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Abstract 

Affinity chromatography is a technique that uses a stationary phase based on the 

supramolecular interactions that occur in biological systems or mimics of these systems.  This 

method has long been a popular tool for the isolation, measurement, and characterization of 

specific targets in complex samples.  This review discusses the basic concepts of this method and 

examines recent developments in affinity chromatography and related supramolecular separation 

methods.  Topics that are examined include advances that have occurred in the types of supports, 

approaches to immobilization, and binding agents that are employed in this method.  New 

developments in the applications of affinity chromatography are also summarized, including an 

overview on the use of this method for biochemical purification, sample preparation or analysis, 

chiral separations, and biointeraction studies.  
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1 Introduction 

Affinity chromatography is a specific type of liquid chromatography in which the 

separation mechanism is based on an interaction between an immobilized and biologically related 

binding agent with an applied analyte [1-3].  This method is closely tied to supramolecular 

interactions in that it makes use of the selective and reversible interactions that occur in many 

complexes that are formed in biological systems, or mimics of such systems.  Examples of 

biological supramolecular interactions are those that take place between antibodies with their 

antigens, enzymes with their substrates or inhibitors, and hormones with their receptors [1-8].  

Advantages of using these interactions in affinity chromatography include the high selectivity, 

strong binding, and good resolution that are made possible in this method for specific target 

compounds [5-8].  The stationary phase in affinity chromatography, which makes up the 

immobilized component of the supramolecular complex, is often called the “affinity ligand”.  The 

support that contains this stationary phase is packed or placed into a column and used to selectively 

retain the complementary target to the affinity ligand, where this target represents the second part 

of the supramolecular complex [5-7].  

The most common format in which immobilized ligands and columns are used in affinity 

chromatography is the on/off elution mode, as shown in Figure 1 [5,9].  In this format and in the 

presence of an application buffer, a sample mixture containing the target analyte is applied to the 

column.  Non-retained components pass through the column and are quickly eluted, while the 

target interacts with the immobilized affinity ligand.  To obtain and release the captured agent, a 

separate elution buffer is typically used in a situation where the analyte and binding agent have 

strong interactions, such as occurs for systems with association equilibrium constants of 106 M-1 

or higher [1,7-9].  To weaken these interactions, the elution buffer has a change from the 
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application buffer in its pH, polarity, or ionic strength; this approach is known as “non-specific 

elution”.  Alternatively, the elution buffer may contain a competing agent to promote analyte 

elution by mass action, giving a method referred to as “biospecific elution” [5,9].   After the analyte 

has been released, the column may then be regenerated by reapplying the original application 

buffer or some similar solution [5,9].  The system is then ready for the next sample to be processed.  

In weak affinity chromatography (WAC), the same mobile phase is used for both sample 

application and elution under isocratic conditions, as well as for column regeneration.  This 

situation is possible when the supramolecular interactions that are involved in retention have an 

association equilibrium constant that is less than approximately 105 or 106 M-1 [1,7,9-11].   

Affinity chromatography has been popular for decades as a tool for the selective 

purification of biological molecules [1-7].  In addition, this technique has been used as a method 

for sample preparation during chemical or biochemical analysis and as a tool for the isolation, 

measurement, or characterization of targets in biological, clinical, and environmental samples [1-

6,12-16].  This review will discuss recent developments in affinity chromatography and related 

supramolecular separation methods.  Topics that will be discussed will include advances with 

regards to the types of supports, biological binding agents, and immobilization methods that are 

employed in this method.  New developments in the applications of affinity chromatography will 

also be examined.  

 

2 Supports for Affinity Chromatography 

Many materials and matrices have been utilized as supports in affinity chromatography.  

These supports can be divided into three main categories (see Table 1) [1-3,17,18].  The first 

category is natural supports, such as agarose, dextran, and cellulose.  The second group is inorganic 
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matrices, such as silica or glass.  The third group is made up of synthetic materials that can be used 

as chromatographic supports, such as polystyrene or polyacrylamide [1,17,18].  

 

2.1 Natural Supports and Related Materials 

Agarose is the most popular support material used in affinity chromatography for both the 

large- and small-scale purification of targets [3,19-23].  This was also the material used in the first 

modern separations that were described for affinity chromatography in 1968 [3,8,19-21].  Agarose 

has a large pore size, which makes it suitable for many biomedical separations or the 

immobilization of large biomolecules.  The low cost, low non-specific binding of this material for 

many biological agents, and good stability of agarose over a broad pH range also make agarose 

appealing as a support for many applications of affinity chromatography [20,21].  However, the 

relative low mechanical stability of agarose at high operating pressure does limit its use as a 

support in analytical-scale separations based on high-performance liquid chromatography [3,5,21].  

Recently, a microporous membrane emulsification technique has been used to develop 

monodisperse microspheres based on agarose [24].  Beaded agarose in the form of microspheres 

with selected diameters and porosity is commercially available under the tradename Sepharose 

[3,21,25].  The hydroxyl groups of agarose can be partially or fully derivatized, and several 

functional groups can be incorporated into this support, such as amine, carboxyl, cyano, or 

sulfonate groups [21,26-28].  

Cellulose is another natural material that has been used as a support in affinity 

chromatography, specifically for the purification of antibodies or enzymes [3,20,29].  Currently, 

cellulose is not as popular as agarose as a support for affinity chromatography due to its lower 

surface area and lower mechanical stability [3,20].  However, cellulose in a membrane format can 

provide low backpressures and be used in preparative work at high flow rates [3,30,31].  
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Adsorptive cellulosic fibers have been emerging as a new support matrix for affinity 

chromatography due to their high swelling capacity and good mechanical strength [32-34].  

Besides agarose and cellulose, dextran based matrices such as Sephadex, Superdex, and 

Sephacryl are also widely used in bioaffinity chromatography [30,35].  Supports for which strong 

one-point interactions with target proteins are required can be modified with dextran [36,37].  In 

affinity chromatography this can be an advantage because multipoint interactions with other 

proteins can lead to non-specific adsorption. 

Carbohydrate-based hybrid supports with a dense core (e.g., quartz) have been used to 

prepare expanded-bed adsorbents for affinity separations [38-41].  Agarose [38-40] and cellulose 

[41] have often been employed for developing these hybrid supports.  The use of expanded-bed 

adsorbents helps to avoid column clogging by solid contaminants by allowing the creation of a 

fluidized or expanded bed during sample application [3,20,21,23].  Expanded bed adsorbents have 

been utilized in such applications as protein purification [42] and isolation of monoclonal 

antibodies [43,44].  

 

2.2 Inorganic Supports 

Inorganic materials such as porous silica particles and glass beads, both modified with 

hydrophilic groups, are commonly used in high-performance affinity chromatography (HPAC) 

[3,5,20,21].  These inorganic supports have the advantages of being available in various pore sizes 

and particle diameters and show good mechanical strength at the pressures and flow rates that are 

used in HPLC conditions [3,5,20,45].  Non-modified inorganic supports do have some 

disadvantages when compared to many carbohydrate supports, including their lower pH range 

stability and possible presence of higher non-specific binding [3,20].  However, these materials 

can be modified and used with a wide range of affinity ligands, and they are compatible with target 
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purification or analysis in applications that span from pharmaceutical and biomedical analysis to 

flow-based immunoassays [3,20,22,45-47].  For instance, HPLC-grade silica has been used as a 

support to prepare lectin affinity microcolumns to examine binding by drugs with structural 

variants of alpha1-acid glycoprotein (AGP) [48].  In another report, rapid protein purification was 

obtained by using a surface imprinted silica support [49]. 

Monolithic silica supports have also been receiving attention in affinity chromatography 

[50-52].  There are several advantages of monoliths over traditional particulate supports, including 

their availability in a range of sizes and shapes [21,50].  Other advantages of monolithic supports 

consist of their low backpressures, high permeability, and good separation efficiencies [21,50].  In 

one report, a hybrid organic-silica affinity monolith support was made using ‘thiol-ene’ click 

chemistry to immobilize an aptamer that was then applied to recognize a trace protein [53].  Weak 

affinity chromatography has been increasingly applied to study interactions in biological systems 

[54,55].  In another recent study, silica-based monolith nanocolumns were made using a small 

amount of targeted protein and used in weak affinity chromatography coupled with mass 

spectrometry for rapid fragment screening, as may be used in the future as a tool for drug discovery 

[56]. 

Other inorganic-based supports have also been considered for use in affinity columns.  An 

example of one such material is titania, or TiO2 [57-62].  Supports that contain titania have been 

employed in a method known as metal oxide affinity chromatography, or MOAC, to bind and 

capture targets such as phosphopeptides [57-60].  In addition, dendritic polyglycerol-coated 

chitosan nanomaterials that contained Ti4+ and titania nanoparticles have been utilized for the 

isolation and separation of glycopeptides and phosphopeptides [61,62]. 

 

 



8 

 

2.3 Synthetic Supports 

 Synthetic polymers such as polystyrene and polymethacrylate have also been used as 

supports for both traditional and high-performance applications of affinity chromatography 

[3,21,30].  Polystyrene supports have been used as a perfusion media and in other separation 

formats in affinity chromatography [21,63,64].  The long hydrophobic backbone of polystyrene 

can lead to high levels of non-specific interactions with biological molecules like proteins, but this 

can be addressed by coating a hydrophilic layer on this material [21,63,64].  Polymethacrylates are 

more hydrophilic in nature and can be used either in their original or modified forms for affinity 

separations [46,50].  Other synthetic polymers such as polysulfones and polyamides are also used 

in affinity chromatography as membrane supports [65].  These organic polymers are often stable 

over a broad pH range, which is also appealing for their use in affinity separations [3,21,46].   

Organic polymers, agarose, and cryogels as monolithic supports are also gaining attention 

in affinity chromatography [21,50,52,66-77].  Polymeric monolithic supports based on glycidyl 

methacrylate (GMA) and ethylene glycol dimethacrylate (EDMA) have been used with 

immobilized agents such as antibodies, enzymes, proteins, and peptides [52,66-69].  For instance, 

polymethacrylate monoliths known as convective interaction media (CIM),  have been used in a 

wide range of applications ranging from the purification of large biological agents such as viruses, 

proteins, and DNA to antibody-based separations and immobilized metal-ion affinity 

chromatography (IMAC) [51,70-74].  The large pore sizes of cryogels have made these materials 

useful in the separation or capture of large analytes such as eukaryotic cells and bacteria [76,77].  

The low surface area seen in cryogels has been noted to lead to a possible decrease in ligand density 

and binding capacity [75].  However, this limitation can be overcome by using small binding 



9 

 

agents (e.g., metal ion chelates), surface grafting of the ligand, or embedding functionalized 

particles within a cryogel [78-80]. 

 

2.4 Magnetic Beads and Particles 

Magnetic particles such as magnetic beads and nanoparticles have been used in some 

studies as supports for affinity chromatography [81–84].  Magnetic beads are often prepared by 

depositing magnetic iron oxides (i.e., Fe3O4) into porous mono-sized polymer particles, although 

polymers containing colloidal magnetite or other magnetic metals such as cobalt and manganese 

have been used as well.  Binding agents can be attached to these particles by placing on the 

polymers reactive functional groups such as isocyanate, vinyl, and epoxy residues [81–84].    

The use of magnetic beads or particles with immobilized binding agents was described as 

early as 1977, when agarose-polyacrylate beads containing magnetic cores were prepared and used 

in a sandwich immunoassay with an enzyme label [81,83].  Several other types of magnetic beads 

that could be used with affinity ligands were developed after this, including materials made from 

starch, carbohydrate, cellulose, or dextran and containing iron oxide; magnetic beads were also 

prepared from iron oxide and polymers such as acrylates, methacrylates, or styrene [81,83,85].  

