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Abstract Primary productivity in the Southern Ocean plays a key role in global biogeochemical cycles.
While much focus has been placed on phytoplankton production seasonality, non-seasonal fluctuations exceed
the amplitude of the seasonal cycle across large swaths of the Antarctic Circumpolar Current. This non-seasonal
variability comprises a broad range of timescales from sub-seasonal (<3 months) to multi-annual (>1 year),
all of which can project onto the annual mean value. However, year-to-year variations of surface chlorophyll
(SChl), a proxy for phytoplankton biomass, are typically attributed to ocean circulation changes associated
with the Southern Annular Mode (SAM), which implicitly assumes that sub-seasonal variability averages to
near-zero over long timescales. Here, we test this assumption by applying a timeseries decomposition method
to satellite-derived SChl in order to separate the low-frequency and high-frequency contributions to the
non-seasonal variability. We find that throughout most of the Southern Ocean, year-to-year SChl variations are
dominated by the sub-seasonal component, which is not strongly correlated with the SAM. The multi-annual
component, while correlated with the SAM, only accounts for about 10% of the total SChl variance. This
suggests that changes in annual mean SChl are related to intermittent forcing at small scales, rather than
low-frequency climate variability, and thus do not remain correlated over large regions.

Plain Language Summary Microalgae called phytoplankton are the foundation of marine

food webs and play a large role in the carbon cycle. Therefore, understanding the mechanisms that drive
phytoplankton variability is of critical importance to marine ecosystems and global climate. Phytoplankton
growth is known to exhibit a strong seasonal cycle. In addition to this, phytoplankton biomass also varies
between years. This variability is often linked to multi-year climate oscillations like El Nifio. On short
timescales, phytoplankton are also influenced by processes such as storms and eddies, which alter the supply of
nutrients and light that they need to grow. In this study, we use satellite measurements to untangle the different
timescales of phytoplankton variability in the Southern Ocean, which surrounds Antarctica. We find that
year-to-year fluctuations in phytoplankton biomass are driven by intermittent events associated with storms
and eddies, rather than multi-year climate oscillations. Therefore, processes occurring at small scales must be
considered in order to understand long-term phytoplankton variability and trends related to climate change.

1. Introduction

The Southern Ocean is a high-nutrient low-chlorophyll environment where phytoplankton growth is limited
primarily by iron and light (de Baar et al., 1995; Mitchell et al., 1991). Physical processes in the ocean impact
these controls, subsequently affecting the distribution of phytoplankton across a wide range of spatial and tempo-
ral scales (Ardyna et al., 2017; Lévy et al., 2012; Li et al., 2021; Rohr et al., 2017; Rousseaux & Gregg, 2014).
Indeed, phytoplankton biomass, inferred from satellite-derived surface chlorophyll (SChl), exhibits variability
from sub-seasonal (<3 months) to multi-annual (>1 year) timescales (Arrigo et al., 2008; Frenger et al., 2018;
Keerthi et al., 2020; Thomalla et al., 2011). Untangling these disparate scales is necessary to develop a quan-
titative model of spatiotemporal chlorophyll variability and identify long-term trends associated with climate
change, which are currently eclipsed by natural year-to-year variations in most regions globally (Behrenfeld
et al., 2006; Gregg & Rousseaux, 2019; Henson et al., 2010; Martinez et al., 2009).

In the Southern Ocean, changes in annual mean SChl have been linked to the Southern Annular Mode (SAM),
the leading mode of atmospheric variability in the Southern Hemisphere (Thompson & Wallace, 2000). SAM
influences the ocean circulation and stratification in the region, which in turn impacts primary productivity by
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modulating nutrient and light availability (Boyd et al., 2008; Lovenduski & Gruber, 2005; Sallée et al., 2010). For
example, Lovenduski and Gruber (2005) regressed non-seasonal satellite chlorophyll anomalies onto the SAM
index; their results suggest that SChl is positively correlated with the SAM south of the Polar Front (PF) due to
increased iron supply by anomalous upwelling, and negatively correlated with the SAM north of the PF due to
stronger light limitation stemming from deeper mixed layers.

