2018); Gollapudi and Pan-
igrahi (2019a); Rohatgi (2020), combinatorial opti-
mization Khalil et al. (2017); Balcan et al. (2018),
similarity search Wang et al. (2016), compressive sens-
ing Mousavi et al. (2015); Bora et al. (2017) and
streaming algorithms Hsu et al. (2019). This body
of work is motivated by the fact that modern ma-
chine learning methods are capable of discovering sub-
tle structure in collections of input data, which can be
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utilized to improve the performance of algorithms that
operate on similar data.

In this paper we focus on learning-augmented online
algorithms. An on-line algorithm makes non-revocable
decisions based only on the part of the input seen so
far, without any knowledge of the future. It is thus
natural to consider a relaxation of the model where
the algorithm has access to (imperfect) predictors of
the future input that could be used to improve the
algorithm performance. Over the last couple of years
this line of research has attracted growing attention
in the machine learning and algorithms literature, for
classical on-line problems such as caching Lykouris
and Vassilvitskii (2018); Rohatgi (2020), ski-rental and
scheduling Purohit et al. (2018); Gollapudi and Pani-
grahi (2019b); Lattanzi et al. (2020) and graph match-
ing Kumar et al. (2019). Interestingly, most of the
aforementioned works conclude that the “optimistic”
strategy of simply following the predictions, i.e., exe-
cuting the optimal solution computed off-line for the
predicted input, can lead to a highly sub-optimal per-
formance even if the prediction error is small 1. For
instance, for the caching problem, even a single mis-
prediction can lead to an unbounded competitive ra-
tio Lykouris and Vassilvitskii (2018).

In this paper we show that, perhaps surprisingly, the
aforementioned “optimistic” strategy leads to near-
optimal performance for some well-studied on-line
problems. We focus on the problem of page migra-
tion Black and Sleator (1989) (a.k.a. file migration Bi-
enkowski (2012) or 1-server with excursions Manasse
et al. (1990)). Here, the algorithm is given a sequence
s of points (called requests) s1, s2, . . . from a metric
space (X, d), in an online fashion. The state of the
algorithm is also a point from (X, d). Given the next
request si, the algorithm moves to its next state ai
(at the cost of D · d(ai−1, ai), where D is a parame-
ter), and then “satisfies” the request si (at the cost of
d(ai, si)). The objective is to satisfy all requests while

1To the best of our knowledge the only problem for
which this strategy is known to result in an optimal algo-
rithm is the online bipartite matching, see Section 1.2 for
more details
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minimizing the total cost. The problem has been a
focus on a large body of research, see e.g., Awerbuch
et al. (1993); Westbrook (1994); Chrobak et al. (1997);
Bartal et al. (1997); Khorramian and Matsubayashi
(2016); Bienkowski et al. (2017). The best known al-
gorithms for this problem have competitive ratios of
4 (a deterministic algorithm due to Bienkowski et al.
(2017)), 3 (a randomized algorithm against adaptive
adversaries due to Westbrook (1994)) and 2.618 . . .
(a randomized algorithm against oblivious adversaries
due to Westbrook (1994)). The original paper Black
and Sleator (1989) also showed that the competitive
ratio of any deterministic algorithm must be at least
3, which was recently improved to 3 + ε for some ε > 0
by Matsubayashi (2015).

1.1 Our results

Suppose that we are given a predicted request sequence
ŝ that, in each interval of length εD, differs from the
actual sequence s on at most a fraction q of positions,
where ε, q ∈ (0, 1) are the parameters (note that the
lower the values of ε and q are, the stronger our as-
sumption is). Under this assumption we show that the
optimal off-line solution for ŝ is a (1 + ε)(1 + O(q))-
competitive solution for s as long as the parameter
q > 0 is a small enough constant. Thus, the competi-
tive ratio of this prediction-based algorithm improves
over the state of the art even if the number of errors
is linear in the sequence length, and tends to 1 when
the error rate tends to 0.2 Furthermore, to make the
algorithm robust, we also design a “fallback option”,
which is triggered if the input sequence violates the
aforementioned assumption (i.e., if the fraction of er-
rors in the suffix of the current input sequence exceeds
q). The fallback option ensures that the competitive
ratio of the algorithm for any input sequence is at most
O(1/q). Thus, our final algorithm produces a near-
optimal solution if the prediction error is small, while
guaranteeing a constant competitive ratio otherwise.

For the case when the underlying metric is uniform,
i.e., all distances between distinct points are equal to
1, we further improve the competitive ratio to 1+O(q)
under the assumption that each interval of length D
differs from the actual sequence in at most qD posi-
tions. That is, the parameter ε is not needed in this
case. Moreover, any algorithm has a competitive ratio
of at least 1 + Ω(q).

It is natural to wonder whether the same guarantees
hold even when the predicted sequence differs from

2Note that if each interval of length D has at most a
fraction of q of errors, then it is also the case that each
interval of length

√
qD has at most a fraction of

√
q of

errors. Thus, if q tends to 0, the competitive ratio tends
to 1 even if the interval length remains fixed.

the actual sequence on at most a fraction of q posi-
tions distributed arbitrarily over ŝ, as opposed to over
chunks of length εD. We construct a simple example
that shows that such a relaxed assumption results in
the same lower bound as for the classical problem.

1.2 Related Work

Multiple variations of the page migration problem have
been studied over the years. For example, if the page
can be copied as well as moved, the problem has been
studied under the name of file allocation, see e.g., Bar-
tal et al. (1995); Awerbuch et al. (2003); Lund et al.
(1998). Other formulations add constraints on nodes
capacities, allow dynamically changing networks etc.
See the survey Bienkowski (2012) for an overview.