The use and performance of these initial forms of these beads in a magnetic field suffered from 

variability in beads’ sizes and level of magnetism [81,83].  These limitations were later overcome 

when beads with the preparation of magnetic beads with more uniform sizes (e.g., spherical 

monodisperse particles with sizes in the range of 0.5 to 100 µm) [83].  

Magnetic particles have been used as supports in several affinity separations [86–95].  

These materials have been used to bind targets such as antibodies or other proteins, antigens, and 

DNA or RNA [86–94].  For instance, magnetic poly(2-hydroxyethylmethacrylate) beads were used 

to isolate lysozyme from aqueous solutions and egg white and cytochrome c from an aqueous 
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sample [84,88].  Magnetic attapulgite, containing boronic acid as a binding agent, was used as a 

support for the selective enrichment of several nucleosides from urine samples [90].  Trace 

ginsenosides were separated from rat plasma by using magnetic nanoparticles and a boronate as 

the binding agent [93].  The dye Cibacron Blue 3GA was coupled to magnetic support made of 

Fe3O4 particles entrapped by polyvinyl alcohol and used for the purification of lysozyme and 

alcohol dehydrogenases from clarified yeast homogenates [94].  Magnetic nanoparticles 

containing Fe3O4 were used for the extraction of luteolin from honey samples using boronic acid 

as the affinity ligand [96]. 

 

2.5  Smart Materials 

A number of smart materials have been explored for use in affinity chromatography.  Smart 

materials, or stimuli-responsive intelligent materials, are polymers which respond to external 

chemical, physical, or biochemical factors [97–99].  These polymers change their structure or 

function (e.g., an alteration in their shape, phase, or ability to take part in molecular recognition) 

as they respond to changes in factors such as temperature, ionic strength, solvent concentration, 

UV radiation, magnetic field, pH, or the presence of given binding agent or type of ion.  These 

polymers are then able to return to their initial state once the source of the external stimulus has 

been removed or reversed [97–99].  Stimuli-responsive polymers can also be either mixed 

physically or conjugated with a biomolecule to form materials for affinity-related applications [99–

101].   

The smart materials that are most often used in affinity chromatography are those that 

respond to a temperature change (i.e., thermoresponsive polymers) [100–103].  These polymers 

show temperature-dependent hydrophobic/hydrophilic variations and conformational changes in 

their polymer chains in response to variations in the surrounding temperature [100–104].  
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Examples of common thermoresponsive polymers that have been used in bioseparations are poly-

(N-isopropylacrylamide), poly(vinyl) ether, oligo(ethylene glycol) methacrylate, and related 

derivatives [102,104–107].  Among these, oligo(ethylene glycol) has been of particular interest 

[100–107].  An application mentioned in Section 2.4 was the use of boronic acid on oligo(ethylene 

glycol)-based magnetic nanoparticles as thermoresponsive supports for the extraction of luteolin 

from honey [96].  A support for the capture and release of lysozyme from human urine was 

described in that made use of oligo(ethylene glycol) and a methacrylate-based molecularly 

imprinted polymer [108].  Bovine serum albumin (BSA) was purified from protein mixtures and 

samples by using a thermal- and salt-sensitive MIP as the support [109].  

 

2.6 Nanomaterials 

Nanomaterials have yet to be widely examined for use as affinity ligands [110].  However, 

there have been reports of using nanomaterials to develop stationary phases that can be used in 

some chiral separations [111-113].  Carbon nanotubes have been shown to have some chiral 

recognition [114].  Both multi-walled and single-walled carbon nanotubes have been embedded in 

monoliths and used to separate enantiomers of various organic small molecules [115,116].  For 

instance, an organic monolith containing multi-walled carbon nanotubes was used to separate the 

enantiomers of bupivacaine, dansyl‐methionine, dansyl‐phenylalanine, and 2,4‐

dichlorophenoxypropionic acid [115].  A monolith containing single-walled carbon nanotubes was 

used in chiral separations for sulconazole, nomifenzine, etozoline, chlorpheniramine, and 

celiprolol [116]. 
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2.7 Support Formats 

Several forms of supports have been utilized in affinity chromatography [3,20,21].  The 

majority of reports on this method have used packed columns for either low-to-medium 

performance affinity chromatography (e.g., using agarose or cellulose) or HPAC (e.g., based on 

silica or glass beads) have used packed columns [3,21,30].  Small volume columns, including short 

length or small internal diameter columns, have also been of interest in recent years [3,117-119]. 

Over the last decade, monoliths and perfusion-based media have both gained popularity in 

analytical and preparative applications of affinity chromatography [3,21].  Expanded or fluidized 

beds have also become popular for preparative uses of affinity chromatography [3,20,21].   

Several types of supports (e.g., capillaries, packed beds, and monoliths) have been 

considered for use in microchips and miniaturized devices for affinity-based separations and 

methods [21,120-126].  The advantages of using these supports for affinity chromatography are 

that they require a smaller amount of binding agent than more traditional sized columns phase and 

consume less mobile phase. They also usually require smaller sample injection volumes and can 

often provide short analysis time [120,126].   

Packed capillaries in these methods usually have an internal diameter of 75-500 µm and a 

length of 5-15 cm [120,127-129].  They are typically used at low flow rates (i.e., nL/min to µL/min) 

and are often employed with nano-HPLC or microbore HPLC systems [120,127-129].  Capillary 

columns with IMAC-based stationary phases have been used for in the purification and 

biointeraction studies of several proteins [127,128].  For example, Ti4+ complexed on 

monodisperse-porous silica microspheres was used in a capillary column for the purification of 

phosphoproteins from milk and human serum [128].  Monolithic capillary columns containing 

Cu2+ were employed for the isolation of immunoglobulin G (IgG), transferrin, and albumin from 
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human plasma [127].  A microfluidic affinity capillary microcolumn was made that contained a 

MIP formed by the interaction of a cis-diol containing template, β-nicotinamide adenine 

nucleotide, and the functional monomer, 4-vinylphenylborononic acid; this boronic acid monolith 

was then employed for the purification of β-nicotinamide adenine nucleotide [129].  Packed 

capillaries as affinity columns have also been employed for studying the interaction of drugs with 

serum proteins and identification of ligands specific to the adenosine A2A receptor [120,130].  

Short affinity microcolumns having length of 5-50 mm and a typical internal diameter of 

2.1 mm have also been employed in several studies [48,131-142].  These microcolumns usually 

have low backpressures, which allows their use at high flow rates [48,131-137,139-142]. These 

microcolumns have been used in applications such as studies of drug interactions with alpha1-acid 

glycoprotein (AGP) or human serum albumin (HSA) by zonal elution, frontal analysis, and 

ultrafast affinity extraction [48,131-137,139-142].  These microcolumns have been employed in 

biointeraction studies involving AGP and the lectins concanavalin A (Con A) and Aleuria aurantia 

lectin (AAL) [48] and in work examining binding by drugs such as tapsin derivatives with 

epidermal growth factor receptors [138].  

Two other microscale formats in which affinity chromatography are microchips and 

microfluidic flow cells [121,126,143,144].  For example, a polymer chip that contained TiO2-ZrO2 

was employed for the enrichment of phosphopeptides from a tryptic digest of  β-casein based on 

metal oxide affinity chromatography [143].  Con A was immobilized on regenerated bacterial 

cellulose in a microchip and was used for the separation of lysozyme from transferrin [144].  

Microfluidic frontal affinity chromatography based on Ste2-G-protein coupled receptor on a gold 

substrate held in a flow cell was used to study the interaction of this receptor with α-factor, a 

natural pheromone peptide [121].  Biotin-avidin interactions in a flow cell have been exploited for 
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the detection of HIV-1, based on dual labeling of amplification products specific to the HIV-1 

gene by using biotin and fluorescent tags and passing these products through streptavidin agarose 

beads [145].  

 

3 Immobilization Methods 

The choice of immobilization technique for preparing affinity columns is an important 

factor to consider.  Figure 2 shows several immobilization techniques that can be used when 

preparing affinity columns.  It is essential that the correct immobilization scheme is selected for a 

particular application because several effects that can result from immobilization schemes can alter 

the actual or apparent activity of an immobilized binding agent [1,146-148].  These factors include 

steric hindrance, multisite attachment, and improper orientation of the affinity ligand [3,147,148].  

 

3.1 Non-covalent Immobilization 

Non-covalent immobilization techniques based upon the physical adsorption of affinity 

ligands to chromatographic supports have been employed initially.  In this approach, depending 

on the properties of supports and affinity ligands, physical adsorption of the binding agent to the 

support may occur through electrostatic interactions, hydrophobic interactions, or hydrogen 

bonding [44,148].  Both natural supports (e.g., agarose and cellulose) and inorganic supports (e.g., 

alumina and silica) have been used for non-covalent immobilization [149,150].  This approach is 

simple [3,149] but suffers from the possibility of limited stability of the resulting affinity support 

and the loss of binding agent activity through random orientation [149].  

Non-covalent immobilization can also be obtained through biospecific adsorption.   In this 

approach, a secondary ligand is attached to a support that can then bind and immobilize the primary 

affinity ligand [3,151].  The most common examples of such an approach are to use biotin as a tag 
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on a binding agent that is then allowed to bind to a support that contains avidin or streptavidin 

[149,152,153].  Another popular example of biospecific adsorption is the use of protein A or 

protein G (i.e., immunoglobulin-binding proteins) on supports to bind and immobilize antibodies 

[154-156].  

 Entrapment or encapsulation is another form of non-covalent immobilization technique. 

This approach makes use of the physical encapsulation or trapping of an affinity ligand within the 

pores of a support or within a cross-linked support or polymer network [157].  Enzymes, proteins, 

and other affinity ligands have been entrapped for a number of years within silicate-based sol-gels 

[157-159].  Another pathway for entrapment is the use of a cross-linking agent to immobilize an 

affinity ligand onto a support [3,131,160-162].  Hydrazide-activated silica support combined with 

oxidized glycogen as a capping agent has been used to entrap HSA, AGP, IgG, and other agents 

[131,160,162-164]. This latter method was also used with an online immunoextraction/entrapment 

system to extract and place a serum protein (i.e., HSA and modified forms of this protein) within 

small affinity columns to use in drug-binding studies [163]. 

Another immobilization method that has seen much interest in recent years is one that is 

based on boronic acids [165-170].  This approach makes use of the interaction of a boronic acid 

with the vicinal diol groups in many carbohydrate groups to generate a boronate esters.  To 

accomplish this, the surface of the support should first be modified with a with boronic acid 

derivatives such as aminophenylboronic acid [166-170].  Although this technique avoids the need 

to carry out prior oxidation of the carbohydrate groups, the reaction of diol groups with boronic 

acids are usually reversible at a physiological pH [165,171,172].  In addition, there may be 

competition between different classes of glycoproteins or carbohydrate-containing agents for 

immobilization onto this type of support [165].  However, such competition can be avoided by the 
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formation of aldehydes via glycoengineering and/or enzymatic oxidation methods and 

incorporating unnatural fucose derivatives into the carbohydrate moieties [171,173-176].  

 

3.2 Covalent Immobilization 

Covalent immobilization is the most widely used method for coupling an affinity ligand to 

a support material [1,146,148].  This technique usually requires that the ligand or support, or both, 

be activated prior to immobilization.  Examples of covalent immobilization methods are the 

cyanogen bromide (CNBr) method; the Schiff base (reductive amination) method; and approaches 

that use activating agents such as carbodiimide [146,148,177-179].  Many other techniques for this 

purpose have also been described, as reviewed previously [146,148]. 

The CNBr method is a two-step process which involves an initial modification of  hydroxyl 

groups on the support to obtain active cyanate esters or imidocarbonate groups; these groups can 

then undergo a reaction with primary amine groups on an affinity ligands to form a covalent 

linkage [146,148,180].  Examples of recent applications for this method include its use in the 

activation of a Sepharose 4B support for the immobilization of sulfanilamide and the activation of 

a cryogel monolith for the immobilization of HSA [181,182].  Although this method remains a 

common technique for the immobilization of affinity ligands to materials like agarose, it does 

suffer from health and safety issues related to the toxicity of its reagents and side-products [18]. 