While this type of analysis has helped discern mechanisms of non-seasonal SChl variability (i.e., the variability
that remains after removing the seasonal cycle), there are limitations to this approach. First, using the SAM
index as a measure of climate variability neglects significant regional differences in Southern Ocean winds,
air-sea heat fluxes, mixed-layer depth (MLD), and the MLD response to forcing (Keppler & Landschiitzer, 2019;
Rintoul, 2018; Sallée et al., 2010; Tamsitt et al., 2015). Second, relating non-seasonal SChl variations to
low-frequency climate modes presumes that high-frequency variability averages to near-zero on annual and
longer timescales. However, many studies have documented large amplitude sub-seasonal SChl fluctuations
throughout the global ocean (Bonhomme et al., 2007; Resplandy et al., 2009), and particularly in the Southern
Ocean (Fauchereau et al., 2011; Joubert et al., 2014; Little et al., 2018). Therefore, here we investigate whether
these transient processes imprint on the annual mean and year-to-year variations of Southern Ocean primary
production (Little et al., 2018).

Following Keerthi et al. (2020), we decompose satellite-derived SChl into three frequency ranges: sub-seasonal
(~0.5-3 months), seasonal (~3—12 months), and multi-annual (>12 months). We show that there are distinct
regional differences in the dominant timescale of SChl variability. For example, the seasonal cycle accounts
for most of the variance in the subtropics, while non-seasonal variability dominates in most other parts of the
Southern Ocean. This non-seasonal SChl variability primarily reflects sub-seasonal fluctuations, which occur
over small spatial scales (~50-150 km) and are not strongly correlated with the SAM. The importance of
high-frequency events is related, in part, to the non-Gaussianity of chlorophyll. The multi-annual component of
SChl, by contrast, is correlated with the SAM, but only explains about 10% of the total SChl variance across most
of the Antarctic Circumpolar Current (ACC). This suggests that year-to-year variations in annual mean SChl are
related to intermittency resulting from localized forcing such as storms and eddies, rather than low-frequency
climate modes (Lévy et al., 2014). Consequently, the spatial scales associated with consistent variations in the
annual mean are small (~100-300 km), which implies that SChl should not be averaged over large regions to
investigate year-to-year changes.

Complementary to satellite ocean color data, recent advances in autonomous observing platforms have dramat-
ically increased the number of subsurface biogeochemical measurements in the Southern Ocean (Johnson
et al., 2017; Talley et al., 2019). Fluorescence measurements from autonomous floats have shown good agree-
ment with satellite-derived SChl products, and provide data under clouds and during polar night (Haéntjens
et al., 2017). However, given the complex vertical structure of phytoplankton biomass in the Southern Ocean
(Carranza et al., 2018; Uchida et al., 2019), fluctuations in SChl do not necessarily reflect changes in the verti-
cally integrated chlorophyll column inventory (Chl, ). Therefore, we also apply the same timeseries decompo-
sition as we used for the satellite data to float SChl and Chl,,
SChl is representative of the integrated signal. These results highlight the importance of small-scale processes in

to show that strong sub-seasonal variability in

determining the annual mean SChl and its variability.

2. Data and Methods

2.1. Observational Datasets

In this study, we use a merged SChl data product from the European Space Agency Ocean Color Climate Change
Initative (ESA OC-CCI) that combines data from multiple ocean color satellites (Sathyendranath et al., 2017)
including Moderate Resolution Imaging Spectroradiometer, Sea-Viewing Wide Field-of-View Sensor, MEdium
Resolution Imaging Spectrometer and Visible Infrared Imaging Radiometer Suite. We use the Level 3 Mapped
25 x 25 km version at 8-day temporal resolution, which spans 20 years from January 1999 to December 2018 and
is publicly available (http://www.oceancolour.org/). This merged data product captures a longer time period than
any individual satellite, and thus is well-suited for investigations of year-to-year variability. However, as with all
ocean color products, there are many data gaps in the Southern Ocean due to cloudiness, ice cover and low sun
angles (Arrigo et al., 2008). Locations with less than 50% data coverage over the full record are masked out in this
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analysis, although we note that most of the missing data are from austral winter when SChl levels are near-zero
due to light limitation.