There is a large body of work concerning on-line al-
gorithms working under stochastic or probabilistic as-
sumptions about the input Unc (2016). In contrast, in
this paper we do not make such assumptions, and al-
low worst case prediction errors (similarly to Lykouris
and Vassilvitskii (2018); Kumar et al. (2019); Purohit
et al. (2018)). Among these works, our prediction er-
ror model (bounding the fraction of mispredicted re-
quests) is most similar to the “agnostic” model defined
in Kumar et al. (2019). The latter paper considers on-
line matching in bipartite graphs, where a prediction
of the graph is given in advance, but the final input
graph can deviate from the prediction on d vertices.
Since each vertex impacts at most one matching edge,
it directly follows that d errors reduce the matching
size by at most d. In contrast, in our case a single
error can affect the cost of the optimum solution by
an arbitrary amount. Thus, our analysis requires a
more detailed understanding of the properties of the
optimal solution.

Multiple papers studied on-line algorithms that are
given a small number of bits of advice Boyar et al.
(2017) and show that, in many scenarios, this can im-
prove their competitive ratios. Those algorithms, how-
ever, typically assume that the advice is error-free.

2 Preliminaries

2.1 Page Migration

In the classical version, the algorithm is given a se-
quence s of points (called requests) s = (si)i∈[n] from
a metric space (X, d), in an online fashion. The state
of the algorithm (i.e., the page), is also a point from
(X, d). Given the next request si, the algorithm moves
to its next state ai (at the cost of D ·d(ai−1, ai), where
D > 1 is a parameter), and then “satisfies” the request
si (at the cost of d(ai, si)). The objective is to satisfy
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all requests while minimizing the total cost. We can
consider a version of this problem where the algorithm
is given, prior to the arrival of the requests, a predicted
sequence ŝ = (ŝi)i∈[n]. The (final) sequence s is gener-
ated adversarially from ŝ and an arbitrary adversarial
sequence s? = (s∗i )i∈[n]. That is either si = ŝi or
si = s∗i . The initial input to the (online) algorithm is
ŝ. In addition, at every step i, the algorithm receives
the request si for which it outputs in the same step
the location from where it serves the request. If we do
not make any assumptions on how well s is predicted
by ŝ, then the problem is no easier than the classical
online version. On the other hand, if s = ŝ, then one
obtains an optimal online algorithm, by simply com-
puting the optimal offline algorithm. The interesting
regime lies in between these two cases. We will make
the following assumption throughout the paper, which
roughly speaking demands that a 1− q fraction of the
input is correctly predicted and that the q fraction of
errors is somewhat spread out.

Definition 1 (Number of mismatches m(·)). Let I be

an interval of indices. We define m(I)
def
=
∑

t∈I 1st 6=ŝt

to be the number of mismatches between s and ŝ within
the interval I.

Assumption 1. Consider an interval I of s of length
εD. It holds that for any I we have m(I) ≤ qεD.

Remark 1. Relaxing Assumption 1 by allowing the
adversary to change an arbitrary q fraction of the in-
put results in the same lower bound as for the classical
problem. To see this, consider an arbitrary instance
on qn elements that gives a lower bound of c in the
classical problem. Call this sequence of elements ad-
versarial. Let ŝ consists of n elements being equal to
the starting point. That is, ŝ is simply the starting
position replicated n times. Let s be equal to the se-
quence ŝ whose suffix of length qn is replaced by the
adversarial sequence. Now, on s defined in this way
no algorithm can be better than c-competitive. Hence,
in general this relaxation of Assumption 1 gives no ad-
vantage.

Our main results hold for general metric space, where
for all p, p′, p′′ ∈ X all of the following hold: d(p, p) =
0, d(p, p′) > 0 for p 6= p′, d(p, p′) = d(p′, p), and
d(p, p′′) ≤ d(p, p′) + d(p′, p′′). We obtain better re-
sults for uniform metric space, where, d(p, p′) = 1 for
p 6= p′.

2.2 Notation

Given a sequence s, we use si to denote the i-th ele-
ment of s. For integers i and j, such that 1 ≤ i ≤ j,
we use s[i,j] to denote the subsequence of s consisting
of the elements si, . . . , sj .

Let p0 denote the start position for all algorithms, i.e.,

the position of the page at time 0.

Given an algorithm B that pays cost C for serving n
requests, we denote by Ct1,t2 the cost paid by B during
the interval [t1, t2]. We sometimes abuse notation and
write Ct as a shorthand for C0,t. In particular, C
denotes C0,n as well as Cn. This notation is the most
often used in the context of our algorithm ALG and
the optimal solution OPT, whose total serving costs
are A and O, respectively.

3 Proof Overview

We now present our main algorithm and provide intu-
ition about its correctness.

Our two main contributions are: algorithm ALG
that is (1+O(q))-competitive provided Assumption 1;
and, a black-box reduction from ALG to a O(1/q)-
competitive algorithm ALGrobust when Assumption 1
does not hold. In Section 3.1 we present an overview
of ALG, while an overview of ALGrobust is given in
Section 3.2.

3.1 ALG under assumption Assumption 1

Algorithm ALG (given as Algorithm 1) simply com-
putes the optimal offline solution based on ŝ and
moves pages accordingly.

Algorithm 1 ALG(si, ŝ)

Input:

• Request si

• A prediction ŝ (s and ŝ are defined in Section 2)

1: Let ai be the position of the page in the optimal
offline algorithm at the i-th request with respect
to ŝ.

2: Move the page to ai and serve the request si.

The main challenge in proving that ALG still performs
well in the online setting lies in leveraging the optimal-
ity of ALG with respect to the offline sequence. The
reason for this is that, due to s and ŝ not being identi-
cal, OPT and ALG may be on different page locations
throughout all the requests. In addition to that, we
have no control over which q fraction of any interval
of length D is changed nor to what it is changed. In
particular, if si 6= ŝi, then si and ŝi could be very far
from each other. To circumvent this, we use the fol-
lowing way to argue about the offline optimality, that
is, about the optimality computed with respect to ŝ.