The Schiff base method involves the use of a support that has been activated or converted 

into a form that contains aldehyde groups or amine groups.  These groups are then combined with 

a ligand that has primary amine groups or aldehyde groups, respectively, to form a Schiff base.  

Because a Schiff base is a reversible bond, this reaction is usually conducted in the presence of a 

mild reducing agent such as sodium cyanoborohydride to create a more stable secondary amine 

linkage [148].  This immobilization method has been used in a number of recent reports for the 
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immobilization of HSA to silica for drug-protein binding studies [132,183].  This method has also 

been employed in the immobilization of anti-human serum transferrin antibodies, anti-HSA 

antibodies, and the lectin Con A onto maltose-bonded silica for use in HPAC [184].   

One example of a carbodiimide activation method is to activate carboxylic groups on a 

support by using a carbodiimide such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) 

in the presence of N-hydroxysuccinimide (NHS) [185].  The result of this process is stable but 

reactive NHS ester.  The activated NHS ester groups can then be reacted directly with primary 

amine groups on an affinity ligand such as protein or peptide through amide bond formation [185].  

The carbodiimide activation method has been used recently for the immobilization of gelatin onto 

a poly(hydroxyethyl methacrylate) cryogel and peptides onto agarose supports [186,187].  The 

carbodiimide activation technique has also been used for the immobilization of Con A onto silica 

[188].  Other studies have used NHS-activated supports that have been produced without the use 

of carbodiimides.  For example, NHS-activated silica has been created by reacting succinic 

anhydride with aminopropyl silica and subsequently reacting this product with NHS, as well as by 

combining disuccinimidyl suberate with aminopropyl silica [146,148,177-179]. 

Multisite attachment and improper orientation remain as challenges that are often 

associated with covalent immobilization through primary amine groups and other relatively 

common functional groups [148].  These challenges can be avoided by employing covalent 

immobilization methods that use more site selective sites on an affinity ligand, such as free 

sulfhydryl groups [146,148,189,190].  This latter method has been used for immobilization of 

protein A, protein G, and HSA onto supports such as agarose beads and silica for affinity-based 

separations [190-192].  This approach has also been used to immobilize peptides such as 

glutathione onto agarose for the purification of fusion proteins and peptide-specific antibodies 
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[193,194].  Although covalent attachment of affinity ligands to supports via sulfhydryl groups is 

attractive as site-selective immobilization option, the aggressive conditions required to generate 

the sulfhydryl groups on certain ligands may also result in undesired reactions that can alter the 

binding characteristics of the ligand [165,195-197].   

For sugars and glycoproteins, including antibodies, improper orientation and multisite 

attachment effects can be significantly minimized by covalent coupling through carbohydrate 

groups [146,148,198-204].  In this approach, initial oxidation of the carbohydrate group is first 

carried out by oxidizing agents like periodate or by an enzymatic reaction to form aldehyde groups 

[148,199,203,205].  Hydrazide or amine groups that have been placed on the support can then be 

reacted with these aldehydes to covalently attach the ligand [200-203,205].  The main challenge 

with this approach is that certain important amino acids such as histidine, methionine, and 

tryptophan may be oxidized along with the carbohydrates by the periodate, thus altering the site 

selectivity and binding properties of the binding agent [195-197].  Thus, care must be taken to use 

mild oxidation conditions [148]. 

 

4  Binding Agents used in Affinity Chromatography 

4.1  Biological Agents as Affinity Ligands 

The first use of biological binding agent as a stationary phase in affinity chromatography 

can be traced back to 1910 when Starkenstein immobilized starch on a support to isolate α-amylase 

[206].  This type of affinity chromatography is now commonly called bioaffinity chromatography 

[1,3].  This general method gained popularity for the isolation of enzymes and other biological 

agents following the work in 1968 by Cuatrecasas et al., who used columns containing nuclease 

inhibitors to isolate α-chymotrypsin, carboxypeptidase A and staphylococcal nuclease [3,19,151].  

Over the past fifty years, bioaffinity chromatography remains one of the most common types of 
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affinity chromatography [3,18,22,30,151].  Examples of biological agents that can be used as 

affinity ligands are shown in Table 2.  This section will examine the major types of affinity ligands 

that consist of biological agents and new developments that have taken place with such stationary 

phases. 

 

4.1.1 Immunoaffinity Chromatography 

Immunoaffinity chromatography (IAC) is the most common form of bioaffinity 

chromatography [207-210].  This method is based on the highly specific and strong interactions 

that often take place between antibodies and their target antigens, which are used in IAC to capture, 

isolate, and purify various biochemicals and chemical agents [208-211].  The versatility of 

antibodies with regards to the many types of targets against which they can be prepared has made 

IAC a powerful purification method for use in many applications.  These applications have 

included sample preparation, sample cleanup, and clinical or diagnostic assays for drugs, 

hormones, toxins, and biomarkers [207-214].   

Applications of IAC may involve the use of various elution and detection methods.  For 

example, this approach has been used with pH step elution for the isolation of plasma and serum 

proteins in biological matrices, as followed by using detection based on absorbance measurement 

or tandem mass spectrometry [207-209].  IAC has also been used to isolate other agents, such as 

glycoproteins and carbohydrates [207,208,212,214].  When used for sample pretreatment, IAC has 

aided in the isolation of compounds from water or food samples for further analysis by other LC 

methods, as employed for the determination of antibiotics and toxins in such matrices [213,215].  

In addition, IAC has also been used as the basis for chromatographic immunoassays, as have been 

developed using both competitive and non-competitive binding formats [213,216-219].  More 

details on recent developments in these analytical applications are provided in Section 5.  
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4.1.2 Immunoglobulin-binding Proteins 

Immunoglobulin-binding proteins are another important set of biological binding agents 

that are used in bioaffinity chromatography [207,220-229].  Two common examples of these 

agents are proteins A and G [221-224,228,229].  Protein A is a surface protein found in the cell 

wall of the bacterium Staphylococcus aureus [220].  Protein G is an immunoglobulin-binding 

protein from Streptococci bacteria.  Both these binding agents have a high affinity for the constant, 

or Fc, region of many types of polyclonal or monoclonal antibodies, which makes these useful in 

the detection and purification of many subclasses of immunoglobulins [207,220-223].  Although 

protein A and G both bind to antibodies from various species, they differ in their affinity and 

dependence between species and immunoglobulin types [207,220,224].  For example, proteins A 

and G both have strong binding to most forms of human IgG-class antibodies [207,230].  However, 

protein A and G differ in their binding to human IgM- and IgA-class antibodies [207]. 

Other types of immunoglobulin-binding proteins have been reported as well.  An example 

is protein L, which is isolated from the bacterial strain Peptostreptococcus magnus [226,227].  

Unlike protein A and protein G, protein L binds through the light chains instead of the Fc region 

of immunoglobulins.  This feature gives protein L an ability to bind to a wider range of 

immunoglobulin classes than proteins A and G (e.g., human IgA, IgD, IgE, IgG, and IgM) 

[226,227].  Recombinant forms and mixtures of these immunoglobulin proteins have also been 

employed in affinity methods used to capture, purify, and measure immunoglobulins in samples 

[207,220-224,228,229,231]. For example, the adsorption kinetics of recombinant human IgG 

antibodies with protein A was studied by affinity chromatography [222].  The affinity of protein 

A for IgG from various species was also examined [223].  Protein G affinity chromatography was 

also used to determine the amount of soluble IgG in bovine colostrum products [224]. 
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4.1.3 Lectins 

The use of lectins as binding agents in chromatography results in a method known as lectin 

affinity chromatography (LAC) [3,48,220,232,233].  Lectins are carbohydrate binding proteins 

that are highly specific for targets that contain complementary sugar groups [220,232,233].  LAC 

has frequently been used for the isolation and separation of glycoproteins and their glycoforms, as 

well as glycolipids and polysaccharides, thus making this technique a valuable approach to glycan 

analysis [48,232,233].  For example, this method has been employed for the separation and 

analysis of glycoforms for AGP based on lectin microcolumns [48]. 

Many types of lectins have been used in LAC.  Two common examples are Con A and 

wheat germ agglutin (WGA), which can be utilized to bind agents containing high-mannose type 

glycans or N-acetyl-D-glucosamine and sialic acids, respectively [220].  Additional lectins have 

been employed in LAC are jacalin, AAL, various types of Phaseolus vulgaris agglutinin (PHA), 

Datura stramonium agglutinin (DSA), Lens culinaris agglutinin (LCA), Maackia amurensis lectin 

(MAM), Ricinus communis agglutinin (RCA), and Sambucus sieboldiana agglutinin (SSA) 

[3,48,220].  The coupling of lectin columns for the characterization of glycans on the same 

glycoconjugate is referred to as serial lectin affinity chromatography (SLAC) [234].  For example, 

N-glycosylated and O-glycosylated proteins have been examined by using a set of lectin columns 

for the determination of glycan structures [233]. 

 

4.1.4 Enzymes 

Enzymes are another group of biological agents that are often employed as ligands or 

targets in affinity chromatography [3,11,220].  Enzymes can be coupled to various 

chromatographic supports, including silica or monoliths, and through the use of various 

immobilization methods [3,11,220].  Enzymes can undergo selective and stable interactions with 
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their substrates and inhibitors, which can make enzymes valuable for the purification of enzyme 

inhibitors as well as for scavenging impurities [3,11,220,235-237].  For example, catalase has been 

used for scavenging perborate and hydrogen peroxide, horseradish peroxidase has been employed 

for the removal of chlorophenols from wastewater, and rhodanese has been utilized employed for 

the removal of cyanides in effluents and air [220,236,237].  Enzyme-inhibitor interactions have 

further been exploited for the purification of enzyme inhibitors, such as the use of trypsin to isolate 

trypsin inhibitor, and DD-peptidase to bind penicillin [220].  Trypsin has recently been entrapped 

in a sol-gel monolithic column as a means to screen for N-alpha-benzoyl-DL-arginine-4-

nitroanilide hydrochloride [235].  Enzyme inhibitors have also been extensively used for the 

purification of enzymes, as will be discussed later in Section 5 [3,11,220]. 

Other applications of enzymes have involved their use in solid-phase extraction (SPE) and 

immobilized enzyme reactors (IMER) for the screening of bioactive compounds from natural 

products [22,238-242].  In such work based on IMER, a substrate that is specific for the 

immobilized enzyme is introduced along with an extract of the natural product is to be examined 

[22,239-242].  The immobilized enzyme is then used to catalyze the formation of a product from 

the substrate and to see how this process is affected by bioactive compounds in the natural product 

extract (e.g., through competitive or non-competitive binding with the enzyme to prevent the 

formation of the product) [22,239-242].  Enzymes such as acetylcholinesterase, gelatinase, 

xanthine oxidase, and adenosine deaminase have been employed in this type of scheme with as 

supports such as silica or sol-gel capillary monoliths and in combination with two-dimensional 

liquid chromatography or  LC coupled with mass spectrometry [22,237-239].  Enzymes have also 

been immobilized on silica and used in a microextraction column to fish for xanthine oxidase 



23 

 

inhibitors in natural products by using LC coupled with a diode array detector and tandem mass 

spectrometry [22,238].  

Some enzymes have been employed as chiral selectors [243-247].  Examples of enzyme-

based CSPs are those based on penicillin G acylase [243-245], glucoamylase [246], and cellulase 

[247].  For instance, penicillin G acylase has been covalently immobilized with a silica monolith 

for the chiral separation of 2-aryloxyalkonic acid methyl esters and isosteric analogs [245].  

Cellulase was recently employed as a CSP by covalently immobilizing it onto aminopropyl silica 

and using this stationary phase for the chiral separation of various β-blockers [247].  Other 

examples are described in Section 5.3. 