To evaluate the relationship between temporal variability in SChl and Chl_, we also use in situ data from

tot>
autonomous biogeochemical floats deployed by the Southern Ocean and Climate Field Studies with Innovative
Tools (SOCLIM) project. SOCLIM floats measure temperature, salinity, pressure, dissolved oxygen, nitrate,
fluorescence, backscatter, and photosynthetically available radiation (Pellichero et al., 2020). Here, we analyze
quality-controlled data from three SOCLIM floats (float IDs: 6902735, 6902736, 6902737) that sampled in
the Kerguelen Plateau region for three years, from September 2016 to September 2019 (http://soclim.com/).
These floats were selected since they are higher resolution in time and depth than the standard biogeochemical
Argo float (10-day cycle time and 5 m resolution in the upper ocean). Data processing is described by Johnson
et al. (2017); the raw fluorometer data are transformed to engineering units using the manufacturer calibration
coefficients, the dark counts are adjusted using a gain correction, and the profiles are also corrected for nonpho-
tochemical quenching following Xing et al. (2017). SOCLIM floats sampled unevenly in the vertical with roughly
1 m resolution in the upper ocean, and all profiles are linearly interpolated onto a regular depth axis with 5 m
resolution. SChl is taken to be the average chlorophyll over the top 20 m, which is approximately the first optical
depth (Morel, 1988). While Chl,, is calculated as the vertical integral over the top 200 m of the water column
(Grenier et al., 2015; von Berg et al., 2020), results are not sensitive to the precise integration depth. Floats also
sampled unevenly in time, with profiles taken daily, every 2 days, and every 4 days at different points during the
float lifetime. Here, we take 8-day means of the float data to match the temporal resolution of the satellite SChl
product.

Wind data from the Cross-Calibrated Multi Platform (CCMP) product are used to examine some of the forcings
that drive SChl variability. CCMP combines wind data from several satellite scatterometers, moored buoys, and a
reanalysis product (Atlas et al., 2011). CCMP winds have been shown to be more reliable at high frequencies than
any single scatterometer, and have higher correlations with MLD than other wind products (Atlas et al., 2011;
Carranza & Gille, 2015). The merged wind product is available on the same 25 X 25 km horizontal grid as the
SChl data from ESA OC-CCI. Here, we take 8-day means of the daily winds from 1999 to 2018 (i.e., the ESA
OC-CCI period) to correspond directly with the ocean color data. The daily Antarctic Oscillation index (i.e.,
SAM index) from the NOAA/NCEP Climate Prediction Center from 1999 to 2018 (http://www.cpc.ncep.noaa.
gov/) was also averaged into 8-day periods to calculate correlations of different fields with the SAM.

2.2. Decomposition Method

Here, we decompose SChl timeseries at each grid point into three frequency bands following the method in
Keerthi et al. (2020), which is based on the Census X11 iterative algorithm (Vantrepotte & Mélin, 2009). This
decomposition uses a series of filters to separate the full SChl signal (X,) into multi-annual (7), seasonal (S,),
and sub-seasonal (/,) components such that X, = T, + S, + I,. The multi-annual component, 7,, is determined
by a centered annual running mean and a Henderson filter of weight representing one year, also applied itera-
tively. The seasonal component, S,, captures variability with a period of ~3—-12 months and is isolated by taking
multiple weighted running means over three consecutive timesteps and then applying an 88-day (i.e., approxi-
mately 3 months given the temporal resolution of the data) low-pass filter, iteratively. To account for year-to-
year variations in the seasonal cycle, this decomposition method does not assume an annually repeating S,. The
sub-seasonal component, /,, is found by applying a bandpass filter of 8-88 days. Finally, the residual is attrib-
uted to the sub-seasonal component, such that the timeseries is exactly decomposed into the sum of the three
components. Note that this method does not have sharp frequency cut-offs in order to allow for variations in the
dominant period of the seasonal cycle and multiple harmonics in S,. Further details of the decomposition method
are provided in Keerthi et al. (2020). Figure 2 illustrates the timeseries decomposition at three grid points whose
locations are marked in Figure 1.

