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Variational Bayes Ensemble Learning Neural Networks
With Compressed Feature Space

Zihuan Liu™, Shrijita Bhattacharya™, and Tapabrata Maiti

Abstract— We consider the problem of nonparametric classification
from a high-dimensional input vector (small n large p problem).
To handle the high-dimensional feature space, we propose a random
projection (RP) of the feature space followed by training of a neural
network (NN) on the compressed feature space. Unlike regularization
techniques (lasso, ridge, etc.), which train on the full data, NNs
based on compressed feature space have significantly lower computation
complexity and memory storage requirements. Nonetheless, a random
compression-based method is often sensitive to the choice of compression.
To address this issue, we adopt a Bayesian model averaging (BMA)
approach and leverage the posterior model weights to determine:
1) uncertainty under each compression and 2) intrinsic dimensionality
of the feature space (the effective dimension of feature space useful for
prediction). The final prediction is improved by averaging models with
projected dimensions close to the intrinsic dimensionality. Furthermore,
we propose a variational approach to the afore-mentioned BMA to allow
for simultaneous estimation of both model weights and model-specific
parameters. Since the proposed variational solution is parallelizable
across compressions, it preserves the computational gain of frequentist
ensemble techniques while providing the full uncertainty quantification
of a Bayesian approach. We establish the asymptotic consistency of the
proposed algorithm under the suitable characterization of the RPs and
the prior parameters. Finally, we provide extensive numerical examples
for empirical validation of the proposed method.

Index Terms—Intrinsic dimensionality, model averaging,
random compression, variational inference (VI).

I. INTRODUCTION

Bayesian neural networks (BNNs) are widely used, especially
in complex and high-dimensional data analysis, including image
recognition, biomedical diagnosis, and others. One of the major
limitations of neural networks (NNs) and deep networks (DNNs) is
the need for a large training dataset due to a large number of inherent
parameters [1], [2]. Thus, high-dimensional NNs are widely applied
with regularization, dropout techniques, or early stopping to prevent
overfitting [3], [4]. Regularization techniques which allow for dimen-
sion reduction in the feature space include lasso [5], ridge [6], elastic
net [7], sparse group lasso [8], Bayesian lasso [9], and horseshoe
prior [10]. Although regularization/dropout can set the weights to zero
or small, they still train on the full data, which severely increases the
cost of both computation and memory storage. Quoting [11], in the
context of linear regression, the compression of the feature space in
contrast to regularization approaches, dramatically reduces storage
and computational bottlenecks and performs exceedingly well when
the predictors can be projected to a low-dimensional linear subspace
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([11, Fig. 3] shows the gain in computational time from lasso to
Bayesian compressed regression as a function of log number of
predictors). This motivates us to adopt random projection (RP) tech-
niques for high-dimensional nonparametric classification. Another
popular dimension reduction technique, principal component analy-
sis [12], is an unsupervised learning approach and cannot be directly
adapted to learn the effective dimension of the feature space in the
context of the prediction task. We thereby propose to compress the
feature space to a smaller dimension with an RP matrix, followed by
training with a BNN. The use of RP in high-dimensional statistics
is motivated by Johnson-Lindenstrauss Lemma [13] by which for
Xi,...,X, € R?, € € (0,1),d > 8logn/e?, there exists a linear map
f 1 R? — RY such that (1 —e)llx; — x5 < [If(x) — x5 <
(146)||x; —x,-ll% fori, j =1,...,n. The properties of RPs and their
applications to statistical problems are further explored in [14], [15].

To reduce sensitivity to the choice of RP, existing literature
aggregates information from varying RPs by ensembling multiple
estimators with bagging (see [16]-[18]). There are three drawbacks
to this frequentist approach of ensembling: 1) it does not provide the
uncertainty quantification for each RP let alone for the ensembled
prediction; 2) it assigns equal weights to all models, thereby one may
aggregate information from poor models, and 3) exact determination
of the optimal projected dimension relies on a cross-validation
approach and is therefore computationally intensive. To circumvent
these drawbacks, we innovatively adopt a Bayesian model averaging
(BMA) [19] approach for combining information across multiple
RP-based BNNs. Guhaniyogi and Dunson [11], [20] applied BMA
in the context of RP-based linear regression and Gaussian process
regression, respectively. However, they used the computationally
intensive Markov Chain Monte Carlo (MCMC). In the context of
NN, there are two main challenges of implementing BMA: 1) due
to the convoluted structure of the NN likelihood, a closed-form
expression of posterior distribution under each model does not exist
and 2) the posterior distribution of model weights is intractable.
Thus, the use of MCMC is next to impossible. Furthermore, the
computation cost associated with MCMC is humongous since each
posterior model weight depends on the remaining models’ posterior
model weights.