 

4.1.5 Serum Proteins 

Serum proteins are one set of biological binding ligands that have been used for sample 

preparation and binding studies in affinity chromatography [11,248,249].  HSA, BSA, AGP, and 

lipoproteins are the examples of these binding agents.  HSA and AGP act as the main carrier 

proteins for numerous drugs, low mass hormones, and fatty acids in the human circulatory system 

[11,250,251].  HSA is primarily involved in delivering acidic and neutral drugs, while AGP is the 

main carrier for basic drugs and steroids [250,251].   

Applications of these serum proteins in affinity separations has been the subject of several 

recent reviews and papers [252-263].  One example is their use as stationary phases in chiral 

separations [11,252,253], as is described in more detail in Section 5.3.  Another use of these serum 

proteins has been in biointeraction studies (see Section 5.4) [254-262].  For example, several 

studies in recent years have used affinity columns to investigate the overall affinity and site-

specific binding of various solutes toward these carrier proteins [135,141,254-262].  The use of 

affinity chromatography to develop structure-affinity relationships for solutes with serum proteins 



24 

 

has also been described [11,135,253,256,257,261].  In these studies, a change in structure for either 

a group of solutes or in the immobilized binding agent is made to see how these affects the solute-

binding agent interaction.  Specific examples include reports that have looked at how changes in 

the glycation of HSA or glycosylation of AGP affect the ability of these serum proteins to bind to 

various drugs and drug classes [11,135,141,262]. 

 

4.1.6 Biotin, Avidin, and Streptavidin 

The interactions of biotin with the proteins streptavidin and avidin have often been 

employed in affinity chromatography [220,264-266].  Biotin, which is also known as vitamin H 

and vitamin B7, is a cofactor found in all living cells [220,264-266].  Avidin is a glycoprotein that 

is found in egg whites, while streptavidin is a protein produced by Streptomyces avidinii bacteria 

[220,264-267].  Biotin affinity columns are usually prepared by immobilizing 2-iminobiotin or 

native biotin to an LC support by employing the valeric acid side chain of these compounds [220].  

Avidin or streptavidin can also be immobilized by using an approach such as the cyanogen bromide 

method [220].   

It has been known for many years that biotin can undergo strong non-covalent interactions 

(i.e., with dissociation equilibrium constants as low as the picomolar-to-femtomolar range) with 

avidin and streptavidin [265-267].  Although there are similar biotin interacting sites in both these 

proteins, streptavidin possesses stronger binding to biotin than avidin as it can form a greater 

number of hydrogen bonds with the valeryl carboxylate group of biotin [220,264].   

Biotin-avidin interactions have been employed for carrying out the purification of 

biotinylated proteins using native elution conditions as well as for the determination of biotin in 

food and beverages [268,269].  Biotin-avidin interactions have also been recently used to study 

the interactions of avidin on quantum dots with biotinylated immunoglobulin G [270].  Interactions 
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based on biotin with streptavidin have been used for the identification and characterization of 

ligands specific to nanodisc-embedded G-protein coupled receptors, the detection of human 

immunodeficiency virus-1 (HIV-1) in sub-attomole levels, and the extraction of streptavidin in 

presence of green fluorescent protein (EGFP) and a cell lysate of E. coli [130,145,152].  A 

biotinylated ligand complex prepared by coupling an azo-based linker through click chemistry was 

immobilized on streptavidin support for the affinity independent elution of ligands [271]. 

Monolithic columns have been combined with biotin-streptavidin/avidin systems for 

various applications [259,272].  For instance, monomeric avidin that was attached to monoliths 

based on co-polymers of glycidyl methacrylate with ethylene dimethacrylate and acrylamide have 

been employed for the enrichment of biotinylated peptides and proteins [272].  Streptavidin-biotin 

interactions were also exploited by applying biotinylated HSA to streptavidin immobilized on 

silica- and organic-based monoliths that were used in nano-weak affinity chromatography [259].   

The fact that avidin and streptavidin have essentially irreversible binding to biotin means 

avidin/streptavidin-biotin complexes can only dissociate under harsh conditions, which can lead 

to the inactivation of some biotinylated biomolecules [267,273,274].  This has made genetically 

or chemically modified forms of avidin or streptavidin of interest for use in affinity applications 

[275].  Tamavidin 2-REV, a mutein engineered from tamavidin, was immobilized on agarose for 

the purification of biotinylated BSA and exhibited reversible binding for this target (dissociation 

equilibrium constant, 10-7 M) [275].  Core streptavidin, a mutant of streptavidin, can undergo 

reversible interactions with a strong affinity with biotin without being affected by harsh 

experimental conditions [276-279]; this form of streptavidin was fused with the transmembrane 

glycoprotein CD47 and isolated by using biotinylated agarose [279]. 
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4.1.7 Carbohydrates 

Carbohydrates have been used as immobilized ligands in chromatographic methods to 

carry out chiral separations and other forms of selective separations (see Section 5 for examples 

of applications) [3,11,220,280-284].  Polysaccharide based stationary phases have been 

extensively used for the separation of chiral drugs and solutes as a result of their excellent 

enantioselectivity an ability to be used in a variety of separation modes 

[3,11,112,282,283,285,286].  Most chiral stationary phases (CSPs) that employ polysaccharides 

are based on 3,5-dimethyl phenyl carbamate or 3,5-dichloro phenyl carbamate derivatives of 

cellulose and amylose, which can be prepared by coating or immobilizing these chiral agents onto 

supports such as porous silica particles, silica monoliths, or superficially porous silica 

[11,280,283,285-287]. 

Other polysaccharides such as derivatives of chitin and chitosan have also been recently 

employed for chiral separations.  Some attractive features of these polysaccharides are their 

insolubility in many organic solvents (e.g., as may be used as a mobile phase) and their comparable 

enantioselectivity to cellulose or amylose derivatives for some applications [281,282].  In the case 

of chitin, N-acetyl-D-amine glucose units are bonded together by β-(1→4) glycoside bonds, with 

deacetylation of chitin resulting in the formation of chitosan [281,282,284].  Most chitosan and 

chitin based chiral selectors have made use of arylcarbamate or 3,5-dimethyl carbamate derivatives 

of chitosan and chitin [284,288-295].  

Cyclic oligosaccharides composed of α-1,4-linked D-glucopyranose units, such as β-

cyclodextrin, have also been frequently employed as CSPs [11,112,282,283,296,297].  The 

glucopyranose units in these cyclodextrins are arranged in a circular polymer which has a 

hydrophobic cavity and an exterior that is hydrophilic [112,282,283,296,297].  Some chiral solutes 
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can form inclusion complexes with the hydrophobic cavity and undergo differential interactions 

to the hydroxyl groups that are at the mouth of the cyclodextrin cavity [112,282,296,297].  Host-

guest interactions between chiral solutes and cyclodextrins mainly occur through hydrogen bonds, 

hydrophobic forces, π-π bonding, and/or ionic interactions [112,282,296,297].  These CSPs can be 

prepared by coating or covalently immobilizing a cyclodextrin to the desired chromatographic 

support [11,112].  Recently, immobilization strategies for β-cyclodextrin using click chemistry 

[298-302], monolithic supports [303], hybrid chromatographic supports [304,305], and light-

assisted preparation of the CSP [306] have also been reported.   

CSPs that are based on derivatized β-cyclodextrins may suffer from a loss of 

enantioselectivity due to exhaustion of hydroxyl groups that were originally present on the rim of 

the cyclodextrin or due to the steric hindrance caused by a large number of substituents at or near 

the rim of the cyclodextrin [307,308].  Several new forms of cyclodextrin supports, or studies of 

current cyclodextrin materials, have been recently reported to overcome these disadvantages.  For 

example, a bridged bis(β-cyclodextrin) has been utilized as a new ligand for chiral separations and 

has been noted to possess strong hydrogen bonds, synergistic inclusion effects, and good molecular 

assembly, which can lead to improved chiral separations [307,308].  This type of stationary phase 

consists of two β-cyclodextrin units that are connected together by a linker such as ethylene 

diamine dicarboxyethyl diamido or stilbene diamido, which have been proposed to provide 

additional binding regions by creating pseudo-cavities [307,308].  A chiral mixed-mode stationary 

phase has also been prepared by grafting ionic liquids with β-cyclodextrin and C18 on silica; these 

materials have been found to exhibit retention based on reversed-phase, hydrophilic, and ion-

exchange mechanisms [309].   
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The methods of peak profiling and peak fitting, respectively, have been used to study the 

kinetics and thermodynamics of interactions by immobilized β-cyclodextrin with various solutes 

[310-313].  For example, peak profiling based on both single- and multi-flow rate methods was 

used to measure the apparent dissociation rate constants for various drugs with immobilized β-

cyclodextrin [310,311].  Peak fitting was used under non-linear conditions to determine the binding 

and rate constants for acetaminophen, trimethoprim, ketoprofen, indapamide, and uracil with 

immobilized β-cyclodextrin [310].  

Macrocyclic oligosaccharides such as aliphatic and aromatic cyclofructans (CFs) have also 

been utilized in chiral separations [281,314].  These compounds are classified based on the number 

of fructose units they contain in their structure, which examples being cyclofructan 6, cyclofructan 

7, and cyclofructan 8 [281,314].  These cyclofructans are either partially derivatized into an 

aromatic or aliphatic form and coupled to silica or they are first combined with silica support and 

then derivatized into one of these forms [281,314-318].  Click chemistry has also been used to 

prepare cyclofructan CSPs [319].  

Another type of carbohydrate-related agent that has been used in affinity separations is 

heparin.  Heparin is a glycosaminoglycan that is structurally related to heparan sulfate and is an 

important receptor for virus attachment in mammalian cells [320].  This property also means 

heparin can be used to bind to viral particles [320].  Based on this ability, heparin has been 

employed in affinity chromatography for the purification of porcine reproductive and respiratory 

syndrome viral particles, and human papillomavirus tyle 16 L1 protein from Saccharomyces 

cerevisiae, as well as the separation of HIV-1 gag viral like particles and extracellular vesicles 

[320-322]. 
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4.1.8  Lipids 

Lipids are another class of biological ligands that have been employed in affinity 

chromatography and related separation methods.  Phosphatidylcholine is a phospholipid that is 

extensively employed in applications that involve lipid supports, such as immobilized artificial 

membrane chromatography and immobilized liposome chromatography [3,11].  

Phosphatidylcholines are glycerophospholipids that contain a glycerol backbone, two fatty acids  

coupled together by ester linkages, and a choline head group [323,324].  Other lipids such as 

sphingomyelin and cholesterol have also been employed in immobilized artificial membranes and 

other supports that have been used in separations [3,11,325].  Sphingomyelins are based on 

ceramide and consists of a long-chain sphingoid base with an amide-linked acyl chain and a 

phosphorylcholine head group [323,324].  Cholesterols are sterols that are contain a four-ring 

hydrocarbon structure [323,324].  

Immobilized artificial membrane chromatography, or IAM, is one format in which lipids 

have been employed as affinity ligands to study membrane protein-substrate interaction and 

membrane-drug interactions [311,326].  The stationary phase in IAM is prepared by covalently 

immobilizing a monolayer of phospholipid analogs with functional head groups, which are 

attached to silica or a polymeric monolithic support.  This type of support creates a hydrophobic 

environment for the adsorption and immobilization of transmembrane proteins such as receptors, 

transporters, ion channels, and enzymes [326-336].  Solubilized cellular membrane fragments can 

be immobilized on IAM supports through entrapment or adsorption after dialysis [326-336].  For 

example, voltage-dependent anion channel isoform 1 (VDAC-1) has been immobilized on lecithin 

functionalized silica gel for the screening of anti-cancer compounds found in traditional Chinese 

medicine [330].  This receptor support was also used to study the interactions of VDAC-1 with 
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ligands such as NADH, ATP, and NADPH [330].  IAM has further been used to study the 

partitioning of drugs into lipid monolayers to predict drug absorption and cell permeability [337-

339].  