The total SChl variance is partitioned into the sum of the variance in the multi-annual, seasonal, and sub-seasonal
components, as well as the covariances between the terms: var (X,) = var (T)) + var (S,) + var (I,) + 2cov (S,
T, I). The covariance terms are small (explaining only a few percent of the total variance), so examining the
individual variances of T,, S,, and I, directly quantifies the contribution of each frequency band to the total SChl
variance (Figure 3). We also estimate the spatial scales associated with each component of SChl variability by
cross-correlating T, S,, and I, at a given grid cell with the corresponding components at all other grid cells (Figure
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Figure 1. (a) 1999-2018 annual mean surface chlorophyll (mg/m?) and (b) standard deviation of the annual mean (mg/m?) from the European Space Agency Ocean
Color Climate Change Initative merged ocean color product. (¢) 1979-2015 mean eddy Kinetic energy (m?/s?) from surface drifters (Laurindo et al., 2017) (d)
1999-2018 summer mean wind speed (m/s) from the Cross-Calibrated Multi Platform merged data product. Colored points in all panels mark the stations whose
timeseries are plotted in Figure 2: Subtropical Pacific (magenta), Antarctic Circumpolar Current (ACC) (orange), and Argentine Basin (cyan). Black lines in all
panels mark the mean position of the ACC fronts from Kim and Orsi (2014), which are from north to south: Subtropical front, Subantarctic front, Polar front, and Sea
Ice Edge.

S1 in Supporting Information S1). From the number of cells where the correlation coefficient exceeds a threshold

of 0.8, we then compute the area over which each signal remains consistent and take the length scale to be 1/ Area.
This threshold value was chosen following Keerthi et al. (2020), although the length scales are similar for a range
of threshold values from 0.5 to 0.9 (Figure S2 in Supporting Information S1): namely, 200—400 km, 500-600 km,
50-150 km for the multi-annual, seasonal, and sub-seasonal components, respectively.

2.3. Synthetic Data

In order to probe the statistical nature of the results, we also produced two synthetic timeseries with different
probability distributions. Both artificial variables have red spectra, which are common for geophysical quantities,
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Figure 2. Satellite-derived surface chlorophyll timeseries decomposition for three stations marked in Figure 1: (a) Subtropical Pacific (34°S, 152°W), (b) Antarctic
Circumpolar Current (52°S, 170°W), and (c) Argentine Basin (46°S, 45°W). The full signal (X)) is plotted in (a) magenta, (b) orange, and (c) cyan. In all panels the
multi-annual component (7)) is blue, the seasonal component (S,) is black, and the sub-seasonal component (/) is green.

Multi-annual

weighted toward low frequencies without a preferred period (Maraun et al., 2007; Schulte et al., 2015; Torrence &
Compo, 1998). We generated red noise using an auto-regressive process with a lag-1 autocorrelation coefficient
of 0.85, following Allen and Smith (1996). The first artificial variable is zero-mean with a Gaussian distribu-
tion (Figure 5a), which is representative of many normally distributed oceanic tracers. SChl, however, has been

Seasonal Sub-seasonal

Variance (%)

Figure 3. Percentage of the total satellite-derived surface chlorophyll (SChl) variance explained by the (a) multi-annual, (b) seasonal, and (c) sub-seasonal components
of the SChl decomposition.
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observed to follow a log-normal distribution; this is presumably because bio-optical properties in the ocean can
be represented as the product of light attenuation coefficients, which would imply that SChl obeys the law of
proportionate effect (Campbell, 1995). Therefore, our second artificial variable is taken to be the exponential of
the first (Figure 5b), meaning that it is positive-valued and log-normally distributed, like SChl. We then apply the
same decomposition method to the synthetic timeseries (Figure S3 in Supporting Information S1), although the
three components simply represent high, mid, and low frequency bands since the timesteps are essentially arbi-
trary (i.e., the red noise cannot be interpreted as having sub-seasonal, seasonal, and multi-annual components).
Comparing the results for the two synthetic variables allows us to assess the extent to which the importance of
sub-seasonal events to the total SChl variance stems from the log-normality of chlorophyll.