To address the challenges of MCMC implementation, we provide
a variational inference (VI) [21], [22] based approximate solution to
BMA for combining BNNs with multiple instances of compressed
feature space. First, the proposed VI solution can be parallelized
across all RPs and thus preserves the uncertainty quantification of
BMA while ensuring the scalability of bagging. Second, for a fixed
choice of the RP, the proposed VI solution is equivalent to the
variational Bayes (VB) solution for BNNs on the corresponding
projected feature space. This reduces the instability and increased
cost of optimization associated with VI implementation of BNNs [23]
based on the entire feature space. Furthermore, for a given RP,
we establish posterior contraction rates of variational posterior for
classification. The proof underscores the conditions on the RP to
ensure the universal approximation property of compressed feature
space-based VBNN. We also detail the characterization of the prior,
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Fig. 1. Overview of the RPVBNN.

variational family, and the RP matrix to guarantee consistency of
VBNN under the compressed feature space. To the best of our knowl-
edge, no prior work provides theoretical guarantees and computation
algorithms of VBNNs on compressed feature space.

Another main advantage of the proposed VI-based BMA is that
it gives the posterior model weights under each RP of the feature
space which further induces a probability distribution on projected
dimensions of the feature space. The mode of this probability distri-
bution centers around the intrinsic dimension (the optimal dimension
of the feature space useful for prediction). VI-based BMA is then
applied to a pool of RP matrices with projected dimensions around the
intrinsic dimension to improve prediction. Thus, we provide a scal-
able Bayesian solution to learn the intrinsic dimension of the feature
space using BNNs on RPs of the inputs together with full uncertainty
quantification arising out of averaging across multiple RPs.

A. Related Work

Early works on BNNs are comprehensively discussed in [24]-[26].
Recent developments with higher efficient BNNs can be found
in [27]-[30] and the references therein. For high-dimensional BNN,
penalization and sparse network-based approach have been studied
in [1], [2], [31]-[33], and so on. The idea of using RPs to overcome
the curse of dimensionality was popularized by [13] and is now
widely used in many statistical problems [16], [34]—[38]. To ensemble
information across projections, [17] and [39] use a bagging approach
for the classification task. On the other hand, [11] and [20] use BMA
in the context of linear regression and Gaussian processes.

Several works discuss VI [22] to overcome the drawbacks of a full
MCMC implementation. The majority of black-box VI methods for
BNNs are based on pathwise gradient estimator [40]-[45] or score-
function estimator [46], [47]. Theoretical properties of variational
posterior in the context of individual models have been studied
in [33], [48]-[51]. The works of Kejzlar er al. [52] and Latouche
and Robin [53] explore VI for BMA in the context of generalized
linear models and graph-on functions. However, VI for BMA for
BNNs with compressed feature space remains unexplored.

B. Our Contributions

First, to handle a high-dimensional feature space for classification,
we introduce the RP idea to reduce the dimension of the input to an
NN model. Second, we apply the BMA to reduce sensitivity to each
compression, followed by the development of its VB solution to allow
for parallelization across RPs without compromising the uncertainty
quantification of BMA (see also Fig. 1). As a by-product, we leverage
the posterior model weights to learn the intrinsic dimension of the
feature space and improve classification accuracy by using RPs
with projected dimensions around the intrinsic dimension. Third,
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we validate our method from a statistical perspective: 1) develop
the theoretical foundation, that is, the posterior contraction of the
variational posterior for BNNs under a compressed feature space
and 2) provide numerical results to enunciate that our proposed
approach learns well the intrinsic dimension in simulated examples
and performs competitively on real datasets.