Immobilized liposome chromatography, or ILC, is a type of affinity chromatography in 

which lipid bilayers or proteoliposomes are immobilized on a support through non-covalent steric, 

electrostatic, hydrophobic, or covalent interactions [340-347].  The liposome membrane is 

composed of self-aggregates of a structured phospholipid with charged choline or phosphate 

groups, a carbonyl group, and a hydrophobic environment; the result is considered structurally 

similar to a cell membrane [121,348-350].  Proteoliposomes can act as biomimetic membranes to 

reconstitute membrane proteins [121,348-350].  For instance, a detergent-solubilized membrane 

protein, photosynthetic reaction center (RC) from Rhodobacter spaheroides, was functionalized 

with a biotinylated lipid and immobilized on streptavidin beads to study the interactions by RC to 

c-type cytochromes [350].  ILC has also been applied to study the interactions of drugs with 

membranes and to screen for membrane penetrable compounds [340-347].  As an example, 

liposomes immobilized in capillary columns containing silica monoliths have been utilized to 

separate acidic, basic, and neutral drugs [346].  Liposomes immobilized on silica microspheres 

have been employed for screening of bioactive compounds in some types of traditional Chinese 

medicine [340].  A support containing N-hexadecyl iminodiacetic acid was used to adsorb Cu2+ on 

liposomes for the purification of his-tagged proteins [351].  Lipid-metal ion interactions have also 

been studied using ILC [352,353], as has been demonstrated in the use of a zwitterionic lipid 

immobilized on non-porous Stöber silica particles to examine interactions of the lipid with group 

I and II metal ions [352].  
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Lipids can also be employed as biomimetic membranes in the form of lipodiscs, nanodiscs, 

and lipid rafts [130,321,322,351].  Lipodiscs are made up of a circular planar bilayer that is usually 

stabilized by lipids modified with polyethylene glycol head groups; these lipodiscs can then be 

covalently immobilized on diol silica [354].  The intra- and extra-cellular sides of the lipodiscs are 

exposed to the bulk solution; this means that when the lipodiscs are functionalized with membrane 

proteins, the active site of the membrane protein will be exposed to the surrounding environment 

[354].  In one recent report the integral membrane protein human aquaporin-1 was immobilized 

on lipodiscs and used in weak affinity chromatography for fragment screening of integral 

membrane proteins [354].  Nanodiscs are composed of self-assembled bilayers of phospholipids 

and a membrane scaffold protein (e.g., from human serum apolipoprotein A1) [130].  The 

nanodiscs have been immobilized on monoliths modified with streptavidin and by using a 

biotinylated membrane scaffold protein (adenosine A2A receptor) for the detection of G protein-

coupled receptor-bound weak affinity fragments [130].  Lipid rafts consist of microdomains that 

are enriched in dynamic assemblies of sphingolipids or cholesterol, as have been used on silica for 

the screening of anti-cancer agents in traditional Chinese medicine [324,325].  

 

4.1.9  Nucleic Acids 

Another set of biological binding agents that have been used in affinity chromatography 

are nucleic acids [355-364].   For instance, DNA is used as the affinity ligand in the method of 

DNA affinity chromatography to bind and isolate DNA-binding proteins [355-362].  Examples of 

proteins that bind DNA and that have been purified or isolated by this approach include helicases, 

restriction enzymes, polymerases, primases, topoisomerases, teleomerases, DNA repair proteins, 

histones, and transcription factors [355-359,363,364].  The binding agent that is used in this 

approach may be either a general preparation of fragmented nuclear DNA or a specific section of 
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DNA.  A general preparation would be used to separate bind DNA-binding proteins from sample 

components that are not able to bind DNA [355].  A specific section of DNA would be employed 

as the ligand in a situation where the goal is to bind a target that has a specific interaction with the 

selected DNA section or sequence [355,364]. 

Another group of ligands that are typically based on nucleic acids are aptamers [365].  

Aptamers are synthetic oligonucleotide sequences (i.e., DNA and RNA) that are tailored to bind 

to specific target molecules [365-367].  These targets may include proteins, nucleotides, viruses, 

or small molecules.  Aptamers are often generated through a selection process called as the 

systematic evolution of ligands by exponential enrichment (SELEX) [365-370].  SELEX is a 

technique that can be used to screen for and amplify (e.g., the polymerase chain reaction) a specific 

oligonucleotide sequence that has high affinity toward a desired target, beginning with an initial 

large library of potential binding agents [365].  

In affinity chromatography, an aptamer can serve as a stationary phase by immobilizing 

this agent onto a column and using this to interact with a particular target analyte [366,370].  Target 

recognition with this type of binding agent is based on the unique three-dimensional structure of 

the aptamer, which can form pockets and interaction regions with relatively high affinities and 

good specificities [368,369,371].  These advantages, along with the ability to generate aptamers 

by synthetic means and through combinatorial methods, have made this group of affinity ligands 

attractive in recent studies as alternatives to antibodies [372-375].  

Aptamers has been used as binding agents in columns to bind both small and large targets 

[376-386].  Small molecules like mycotoxins and aflatoxin have been purified and enriched by 

aptamer affinity chromatography [379,381-383,386].  Columns containing aptamers have also 

been used to isolate recombinant proteins and therapeutic monoclonal antibodies [377,379,384].  
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Monolith columns containing aptamers have been described [376,378,383,386], and aptamers 

have been combined with multi-walled carbon nanotubes and gold nanoparticles for protein 

purification [376,380]. 

 

4.2  Non-biological Agents as Affinity Ligands 

A variety of non-biological binding agents are also often considered to be stationary phases 

that fall within the field of affinity chromatography (see Table 3).  Examples of these binding 

agents are boronates, dye-ligands, immobilized metal ion chelates, and molecularly imprinted 

polymers [1,3].  This section will examine the basis behind the use of each of these binding agents 

as affinity ligands and recent developments that have occurred with these stationary phases. 

 

4.2.1 Boronates and Related Mixed Ligands 

Boronates have emerged as a useful and reliable set of affinity ligands for the selective 

recognition, separation, and enrichment of glycoproteins, nucleosides, catecholamines, and other 

cis-diol containing compounds [387-390].  Targets that contain cis-diol groups are often important 

in fields such as glycomics, cancer-cell targeting, and disease diagnostics [391-398].  The principle 

of boronate affinity chromatography (BAC) is based on the covalent formation of a cyclic ester 

when boronic acid or one of its derivatives reacts with a cis-diol-containing molecule.  This 

reaction usually takes place when the pH of the reaction environment is greater or equal to the pKa 

of the boronate that is used as the binding agent.  This cyclic ester dissociates when the pH of the 

environment is below the pKa of the binding agent, which allows for elution and release of the 

captured target [387-390].  

Some common boronates that are used as ligands in BAC are 3-aminophenylboronic acid 

and 4-vinylphenylboronic acid, which have pKa values of 8.8 and 8.2, respectively [389,390].  
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However, use of these boronate ligands is hampered in terms of weak binding properties they have 

at the typically more neutral pH of biological samples [389,390,399-402].  This has given rise to 

the synthesis and use of new boronates with lower pKa values, such as Wulff-type boronic acids, 

benzoboroxoles, phenylboronic acids with electron-withdrawing groups (e.g., sulfonyl, fluoro, or 

carbonyl groups) on the phenyl ring, and heterocyclic boronic acids [90,390,403-417].  These 

boronic acid ligands have been shown to have enhanced binding at neutral or acidic pH values 

than conventional boronates, leading to improved binding strength and extraction efficiency 

[390,403,418-420]. 

Boronate ligands and BAC have been used in many recent applications [402].  Examples 

are the use of boronates and BAC for the enrichment, selective separation, and analysis of 

nucleosides, flavone, glycoproteins, glycopeptides, carbohydrates, and other cis-diol containing 

compounds.  These applications have been carried out with such samples as urine, serum, and 

other biological samples that could be processed under acidic or neutral pH conditions [402,404-

407,410,415-418,421-431].  

Mixed affinity ligands based on boronates plus other binding agents have also been used 

for the separation of biomolecules in affinity chromatography.  One example is the combination 

of a boronic acid and lectin to give a method known as boronic acid-lectin affinity chromatography, 

which is also referred to as BLAC or BAD-lectin affinity chromatography [432–435].  This 

combination overcomes the difficulty of using boronic acids to differentiate different glycoforms, 

as can be achieved by adding a lectin to the same stationary phase [432,435].  Although the number 

of lectins that have been used in this approach is still limited, these binding agents have been used 

with boronates to purify, with high specificity, some classes of glycans with cis-diol groups with 

high specificity [435,436].  The stationary phase in this method is often prepared by mixing a 
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support that contains an immobilized lectin with another support that contains a boronate 

[433,435].  BLAC is usually used for comparative glycosylation profiling.  For example, a BLAC 

column was used to isolate and enrich N-linked glycans labeled with 8-aminopyrene-1,3,6-

trisulfonic acid (APTS) from prostate cancer patients [433] and N-linked glycopeptides from HeLa 

cells [435]. 

 

4.2.2 Dye-ligands 

A dye-ligand is another type of synthetic binding agent that has been used in affinity 

chromatography [365,437,438].  This combination is sometimes called dye-ligand affinity 

chromatography, which is a type of biomimetic affinity chromatography [365].  A common 

example of a dye-ligand is Cibacron Blue 3GA.  Other examples are Procion Red HE-3B and 

Procion Yellow H-A [365,437].  Dye ligands typically consist of two parts: a portion that binds to 

the given target and a reactive group for covalent attachment of the dye to a support [365,437,438].   

The earliest application of a dye-ligand for affinity chromatography was the use of Blue 

Dextran for enzyme purification [439].  Dye-ligands are now commonly used in columns for 

protein and enzyme purifications due to the binding ability of such ligands to interaction with a 

variety of proteins and the ability to modify the structure of the dye-ligand to alter its specificity 

[437,438,440,441].  The modification of a dye-ligand and the design of a derivatives for a given 

target can be aided by using computational chemistry [440].  Recent reported applications of dye-

ligands as binding agents in affinity chromatography have involved the use of these agents for 

purification of fucosidan, lactoferrin, and lactoperoxidase from food by-products and biological 

matrices [442-445]. 
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4.2.3 Immobilized Metal-ion Chelates 

Metal ions held in the form of immobilized chelates are another type of non-biological 

binding agent that has been employed in affinity chromatography [3,446].  This method is known 

as immobilized metal-ion affinity chromatography (IMAC) [3,446].  IMAC is based on the 

interaction between chelated metal ions and residues on some amino acids (e.g., cysteine, histidine, 

and tryptophan) that can act as electron donators [446-448].  In IMAC, a chelating agent is 

immobilized onto a material such as silica, cellulose, agarose, or a cryogel and used to hold metal 

ions through coordination bonds [446-451].   

Selection of the proper chelating ligand and metal ions can affect the stability of this metal-

chelating agent complex and the resulting retention of targets that bind to this support.  

Iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), carboxymethylated aspartic acid (CM-Asp), 

diethylene triamine pentaacetate (DTPA), and tris(carboxymethyl) ethylene-diamine (TED) are 

some examples of chelating ligands that have been used in IMAC [446-448,450].   Metal ions like 

Ni2+, Cu2+, and Zn2+ are typically used to bind targets that contain nitrogen, oxygen or sulfur atoms 

that are accessible.  On the other hand, metal ions such as Cu+, Ag+, Pd2+, Cd2+, and Hg2+ can be 

used to bind targets that contain sulfur [447,449,450,452].  