We think of ALG (OPT, respectively) as a sequence
of page locations that are defined with respect to ŝ (s,
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respectively). These page locations do not change even
if, for instance, the i-th online request to ALG deviates
from ŝi. Let At (Ot, respectively) be the cost of ALG
(OPT, respectively) serving t requests given by s[1,t].

Similarly, let Ât (Ôt, respectively) be the cost of ALG
(OPT, respectively) for serving the oracle subsequence
ŝ[1,t]. In particular, An is the cost of ALG (optimal

on ŝ) on the final sequence s, whereas Ôn is the cost of
the optimal algorithm for s on the predicted sequence
ŝ. It is convenient to think of Ôn as the ‘evil twin’ of
An.

We have, due to optimality of ALG on the offline se-
quence,

An −On = An − Ân + Ân −On

≤ An − Ân + Ôn −On. (1)

The intuition behind the right-hand side of inequal-
ity above is best explained pictorially, which we do
in Fig. 1. Here ALG is at a and OPT is at o. In
the depicted example the actual request is s while the
predicted one is ŝ. This causes An − Ân to increase,
however, at the same time, Ôn − On decreases by al-
most the same amount.3 In fact, one can show that for
such a request the right hand side of Eq. (1) will in-
crease by no more than 2d(a, o). For requests that are
predicted correctly, i.e., s = ŝ, the costs of ALG and
OPT do not change. It remains to bound d(at, ot),
which we do next. By triangle inequality, it holds that

d(at, ot) ≤ d(at, st) + d(ot, st) (2)

≤ At −At−1 +Ot −Ot−1, (3)

Consider an interval (ti−1, ti]. Let c
(ti−1,ti]
move be the total

sum of moving costs for both OPT and ALG for the
requests in the interval (ti−1, ti]. As a reminder (see
Definition 1), for a given interval I, m(I) is the num-
ber of mismatches between s and ŝ within I. From
Eq. (3), we derive

An −On ≤2
∑
i

m((ti−1, ti])· (4)

Ati −Ati−1
+Oti −Oti−1

− c(ti−1,ti]
move

ti − ti−1
. (5)

We would like the right hand side of Eq. (5) to be
small, implying that An − On is small as well. To
understand the nature of the right hand side of Eq. (5)
and what is required for it to be small, assume for
a moment that m((ti−1, ti]) = α(ti − ti−1). Then,
the rest of the summation telescopes to An −On, and

3We oversimplified here, since the right hand side of (1)
only holds for the sum of all points, but a similar argument
can be made for a single requests.

oa

s ŝ

Figure 1: A pictorial representation of Eq. (1).

Eq. (5) reduces to An−On ≤ 2α(An +On). Now, if α
is sufficiently small, e.g., α ≤ 2q, then we are able to
upper-bound Eq. (5) by 4q(An +On) and derive

An

On
≤ 1 + 4q

1− 4q
,

which gives the desired competitive factor.

So, to utilize Eq. (5), in our proof we will focus on
showing that m((ti−1, ti]) is sufficiently smaller than
ti − ti−1. However, this can be challenging as OPT
is allowed to move often, potentially on every request
which results in ti − ti−1 being very small. But, if
ti − ti−1 is too small, then Assumption 1 gives no
information about m((ti−1, ti]). However, if intervals
ti − ti−1 are large enough, e.g., at least βD for some
positive constant β, then from Assumption 1 we would
be able to conclude that α = O(q). Since in principle
OPT can move in every step, we design ‘lazy’ versions
of OPT and ALG that only move O(1) times in any
interval of length D. This will enable us to argue that
ti − ti−1 is not too small. It turns out that the re-
spective competitive factors of the lazy versions with
respect to the original versions is very close, allowing
us prove

An

On
≈ Alazy

n

Olazy
n

≤ (1 + ε)
1 +O(q)

1−O(q)
.

3.2 ALGrobust, a robust version of ALG

We now describe ALGrobust. This algorithm follows a
“lazy” variant of ALG as long as Assumption 1 holds,
and otherwise switches to ALGonline. Instead of us-
ing ALG directly, we use a ‘lazy’ version of ALG that
works as follows: Follow the optimal offline solution
given by ALG with a delay of 6qD steps. Let ALGlazy

be the corresponding algorithm. We point out that
performing some delay with respect to ALG is cru-
cial here. To see that, consider the following example
in the case of uniform metric spaces: s = {0}n and
ŝ = {1}n, and let the starting location be 0. Accord-
ing to ALG, the page should be moved from 0 to 1 in
the very beginning, incurring the cost of D. On the
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other hand, OPT never moves from 0. If ALGrobust

would follow ALG until it realizes that the fraction of
errors is too high, it would already pay the cost of at
least D, leading to an unbounded competitive ratio.
However, if ALGrobust delays following ALG, then it
gets some “slack” in verifying whether the predicted
sequence properly predicts requests or not. As a re-
sult, when Assumption 1 holds, this delay increases
the overall serving cost by a factor O(1+O(q)), but in
turn achieves a bounded competitive ratio when this
assumption does not hold.

While serving requests, ALGrobust also maintains the
execution of ALGonline, i.e., ALGrobust maintains
where ALGonline would be at a given point in time, in
case a fallback is needed. Now ALGrobust simply ex-
ecutes ALGlazy unless we find a violation of Assump-
tion 1 is detected. Once such a violation is detected,
the algorithm switches to ALGonline by moving its lo-
cation to ALGonline’s current location. From there on
ALGonline is executed.