II. BNN WITH COMPRESSED FEATURE SPACE
A. BNN Model

For a binary random variable Y, representing the class levels 0 or 1,
and a feature vector X € R” with some marginal distribution Py,
consider the following classification problem:

P(Y =1X=x)=p(p@)=1-PE¥ =0X=x) ()

where 70(-) : R? — R is some continuous function and ¢(.) =
eY /(1 + eV) is the sigmoid function. Following [17] and [54], the
test error of a classifier C, R(C) = prX{O’” Licxyzvyd Pxy (joint
density Py y is a product of (1) and Py) is minimized by the Bayes
classifier is CB®¥%(x) = I[5(x)) > 0]. Since 7o(x) is unknown,
we instead use single-layer NN with k nodes

kn
@) =+ D B+ rix)=po+B wyy+Tx) @
j=1
where y is an activation function, B = [fo,..., k], Vo
[7105---» 70l T = [yy,..., 7], and 8 = (Bo, B, vy, vec()) is
the set of all the parameters. Note that @ is a K x 1 vector where
K =1+k+k(p+1). Both k and p(>> n) grow as a function of n.
We then use the following model for the problem in (1):

P(Y =1X =x)~ p(@x) ~ 1 - P(Y =0[X =x).  (3)

B. Compression in the Feature Space With RPs

There exists several choices for compressing the feature space X
using RP matrices as in [13]-[15], [17], [55]. For a given compression
matrix A, our model in (2) becomes

no(Ax) = fo + By (yo + T (Ax)) “

where A is a dy x p projection matrix, B8, y, are k x 1 vectors,
and TT = [¥1,..., 7] is dx x k matrix. In the projected space,
the number of parameters reduces from K = kp +2k + 1 to Ky =
kda + 2k 4+ 1 which then gives the following model:

PY =1X=x)~p(Ax)) ~ 1 — P(Y =0|X =x). (5)

Experiments with different RP matrices suggested the use of one
in [11]. In this method, we draw elements A;; independently as
A = —1/(a)'?, 0, 1/(a,)"? with probabilities a2, 0, (1 — a,)?,
respectively. The rows of A are then normalized by Gram—Schmidt
orthogonalization. Note that a, € (0.1, 1) provides a handle on the
sparsity of the RP matrix. The algorithm can be generalized to any
arbitrary class of RP matrices.

C. Prior Choice

For the NN, #y,(Ax) with projected input Ax, assume
p@4IMy) = MVN(p,, diag(o 4)), that is, an independent Gaussian
prior on 0 4. Here 0 4 is a K4 x 1 vector of parameters for the model
(4). For this prior and the likelihood in (5), the posterior based on
compressed dataset (y;, Ax;)!_; is

L(OsIMs)p(04IMy)
fL(0A|MA)P(0A|MA)d0A

T(0alMy) = (6)
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where M, is the model induced by random matrix A with corre-
sponding likelihood L(041M4) = []._, exp(yine, (Ax;) — log(1 +
exp(7g, (Ax;)))). The denominator in (6) is free of 6 4.

III. VB MODEL AVERAGING FOR POOLING RPS
A. Bayesian Model Averaging

Ensemble methods are most widely used in machine learning
literature to pool across varying classifiers [56]. Here, we address the
same problem from a Bayesian perspective. Let .4 denote a subspace
of the space of all RP matrices. We assume each RP matrix induces
a separate model M4, A € A on the data D = (y;, x;);_,. Thus, the
predictive distribution of a new observation y,,; given x,, denoted
by p(yn-H |xn+l > D)7 is

/P()’n+1 (%11, Ma, 04, D)y (M, 04ID)dpu(My, 04) @)

where 4 is the product measure of counting and Lebesgue measure.
In (7), the most difficult quantity to compute is 7 (M, 6 4|D). In [11],
explicit forms can be obtained for linear regression model which
is impossible for a convoluted NN likelihood. In Section III-B,
we circumvent this by VI.

B. ELBO Derivation

Let w(My,04|D) be the joint density of parameter and model
conditional on data. We posit a variational distribution g(M,, 0 ,),
where (0 4|M4) ~ MVN(m,, diag(s,)) and g(M,) are the model
weights. Thus, our variational family is O, = {g(Ma,04) =
q(M4)q(04|M4)}. Let g* be minimizer of Kullback—Leibler distance
(dkr) between 7 (.|D) and Q,

d(q, w(.|D)) = Eg(logzm (04, M4|D) —logq (04, Ma))
= —logz (D) +ELBO

where ELBO = Ep(logm (04, M4, D) — logq(@a, M4)). Since
—log (D) is independent of 6,4 and M,, therefore g*(M,, 0,) is
minimizer of the ELBO. Furthermore,

EQ(logn(GA,MA,D) —logq(0A, MA))

D a(Mp)E g,y (log 7 (DIMy, 04) + log 7 (041My)
AcA
+logm(My) —logq(041Ma) —logq(Ma))