IMAC has been employed in the selection of DNA aptamers and in protein purification for 

targets such as Fab fragments, monoclonal antibodies, and phosphopeptides [451,453-465].  In 

proteomics, IMAC has taken on an important role in the enrichment and extraction of 

phosphopeptides from samples [454-458].  Some recent platforms that have been reported include 

the use of IMAC with magnetic microspheres, O-carboxymethyl chitosan Schiff base complexes, 

and capillary-channeled polymer fibers [458,463-465].  Hybrid methods that combine IMAC and 
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capillary electrophoresis (CE) or that use multi-dimensional IMAC to purify analytes from a 

complex sample have also been described [459,466]. 

 

4.2.4 Molecularly Imprinted Polymers 

Molecular imprinting is an alternative strategy for preparing supports and stationary phases 

for affinity chromatography [467-469].  This technique makes use of a support that has binding 

pockets prepared within it for binding recognition with the desired target [469].  A support that is 

prepared in this way is often known as a molecularly imprinted polymer (MIP) [467].  An MIP is 

often made by either a covalent or noncovalent technique.  In the noncovalent imprinting approach, 

the target analyte or template is mixed with a functional monomer and cross-linking agent.  After 

this mixture is allowed to polymerize, the template or target is washed away, leaving behind 

binding pockets that have the correct shape and arrangement of functional units to bind to the 

desired target [467-469].  In covalent imprinting, the target molecule is covalently coupled to a 

functional monomer that is combined with the rest of the polymerization mixture. After 

polymerization, the target is cleaved away by a chemical means, leaving being a cavity that can 

bind the target molecule [467,469,470].  Ionic imprinting can also be utilized, in which metal ions 

act to enhance binding by the target analyte and functional monomer in an aqueous solution 

[467,469,470].  

Molecular imprinting has been used in many reports to make supports for chiral 

separations; however, it has also been widely used in solid-phase extraction and some 

chromatographic techniques [467-479].  For example, a MIP support has been used for solid-phase 

extraction and coupled with ligand exchange chromatography to screen for chiral drugs in urine 

[475].  MIPs have also been employed in many studies for the binding and isolation of low-mass 
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targets and have developed for the use with larger molecules such as proteins in applications such 

as diagnostics, drug delivery, environmental analysis, and proteomics [467-482].   

 

5  Applications of Affinity Chromatography 

The applications of affinity chromatography have grown over the course of the last decade 

[3].  These applications have included the utilization of this method for the isolation of various 

chemicals and biochemicals, as well as the use of affinity chromatography for sample pretreatment 

or analysis [1-8].  There has also been continued work in using affinity-based separations as tools 

to study biochemical interactions [1,3].  As shown in Figure 3, fields in which one or more of these 

formats have been employed include biochemistry and biochemical research, molecular biology, 

biotechnology, microbiology, cell biology, immunology, analytical chemistry, pharmacology or 

pharmaceutical sciences, and biophysics [1-8].  Other areas of chemistry and related fields in which 

affinity chromatography has been used are clinical chemistry, environmental chemistry, and food 

science [1,3].  This section will examine the recent developments that have taken place in 

applications of affinity chromatography and the use of this method in these various areas.   

 

5.1 Preparative Applications 

One of the most popular uses of this technique has continued to be in the purification of 

biological ligands.  A variety of binding agents can be used for this purpose.  Examples are 

immunoglobulin-binding proteins, antibodies, and antigens, as discussed earlier in Section 4.1 

[221-229].   

 

5.1.1 Enzyme and Protein Purification 

The separation and purification of enzymes have long been an important application of 

affinity chromatography [3,438,439].  Examples based on triazine dyes as affinity ligands are the 
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use of Cibacron Blue F3GA to isolate microbial cellulase from rumen liquor [483], microbial 

xylanase from rumen liquor [484], and proteases from pancreatic and stomach extracts of fish by-

products [485].  Hemicyanine dye has been used in a similar manner to isolate peroxidase from a 

chewing stick [486], and aminosquarylium cyanine dye has been employed for the purification of 

lysozyme, α-chymotrypsin, and trypsin [487].  Azo dyes such as Reactive Orange 4 were utilized 

for the purification of malate dehydrogenase from a yeast cell homogenate [42].  

IMAC can also be employed for the separation of enzymes.  This method is based on the 

interactions between a metal ion conjugate such as Cu2+- or Zn2+-iminodiacetic acid that is placed 

onto a chromatographic support and used to bind to histidine or cysteine residues [488-490].  In 

recent work, a support containing Cu2+ complexed with iminodiacetic acid was employed for the 

isolation of metalloprotease from a marine bacterium and for the isolation of his-tagged chitinase 

[488,489].  In a similar manner, Zn2+-iminodiacetic acid has been utilized in an affinity method 

for the capture of camel liver catalase [490].   

Coenzymes and enzyme inhibitors are additional affinity ligands that have utilized for the 

purification of enzymes [25,181,491-494].  4-Aminobenzohydrazide and its derivatives have been 

used as enzyme inhibitors for the purification of plant peroxidase enzymes from red cabbage and 

radishes [492,493].  In addition, the enzyme inhibitor β-lactosylamidine has been utilized for the 

purification of a cellulolytic β-glucosidase mixture of endo-acting endo-β-(1→4)-glucanase I and 

exo-acting cellobiohydrolase I from Hypocrea jecorina [491].  Sulfanilamide has been recently 

used as an inhibitor-based binding agent for lactoperoxidase in milk [181].  Riboflavin, a 

coenzyme which is flavin adenine dinucleotide (FAD)-dependent, was immobilized on Sepharose 

beads and used to isolate cholesterol oxidase, a FAD-dependent enzyme expressed in E. coli [494]. 
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Affinity chromatography is also an important tool for the purification of other types of 

biomolecules [1,2,4-8].  This includes the utilization of affinity chromatography for the small- and 

large-scale purification of native proteins and recombinant proteins.  Dye-ligand affinity 

chromatography are related methods are often used for this purpose [1,2,4-

8,365,438,440,495,496].  Smaller scale applications of affinity methods for purification include 

the use of IMAC and Ni2+ chelate columns for the isolation of his-tagged proteins and the capture 

of antibodies or specific antigens by immunoaffinity columns 

[207,208,210,220,446,448,497,498]. 

 

5.1.2 Purification of Viral Particles, Cells, and Related Targets 

Affinity ligands attached to polysaccharide supports such as agarose or cellulose have been 

employed for the purification of viral particles and related agents [320].  Heparin is one ligand that 

has been covalently immobilized on agarose beads for the purification of whole viruses and virus-

like particles [320-322].   Con A  and camelid antibody fragments  have both been used as binding 

agents for the purification of recombinant virus vectors in gene and cellular therapy [499,500].  

Affinity chromatography utilizing Cellufine sulfate as a binding agent has been used for the 

isolation of Japanese encephalitis virus derived from Vero cells, as well as for purification of the 

whole virus produced in Vero cell cultures for development of a yellow fever vaccine [501-505].  

The interactions between metal ion chelates and amino acid residues in IMAC has been 

used in several reports for applications related to viruses and viral proteins.  This approach has 

been employed for the purification of his-tagged nucleocapsid and matrix proteins of the Nipah 

virus [506,507].  This method has also been used to isolate his-tagged recombinant viral vectors 

that are related to gene therapy [508] and the virus responsible for foot-and-mouth disease virus 

for use in vaccine formulation [509].   IMAC has further been used to purify the Hepatitis B viral 
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protein HBcAg from E. coli cell lysates [510,511].  Cu2+-based IMAC has been employed for the 

inactivation of viruses during the manufacturing process of plasma coagulation factors such as 

plasma derived coagulation factor VIII and coagulation factor IX (Replenine-VF) [512,513]. 

Antibody binding proteins and antibodies attached to agarose-based supports have been 

both used to examine viral clearance [320,514-517].  For example, native protein A [516] and 

alkali-stabilized recombinant protein A [515] have been employed for clearance studies involving 

endogenous retroviral particles that are present in antibody feedstock.  Monoclonal antibodies to 

recombinant coagulation factor VIII have been used for the purification of antihemophilic factor 

VIII compounds [513,518-520].  The latter approach has also been used in a mixed-mode resin to 

extract and purify a recombinant factor VIII with a truncated B-domain [521].   

 Cell affinity chromatography is a recent form of bioaffinity chromatogrpahy that has been 

used to isolate and separate certain cells with high purity [22,522,523].  Cell separations in this 

technique are carried out based on the interaction between binding agents such as lectins or 

monoclonal antibodies with cell surface markers such as glycoproteins and receptors [522-524].  

Some supports that have been used in cell affinity chromatography are magnetite and several forms 

of monoliths [524-527].  The separations of cell subsets with a high purity and on a small scale 

has been accomplished by combining with a microfluidic device with the use of aptamers as 

binding agents [528-532].  Cell affinity chromatography has also been recently employed for 

counting cancer cells in samples, examining microbial interactions with specific glycans, and 

following the viral infection of cells [525,530-533].  

 

5.2 Analytical Applications 

Many of the same binding agents have made affinity chromatography a useful tool in 

analytical applications employed for sample pretreatment and preparation [3,11,219,534-536].  
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Most of these applications employ the on/off elution mode of affinity chromatography, as shown 

earlier in Figure 1, due to the relatively simplicity and speed of this approach [3,5,219].  However, 

isocratic elution is also used when the interactions involved have weak or moderate binding 

strengths, as occurs in weak affinity chromatography.  This second situation is commonly used in 

the use of affinity chromatography in chiral separations, as discussed in the next section.   

One way in which affinity chromatography is often used for chemical analysis is as a tool 

for sample pretreatment [1,3,219,534-536].  For example, MIPs have been employed in solid-

phase extraction as a means of sample preparation for the analysis of various target compounds 

[211,473,475].   Columns and support that contain antibodies have been used in many reports for 

the immunoextraction of a specific target from a mixture prior to the use of a second analytical 

method such as HPLC, gas chromatography (GC), mass spectrometry, or CE [208,210,219].  These 

techniques, which are a type of immunoaffinity chromatography, have been used for examining 

targets in a variety of clinical, pharmaceutical, and environmental samples [210,219,537].  A 

related application of affinity chromatography is immunodepletion, in which a set of specific 

agents are removed from a sample prior to the analysis of other sample components [46].  

Immunodepletion has been used in a recent studies as a means for removing proteins that occur at 

a high abundance prior to analysis of lower abundance proteins [46,537-539].  

It is also possible to use affinity chromatography to directly measure a particular target in 

a sample [3,219].  This is often done by using affinity chromatography as part of an HPLC systems, 

and often in the form of HPAC.  Binding agents have been used for this purpose are 

antibodies/antigens, immunoglobulin binding proteins (e.g., protein A or protein G), immobilized 

metal-ion chelates (i.e., IMAC), boronates, and lectins [534-536].  Direct detection of the captured 

and eluted target can be carried out in these methods if this target is present at a sufficient 
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concentration to allow it to be monitored by its absorbance or fluorescence, by using mass 

spectrometry, or by employing a post column reactor for detection [208,219].  Affinity columns 

have further been employed in multi-dimensional methods by combining them with reversed-

phase liquid chromatography, CE, or GC [219]. 

Targets that are present at low concentrations can be detected by using affinity 

chromatography with indirect detection.  This strategy approach is often employed when affinity 

columns are used with antibodies or related binding agents to create a chromatographic 

immunoassay [208,210,219].  For example, a target analyte may be required to compete with a 

labeled analog for binding sites on an immunoaffinity column that contains a limited amount of 

immobilized antibodies for the target and analog.  This creates a situation in which the amount of 

labeled analog that is captured will be affected by the amount of target that was present in the 

sample, thus providing a means for indirectly determining the sample concentration for the target 

[208,210,219].  Many formats have been described for chromatographic immunoassays.  These 

formats  include traditional competitive based methods, as well as displacement assays, sandwich 

assays and one-site immunometric assays [210,217,219,540-544]. 