We now present the intuition behind the proof for the
competitive factor of the algorithm.

3.2.1 Case when Assumption 1 holds.

In this case ALGrobust is ALGlazy, and the analysis
boils down to proving competitive ratio of ALGlazy.
We show that ALGlazy is (1 + O(q))-competitive to
ALG, which is, as we argued in the previous section,
1 + O(q) competitive to OPT. To see this, we em-
ploy the following charging argument: whenever ALG
moves from a to a′ it pays D · d(a, a′). The lazy algo-
rithm eventually pays the same moving cost of less.

However, in addition, the serving cost of ALGlazy for
each of the 6qD requests is potentially increased, as
ALGlazy is not at the same location as ALG. Nev-
ertheless, by triangle inequality, the cost due to the
movement from a to a′ of ALG reflect to an increase
in the serving cost of ALGlazy by at most d(a, a′). In
total over all the 6qD requests and per each move of
ALG from a to a′, ALGlazy pays at most 6qDd(a, a′)
extra cost compared to ALG. Considering all migra-
tions, this gives a 1 + O(q) competitive factor.

3.2.2 Case when Assumption 1 is violated.

The case where Assumption 1 is violated (say at time
t′) is considerably more involved. We then have

ALGrobust ≤ALGlazy(0, t′) + ALGonline(t′ + 1, n)

+D · d(a, a′),

and we seek to upper-bound each of these terms by
O(OPT/q). While the upper-bound holds directly
for ALGonline(t′+ 1, n), showing the upper-bound for

other terms is more challenging.

The key insight is that, due to the optimality of ALG,

d(a, p0) ≤ OPT (t′)/(qD), (6)

which can be proven as follows. If ALG migrates its
page to a location that is far from the starting loca-
tion p0, then there have to be, even when taking into
account noise, at least 4qD page requests that are far
from p0. OPT also has to serve these requests (either
remotely or by moving), and hence has to pay a cost
of at least qD · d(a, p0). Equipped with this idea, we
can now bound D · d(a, a′) in terms of OPT(t′)/q. To
bound ALGlazy(0, t′) we need one more idea. Namely,
we compare ALGlazy(0, t′) to the optimal solution
that has a constraint to be at the same position as
ALGlazy at time t′. A formal analysis is given in Ap-
pendix B.

4 The Analysis of ALG

Now we analyze ALG (Algorithm 1). As discussed in
Section 3.1, our main objective is to establish Eq. (5),
which we do in Section 4.1. That upper-bound will
be directly used to obtain our result for uniform met-
ric spaces, as we present in Appendix A.1. To con-
struct our algorithm for general-metric spaces, in Ap-
pendix A.2 we build on ALG by first designing its
“lazy” variant. As the final result, we show the fol-
lowing. Recall that q is the fraction of symbols that
the adversary is allowed to change in any sequence of
length εD of the predicted sequence.

Theorem 2. If Assumption 1 holds with respect to
parameter ε, then we obtain the following results:

(A) There exists a (1 + ε) · (1 +O(q))-competitive al-
gorithm for the online page migration problem.

(B) There exists a (1 + O(q))-competitive algorithm
for the online page migration problem in uniform
metric spaces.

We defer the proof of Theorem 2 to Appendix A. Note
that in the prediction-free case Matsubayashi (2015)
show that the competitive ratio of any deterministic
algorithm must be at least 3 + ε for some ε > 0. In
the case of having access to predictions, Theorem 2 is
asymptotically optimal with respect to q. Namely, any
algorithm is at least 1 + Ω(q) competitive; even in the
uniform metric case. To see this consider the following
binary example where the algorithm starts at position
0. The advice is ŝ = 111 · · · 1111︸ ︷︷ ︸

(1−q)D

000 · · · 000︸ ︷︷ ︸
2qD

. The final

sequence is s =


ŝ w.p. 1/2

111 · · · 1111︸ ︷︷ ︸
(1+q)D

otherwise.
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In the first case OPT simply stays at 0 since moving
costs D; in the second case, OPT goes immediately
to 1. Note that ALG can only distinguish between
the sequences after (1− q)D steps at which point it is
doomed to have an additional cost of qD with proba-
bility at least 1/2 depending on the sequence s.

4.1 Establishing Eq. (5)

In our proofs we will use the following corollary of
Assumption 1.

Corollary 3. If Assumption 1 holds, then for any in-
terval I of length ` > εD it holds m(I) ≤ 2q`.

Proof. This statement follows from the fact that each
such I can be subdivided into k ≥ 1 intervals of length
exactly εD and at most one interval I ′ of length less
than εD. On one hand, the total number of mis-
matches for these intervals of length exactly εD is
upper-bounded by qkεD ≤ q`. On the other hand,
since I ′ is a subinterval of an interval of length εD, it
holds m(I ′) ≤ qεD < q`. The claim now follows.

Most of our analysis in this section proceeds by rea-
soning about intervals where neither ALG nor OPT
moves. Let t1, t2 . . . be the time steps at which either
OPT or ALG move. The final product of this sec-
tion will be an upper-bound on An − On as given by
Eq. (5)4, i.e.,

An −On

≤2
∑
i

m((ti−1, ti])

·
Ati −Ati−1

+Oti −Oti−1
− c(ti−1,ti]

move

ti − ti−1
.

We begin by rewriting and upper-bounding At−Ot as
follows

At −Ot = At − Ât + Ât −Ot

≤ At − Ât + Ôt −Ot, (7)

where we used that Ât ≤ Ôt as Ât is the optimum for
ŝ. Consider a fixed interval I = (ti−1, ti]. Then, by
triangle inequality, it holds

d(at, ot) ≤ d(at, st) + d(ot, st)

≤ At −At−1 +Ot −Ot−1.
5 (8)

Let c
(ti−1,ti]
move be the sum of moving costs for OPT and

4As a reminder, At (Ot, respectively) is the cost of ALG
(OPT, respectively) at time for the sequence s[1,t].