= > q(Ma)E g,y (10g L(O41My) +log p(04] M)
Ac A
+logm(Ma) —logq(041Ma) —loggq(My))
= > q(My)(L(IMy) +logm (M) — log g(My))
Ac A

L(|Ma) = E g my) (10g L(O4]Ma)+log p(04|Ma)—logq(041M,))
is the ELBO under model M,. The derivative of ELBO with respect
to variational parameters m 4, 54" is

V’”A,SAELBO = q(MA)VmA,sA£(~|MA)-

Since g(M,) is just constant, thus gradient update for model-
specific variational parameters is same as the gradient update of each
individual model. Setting V,,)ELBO = 0, we get

logz(Ms)—logq(Ms)+L(.[Ms) —1 =0

= q(My) o< exp(log m(Ma)+L(|My)).

The optimal model weights are ¢*(M,) = exp(logm(M,) +
LM 4))/ >, exp(logw (M) + L*(.|My4)), where L*(.|M,) is the

ITo ensure that the variance parameter s4; > 0, we shall use the reparame-
terization s4; = log(1 4 ¢*4/) and update 34; instead.

optimal ELBO under model A. The above derivation allows individ-
ual models to be trained in parallel as final model weights depend
only on optimized ELBO of each model.

IV. OPTIMAL DIMENSIONALITY AND PREDICTION
A. Optimal Dimension Neighborhood Selection

Let ds x p be the dimension of an RP, A € A. Using Section III,
we obtain the posterior model weights ¢*(My). The values of dj
with largest values of ¢*(M,) tend to concentrate around optimal
dimension of the feature space. Let d; < d, < --- be an enumeration
of unique values of ds, A € A. Define average posterior probability
of each d; as g7 = (1/|A) X 4ci ¢(M4), where A’ = {A € A :
d A = d‘}

The plot of (i, g;') expectedly peaks near the optimal dimension
of feature space for prediction. Let d* = argmax; ¢/, then for some
vi, vy > 0, Zy = [d*(1—vy)], [d*(1+4v,)]] is the optimal dimension
neighborhood used in the final classification. Lastly, .A,+ which is a
subspace of RPs with dimension d, x p for dy € Zy«, is used for
final prediction.

B. Classification Based on Optimal Neighborhood Choice

For A € Ay, obtain ¢*(My,,0,) using Section IIl. Let 774, =
fl’]gA (Ax,41)q" (0 4|M4)dO4 be the VB estimator under model M.
Define 7(x,41) = ZAeAd* q* (M 4)i7a(x,11), then

))77!4»1 = I[ﬁ(xn#»l) = O] (8)

Although 7(x,.;) is not the exact VB estimator of 7(x,;;) =
log(P(yp+1 = Ux,u51)/P(yus1 = O0]x,41)), it is a good enough
approximator for large train sizes and way faster to compute.

C. Gradient Update

For q(@4Ms) = MVN(ny,diag(ss)) and p(@alMy) =
MVN (e, diag(o 4)), dxi.(g(.|1M4), p(.|M,))), the Kullback-Leibler
distance between two Gaussian densities has a closed-form expres-
sion. To further simplify L£(.|[M4) = Eg@,my (log L(04]M4)) —
dxi.(q(.IMy), p(.IM4))), we need to obtain Ey(log L(64]|My)).
In this direction, we generate W samples 04[1],...,04[W] from
q(041My) and let L(|Ms) = (1/W) X" log L(B[w]|My4). The
final function to be optimized with respect to m, and s, is

L(IM4) = L(IM4) — diw (g(.1M4). p(IMA))). ©)

V. THEORETICAL RESULTS

We now study the convergence properties of the variational poste-
rior for a given projection matrix A (without model averaging). The
results presented are similar in the spirit of [11].