 

5.3 Chiral Separations 

Chiral separations are another important application of affinity chromatography 

[3,11,220,280-284].  Polysaccharides such as amylose and cellulose have been used as CSPs to 

carry out enantioseparation of various chiral drugs and solutes [3,112,280,282,283,285,286].  

Examples that have used amylose-based CSPs have included the chiral separation of 

chemopreventive chiral isothiocyanates, pesticides, β-amino acid derivatives, lysine derivatives, 

coumarin derivatives, butyrolactones, and fungicides [545-551].  Other applications have included 

sulfoxide-containing drugs, anti-histamines, simendan, piperine-2,6-diones, local anesthetics, 
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calcium channel blockers, clausenamidone/neuclausenamidone, anti-cholinergic drugs, and 

various profens [547,552-558].  Additional examples have used cellulose-based CSPs in HPLC 

for the separation of sulfoxides, alkaloid analogs,  β-blockers, local anesthetics, β-amino acid 

derivatives, anti-fungal drugs, and psychoactive drugs [548,555,559-564].  

Various chitin and chitosan derivatives have been used as CSPs [281,282,288-295].  These 

stationary phases have been used for the chiral recognition of solutes such as benzoin, triazole 

fungicides, Troger’s base, and methylphenyl sulfoxide [288,289,291-294].  This class of CSPs has 

further been employed in enantioselective separations of voriconazole, glutethimide, citalopram 

hydrobromide, 1-phenyl ethane-1,2-diol, and flavanone [288,289,291-293].   

As discussed in Section 4.1.7, derivatives of β-cyclodextrin have often been exploited in 

affinity chromatography and HPLC systems to carry out chiral separations 

[11,112,282,283,296,297].  Cationic β-cyclodextrin CSPs prepared by click chemistry have 

recently gained popularity for the chiral selection of analytes such as β-blockers, racemic β-nitro 

ethanol derivatives, profens, amino acid derivatives, flavonoids, aromatic alcohols, acidic drugs, 

benzene homologues, and isoxazolines [298-302].  A hybrid support prepared by coupling β-

cyclodextrin with piperidine, L-proline, and an ionic liquid with 3,5-diamino-1,2,4-triazole has 

been used to separate pyrrolidine and several chiral drugs [304].  Another hybrid support made by 

hybridizing β-cyclodextrin with ethane, triazinyl, and 3,5-dimethyl phenyl functional groups has 

been applied for enantioselective separation of anilines, phenols, aromatic hydrocarbons, phenols, 

and acidic compounds [305].   

Several variations on cyclodextrin-based CSPs and related stationary phases have been 

described in recent reports.  β-Cyclodextrin immobilized on monolithic supports has been 

employed for separation of β-blockers, α-blockers, anti-fungal drugs, catecholamine, sedative 
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hypnotics, anti-arrhythmic drugs, and antihistamines [303].  β-Cyclodextrin CSPs prepared by 

light assistance have been utilized for separating promethazine, benzoin, and chlortrimeton [306].  

Bridged bis (β-cyclodextrin)-based CSPs have been used for the separation of chiral drugs, 

pesticides, and triazole fungicides [307,308]. A mixed-mode stationary phase based on β-

cyclodextrin has been utilized for the enantioseparation of warfarin, styrene oxide, and 1-phenyl-

1-propanol using reversed-phase elution conditions, while profens such as ibuprofen and 

ketoprofen were separated by this material by employing a polar organic elution mode [309].  

Aromatic derivatives of the macrocyclic oligosaccharide cyclofructan has been utilized for the 

chiral recognition of analytes such as warfarin, furoin, Troger’s base, 2-napthol atropisomers, and 

novel spirobassinin analogs [315-318].  A cyclofructan 6 CSP prepared by click chemistry has 

been employed for the chiral selection of amine and alcohol derivatives [319]. 

Proteins such as serum proteins and enzymes have also been employed as CSPs 

[3,11,112,283].  Serum proteins such as HSA [68,565,566] and AGP [567-570] have been 

immobilized on silica particles or monoliths to study the interactions of these serum proteins with 

chiral solutes.  For instance, AGP from chicken egg whites was covalently immobilized on 

aminopropyl silica for the chiral recognition of benzoin, ibuprofen, chlorpheniramine, propranolol 

and oxprenolol [570].  An affinity support that contained HSA covalently immobilized to silica 

and modified with the cross-linking agent bis-maleimidohexane was prepared and examined for 

its chiral  selection of drugs such as warfarin, verapamil, and carbamazepine [566].  A related 

serum protein, BSA, has been used as in a mixed-binary CSP that was prepared by grafting BSA 

and the antibiotic eremomycin for chiral separation of various profens [571].   

The ability of enzymes such as penicillin G acylase, glucoamylase, and cellulase  to act as 

CSPs  was discussed in Section 4.1.4 [243-247].  Recently, lysozyme was covalently immobilized 
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to mesoporous polyimide achiral covalent organic frameworks for the chiral separation of various 

amino acids and drugs, such as threonine, leucine, tryptophan, ofloxacin, metoprolol, and 

chlorpheniramine [572].  Pepsin has been covalently immobilized within silica monoliths and used 

to carry out a chiral separation for the analgesic nefopam [573]. 

As mentioned in Section 4.2.4, MIPs are another type of material that have frequently been 

explored for use as CSPs [283,574].  Various polymerization techniques have been applied for the 

preparation of MIP-based CSPs.  Examples of these techniques are imprinting in performed beads, 

precipitation polymerization, suspension polymerization, multi-step swelling and polymerization, 

and surface imprinting [575-582].  Supports with which MIPs have been combined for chiral 

separations include from organic polymer-based particles, monoliths, membranes, and alignate 

monospheres [583-590].  For example, a MIP-based CSP using monodisperse hybrid silica 

microspheres was prepared with L-phenylamine as the template, methacrylic acid and acryloyl-β-

cyclodextrin as the functional monomers, and ethylene glycol dimethacrylate as the cross-linker; 

this support was then used to separate a racemic mixture of phenylalanine [583].  Another MIP 

based on a monolithic column and using 4-vinylpyridine as the functional monomer, ketoprofen 

as the template, and ethylene glycol dimethacrylate as the cross-linking agent, was used for the 

chiral separation of ketoprofen [587].  

 

5.4 Biointeraction Studies 

Affinity chromatography can also be employed as a tool for biophysical applications such 

as in solute-ligand interactions.  In this technique, useful information on equilibrium and rate 

constants, and number and types of affinity sites can be obtained [11,13,14,16].  Advantages of 

using this approach in such a way, especially when carried out on an HPLC system, are the speed, 

precision, and ease of automation that can be obtained [14].  Methods that have been used for this 
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purpose, as discussed in this section, are zonal elution, frontal analysis, and various techniques for 

kinetic studies [13,14,16]. 

5.4.1 Zonal Elution Methods 

Zonal elution is an approach that has frequently been used in affinity chromatography to 

characterize the strength of solute-ligand interactions [3,11,46].  In this approach, a small volume 

of an analyte or probe compound is introduced into an affinity column that contains an 

immobilized ligand [11,46].  The mobile phase used for the elution of the analyte or probe often 

contains a possible competing agent that is present at known concentration; the pH, ionic strength, 

polarity or temperature of the mobile phase may also be altered, as desired [11,46,591,592].  Based 

on the retention time that is observed for the injected compound and the void volume of the 

column, the binding strength and type of interactions that are present on the affinity ligand for the 

injected analyte/probe and competing agent can be determined [3,11,46,591,592].   

Besides being used to examine interactions of solutes with native serum proteins, zonal 

elution has been utilized in recent reports to study the interactions of drugs with modified forms 

of proteins such as HSA and AGP [13,162,163,592-597].  Zonal elution has also been employed 

with affinity columns for characterizing the interactions of Con A and AAL with AGP [48], the 

binding of protein G with rabbit IgG [137], and the binding of drugs such as acetaminophen and 

ketoprofen with β-cyclodextrin [310-313].  This method has also been used to investigate the 

interactions of drugs or bioactive compounds with epidermal growth factor receptor, β2-

adrenoceptor, and α1A-adrenoceptor in cell membrane chromatography [138,598-601].   

Various types of information that can be obtained from zonal elution experiments 

[11,46,591,592].  This information can include the equilibrium constant(s) for an interaction, the 

location of a given binding site (i.e., through the of site-selective probes), and the type of 
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competition that is occurring between a given set of solutes for the binding agent.  The effect of 

pH, solvent composition, and temperature on the binding strength and type of interaction that is 

present can also be examined by this approach [11,46,591,592].  For example, zonal elution has 

been employed with affinity microcolumns to study the effects of glycation on the binding 

interactions of the sulfonylurea drug tolazamide with HSA [134].  In another study, a zonal elution 

format was used with an anti-AGP column and adsorbed samples of AGP to look at the changes 

in binding by various drugs with purified or normal AGP and AGP from patients with lupus [593]. 

Zonal elution was also used in a recent report to examine the competition between folic acid and 

5-aminosalicylate for HSA [602]. 

 

5.4.2  Frontal Analysis Methods 

Frontal analysis is another affinity chromatography technique that is employed to study 

solute-ligand interactions [3,11,46,260,592].  The most common way of carrying out frontal 

analysis is by using a series of analyte solutions that are applied separately to a column, and with 

washing steps with buffer being applied each solution [3,11,46,592].  In this format, the column is 

first equilibrated with the application buffer, with a known concentration of the target then being 

passed through the affinity column until a breakthrough curve is formed.  The retained target is 

next washed from the column and this process is repeated using another application of the target 

at the same or different concentration [3,11,46,592].  If relatively fast association and dissociation 

is occurring between the target and affinity ligand during the time scale of this experiment, the 

central position of the breakthrough curves can be related to the corresponding concentrations of 

the applied target to produce a binding isotherm.  This isotherm is then fit to one or more binding 

models to obtain the equilibrium constants and moles of binding sites that the immobilized binding 

agent and column have for the target [3,11,46,592].   
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A relatively wide range of targets and binding agents have been examined in recent reports 

by affinity chromatography and the traditional form of frontal analysis [603-624].  Many of these 

studies have involved the analysis of binding by drugs or solutes with serum proteins such as HSA 

and AGP [3,15,162,163,592,593,596,602,603].  This approach has been for studying the 

interactions of drugs with membrane protein and nuclear receptors, including voltage dependent 

anion channel 1, G-protein coupled  receptors such as GPR17, nicotinic acetylcholine receptors, 

P-glycoproteins, β2-adrenergic receptors, dopamine receptors, and angiotensin converting enzyme 

2 receptors  [330-332,334-336,604-610].  Antibody-antigen binding [616,617] and fucose specific 

lectin-fucosylated glycan interactions [618] have been examined by frontal analysis using affinity 

columns.  Additional systems that have been characterized by affinity chromatography and frontal 

analysis span from the binding of boronates with cis-diol compounds [611,612] to the binding of 

thrombin with phenolic acids [613] and the interactions of β2-agonists with MIPs [614].  Frontal 

analysis has also been used to determine the complexation stability constant and total moles of 

binding sites for  Cu2+ ions with regards to L-glutamic acid [615].  

Another format that has been explored for frontal analysis is the stepwise application of 

target solutions to an affinity column [260,619-621].  In this technique, the column is again first 

equilibrated with the application buffer with no target present.  This is followed by the continuous 

application of the target in solutions going from a from low to high concentration, producing a 

continuous breakthrough curve where a plateau is for each concentration and step in this process 

[260,619-621].  Because this process is continuous and does not require washing steps in between 

the applied solutions of the target, it can require less of the target than traditional frontal analysis.  

This last feature has made this method attractive for use in cell membrane chromatography 

[619,620].  For example, stepwise frontal analysis has been employed to obtain a dissociation 
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equilibrium constant for the interaction of α1A adrenergic receptor with natural products and drugs 

such as dehydroevodiamine, tamsulosin, silodosin, oxymetazoline, and schizandrin A 

[601,619,620]. 