ALG in (ti−1, ti]. Note that

Ati −Ati−1
+Oti −Oti−1

=
∑

t∈(ti−1,ti]

(At −At−1 +Ot −Ot−1)

≥c(ti−1,ti]
move + d(ati , oti)|ti − ti−1|, (9)

where the inequality comes from Eq. (8) applied to
every time step in (ti−1, ti] and the fact that ALG
or OPT must have moved inducing a cost of at least

c
(ti−1,ti]
move . The following notation is used to represent

the difference between serving si and ŝi by ALG

A[t− 1, t] := At − Ât − (At−1 − Ât−1)

= d(at, st)− d(at, ŝt).

Note that this holds even when ALG moves since the
moving costs for the oracle sequence and on the final
sequence are the same and therefore cancel each other
out. Similarly to A[t− 1, t], let

Ô[t− 1, t] := Ôt −Ot − (Ôt−1 −Ot−1)

= d(ot, ŝt)− d(ot, st).

Consider now any t ∈ [1, n]. By triangle inequality we
have

A[t− 1, t] + Ô[t− 1, t]

=d(at, st)− d(ot, st) + d(ot, ŝt)− d(at, ŝt)

≤ (d(at, ot) + d(ot, st))− d(ot, st)

+ (d(at, ŝt) + d(at, ot))− d(at, ŝt)

=2d(at, ot)

(9)

≤2
Ati −Ati−1

+Oti −Oti−1
− c(ti−1,ti]

move

ti − ti−1
. (10)

Let ∆i = Ati − Âti + Ôti − Oti , where ∆0 = 0 by
definition. Note that

An −On

(7)

≤ An − Ân + Ôn −On =
∑
i

(∆i −∆i−1)

=
∑
i

∑
t∈(ti−1,ti]

(
A[t− 1, t] + Ô[t− 1, t]

)
.

Recall that, for a given interval I the function m(I)
denotes the number of mismatches between s and ŝ
within I (see Definition 1). Now, as for t such that
st = ŝt we have A[t − 1, t] = Ô[t − 1, t] = 0, the last
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chain of inequalities further implies

An −On

Eq. (10)

≤
∑
i

∑
t∈(ti−1,ti]

1st 6=ŝt

· 2
Ati −Ati−1

+Oti −Oti−1
− c(ti−1,ti]

move

ti − ti−1
≤2
∑
i

m((ti−1, ti])

·
Ati −Ati−1 +Oti −Oti−1 − c

(ti−1,ti]
move

ti − ti−1
. (11)

This establishes the desired upper-bound on An −
On. As discussed in Section 3.1, this upper-bound
is used to derive our non-robust results for uniform
(Appendix A.1) and general (Appendix A.2) metric
spaces. The main task in those two sections will be
to show that m((ti−1, ti]) is sufficiently smaller than
ti − ti−1.

5 Experiments

We evaluate our approach on two synthetic data sets,
and compare it to the state of the art algorithm for
page migration due to Westbrook Westbrook (1994).
The two data sets are obtained by generating “pre-
dicted” sequences of points in the plane, and then per-
turbing each point by independent Gaussian noise to
obtain “actual” sequences. The predicted sequence is
fed to our algorithm, while the actual sequence forms
an input of the online algorithm. Recall that our al-
gorithm sees the actual sequence only in the online
fashion.

5.1 Data sets

The predicted sequences of the two sets of points are
generated as follows:

1. Line process: the t-th point (X̂1(t), X̂2(t)) is
equal to (t, 0).

2. Brownian motion process: the t-th point X̂(t)
is equal to X̂(t− 1) + (∆1(t),∆2(t)), where ∆t(t)
and ∆2(t) are i.i.d. random variables chosen from
N(0, 1).

Note that the predicted line process is completely de-
terministic whereas the Brownian motion points has,
by definition, Gaussian noise. In both cases, the actual
sequence is generated by adding (additional) Gaussian
noise to the predicted sequence: the t-th request X(t)
in the actual sequence is equal to X̂(t)+(N1(t), N2(t)),
where N1(t), N2(t) are i.i.d. random variables chosen

Figure 2: An example of Brownian motion sequence.
The predicted sequence is in blue, the actual sequence
is in red.

from N(0, σ2). The value of σ varies, depending on the
specific experiment. An example Brownian motion se-
quence is depicted in Fig. 2.

5.2 Set up

We use the two data sets to compare the following
three algorithms:

• Predict refers to our algorithm, which computes
the optimum solution for the predicted sequence
(by using standard dynamic programming) and
follows that optimum to serve actual requests.

• Opt is the optimum offline algorithm executed on
the actual sequence. This optimum is computed
by using the same dynamic programming as in the
implementation of Predict.

• Online is state-of-the-art online randomized al-
gorithm for page migration that achieves 2.62-
approximation in expectation. This algorithm
is described in Section 4.1 of Westbrook (1994).
Since it is randomized, on each input we perform
100 runs of Online and as the output report the
average of all the runs. The standard deviation is
smaller than 5%.

For both data sets, we depict the costs of the three
algorithms as a function of either D or σ. See the text
above each plots for the specification.

5.2.1 Results

The results for the Brownian motion data set are de-
picted in Fig. 3. The top two figures show the cost
incurred by each algorithm for fixed values of σ and
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(a) Fixed sigma= 0.8, varying D. (b) Fixed sigma= 1.6, varying D.

(c) Fixed D = 2, varying sigma. (d) Fixed D = 5, varying sigma.