Let fo(y,x) and fp(y,x) be joint density of D under truth and
model, respectively. Without loss of generality, let x; ~ U[O0, 1]7,
thus fy(x) = fyp(x) = 1. For model indexed by A

fo(y,x) = fo(ylx) f(x) fo(x) = Lo(y, Ax)

foy.x) = fo(ylx) fo(Ax) = Lo(y, x) (10)
where {y(y, Ax) = exp(yne(Ax) — log(l + exp(7s(Ax)))) and
Co(y, x) = exp(yno(x) — log(1 + exp(i70(x)))). With 25 (Lo, €p) =
L2 (o, x)'? —(€9(y,Ax))'/2)2dx, the Hellinger neighbor-
hood of the true density function fy = £ is

U, = {0 : du(ly, L) < &}. (11)

For the posterior in (6), let g} = argmin,.oadki(q, 7 (1D, My)),
where Q% = {¢(0,) = MVN(m,, diag(s4))}. For a fixed A, one can
obtain ¢} by step 2, in Algorithm 1. We give the conditions to ensure
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Algorithm 1 RPVBNN

1) Initialization: (m, 5%, p")4ca where pY’, t > 0 is step size
sequence for model A.
2) Parallelization:
a) Sett =1,
b) For A € A, calculate the derivative of the gradient
2(.|MA) in (9) with respect to m, and s4.
¢) Update the parameters m/, and s); as
mtA+1 =m) + pixvﬂkxﬁ('|MA)|mA:m;
s =% + pi Ve, LMY,
d) Setr=r+1.
e) Repeat steps (b)-(d) till convergence.

—g!
=5

3) Model averaging:

a) For the optimized values (m’,s%)aca, compute
(L*(.|M4)) aca using (9).
b) Compute the model weights ¢*(My) =
exp(log m (Ma)+L*(.[M4))
Y ea expllogm(Ma)+L(1M4))
4) Optimal neighborhood selection: Using the values

(g*(M4)) se4 compute using Section IV-A
a) The optimal neighborhood Z;-.
b) The subspace Ay« using based on Zy«.
5) Classification:
a) Repeat steps (1)-(3) for A € Ays.
b) Compute ¥, using relation (8)

that asymptotically ¢ concentrates around true density fj. Recall p
and k are number of covariates and nodes, respectively. If A has
dimension d4 X p, then total number of parameters in model indexed
by Aare Ky =1+ k+k(ds+1).

With y as the sigmoid activation function, let 5« (x) = f; +
ZI;‘:I ,B‘jfy/(y_’;Tx) be the NN which can approximate the true
function 7o(x) in L, norm. The existence of such an NN is
guaranteed by [57]. Let A be an orthonormal matrix, p(6,) =
MVN(u ,, diag(o 4)) and the following conditions hold.

(C1): kalogn = o(ne?), p = 0(3"‘5).

(C2): |lugll} = one)), loglloglle = O(logn), llog'lle =
0(), 35 1A m, |l = 0(1), sup,_, _ylogllo j, |lc = O(logn),
sup;_y__¢ 107} 1l = O(1).

(C3): [lmo = ne*lleo = 0(€2), IB*II7 = o(ney), sup;_; , II(I —
ATAY Al = o™, X5 I3 = o).

(C4): log [|Ax|| = O(logn), 1/[|Ax|| = o(ne).

Condition (C1) restricts the number of effective parameters (~kd,)
and covariates (~p). Condition (C2) puts restrictions on the prior
parameters. Although Zk/=| ||AT[LJ-}, [li = O(1) depends on A,
it holds if w;, = 0. Condition (C4) for A relates to [11, Theorem 3.1,
condition 3)]. Condition (C3) quantifies how fast the NN solution
converges to the true function with control on the coefficients’
magnitude. By the universal approximation of single-layer NNs [57],
[63], it can be shown that for any continuous function 7, there exists
an NN 71 = 5 + 3 B7w (7)) %) such that [Im — moll < €.
Consider the RP-based NN 7,(Ax) = f; + Zﬁ=1 ﬁ;.‘l//((ij*)TAx),
then by Lemma 1.1 in the supplement, it can be established that
[1n2 — mlloe < 2€ provided [|(I — ATA)y?||; < e. This in turn
[172 — Mollee < 3€ which further implies that RP-based NN 74 (Ax)
enjoy universal consistency properties (the proof of Lemma 1.5 in
the supplement in fact relies on this universal consistency property).

restrictive, it holds for any y; in the row space of the matrix

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

DATA SUMMARY: n, p, AND ¢ ARE THE NUMBER OF SAMPLES, FEATURES,
AND CLASSES, RESPECTIVELY. OPTIMAL REGION IS
SELECTED BY RPVBNN

Data Source n p c Optimal region
Simulatel [31] 3000 20 2 (4,12)
Simulatell [31] 3000 200 2 (1,20)
SimulateIll [58] 5000 150 2 (7,16)
SimulateIV [58] 300 500 2 (8,17)
ADNI [59] 264 278 2 (1,30)
GLI_85 [60] 85 22283 | 2 (20,40)
SMK_187 [60] 187 19993 | 2 (45,61)
MNIST [61] 70000 784 10 (580,600)
Fashion-MNIST [62] 70000 784 10 (725,740)

A. However, explicit verification is technically involved and is not
explored here.
Theorem 1: Suppose €, — 0, nei — o0 and (C1)—(C4) hold, then

i
;U,) =30, Ye>0

where PO(") be the joint distribution of D under (1).

