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The large-momentum effective theory (LaMET) framework has been widely used to determine the

Bjorken-G dependence of parton distribution functions (PDFs) in lattice-QCD hadron-structure

calculations. In this talk, I highlighted selected recent lattice-QCD results on parton distribu-

tions from MSULat group. We use clover valence fermions on ensembles generated by MILC

Collaboration with lattice spacing 0 ≈ 0.06, 0.09, and 0.12 fm, with "c! ≈ 4, and with pion

masses including 135, 220 and 310 MeV and # 5 = 2 + 1 + 1 flavors of highly improved staggered

dynamical quarks. Results include the continuum-physical isovector nucleon PDF, a first study of

the strange and charm PDFs and the pion and kaon valence-quark PDFs. We also reported results

on the &2 and G dependence of nucleon isovector unpolarized and helicity GPDs calculated di-

rectly at physical pion mass; we also make a comparison of the GPDs with the traditional moment

methods from other lattice calculations.
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1. Introduction

There has been exciting progress in the past decade on an increasing number of lattice hadronic

structure calculations at the physical pion mass, with many calculations now coming with high

statistics ($ (100k) measurements) and some with multiple lattice spacings and volumes to control

lattice artifacts. Furthermore, breakthroughs have been made in G-dependent methods, such as

large-momentum effective theory (LaMET) [1–3] (quasi-PDFs), with pioneering works showing

great promise in obtaining quantitative results for the unpolarized, helicity and transversity quark

and antiquark distributions [4–9] using the quasi-PDFs approach [1]. Increasingly many lattice

works are being performed at physical pion mass since the first study in Ref. [10]. A recent review

of the theory and lattice calculations can be found in Ref. [3].

In this proceeding, we focus on work done by our group (MSULat) since the last lattice

conference. In these calculations, we use clover valence fermions on ensembles generated by MILC

Collaboration [11, 12] with lattice spacing 0 ≈ 0.06, 0.09, and 0.12 fm, with "c! ≈ 4, and with

the physical pion mass ranging from 135, 220 and 310 MeV and # 5 = 2 + 1 + 1 (degenerate

up/down, strange and charm) flavors of highly improved staggered dynamical quarks (HISQ) [13].

The gauge links are one-step hypercubic (HYP) smeared [14] to suppress discretization effects.

The clover parameters are tuned to recover the lowest sea pion mass of the HISQ quarks. The

“mixed-action” approach is commonly used, and there is promising agreement between the lattice-

calculated nucleon charges, moments and form factors and the experimental data when applicable.

(See Ref. [15] and references within.) Gaussian momentum smearing [16] is used on the quark field

to improve the overlap with ground-state nucleons of the desired boost momentum, allowing us to

reach higher boost momentum for the nucleon states. At each boost momentum, the nucleon energy

is obtained through a two-state fit to the two-point correlator,�2pt(C) = |A0 |
24−�0C+|A1 |

24−�1C+. . . ,

where �8 and �8 are the energy and overlap factor between the lattice nucleon operator and desired

state |8〉, and 8 = 0 (8 = 8) stands for the ground (excited) state. The three-point correlator needed to

extract the ground-state matrix elements of nucleon and mesons, 〈0|$ |0〉, is then

�3pt(Csep, C) =|�0 |
2〈0|$ |0〉4−�0C4−�0 (Csep−C) + |�0 | |�1 |〈1|$ |0〉4−�0C4−�1 (Csep−C)+

|�1 | |�0 |〈0|$ |1〉4−�1C4−�0 (Csep−C) + |�1 |
2〈1|$ |1〉4−�1C4−�1 (Csep−C) + . . . . (1)

2. Nucleon PDFs

The most studied G-dependent structures are the nucleon unpolarized isovector parton distri-

bution functions (PDFs). In Ref. [17], we present the first lattice-QCD calculation of the nucleon

isovector unpolarized PDFs in the physical-continuum limit. The lattice results are calculated us-

ing ensembles with multiple sea pion masses with the lightest one around 135 MeV, three lattice

spacings 0 ∈ [0.06, 0.12] fm, and multiple volumes with "c! ranging 3.3 to 5.5. We perform

a simultaneous chiral-continuum extrapolation to obtain RI/MOM renormalized nucleon matrix

elements with various Wilson-link displacements and obtained four physical-continuum matrix

elements (linear/quadratic in lattice spacing and pion mass), as shown in solid (central value) and

dashed (error band) lines in Fig. 1. We find that the four fits from the real matrix elements are in

good agreement, whereas more fluctuations are seen in the imaginary matrix elements. The fluc-

tuations are mainly dominated by the lattice-spacing extrapolation. Using a linear lattice-spacing
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