Figure 3: Comparison between Predict, Opt and Online on Brownian motion data set.

different values of D, while the bottom two figures
show the costs for fixed values of D while σ varies.
Not surprisingly, for low values of σ, the costs Pre-
dict and Opt are almost equal, since the predicted
and the actual sequences are very close to each other.
As the value of σ increases, their costs starts to di-
verge. Nevertheless, the benefit of predictions is clear,
as the cost of Predict is significantly lower than the
cost of Online. Interestingly, this holds even though
the fraction of requests predicted exactly is very close
to 0. Each point in the plots is obtained by averaging
over 15 runs. The standard deviation are also depicted
in the figures as vertical lines (in some cases the stan-
dard deviation is so small that it is not visible in the
plots).

The results for the Line data set is depicted in Fig. 6
(see Appendix C). They are qualitatively similar to
those for Brownian motion.

More complex experiments. In Fig. 4 we present
the results of a more complex experiment where we

average 10 adversarial sequences, e.g., data observed in
the past, and use it as a prediction for Predict. These
adversarial sequences are obtained by perturbing the
same ground truth. Notice that this means that in
order to obtain a prediction we do not use the ground
truth directly. Each point in Fig. 4 is obtained by
averaging over 5 runs. The standard deviation is so
small that it is not visible in the plot.

6 Conclusion

In this paper we studied online Page Migration, which
is one of the classical online problems, in the setting
where there is a predicted sequence of yet-to-be-seen
requests. When this sequence predicts the online se-
quence reasonably well, our algorithm provides better
approximation than state-of-the-art approach for clas-
sical online setting. It is an interesting open question
to improve the constant in our competitive factor to
obtain tight bounds.

Arguably the most interesting continuation of this
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Figure 4: Comparison between Predict, Opt and
Online where the prediction for Predict is obtained
from past data.

work is to use ML tools to obtain the predicted se-
quence. For example, a neural network could be
trained on the sequence seen so far to predict where
the future requests will be. Combining this with our
robust algorithm will likely give very strong results
when the sequence has a somewhat predictable struc-
ture. Characterizing such predictable structures theo-
retically will likely yield new interesting models which
has potentially application beyond Page Migration.
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Supplementary Material

A Proofs Missing from Section 4

A.1 Uniform Metric Spaces – Theorem 2 (B)

We now use the upper-bound on An −On given by Eq. (11) to show that ALG is (1 +O(q))-competitive under
Assumption 1, i.e., we show Theorem 2 (A). We distinguish between two cases: ti− ti−1 ≥ D; and ti− ti−1 < D.

A.1.1 Case ti − ti−1 ≥ D.

In this case, by Corollary 3 we have m((ti−1, ti]) ≤ 2q|ti − ti−1|. Plugging this into Eq. (11) we derive

An −On ≤ 2
∑
i

m((ti−1, ti]) ·
Ati −Ati−1

+Oti −Oti−1

ti − ti−1

≤ 4q
∑
i

(Ati −Ati−1
+Oti −Oti−1

)

= 4q(An +On).

A.1.2 Case ti − ti−1 < D.

We proceed by upper-bounding all the terms in Eq. (11). As the interval (ti−1, ti] is a subinterval of (ti−1, ti−1+D],
we have

m((ti−1, ti−1 +D]) ≤ m((ti−1, ti]) ≤ qD.

Also, observe that trivially it holds

Ati −Ati−1 +Oti −Oti−1 ≤ 2|ti − ti−1|+ c(ti−1,ti]
move . (12)

Combining the derived upper-bounds, we establish

An −On

Eq. (11)

≤ 2
∑
i

m((ti−1, ti]) ·
Ati −Ati−1

+Oti −Oti−1
− c(ti−1,ti]

move

ti − ti−1
Eq. (12)

≤ 2
∑
i

qD
2(ti − ti−1) + c

(ti−1,ti]
move − c(ti−1,ti]

move

ti − ti−1
(13)

= 4q
∑
i

D. (14)

To conclude this case, note that by definition either ALG or OPT moves within (ti−1, ti], incurring the cost of
at least D. Therefore, Ati −Ati−1

+Oti −Oti−1
≥ D. This together with Eq. (14) implies

An −On ≤ 4q
∑
i

(Ati −Ati−1 +Oti −Oti−1) = 4q(An +On).
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A.1.3 Combining the two cases.

We have concluded that in either case it holds An −On ≤ 4q(An +On) and hence we derive

An

On
≤ 1 + 4q

1− 4q
.

This concludes the analysis for uniform metric spaces.

A.2 General Metric Spaces – Theorem 2 (A)

As in the uniform case, our goal for general metric spaces is to use Eq. (5) for proving the advertised competitive
ratio. However, as we discussed in Section 3.1, the main challenge in applying Eq. (5) lies in upper-bounding
the ratio between m((ti−1, ti]) and ti − ti−1 by a small constant, ideally much smaller than 1. Unfortunately,
this ratio can be as large as 1 as OPT (or ALG) could possibly move on every single request. To see that,
consider the scenario in which all the requests are on the x-axis and are requested in their increasing order of
their location. Then, for all but potentially the last D requests, OPT would move from request to request. To
bypass this behavior of OPT and ALG, we define and analyze their “lazy” variants, i.e., variants in which OPT
and ALG are allowed to move only at the i-th request when i is a multiple of εD. We now state the algorithm.

A.2.1 Our Algorithm ALGlazy

We use the following algorithm ALGlazy: Compute the optimal offline solution (on ŝ) while only moving on

multiples of εD. Let Alazy be the cost of the solution s and let Âlazy be the cost of the solution on ŝ. Note that
there can be better offline algorithms for ŝ, however ALGlazy has the minimal cost among all online algorithms
that are only allowed to move every multiple of εD.