The proof is presented in the supplement. The above proof shows
that ¢4* concentrates on shrinking ¢,— Hellinger neighborhoods of
the true density function f.

VI. NUMERICAL RESULTS
A. Problem Setup

We mimic the RP generation of Section II-B with a, = 0.3. The
RPVBNN is summarized in Algorithm 1. There is a negligible impact
of the tuning parameters, learning rate, number of projections, and
batch size on its performance (see the supplement for more details).
For the number of projections (N), we use the following rule: let
the projected dimension ds € [pj, p2], then N = (2°)u,
argmin, {i : 2' — (p» — p1) > 0}. This ensures nearly « number of d,
values are drawn from a unit sub-interval of [p;, p,]. For optimal
dimension selection (step 2 of RPVBNN), we take (p;, p2) =
(1, min(n, p)) in accordance with condition (C1) of Section V and
u = 1/4. For final accuracy (step 4 of RPVBNN), (pi, p») is the
pre-selected optimal dimension and u = 4. Parallel programming is
used across projections to reduce computational time.

v =

B. Datasets

We consider nine datasets, four simulated and five real data
examples (see Table I). The intrinsic dimensionality is known in
simulated examples and unknown in real data. All input variables are
z-normalized. We first use RPVBNN to learn the intrinsic dimension-
ality of the dataset. With optimal dimensionality at hand, we compare
RPVBNN to other traditional algorithms [logistic regression (LR),
random forest (RF), and gradient boosting (GB)] and the standard
VBNN based on whole feature space. For simulated data, Alzheimer’s
Disease Neuroimaging Initiative (ADNI), GLI_85, and SMK_187,
to prevent optimistically biased estimates of model performance,
we consider ten different splits of the data into train and test with a
ratio of 7:3. We report the mean and standard deviation of the train
and test accuracy and an area under the curve (AUC) score over the
splits.

C. Simulated Datasets

For Simulates I and II, we use y = I[e"! +x§+5 sin(x3x4)—3 > 0]
as in [31] to generate data. Since the number of active variables is 4,
the intrinsic dimensionality of feature space is 4. We set p = 20,
n = 3000 (Simulate I), and p = 200, n = 3000 (Simulate II) and
generate x ~ MVN(0, 7). For Simulates III and IV, we generate x
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Fig. 4. Left two: Optimal region for ADNI
Right two: Optimal region for GLI_85 (16 projections).
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Fig. 3. Left two: Optimal region for Simulate III (64 projections).
Right two: Optimal region for Simulate IV (64 projections).

using the hyper-ball function in [58] and add a “small noise” to all
the entries. Let y = I[sin(87x) — ¢#'* + 1.05cos(87x) > 0] with
B ~U(-0.5,0.5). We set n = 5000, p = 150 (Simulation III), and
n = 300, p = 500 (Simulation IV). The intrinsic dimension of the
hyperball is set at 10. Simulate IV exemplifies the small n large p
problem.

D. Real Datasets

We use three biological datasets and two image datasets. The
first biological dataset, ADNI, was collected from ADNI data-
base http://www.loni.ucla.edu/ADNI. The final sample had n =
265 and p = 277 [64]. The other two biological datasets based
on Glioma Tumor, GLI_85 and Smokers with Suspected Lung
Cancer, SMK_CAN_187 (denoted by SMK_187 in this brief for
brevity) were collected from the feature selection datasets available at
https://jundongl.github.io/scikit-feature/datasets.html. While GLI_85
had n = 85 and p = 22283, SMK_187 had n = 187 and p = 19993.
For these ultrahigh-dimensional datasets, we prescreened 100 features
using [65].

The two image datasets presented include the Modified National
Institute of Standards and Technology (MNIST) [61], a collection of
handwritten digits, and Fashion MNIST [62], a dataset of labeled
fashion images. Both MNIST and Fashion MNIST contain n =
70000 images with 60000 in train and 10000 in test and a feature
dimension of p = 28 x 28 = 784.