3. Results
3.1. Satellite Analysis

Southern Ocean primary production is heterogeneous in space and time. Still, distinct bloom phenology regimes
have been identified from satellite SChl, as well as large-scale patterns in the mean (Ardyna et al., 2017; Sallée
et al., 2015; Thomalla et al., 2011). Namely, higher annual mean SChl (Figure 1a) is observed in boundary
current regions, near fronts, and downstream of islands or topographic features in the path of the ACC (Meredith
et al., 2003; Prend et al., 2019; Rosso et al., 2016; Sokolov & Rintoul, 2007). These patterns are related to
heterogeneities in iron sources and the pathways that supply iron to the euphotic zone (Graham et al., 2015;
Lancelot et al., 2009; Tagliabue et al., 2012). There is also significant spatial variability in the standard deviation
of the annual mean (Figure 1b), which somewhat mirrors the structure in the annual mean itself (Figure S4 in
Supporting Information S1). Year-to-year variations of SChl are larger within the ACC and in energetic boundary
currents with high EKE (Figure 1c). The subtropics (north of the Subtropical front), by contrast, have low SChl
values and less variability between years, which coincides with weaker eddy activity and winds (Figure 1d).

Temporal SChl variability also demonstrates major regional differences, which is illustrated by the timeseries in
Figure 2. In the subtropics (Figure 2a), SChl resembles a sinusoidal seasonal cycle with little change in amplitude
between years, whereas in the open ACC (Figure 2b), SChl fluctuations occurring on weekly timescales greatly
exceed the amplitude of the seasonal cycle. Finally, in boundary current regions such as the Brazil-Malvinas
confluence (Figure 2c¢), the seasonal cycle is more prominent than in the open ACC (Figure 2b) but is punctuated
by sub-seasonal pulses that significantly increase the magnitude of the annual maximum. These regional patterns
in the dominant timescale of SChl variability lead to a fundamentally different interpretation of the annual mean
SChl value itself. For example, in the subtropics, where SChl is driven by seasonal variability, annual mean SChl
reflects the integrated seasonal bloom. In contrast, in the open ACC, where sub-seasonal variability dominates,
annual mean SChl is manifested through the sum of transient bursts that take place throughout spring and summer.

While the details of the timeseries plotted in Figure 2 are unique, we demonstrate that these stations are repre-
sentative of larger regional regimes by showing maps of the percentage of total SChl variance explained by each
frequency range (Figure 3). North of the Subtropical front, the seasonal component explains >70% of the total
variance (Figure 3b), consistent with the timeseries in Figure 2a. Moving southward into the ACC, sub-seasonal
variability is significantly stronger (Figure 3c), exceeding even the variance explained by the seasonal cycle in
many locations, such as the station shown in Figure 2b. This is consistent with Thomalla et al. (2011), who showed
the greatest seasonal cycle reproducibility in the subtropics. Across the entire Southern Ocean, the multi-annual
component is weak except in a narrow band spanning the Subantarctic Mode Water formation sites in the Pacific,
where the deepest winter mixed layers in the entire Southern Ocean are found (Hanawa & Talley, 2001). The
comparatively large share of SChl variance explained by the multi-annual component in the mode water forma-
tion region may be due to the substantial variations in maximum winter MLD observed there, which have been
linked to the SAM (Meijers et al., 2019) and could influence nutrient supply to the euphotic zone.

Non-seasonal SChl variability in the Southern Ocean is dominated by high-frequency rather than low-frequency
fluctuations (Figure 3). Averaged across the entire ACC, sub-seasonal variations constitute 47% of the total
SChl variance, and 81% of the non-seasonal SChl variance. This helps explain the relatively modest correla-
tions between non-seasonal chlorophyll anomalies and the SAM index (Lovenduski & Gruber, 2005). To further
explore this, Figure 4 shows the correlation coefficients between the SAM index and each individual component
of the SChl decomposition. The seasonal and sub-seasonal components of SChl are not strongly correlated with

PREND ET AL.

6 of 15



A7t |

A\ Global Biogeochemical Cycles 10.1029/2022GB007329
b
T
£
=
<
n
20})0 2052 I 20104 I 20|06 ' 20|08 ' 20|10 ' 20I12 ' 20‘14 20116 ’ 20118
Multi-annual Seasonal Sub-seasonal
b CE e g
1.0
0.5
0.0
-0.5
-1.0

(R)

Figure 4. (a) 1999-2018 monthly Southern Annular Mode (SAM) index from NOAA/NCEP Climate Prediction Center (bd) Correlation coefficient between the
8-day averages of the daily SAM index (to match the temporal resolution of the satellite satellite-derived surface chlorophyll (SChl) data) and the (b) multi-annual, (c)
seasonal, and (d) sub-seasonal components of the SChl decomposition. In all panels, cross-hatching indicates where the correlations are not significant at the 95% level.