A.2.2 Proof

We also need to consider a lazy version of OPT, which we do in the following lemma. There we show that
making any algorithm lazy does not increase the cost by more than a factor of (1 + ε). In particular, we will
show Olazy ≤ (1 + ε)OPT. Let Alazy

t and Olazy
t denote their costs at time t.

Lemma 4. Let ε ∈ (0, 1]. Consider an arbitrary prefix w of length t of a sequence of requests. Let Bt be the
cost of any algorithm ALGB serving w. Let Blazy

t
′ be the cost of the algorithm that has to move at every time

step that is a multiple of εD (and is not allowed to move at any other time step), and to move to the position
where ALGB is at that time step. Then, we have

Blazy
t

′ ≤ (1 + ε)Bt.

Proof. Let xi be the distance of the i-th move and yi be the cost for serving the i-th request remotely. Then,

Bt = D
∑
i

xi +
∑
i

yi.

Now we relate Bt and Blazy
t

′. Blazy
t

′ has two components: the moving cost and the cost for serving remotely. By
triangle inequality, the moving cost is upper-bounded by D

∑
i xi. Consider now interval Ij ∈ [jεD+1, (j+1)εD]

for some integer j. To serve point i ∈ Ij remotely, the cost is, by triangle inequality, at most the cost of yi plus
the cost of traversing all the points with indices in Ij where ALGB has moved to. Thus the cost per request
i ∈ Ij is upper-bounded by yi+

∑
k∈Ij xk. Note that the summation

∑
k∈Ij xk is charged to εD requests. Hence,

summing over all the intervals gives

Blazy
t

′ ≤ D
∑
i

xi +
∑
i

yi + εD
∑
i

xi ≤ (1 + ε)Bt.

Define Olazy as the cost of the optimal algorithm for s that is allowed to move only at time steps which are
multiple of εD. Similarly as in Lemma 4, we have Olazy

n ≤ (1 + ε)On. Thus,

Alazy
n

On
≤ (1 + ε)

Alazy
n

Olazy
n

. (15)
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Now we need to upper-bound
Alazy

n

Olazy
n

. We will do that by showing that the same statements as we developed in

Section 4.1 hold for Alazy and Olazy. To that end, observe that to derive Eq. (7) we used the fact that Â ≤ Ô.

Notice that the analog inequality Âlazy ≤ Ôlazy holds, since ALGlazy is the the optimal offline algorithm that
only moves every multiple of εD.

Hence, we can obtain the derivation Eq. (11) for Alazy
n −Olazy

n

Alazy
n −Olazy

n ≤ 2
∑
i

m((ti−1, ti]) ·
Alazy

ti −Alazy
ti−1

+Olazy
ti −Olazy

ti−1

ti − ti−1
. (16)

Since for the lazy versions we have |ti − ti−1| = εD, Assumption 1 implies m((ti−1, ti]) ≤ εqD. Plugging this
into Eq. (16) gives

Alazy
n −Olazy

n ≤ 2q
∑
i

(
Alazy

ti −Alazy
ti−1

+Olazy
ti −Olazy

ti−1

)
= 2q(Alazy

n +Olazy
n ).

From Eq. (15) we establish
Alazy

n

On
≤ (1 + ε)

Alazy
n

Olazy
n

≤ (1 + ε)
1 + 2q

1− 2q
.

This concludes the proof of Theorem 2 (A).

B Robust Page Migration

So far we designed algorithms for the online page migration problem that have small competitive ratio when
Assumption 1 holds. In this section we build on those algorithm and design a (robust) algorithm that performs
well even when Assumption 1 does not hold, while still retaining competitiveness when Assumption 1 is true.
We refer to this algorithm by ALGrobust. For ALGrobust we prove the following.

Theorem 5. Let γ be the competitive ratio of ALG for the online page migration problem, and let q be a
positive number less than 1/24. If Assumption 1 holds, then ALGrobust is γ · (1 + O(q))-competitive, and
otherwise ALGrobust is O(1/q)-competitive.

Using our techniques it is straight-forward to obtain an arbitrary trade-off between the two competitive ratios.
Fix an arbitrary x ≥ 1, then Algorithm ALGrobust is (1 + O(x · q))-competitive if Assumption 1 holds and
O(1/(x · q))-competitive otherwise.

B.1 Algorithm ALGrobust

Let ALGonline refer to an arbitrary online algorithm for the problem, e.g., Westbrook (1994). We now define
ALGrobust. This algorithm switches from ALG to ALGonline when it detects that Assumption 1 does not hold.
Instead of using ALG directly, we use a “lazy” version of ALG that works as follows. Follow the optimal offline
solution given by ALG with a delay of 6qD steps. Let ALGlazy be the corresponding algorithm. (A lazy version
for different setup of parameters was presented in Appendix A.2.)

Throughout its execution, ALGrobust maintains/tracks in its memory the execution of ALGonline on the prefix
of s seen so far. That is, ALGrobust maintains where ALGonline would be at a given point in time in case
a fallback is needed. Now ALGrobust simply executes ALGlazy unless we find a violation of Assumption 1 is
detected. Once such a violation is detected, the algorithm switches to ALGonline by moving its location to
ALGonline’s current location. From there on ALGonline is executed.

We now analyze ALGrobust and show that in case Assumption 1 holds, then ALG and ALGrobust are close in
terms of total cost, and otherwise the cost of ALGrobust is at most O(1/q) larger than that of ALGonline.

B.1.1 Case 1: Assumption 1 holds for the entire sequence.

In this case ALGrobust executes ALGlazy throughout. Following the same argument for ε = 6q as given for
Alazy′ in the proof of Lemma 4, we have

Alazy
t ≤ (1 + 6q)At. (17)



Online Page Migration with ML Advice

Thus,

Arobust = Alazy
n ≤ (1 + 6q)An ≤ γ(1 +O(q))O,

where we used the assumption that ALG is γ-competitive. This completes this case.