E. Optimal Dimensional Region

Using Section IV-A, we obtain the average posterior probabili-
ties of the projected dimensions. To learn the intrinsic dimension,
we employ RPVBNN with & = 32 nodes. Since obtaining the optimal
dimension is a preprocessing step, we avoided experimentation with
k in this step. Figs. 2 and 3 give the average probability density
curve as a function of projected dimensions for simulated datasets
(the right panel’s zoomed-in view on the region where the density
curve peaks). The mode of the density gives an estimate of intrinsic
dimensionality and a small interval around the mode characterizes the
optimal dimension neighborhood. For Simulate I, Fig. 2 shows that
the graph peaks between 6 and 10 and stabilizes after 12. With a mode
of 8, the optimal dimension neighborhood was (4, 12). Similarly, for
Simulate II, the optimal neighborhood was (1, 20) (see Fig. 2). For
both Simulates I and II, the true intrinsic dimensionality was 4. Since
the average posterior probability curve peaks around 4, it corroborates
that RPVBNN can learn the intrinsic dimension of feature space

oProjeﬁtseOd Dlrsnoeonsions Pmie“g’ Di"“ig"‘)smnsazo OProje%tseud Dlrsnoeonsions Projected Dimensions
Fig. 5. Left two: Optimal region for MNIST (256 projections).
Right two: Optimal region for Fashion-MNIST (256 projections).

TABLE II
SIMULATED DATA PERFORMANCE

Dataset Method Train Acc(%) | Test Acc(%) AUC(%)
LR-I; 67.32+0.77 | 67.44+0.97 | 68.47 +1.51
RF 68.75+1.91 67.92+1.84 | 78.30 +3.67
Simulatel GB 97.62+0.62 | 87.80+1.95 | 94.84 +0.86
VBNN 95.28 +0.45 | 90.28 £0.65 | 90.88 +0.56
RPVBNN | 95.88+0.32 | 94.89+0.77 | 95.83 +£0.42
LR-[; 65.75+0.86 | 66.07+1.09 | 70.62 = 1.41
RF 62.93+3.93 | 61.69+3.07 | 70.24 +3.43
Simulatell GB 99.40 +£0.04 | 85.06 £2.55 | 92.98 +1.72
VBNN 63.61 +£1.13 | 61.42+1.11 | 66.21 = 1.06
RPVBNN | 96.83+0.29 | 94.92+0.86 | 96.73 £ 0.41
LR-I; 61.49+0.38 | 61.03+£1.53 50.0 £ 1.01
RF 79.00 +£0.46 | 74.12+0.76 | 78.29 +1.38
Simulatelll GB 61.59+0.34 | 61.03+1.53 | 66.91+1.13
VBNN 100 + 0.00 51.71 £2.63 | 51.62+2.53
RPVBNN | 99.78 +0.11 99.27 +0.17 | 99.84 +0.07
LR-1; 59.33+2.88 | 48.11+3.29 | 44.21 £6.97
RF 83.14+2.99 | 55.44+3.95 | 55.04+4.10
SimulateIV GB 82.85+8.53 | 54.88+2.59 | 50.72+7.01
VBNN 61.21 +£6.32 | 56.66+9.03 | 56.11 +7.63
RPVBNN | 97.95+0.91 93.55+2.03 | 94.72 +1.31

for prediction. For Simulates III and IV, the optimal regions were
(7, 16) and (8, 17), respectively (see Fig. 3). For both Simulates
III and IV, the true intrinsic dimension was 10 (dimension of the
hyperball). Since the average posterior probability curve peaks around
10, it corroborates that RPVBNN can learn intrinsic dimensions for
prediction. Figs. 4 and 5 provide the optimal regions for ADNI,
GLI_85, MNIST, and Fashion MNIST, respectively. For lack of space,
the optimal region graph for SMK_187 is provided in the supplement.