the SAM (Figures 4c and 4d). The multi-annual component, while much more highly correlated with the SAM
(Figure 4b), only accounts for about 10% of the total SChl variance (Figure 3a). The broad zonal pattern in
Figure 4b is consistent with results from Lovenduski and Gruber (2005). However, it is difficult to extract a rela-
tionship between satellite SChl and the SAM because the low-frequency SChl variability associated with SAM
forcing is overwhelmed by the much larger SChl fluctuations occurring at high frequencies.

3.2. Synthetic Data Analysis

The large contribution of high frequencies to the total SChl variance could result from the non-Gaussianity of chlo-
rophyll, since log-normally distributed variables (such as SChl) are known to be heavy tailed (Campbell, 1995).
Therefore, synthetic timeseries (Figure 5) with varied probability distributions were used to assess this. Figure
S3 in Supporting Information S1 gives the decomposition of the Gaussian and log-normal red noise, and the
insets in Figure 5 show the percent variance explained by high, mid, and low frequency bands. The zero-mean,
Gaussian red noise has its variance evenly divided between the three components of the decomposition (inset
in Figure 5a), whereas the positive-valued, log-normal red noise has a greater portion of its variance, 46%,
explained by the high-frequency component (inset in Figure 5b). The sensitivity of these results to the details of
the noise formulation have not been explored fully. Our intent is simply to demonstrate that the large magnitude of
sub-seasonal SChl variability seen in the satellite data is connected, in part, to its probability distribution, which
lends more weight to extreme events due to its heavy tail. However, the partitioning of variance from the satellite
SChl data does not appear to result solely from the log-normality of chlorophyll, since the same decomposition
method applied to log (SChl) also indicates a disproportionate importance of sub-seasonal variability (Figure S5
in Supporting Information S1).

3.3. Float Analysis

Given the sparsity of historical measurements in the Southern Ocean, remote sensing is an invaluable tool to
study the region. However, satellite algorithms have been shown to underestimate SChl in the Southern Ocean
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Figure 5. Synthetic timeseries of red noise generated by an auto-regressive process with (a) zero-mean and Gaussian distribution and (b) positive-valued and
log-normal distribution. In both panels, insets show the percent variance explained by low (blue), mid (black), and high (green) frequency bands. These values are
T,=33%,S,=32%,1,=34%in (a), and T, = 27%, S, = 26%, I, = 46% in (b).

compared to in situ measurements (Kahru & Mitchell, 2010). Furthermore, changes in SChl do not necessarily
reflect changes in the integrated biomass (Carranza et al., 2018; Uchida et al., 2019). It is possible, for example,
that sub-seasonal SChl variability is simply due to dilution of the surface signal by episodic mixing, rather than
high-frequency changes in phytoplankton biomass. To assess this, we analyze subsurface data from three autono-
mous floats deployed near Kerguelen Plateau by the SOCLIM project (Pellichero et al., 2020). Figure 6 shows the

vertical chlorophyll section from float 6902735, as well as the comparison of SChl and Chl_, timeseries.

tot

While much of the chlorophyll signal is subsurface, the SChl and Chl,,
(R = 0.81), albeit less so at sub-seasonal timescales (R = 0.66). This was found by applying the same decompo-
sition method outlined in Section 2.2 to float SChl and Chl,
explained by the multi-annual, seasonal, and sub-seasonal components are 9%, 46%, and 44%, respectively, while
for Chl,,
8%, 55%, and 36%, respectively. In other words, sub-seasonal variability is stronger for SChl compared to Chl

timeseries are reasonably well correlated
(Figure 7). For SChl, the percentages of variance

the percentages of variance explained by the multi-annual, seasonal, and sub-seasonal components are
tot>
which implies larger variations in biological rates and concentrations near the surface than at depth. This could
be, in part, due to dilution of the surface signal rather than changes in total biomass. Although, sub-seasonal Chl
variability still contributes a large share to the total variance and exceeds the multi-annual component, as we see
for SChl. The same conclusion was drawn from the other two SOCLIM floats analyzed (floats IDs: 6902736
and 6902737); analogous plots are shown in the Supporting Information (Figures S6-S9 in Supporting Infor-
mation S1). This suggests that the results based on satellite SChl data (Section 3.1) are relevant to the vertically
integrated chlorophyll, although possibly slightly overestimating the contribution of sub-seasonal timescales to

the total variability.