B.1.2 Case 2: Assumption 1 is violated at the t-th request.

Let t′ = t− qD + 1. Note that up to this point in time no violation occurred. We define the following: a is the
position of ALGlazy at time t′; a′ is the position of ALGonline at time t′ + 1; o is the position of OPT at time
t′; and, Op

0,t′′ is the cost of OPT up to time t′′ where we demand that OPT is at position p at t′′.

In the following, we assume the following holds. We defer the proof of its correctness for later.

d(a, p0) ≤ Ot′/(qD). (18)

Intuitively, this means that we can bound the distance from the starting position by the cost of OPT.

Using Eq. (18), we get,

Arobust ≤ Alazy
t′ +Aonline

t′+1,n +D · d(a, a′). (19)

As Oa
0,t′ and Alazy

0,t′ are at the same position at time t′, inequality Alazy
0,t′ ≤ (1 + c1q)O

a
0,t′ follows from Eq. (17)

for a suitable constant c1. Note that Ot′ ≥ D · d(p0, o), which holds since this cost is already incurred by moving
to o, where we used triangle inequality.

Next, using triangle inequality again, we get

Alazy
0,t′

≤ (1 + c1q)O
a
0,t′

≤ (1 + c1q)
(
Oo

0,t′ +D · d(a, o)
)

≤ (1 + c1q)
(
Oo

0,t′ +D · d(a, p0) +D · d(p0, o)
)

≤ (1 + c1q)
(
Oo

0,t′ +Ot′/q +Ot′
)

= O(Ot′/q). (20)

Furthermore, using Eq. (18), triangle inequality and a simple lower bound on Alazy
0,t′ as well as Eq. (20), we get,

D · d(a, a′) ≤ D · d(a, p0) +D · d(p0, a
′)

≤ Ot′/q +Aonline
0,t′

≤ 2Ot′/q. (21)

Thus, plugging Eq. (21) and Eq. (20) into Eq. (19) and using Aonline ≤ O(On), we get

Arobust ≤ Alazy
t′ +Aonline

t′+1,n +D · d(a, a′)

= O(Ot′/q) +O(On) + 2Ot′/q

= O(On/q).

Thus, it only remains to prove Eq. (18), as we do using the following lemma. That lemma shows that if ALG
moves its page to a location that is far from p0, then this means that there must be pages that are far from p0.
Later we will show that OPT pays considerable cost to serve them, even if done remotely. See Fig. 5 for an
illustration of the lemma.

Lemma 6. Let P = p1, p2, . . . be the sequence of page locations that ALG produces. Let pmax be the furthest
point with respect to p0 a page is moved to by the ALG, i.e.,

pmax
def
= arg max

pi

d(pi, p0).
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In case that there are several pages at pmax, we let pmax be the first among them. Let dmax
def
= d(pmax, p0).

Let P be the maximal consecutive sequence of P including pmax consisting of pages that are each at distance at

least r
def
= dmax/4 from p0. Then, for q < 1/24, it holds that the page locations in P serve together at least 6qD

points at distance r from p0 in the oracle sequence.

p0

pmax

p′

p′′

dmax

r

Figure 5: An illustration of Lemma 6, where we argue that the reason we moved a page to a location far away
(at distance dmax) from p0 means that there must be many points that are at least at distance r = dmax/4 from
p0. OPT will have to serve most of these points as well. The squares denote location of pages, the small circles
denote page requests, the solid lines between squares and small circles depict a remotely served request. The
dashed lines denote the movement of the page. The sequence P consists of p′, pmax and p′′.

Proof. The proof proceeds by contradiction. Suppose that P serves fewer than 6qD points in the oracle sequence.
We will show that a better solution consists of replacing the sequence P by simply moving to p0 and serving all
points remotely from there. Since P is a maximal sequence of P including pmax such that each page location
is at distance r from p0, ALG moves by at least dmax − r within P . Hence, the cost of ALG using the page
locations P is at least

D(dmax − r) +
∑

di, (22)

where the
∑
di represents the distances to pages served remotely from the page locations in P (depicted as solid

lines connected to p, pmax and p′ in Fig. 5). Consider a request s that is served from location p in the original
(using P ) solution. In the new solution, where all points are served from p0, serving any request has, by triangle
inequality, a cost of at most d(p0, p) + d(p, s) ≤ dmax + d(p, s). Moreover, observe that the sequence P consists
of at most 6qD locations. This is because otherwise there would be a location that does not serve any points.
Putting everything together, the cost of the new solution is at most

2Dr + 6qDdmax +
∑

di, (23)

where the 2Dr accounts for moving the page from the location preceding P to p0 (the cost of at most Dr) and
moving the page from p0 to the location just after P (also the cost of at most Dr). Recall that r = dmax/4.
Thus, Eq. (23) is cheaper than the solution Eq. (22) for q small enough (i.e., for q < 1/24), which contradicts
the optimality of ALG of the oracle sequence.

By Lemma 6, we conclude that there are at least 6qD points at distance r from p0 in the oracle sequence. Note
that the final sequence s will contain at least 6qD − 2qD of these points, due to our assumption on noise and
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the fact that up to the first violation of Assumption 1 were detected as time t. OPT has to serve these points
as well and thus

Ot′ ≥ (6qD − 2qD)r = 4qD · dmax/4 ≥ qD · d(a, p0),

which yields Eq. (18) and therefore completes the proof.

C Additional Experiments

(a) Fixed sigma, varying D. (b) Fixed sigma, varying D.

(c) Fixed D = 2, varying sigma. (d) Fixed D = 5, varying sigma.

Figure 6: Comparison between Predict, Opt and Online on Line data set.
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