Frontal affinity chromatography coupled to mass spectrometry (FAC-MS) has become an 

important tool for the high throughput screening of drug candidates against immobilized 

membrane receptor protein targets [331,607,622-624].  In this technique, the breakthrough curve 

for an applied target is followed by MS as the target interacts with an immobilized binding agent 

[331,607,622-624].  There are two modes in which FAC-MS may be employed: the indicator mode 

and Q1 scan mode [331,607,622-624].  The indicator mode is based on how the presence of a 

competitor in the mobile phase causes a shift in the binding of an applied target with the 

immobilized binding agent [607].  For instance, FAC-MS has been used with adsorption energy 

distribution calculations to study the adsorption of salbutamol on β2-adrenogenric receptor that 

was immobilized on polystyrene amino microspheres [607].  The shift seen in this breakthrough 

curve for salbutamol was then examined in the presence of mobile phases that contained competing 

agents such as paeoniflorin, liquiritin, and a mixture of six compounds to see if FAC-MS could be 

employed for screening of site-specific bioactive chemicals in a complex matrix [607].  The second 

mode in which FAC-MS can be used is the Q1 mode.  In this mode, multiple targets are screened 

simultaneously against a given binding agent and are ranked based on their affinity for this binding 

agent when it is used as a stationary phase [331,624].  This mode has been employed for the 

screening of ligands against human estrogen receptor β and a G-protein coupled receptor 

[331,624].  
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5.4.3 Methods for Kinetic Studies 

Affinity chromatography has been used to study the kinetics of various solute-ligand 

interactions [16,625-627].  The most common format for this work is to examine the retention or 

peak shape that is obtained for a target that applied or injected onto an affinity column that contains 

an immobilized form of the desired binding agent [16,625-627].  Examples of techniques for 

kinetic studies that make use of this general format include those that use band broadening 

measurements (e.g., the plate height and peak profiling methods) [202,310,311,313,628-632], peak 

decay analysis [137,633-635], the split-peak effect [636-638], and peak fitting [598,632,639-641].   

Plate height method and related technique of peak profiling for kinetic analysis both make 

use of band broadening measurements [202,310,311,313,628-632].  These methods are based on 

application of a small volume of a target under linear elution conditions onto an affinity column 

and control column at one or several flow rates; the degree of band-broadening is then compared 

on these two types of column to obtain the contribution due to stationary phase mass transfer.  This 

value, in turn, can be used with the known flow rate and measured retention factor for the target 

on the affinity column to determine the dissociation rate constant for this interaction process 

[628,629].  Peak profiling has been utilized to examine the interactions of various drugs with the 

serum proteins  AGP and HSA [262,630,631] and with β-cyclodextrin [310,311,313].  This method 

has further been used to examine the interactions of membrane receptors with drugs and bioactive 

compounds [242,632].  

Peak decay is another method that can be employed for kinetic analysis in affinity 

chromatography [137,633-635,641].  This method involves the application of a target solute onto 

both an affinity column and control column in presence of high flow rates and/or mobile phase 

conditions that prevent rebinding of the target as it dissociated for an immobilized binding agent.  
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This method can be performed in both competitive and non-competitive formats, depending on 

whether a competing agent is added to the mobile phase to promote target release and to avoid 

rebinding to the affinity column [137,633-635,641].  Peak decay has been employed with affinity 

chromatography for the analysis of various systems.  Examples include studies of drug dissociation 

from serum proteins such as HSA and AGP [633-635], work examining antibody-antigen 

interactions [137], and studies of the interactions of β2-adrenergic receptor with a number of drugs 

[641].   

Another kinetic technique that employs an immobilized binding agent is the split-peak 

method.  The split-peak method makes use of conditions in which a target binds irreversibly to the 

affinity ligand but, due to the short time allowed for this binding, a small fraction of the target also 

passes through the column as a non-retained peak [636-638].  The relative amount of target that is 

in the free vs retained fractions at various flow rates can be used to obtain information on the 

association rate constant for the target with the immobilized binding agent, or on the rate of 

stagnant mobile phase mass transfer in the column [633-635,641].  This technique has been used 

to study antibody-antigen interactions and the binding of protein A and protein G with 

immunoglobulins [636-638].   

The peak fitting method is performed by injecting various concentrations of a target onto 

an affinity column and looking at the retention and shape of the resulting peak as the sample 

concentration is varied [598,632,639-641].  By fitting these peaks to various models, it is possible 

to obtain the rate constants for interactions by the target with the affinity ligands.  Peak fitting has 

been used in both zonal elution and frontal analysis formats for studying the interactions of drugs 

with immobilized receptors such as β2-adrenergic receptor and nicotinic acetylcholine receptor   

[598,632,639-642].  
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An alternative format for kinetic studies is to apply a small target in the presence of a 

soluble binding agent onto an affinity column which contains an immobilized binding agent for 

the target.  This immobilized binding agent may be the same as the soluble binding agent, or a 

different ligand, and acts as a secondary probe to extract the unbound fraction of the solute from 

the sample [16,139-142,625-627,643].  This technique is known as ultrafast affinity extraction.  

This method makes use of a short time for extraction of the target by employing medium-to-high 

flow rates and small affinity columns.  This approach has been used to provide information on 

both the thermodynamics and kinetics of the interactions between a number of drugs or hormones 

and serum transport proteins such as HSA, AGP, and sex-hormone binding globulin [139-

142,643].  Both single-column systems and two-column systems have recently been described for 

ultrafast affinity extraction, with the single-column system being used for kinetic studies [139-

141]. 

  

6 Conclusions 

Affinity chromatography and related techniques based on supramolecular interactions have 

continued to expand and adapt as a tool for achieving selective separations and in examining the 

components of complex samples.  A few examples that were discussed in this review included 

improvements in natural, inorganic, and synthetic supports for affinity chromatography; the use of 

magnetic particles, smart materials, and nanomaterials as new supports for affinity methods; and 

the continued development of support formats based on capillaries, packed beds, monoliths, and 

microscale separation formats.  In addition, advances and new approaches have appeared in the 

development of new synthetic methods and tools, for covalent immobilization, biospecific 

adsorption, and non-covalent immobilization in affinity chromatography.  
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The variety of biological and non-biological binding agents that may be employed as 

stationary phases in affinity separations has also shown continued growth and development.  

Biological agents that are now often employed in affinity separations range from enzymes, 

antibodies, immunoglobulin-binding proteins, serum proteins, and lectins to biotin combined with 

avidin or streptavidin, carbohydrates, lipids, and nucleic acid-based ligands, including aptamers.  

Advances and on-going work have appeared as well in the use of non-biological ligands, such as 

methods that employ boronates, mixed ligands, dye-ligands, immobilized metal-ion chelates, or 

MIPs. 

These advances in the components of affinity chromatography have been associated with 

improved or expanded capabilities that allow this method to be used for a broad set of applications.  

Affinity chromatography has remained an important separation method for the purification of 

enzymes, native proteins, and recombinant proteins.  However, this method has also grown as an 

approach that can be used to purify and characterize viral particles, cells, and related targets.  Many 

analytical applications have continued to appear as well, such as the use of affinity separations for 

sample pretreatment, the removal of specific solutes from a sample (i.e., as part of 

immunoextraction or immunodepletion), and for the direct or indirect measurement of a particular 

target in a complex matrix (e.g., by means of chromatographic immunoassays).  A related use of 

affinity chromatography for chemical purification or analysis has been in the field of chiral 

separations.  Finally, affinity-related separations have seen further advances in approaches by 

which they can be used to study biological interactions by means such as zonal elution, frontal 

analysis, or various formats that can be employed for kinetic studies.  Overall, the variety of system 

components and formats that may be used in affinity chromatography and related methods should 

continue in the future to make these techniques popular and powerful separation and analysis tools 
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in fields such as analytical chemistry, biochemistry, clinical testing, environmental analysis, 

molecular biology, and pharmaceutical science.   
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Figure Legends 

Figure 1.  A typical sample application and elution scheme used in affinity chromatography, 

the on-off elution mode. 

 

Figure 2.  General types of immobilization schemes used in affinity chromatography. 

 

Figure 3. Common applications of affinity chromatography.  This figure is, based on a search 

of the literature that was made with SciFinder in January 2019 for papers (46,335 

total obtained) in the indicated areas and that were linked to the term “affinity 

chromatography”.  The figure is reproduced from Ref. [3] with permission from 

Elsevier.  
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Table 1.  Types of supports used in affinity chromatography 

 

General type 

 of support 

 

 

Examples of supports 

Natural 

 

Agarose, cellulose, dextran, agarose-chitosan composites 

Inorganic 

 

Silica, aluminum oxide, titania 

Synthetic 

 

 

Polystyrenes, polyacrylamides, polysulfones, polyamides, 

cryogels 

Miscellaneous Magnetic beads and particles (e.g., based on iron oxides) 

Smart materials (e.g., thermoresponsive polymers 

Nanomaterials (e.g., multi-walled and single-walled carbon 

nanotubes) 

   

  



139 

 

Table 2.  Types of biological binding agents used in affinity chromatography 

 

Type of binding agenta  Targets Examples of applications 

Antibodies & antigens 

 

Complementary antigens or 

antibodies 

 

Immunoaffinity chromatography; 

immunoextraction; 

immunodepletion; chromatographic 

immunoassays 

 

Immunoglobulin-

binding proteins (e.g., 

protein A, protein G, 

protein L) 

 

 

Immunoglobulins, antibodies, 

and antibody fragments 

 

Antibody purification and analysis; 

biospecific adsorption of antibodies 

Lectins (e.g., Con A, 

WGA, AAL) 

 

 

Glycoproteins, glycolipids and 

polysaccharides 

Lectin affinity chromatography; 

glycan analysis; isolation of 

carbohydrate-containing targets 

 

Enzymes Enzyme substrates and 

inhibitors 

 

Purification of enzyme inhibitors; 

chiral separations; immobilized 

enzyme reactors 

Serum proteins (e.g., 

HSA, BSA, AGP 

Various drugs and low mass 

hormones 

Biointeraction studies; chiral 

separations 
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Biotin Avidin or streptavidin Capture or labeling of agents that 

contain avidin or streptavidin; 

biospecific adsorption 

 

Carbohydrates 

 

Targets that bind 

polysaccharides or cyclic 

oligosaccharides 

 

Chiral separations; purification of 

agents that bind carbohydrates 

 

 

Lipids Targets that interact with lipids 

or binding agents contained 

within lipid structures 

Immobilized artificial membrane 

chromatography; immobilized 

liposome chromatography; 

biointeraction studies; screening of 

compounds that bind to membrane 

receptors 

 

Nucleic acids  

& aptamers 

Targets that bind to general or 

specific structures or sequences 

within a nucleic acid or aptamer 

DNA affinity chromatography; 

aptamer affinity chromatography; 

purification and isolation of DNA 

binding proteins; purification, 

enrichment or analysis so small 

targets that bind to aptamers 
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Table 3.  Types of non-biological binding agents used in affinity chromatography 

 

Type of binding agenta  Targets Examples of applications 

Boronates 

 

cis-Diol containing 

compounds: glycoproteins, 

nucleosides, catecholamines 

Boronate affinity chromatography; 

boronic acid-lectin affinity 

chromatography; biospecific 

adsorption 

 

Dye-ligands 

 

 

 

Various enzymes and proteins 

 

Dye-ligand affinity 

chromatography; purification of 

enzymes and proteins 

 

Metal-ion chelates 

 

 

Various biological agents that 

bind to specific metal ions 

Immobilized metal-ion affinity 

chromatography; purification of his-

tagged proteins; enrichment and 

extraction of phosphopeptides 

 

Molecularly imprinted 

polymers 

 

Targets that are 

complementary to the binding 

pockets formed within the 

imprinted polymer 

Solid-phase extraction; chiral 

separations 
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