4. Discussion and Conclusions

Satellite data and autonomous float measurements analyzed here show that sub-seasonal SChl variability exceeds
multi-annual variability in the Southern Ocean. As a result, year-to-year variations of annual mean SChl primar-
ily reflect high-frequency events rather than low-frequency variability (Little et al., 2018). This is because, within
the ACC, the annual mean SChl value itself results from the sum of intermittent pulses occurring at weekly times-
cales (or at shorter timescales not resolved by the satellite data set). Therefore, the annual mean SChl is higher in
years with more or larger pulses, which is confirmed by high correlations between annual mean SChl and annual
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Figure 8. (a) Correlation coefficient between annual mean satellite-derived surface chlorophyll (SChl) and annual variance in the sub-seasonal component of SChl.
Cross-hatching indicates where the correlations are not significant at the 95% level. (b) Length scale (km) associated with consistent variations in annual mean SChl.

variance of the sub-seasonal component of SChl (Figure 8a). The inverse cascade toward low frequencies could
result from ecological fluctuations or from changes in the prevalence of extreme wind events or eddy activity
(Cravatte et al., 2021), which in turn may be connected to climate variability (Busecke & Abernathey, 2019; Hell
etal., 2021), although sub-seasonal SChl variations were only weakly correlated with the SAM index (Figure 4d).

The link between annual mean SChl and high-frequency events is important because sub-seasonal SChl variabil-
ity occurs at spatial scales of ~50-150 km (Figure Slc in Supporting Information S1), which leads to a similarly
small spatial autocorrelation for variations in annual mean SChl (Figure 8b). In the ACC, the average length scale
associated with correlated fluctuations in annual mean SChl is only 260 km. This is in contrast to the seasonal
cycle of SChl, which is forced, to leading order, by large-scale changes in solar irradiance and surface stratifica-
tion, and thus has much larger spatial scales, ~600 km (Figure S1b in Supporting Information S1). For example,
vast bloom phenology regimes have been defined based on SChl seasonality, and approximately correspond to the
frontal zones of the ACC (Ardyna et al., 2017; Sallée et al., 2015; Thomalla et al., 2011). Indeed, averaging the
satellite data over the Subtropical Zone (STZ), Subantarctic Zone (SAZ), and the ACC—as defined by the mean
frontal positions from Kim and Orsi (2014), see Supporting Information—shows that, in a given frontal zone,
the seasonal component of SChl (S,) has a small standard error (Figure 9a); this means that the seasonal cycle is
relatively consistent across all grid cells, although note that the calculation of standard error assumes Gaussian
statistics. However, the full SChl signal (X)) has larger standard errors within a frontal zone (Figure 9b), particu-
larly in the SAZ and ACC where sub-seasonal variability is strong. This is also reflected in the fluctuations of
annual mean SChl, which have large standard errors in the SAZ and in the ACC (Figure 9c¢), despite the regularity
of the seasonal cycle over these zones. In other words, the bioregions defined based on phytoplankton seasonality
or time-mean SChl are not necessarily meaningful in the context of year-to-year variations.