F. Comparative Baselines

For the simulated examples, ADNI, GLI_85, and SMK_187,
with the pre-selected optimal dimension neighborhood, we use
steps 4) and 5) of Algorithm 1 to produce results for RPVBNN (see
Tables II and III). We also give results from LR with L, penalty
(LR-L,), RF, GB as comparative baseline [66]. For LR, RF, and GB,
we report the results corresponding to the best test accuracy. The
sensitivity analysis with respect to the hyperparameters for all these
methods is given in the supplement. Finally, we report the results
of VBNN on the whole feature space (it is RPVBNN with N = 1,
dy = p, and A = I). For RPVBNN and VBNN, the results for the
optimal number of nodes are reported. The sensitivity with respect
to a number of nodes is given in the supplement. For MNIST and
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on the most relevant models. We provided a VI technique to estimate
model-specific parameters and model weights. As a by-product, the
learned posterior model weights of the projected dimensions are used
to obtain the intrinsic dimensionality of the feature space. The VB
model averaging has two advantages: 1) offers computation gain
of frequentist ensemble approaches by allowing parallelization and
2) provides uncertainty quantification due to RP. The approach can
be generalized to deep learning with a limited training sample.

6
TABLE III
BIOLOGICAL DATA PERFORMANCE
Dataset Method Train Acc(%) | Test Acc(%) AUC(%)

LR-1; 100 £ 0.00 65.75+4.07 | 68.71 £3.75
RF 83.67+1.79 | 72.00+3.88 | 78.89 £4.90
ADNI GB 99.78 £0.35 | 74.87+£4.95 | 81.16 +4.17
VBNN 82.51+£2.30 | 71.75+4.50 | 79.95+4.45
RPVBNN | 78.97+1.59 | 76.05+3.76 | 82.33 +1.89

LR-[; 100 £ 0.00 87.30 £5.41 | 94.08 £ 3.61
RF 100 + 0.00 83.84 +6.61 | 85.18 +7.54

GLI_85 GB 99.48 +0.71 90.00 +4.61 | 96.39 +3.81
VBNN 100 £ 0.00 90.00 +4.31 | 96.45+3.51
RPVBNN 100 + 0.00 96.22 +2.13 | 98.33 £ 1.67
LR-1; 93.76 £ 1.59 | 72.85+4.35 | 81.64+2.72
RF 84.38+0.77 | 73.57 +4.50 | 80.68 +£5.35
SMK_187 GB 100 £ 0.00 70.18 +4.23 | 78.61 £3.99
VBNN 98.53+0.87 | 73.75+4.91 | 81.12+5.47
RPVBNN 100 + 0.00 73.75+5.59 | 81.21 £5.32

TABLE IV
IMAGE DATA PERFORMANCE

Dataset Method Train Acc(%) | Test Acc(%) | Time(s)

MNIST VBNN 99.11 97.80 2640

RPVBNN 98.06 97.32 2350

Fashion-MNIST VBNN 92.75 88.15 3123

RPVBNN 93.82 88.07 2535

Fashion MNIST, we report the results of RPVBNN and only VBNN
for comparison (see Table IV).

G. Experimental Results

For all the simulated datasets, the performance of RPVBNN
supersedes the performance of other algorithms (see Table II). For
Simulate I, the second-best performer is VBNN, although its perfor-
mance deteriorates for Simulate II. This is because, for p = 200,
the train size of 2100 is way smaller. Since RPVBNN works with
compressed feature space, dy € [1,20], it still has the best test
accuracy and AUC. Thus, RPVBNN is an effective solution to
the small n large p problem. Similarly, for Simulates III and IV,
RPVBNN which works with the optimal dimension d4 € [7, 16] and
[8, 17], respectively, outperforms its competitors.

ADNI is another example of a small n and large p problem
with p = 277 and train size 180. RPVBNN still outperforms its
competitors and VBNN suffers from the curse of dimensionality (see
Table III). Overall GB is the second-best performer. Similarly GLI_85
is another example of a small n and large p withn = 70 and p = 100.
Similar to ADNI, RPVBNN still outperforms its competitors and
VBNN suffers from the curse of dimensionality. For SMK_187, the
performance of VBNN and RPVBNN are fairly similar. For MNIST
(see Table IV), VBNN with its best test accuracy slightly outperforms
the RPVBNN with its best test accuracy. Here, the train size 60000
is large enough for p = 784. However, the average run time based
on 500 epochs with VBNN is 2640 s on a 2.3 GHz 8-core Intel
Core 19 MacBook Pro workstation while the same for RPVBNN
with d4 in optimal dimension neighborhood is 2350 s. For Fashion-
MNIST, VBNN and RPVBNN demonstrate the same behavior as
under MNIST.

VII. CONCLUSION

To address the curse of dimensionality (small n large p) in a
BNN model, we compress the feature space using RPs. To reduce
sensitivity to the RP, we propose a BMA approach to base prediction
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