These results suggest that changes in annual mean SChl are tied to the forcing that drives sub-seasonal SChl
fluctuations. This includes anomalies in wind stress or surface buoyancy forcing (Carranza & Gille, 2015;
Keerthi et al., 2021; Swart et al., 2015), oceanic mesoscale and sub-mesoscale variability (Frenger et al., 2018;
McGillicuddy, 2016; Whitt, Lévy, & Taylor, 2019), or ecosystem interactions such as top-down controls from
grazing (Arteaga et al., 2020; Behrenfeld & Boss, 2014), competition for multiple resources (Huisman &
Weissing, 2001), and interactions between the two (Mayersohn et al., 2021). It is difficult to separate the effects of
these mechanisms for several reasons. First, the timescales associated with mesoscale and submesoscale physical
processes overlap with those of intrinsic ecosystem variability. Second, the sign of the SChl response to wind or
MLD perturbations exhibits significant seasonal and regional variability (Le Quéré et al., 2002; Llort et al., 2019).
For example, several studies have observed a seasonal progression from light limitation to nutrient limitation in
the Southern Ocean (Li et al., 2021; Ryan-Keogh et al., 2018; von Berg et al., 2020). In a light-limited regime,
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phytoplankton growth is associated with restratification due to decreased winds and/or submesoscale buoyancy
fluxes (du Plessis et al., 2017; Pellichero et al., 2020; Swart et al., 2015; Thomalla et al., 2015). In contrast, in a
nutrient-limited regime, increases in SChl are driven by transient nutrient entrainment from storm-driven mixing
(Carranza & Gille, 2015), eddy activity (Uchida et al., 2020), or wind-eddy interactions (du Plessis et al., 2019;
Gille et al., 2014).

Untangling these mechanisms has important implications for year-to-year variability. For example, if sub-seasonal
SChl fluctuations are driven primarily by wind-driven nutrient entrainment from synoptic storms, then annual
mean SChl could presumably be linked to storm frequency. In contrast, if sub-seasonal SChl fluctuations are
forced by oceanic (sub-)mesocale variability, then annual mean SChl would possibly be connected to changes
in EKE. Finally, some studies suggest that the surface iron supply is set by wintertime mixing (Nicholson
et al., 2019; Tagliabue et al., 2014), in which case annual mean SChl would potentially be related to the previous
winter's maximum MLD. Testing these hypotheses is difficult using observations. We tried, for example, to corre-
late annual mean SChl with summer storm frequency (Figure S10 in Supporting Information S1), defined as the
percentage of days in summer (DJF) with daily mean wind speed greater than 10 m/s (Carranza et al., 2018). The
correlations are relatively modest, but this could be due to inaccuracy in the wind product at high frequencies,
decoupling in time between mixing and wind stress at sub-seasonal timescales (Whitt et al., 2017), the nonlinear
relationship between MLD and surface forcing (Whitt, Nicholson, & Carranza, 2019), or variability in the phyto-
plankton response to MLD perturbations (Llort et al., 2019). Other studies (e.g., Li et al., 2021) have additionally
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shown a weak relationship between annual mean production and MLD. However, further work is needed to quan-
tify the contribution of these different processes to the total year-to-year variability.

While many previous studies have examined sub-seasonal SChl variability and have highlighted the complex
mechanisms at play, the role of high-frequency fluctuations in driving the annual mean SChl and its variability
is not widely recognized. Non-seasonal SChl variability in the Southern Ocean has often been attributed to the
SAM (Greaves et al., 2020; Lovenduski & Gruber, 2005). However, here we have shown that low-frequency SChl
fluctuations, which show a relationship to the SAM index, are dwarfed by the much larger amplitude sub-seasonal
variability. Therefore, year-to-year changes in annual mean SChl reflect episodic forcing, such as storms and
eddies, rather than multi-annual climate variability. Although future work should investigate the role of climate
modes in modulating the prevalence and magnitude of synoptic events and (sub-)mesoscale mixing (Busecke
& Abernathey, 2019; Hell et al., 2021). One implication of these results is that annual mean SChl only varies
consistently over small spatial scales. Consequently, developing a mechanistic understanding of year-to-year vari-
ations in Southern Ocean primary production is an inherently local question that requires resolving sub-seasonal,
small-scale processes.

Data Availability Statement

8-day composites of satellite surface chlorophyll are available from European Space Agency Ocean Color Climate
Change Initative (http://www.oceancolour.org/). Profiling float data were collected and made freely available by
the Southern Ocean and Climate Field Studies with Innovative Tools project (http://soclim.com/). Daily wind
speeds from the merged Cross-Calibrated Multi Platform product are available online (http://www.remss.com/
measurements/ccmp/). The daily Antarctic Oscillation index is available from the NOAA/NCEP Climate Predic-
tion Center (http://www.cpc.ncep.noaa.gov/). Mean EKE is calculated from a NOAA surface drifter climatology
(http://www.aoml.noaa.gov/phod/gdp/mean_tvelocity.php).
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